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Additive regression is studied in a very general setting where both the
response and predictors are allowed to be non-Euclidean. The response takes
values in a general separable Hilbert space, whereas the predictors take values
in general semimetric spaces, which covers a very wide range of nonstan-
dard response variables and predictors. A general framework of estimating
additive models is presented for semimetric space-valued predictors. In par-
ticular, full details of implementation and the corresponding theory are given
for predictors taking values in Hilbert spaces and/or Riemannian manifolds.
The existence of the estimators, convergence of a backfitting algorithm, rates
of convergence and asymptotic distributions of the estimators are discussed.
The finite sample performance of the estimators is investigated by means of
two simulation studies. Finally, three data sets covering several types of non-
Euclidean data are analyzed to illustrate the usefulness of the proposed gen-
eral approach.

1. Introduction. Statistical analysis of non-Euclidean data objects is becoming an im-
portant topic in modern statistics. Existing methods designed for Euclidean data do not make
use of the underlying geometric structures of non-Euclidean data. As a result, they may give
poor estimation/prediction performance and also cause distorted interpretation. Recent years
have seen some attempts for developing statistical techniques dealing with non-Euclidean
data. For a review on statistical analysis for nonstandard data, we refer to [30] and the ref-
erences therein. The topic is still largely unexplored in many areas of statistical inference,
however. In this paper, we consider additive models of the form

Y =
d⊕

j=1

fj (Xj ) ⊕ ε,(1.1)

where Y and ε are response and error variables, respectively, taking values in a Hilbert space,
Xj are semimetric space-valued predictors, fj are unknown Hilbert space-valued maps and
⊕ is a vector addition of the underlying Hilbert space. We present a general framework of
estimating the model (1.1) for predictors taking values in general semimetric spaces. In par-
ticular, we get into full details for predictors whose values reside in finite-dimensional Hilbert
spaces and/or Riemannian manifolds.

The postulation of Hilbert spaces for the response variable covers a very wide scope of data
types including, for example, Euclidean, compositional, functional and density-valued data.
We consider Hilbert spaces since they are an important class of non-Euclidean data spaces
equipped with vector operations and an inner product structure that are vital to response
variables in most regression techniques. Our coverage for predictors is truly broad as well.
Hilbertian (Hilbert space-valued)/Riemannian (Riemannian manifold-valued) predictors for
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which we give fully detailed practical implementation and theory have a very wide spectrum
of data types, which includes Euclidean, compositional, spherical, toroidal (torus-valued),
shape, special orthogonal matrix-valued data and so on. The coverage facilitates additive re-
gression in a huge number of real world problems. A compositional value is an Euclidean
vector of positive entries whose sum equals one. This type arises from numerous sources
such as elections, compositions of body/air/sea-water/soil and income/expenditure distribu-
tions, etc. Spherical data and toroidal data, including circular data as a special case, emerge
from enormous fields such as earth science and astronomy. Examples include periodic time,
directions of wind and of animal movements, and positions of sunspots and of airplanes, etc.
A shape value is a set of finite points in an Euclidean space representing the shape of an
artifial/natural object of interest. Since objects are everywhere, this type of data can be eas-
ily found. Examples are shapes of skulls, organs, faces, sand-particles and lands. For more
examples of shape data, we refer to [8]. Some examples of special-orthogonal-matrix-valued
data include vector-cardiograms [2] and alignments of crystals [17]. There are many exam-
ples of Hilbertian responses that can be regressed on a mixture of Hilbertian and Riemmanian
variables, such as those in Section 6. One may also think of the year-long curve of ground
temperature regressed on soil composition and location on the earth.

The additive model (1.1) is an important example of structured nonparametric regression.
[29] initiated a powerful method of fitting (1.1), named as the smooth backfitting (SBF) tech-
nique, for real-valued responses regressed on real-valued predictors. Since then, the success
of the technique in terms of avoiding the curse of dimensionality has been observed in other
structured models; see [25, 26, 43] and [15], among others. For an account of the practical
issues of the method, see [31]. In recent years, there have been some achievements of ex-
tending the original work of [29] on the additive model to the case of more general spaces
for responses and predictors. To list a few here, [14] treated density-valued responses Y(·)
with real-valued predictors, but in a pointwise manner, that is, regressing Y(t) on predic-
tors for each t , so that their methods and theory are essentially the same as in the case of
real-valued responses. Jeon and Park [18] extended the SBF technique to general Hilbertian
responses regressed on real-valued predictors. The latter treatment for response variables in-
cludes the case of functional or density-valued responses, and when applied to such cases it
estimates function-valued maps themselves, not pointwise real-valued maps as in [14]. The
present paper aims at an entirely different level of generalization. We present a novel theory
for a general Hilbertian response coupled with general semimetric space-valued predictors.
In particular, the methodology and theory we detail for Hilbertian/Riemannian predictors are
complete. Some of specific ingredients for the practical implementation we also exemplify in
this paper do not exist in the literature.

Nonparametric regression analysis without a structure such as (1.1), which we call full-
dimensional regression, is much simpler. The methodology is essentially the same as in the
case of single predictor, but is subject to the curse of dimensionality even when the number
of predictors is moderately large. There is a body of literature on single or full-dimensional
regression with non-Euclidean predictors. This includes [5, 34] and [3]. The aforementioned
works treated a real-valued response with a single or multiple Riemannian manifold-valued
predictors, some of which considered specific manifolds such as circles. Recently, [27] stud-
ied functional linear regression with a real-valued response and a single functional Rieman-
nian manifold-valued predictor. An example dealing with a non-Euclidean response is local
polynomial regression with a response taking values in the space of symmetric positive defi-
nite matrices and a single real-valued predictor [44]. Others are spherical-spherical regression
[6, 37], parametric regression with a Riemannian manifold-valued response and real-valued
predictors [4] and Fréchet regression with a metric-space-valued response and real-valued
predictors [35]. However, there has been no parametric/nonparametric method designed for
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an Euclidean response coupled with a mixture of compositional and Riemannian predictors,
and for a non-Euclidean Hilbertian response coupled with Riemannian predictors, to the best
of our knowledge.

During recent decades, there have been a few attempts for estimating additive models.
Methods other than the SBF include the marginal integration [28], the classical backfitting
[11, 32], the reproducing kernel Hilbert space approach [36] and the spline-based technique
[10, 21, 39]. However, all these approaches are restricted to Euclidean or functional variables.
We believe that (1.1) is the first structured nonparametric model dealing with general possi-
bly non-Euclidean responses and predictors. Our treatment of the cases of Hilbertian and of
Riemannian predictors already covers a variety of data examples, as we mentioned earlier.
Our general framework encompasses further any combinations of Hilbertian and Rieman-
nian predictors. It also covers the case where a predictor Xj itself is multidimensional, and
thus its space is a product of multiple Hilbert spaces or of multiple Riemannian manifolds,
which enable us to analyze interaction effects between the corresponding lower-dimensional
predictors constituting Xj . In the specialization to Euclidean predictors, it allows for general
predictor supports such as (rotated) ellipses, circular cylinders and polygons, contrary to the
interval supports in [18]. In summary, the present paper provides a powerful and large toolbox
for structured nonparametric regression analysis.

This paper is organized as follows. In Section 2, we present a general framework of the
methodology and establish the existence of the SBF estimator and the convergence of the
SBF algorithm. In Section 3, we detail the methodology for predictors taking values in finite-
dimensional Hilbert spaces and/or Riemannian manifolds. We present the asymptotic prop-
erties of the estimator in Section 4. We then discuss some generalization of the theory in
Section 5 for general semimetric space-valued predictors. In Section 6, we report the results
of extensive simulation studies and illustrate the methods in various real data examples. We
summarize the major developments of our work in Section 7 and give directions for future
work. We put all technical proofs in the Supplementary Material [19] because of the space
constraint, although they are new and based on innovative mathematical analysis. The sup-
plement also contains some ancillary results that are of interest in their own right.

2. General framework. In this section, we go over a general framework of estimating
additive models with predictors taking values in semimetric spaces and responses taking val-
ues in a separable Hilbert space. Let (Xj , dj ) for 1 ≤ j ≤ d be semimetric spaces (sometimes
called pseudo-metric spaces, which allow dj (xj , uj ) = 0 for some xj �= uj ) with infinite car-
dinalities where the random predictors Xj take values. We consider semimetric spaces for
predictor domains since they are one of the most general domains for kernel smoothing that
we adopt in this paper. Let X = (X1, . . . ,Xd) and X =∏d

j=1 Xj . We denote by B(Xj ) the
Borel sigma-field of Xj induced by the semimetric dj and let μj be a measure on B(Xj )

satisfying 0 < μj(Xj ) < ∞.
For example, when Xj is a finite-dimensional Hilbert space, we may take dj as the metric

induced by an inner product of the Hilbert space, and μj as the pushforward measure in-
duced by a Lebesgue measure. Specifically, if Xj is a qj -dimensional space, the pushforward
measure μj is given by μj(A) = Lebqj

(ηj (A)) for A ∈ B(Xj ), where Lebqj
denotes the qj -

dimensional Lebesgue measure and ηj : Xj → R
qj is an isometric isomorphism. When Xj

is a finite-dimensional Riemannian manifold, we may take dj and μj , respectively, as the
Riemmanian distance and Riemmanian volume measure induced by a Riemannian metric. In
Section 3.3, we give concrete examples of dj and μj for some Hilbert spaces including Eu-
clidean spaces and simplices, and for some Riemannian manifolds including toruses, spheres
and planar shape spaces with formal definitions of the spaces.

Let H be a separable Hilbert space equipped with an inner product 〈·, ·〉 and the associ-
ated norm ‖ · ‖ where the values of the response Y reside. Throughout this paper, we assume
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E(‖Y‖2) < ∞. Let ⊕, �, 0 and B(H), respectively, denote a vector addition, scalar multipli-
cation, zero vector and the Borel sigma-field of H. Examples of H include Euclidean spaces,
simplices, L2-spaces and Bayes–Hilbert spaces. The definitions of these spaces with associ-
ated 〈·, ·〉, ‖ · ‖, ⊕, � and 0 are given in the Supplement S.1; see also [18]. In this paper, we
consider an additive model

Y = E(Y) ⊕
d⊕

j=1

fj (Xj ) ⊕ ε,(2.1)

where fj : Xj → H are (B(Xj ),B(H))-measurable maps satisfying E(fj (Xj )) = 0 and
E(‖fj (Xj )‖2) < ∞ for 1 ≤ j ≤ d , and ε is an H-valued error satisfying E(ε | X) = 0.
The constraints E(fj (Xj )) = 0, 1 ≤ j ≤ d , are for the identifiability of the component maps
(fj : 1 ≤ j ≤ d). Here, the (conditional) expectation is in the sense of Bochner integral, which
is for Banach space-valued maps. For more details on this notion, see [18] and also the Sup-
plement S.2.

2.1. Methodology. We assume that the probability distribution P X−1 of X is abso-
lutely continuous with respect to the product measure μ := ⊗d

j=1 μj , so that the density

p := dP X−1/dμ exists. Let pjk and pj denote the marginal densities for (Xj ,Xk) and Xj ,
respectively. We assume that pj (xj ) > 0 and

∫
Xk

p2
jk(xj , xk)/pk(xk) dμk(xk) < ∞ hold for

all 1 ≤ j �= k ≤ d and xj ∈ Xj . Then, by taking the conditional expectation E(· | Xj = xj ) on
both sides of (2.1) and applying Proposition 2.2 in [18], we get

fj (xj ) = mj (xj ) � E(Y) �
d⊕

k �=j

∫
Xk

fk(xk) � pjk(xj , xk)

pj (xj )
dμk(xk), 1 ≤ j ≤ d,(2.2)

where mj are the marginal regression maps such that mj (xj ) = E(Y | Xj = xj ) and � is
a vector subtraction of H defined by h1 � h2 = h1 ⊕ (−1 � h2). We note that the integrals
in (2.2) are Bochner integrals. The basic idea is to estimate the system of Bochner integral
equations at (2.2) and then solve the resulting system of equations to get the estimators of the
component maps (fj : 1 ≤ j ≤ d).

Suppose that we have n observations {(Yi ,Xi)}1≤i≤n. In this section, we do not assume
that the observations are identically distributed or independent. We note that this general treat-
ment has not been considered before, not even in the recent [18]. For x = (x1, . . . , xd) ∈ X ,
we estimate p(x) by p̂(x) = n−1∑n

i=1
∏d

j=1 Lj,n(xj ,Xij ), where Lj,n : Xj ×Xj → [0,∞)

is any measurable weight function which depends on n and satisfies∫
Xj

Lj,n(xj , uj ) dμj (xj ) = 1(2.3)

for all uj ∈ Xj . In Section 3.1, we give specific forms of Lj,n that satisfy (2.3) for Hilbert
spaces and Riemannian manifolds. We estimate the marginal densities pjk and pj in (2.2) by

p̂jk(xj , xk) = n−1
n∑

i=1

Lj,n(xj ,Xij )Lk,n(xk,Xik), p̂j (xj ) = n−1
n∑

i=1

Lj,n(xj ,Xij ).

We also estimate E(Y) and mj in (2.2) by

Ê(Y) = n−1 �
n⊕

i=1

Yi = Ȳ, m̂j (xj ) = 1

np̂j (xj )
�

n⊕
i=1

Lj,n(xj ,Xij ) � Yi .

We consider the following condition on the density estimators.
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CONDITION (S). For all 1 ≤ j �= k ≤ d and xj ∈ Xj , we have p̂j (xj ) > 0,
∫
Xk

p̂2
jk(xj ,

xk)/p̂k(xk) dμk(xk) < ∞ and∫
Xk

∫
Xj

p̂2
jk(xj , xk)

p̂j (xj )p̂k(xk)
dμj (xj ) dμk(xk) < ∞.

Under the conditions (S) and that max1≤j≤d

∫
Xj

‖f̂j (xj )‖2p̂j (xj ) dμj (xj ) < ∞, we have∫
Xk

‖f̂k(xk)‖p̂jk(xj , xk) dμk(xk) < ∞ by Hölder’s inequality. Thus, in the space of square
integrable maps and under (S), the Bochner integrals in the estimated system of Bochner
integral equations,

f̂j (xj ) = m̂j (xj ) � Ȳ �
d⊕

k �=j

∫
Xk

f̂k(xk) � p̂jk(xj , xk)

p̂j (xj )
dμk(xk), 1 ≤ j ≤ d,(2.4)

are well defined. The smooth backfitting (SBF) estimator of the tuple (fj : 1 ≤ j ≤ d) of the
component maps is then defined as a solution (f̂j : 1 ≤ j ≤ d) of the system of equations in
(2.4) subject to the constraints∫

Xj

f̂j (xj ) � p̂j (xj ) dμj (xj ) = 0, 1 ≤ j ≤ d,

∫
Xj

∥∥f̂j (xj )
∥∥2

p̂j (xj ) dμj (xj ) < ∞, 1 ≤ j ≤ d.

(2.5)

The above constraints are the empirical versions of the constraints E(fj (Xj )) = 0 and
E(‖fj (Xj )‖2) < ∞ on the true tuple (fj : 1 ≤ j ≤ d). We call (f̂j : 1 ≤ j ≤ d) semimetric
Bochner smooth backfitting (sB-SBF) estimator.

Below, we present a proposition that demonstrates the existence and uniqueness of the
sB-SBF estimator. Define a measure P̂ X−1 on

⊗d
j=1 B(Xj ) by P̂ X−1(A) = ∫

A p̂(x) dμ(x).

PROPOSITION 2.1. Assume the condition (S). Then there exists a solution (f̂j : 1 ≤ j ≤
d) of (2.4) satisfying (2.5), and the sum of such f̂j for 1 ≤ j ≤ d is unique up to measure
zero with respect to P̂ X−1. Moreover, when p̂ > 0 on X , the solution is unique in the sense
that, if (f̂�j : 1 ≤ j ≤ d) is another solution, then f̂j (xj ) = f̂�j (xj ) a.e. with respect to μj for
all 1 ≤ j ≤ d .

2.2. Implementation scheme. The sB-SBF estimator has no explicit form. The sB-SBF
algorithm as we describe below is an iterative scheme that solves (2.4). First, we take any
initial estimator (f̂[0]

j : 1 ≤ j ≤ d) satisfying∫
Xj

f̂[0]
j (xj ) � p̂j (xj ) dμj (xj ) = 0, 1 ≤ j ≤ d,

∫
Xj

∥∥f̂[0]
j (xj )

∥∥2
p̂j (xj ) dμj (xj ) < ∞, 1 ≤ j ≤ d.

(2.6)

We update them in the r th iteration by

f̂[r]j (xj ) = m̂j (xj ) � Ȳ �⊕
k<j

∫
Xk

f̂[r]k (xk) � p̂jk(xj , xk)

p̂j (xj )
dμk(xk)

�⊕
k>j

∫
Xk

f̂[r−1]
k (xk) � p̂jk(xj , xk)

p̂j (xj )
dμk(xk), 1 ≤ j ≤ d.

(2.7)
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We note that, under the condition (S), the Bochner integrals in (2.7) are well defined and∫
Xj

‖f̂[r]j (xj )‖2p̂j (xj ) dμj (xj ) < ∞ for all 1 ≤ j ≤ d . Using (2.3) one can easily show that
the constraints ∫

Xj

f̂[r]j (xj ) � p̂j (xj ) dμj (xj ) = 0, 1 ≤ j ≤ d

are automatically satisfied for r ≥ 1 if the initial f̂[0]
j satisfy (2.6).

The following two propositions demonstrate that the sB-SBF algorithm converges to the
solution of (2.4). For their statements, let f = E(Y) ⊕⊕d

j=1 fj , which is the mean regression

map E(Y | X = ·) under the additive model (2.1). Define f̂ = Ȳ ⊕⊕d
j=1 f̂j and f̂[r] = Ȳ ⊕⊕d

j=1 f̂[r]j .

PROPOSITION 2.2. Assume the condition (S). Then there exist constants ĉ > 0 and γ̂ ∈
(0,1) such that ∫

X

∥∥f̂(x) � f̂[r](x)
∥∥2

p̂(x) dμ(x) ≤ ĉ · γ̂ r for all r ≥ 0.

The next convergence result is for the individual component maps. For this, we impose the
following high-level condition.

CONDITION (A). There exists a constant C > 0 such that, with probability tending to
one,

(A1) max
1≤j≤d

sup
xj∈Xj

p̂j (xj )
−1 < C; (A2) max

1≤j �=k≤d
sup

(xj ,xk)∈Xj×Xk

p̂jk(xj , xk) < C;

(A3) max
1≤j≤d

sup
xj∈Xj

∥∥m̂j (xj )
∥∥< C; (A4) max

1≤j≤d

∫
Xj

∥∥f̂[0]
j (xj )

∥∥2
dμj (xj ) < C.

Also, it holds that

(A5) max
1≤j≤d

∫
Xj

(
p̂j (xj ) − pj (xj )

)2
dμj (xj ) = op(1),

(A6) max
1≤j �=k≤d

∫
Xj×Xk

(
p̂jk(xj , xk) − pjk(xj , xk)

)2
dμj ⊗ μk(xj , xk) = op(1),

(A7) p is bounded away from zero and infinity on X .

We note that the condition (A7) on the underlying distribution of X is standard in nonpara-
metric regression.

PROPOSITION 2.3. Assume the condition (A). Then there exist constants c > 0 and γ ∈
(0,1) such that, for all 1 ≤ j ≤ d ,

lim
n→∞P

(∫
Xj

∥∥f̂j (xj ) � f̂[r]j (xj )
∥∥2

pj (xj ) dμj (xj ) ≤ c · γ r for all r ≥ 0
)

= 1.

Moreover, for all 1 ≤ j ≤ d ,

lim
n→∞P

(
μj

({
xj ∈ Xj : f̂[r]j (xj ) → f̂j (xj ) as r → ∞})= μj(Xj )

)= 1.
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As in [18], we may implement the sB-SBF algorithm using Lebesgue integration. This is
because of the fact that, for any measure space (Z,A ,μ),

(Bochner)
∫
Z

f (z) � bdμ(z) = (Lebesgue)
∫
Z

f (z) dμ(z) � b

in case f is a real-valued integrable function on Z and b is a constant in a Banach space. To
implement the idea, we take initial estimators of the form

f̂[0]
j (xj ) = n−1 �

n⊕
i=1

w
[0]
ij (xj ) � Yi , 1 ≤ j ≤ d,(2.8)

for some continuous functions w
[0]
ij : Xj → R satisfying

∫
Xj

w
[0]
ij (xj )p̂j (xj ) dμj (xj ) = 0.

We note that the constraints are satisfied by the trivial choice w
[0]
ij ≡ 0. Define

w
[r]
ij (xj ) = Lj,n(xj ,Xij )

p̂j (xj )
− 1 −∑

k<j

∫
Xk

w
[r]
ik (xk)

p̂jk(xj , xk)

p̂j (xj )
dμk(xk)

−∑
k>j

∫
Xk

w
[r−1]
ik (xk)

p̂jk(xj , xk)

p̂j (xj )
dμk(xk).

(2.9)

Then it is easy to see that updating according to (2.7) is equivalent to taking

f̂[r]j (xj ) = n−1 �
n⊕

i=1

w
[r]
ij (xj ) � Yi , 1 ≤ j ≤ d

with w
[r]
ij being updated according to (2.9). In Section 3.3, we introduce specific ways of

implementing the integrals in (2.9) for some Hilbert spaces and Riemannian manifolds.

3. Methodology for Hilbertian and Riemannian predictors. In this section, we give
full details of the methodology for two large classes of semimetric spaces, which are Hilbert
spaces and Riemannian manifolds. To treat both types in a unified fashion, we let 0 ≤ � ≤
d be an integer and assume that Xj for 1 ≤ j ≤ � are compact subsets of qj -dimensional
Hilbert spaces Hj and Xj for � + 1 ≤ j ≤ d are qj -dimensional connected and compact
Riemannian manifolds without boundary. In both cases, we assume that 1 ≤ qj < ∞. We
denote a vector subtraction and a norm of Hj by �j and ‖ · ‖j , respectively. We let gj denote
the Riemannian metric (sometimes called Riemannian structure) of Xj for �+1 ≤ j ≤ d and
dj the Riemannian distance function induced by gj . We note that not gj but dj serves as a
metric on Xj for �+1 ≤ j ≤ d . For an introduction to Riemannian geometry, we refer to [41]
and [24], for example. We also collect basic notions related to Riemannian manifolds in the
Supplement S.3. In our unified framework, � = 0 means that there is no Hilbertian predictor
and � = d means that there is no Riemannian predictor. We note that, for any 0 ≤ � ≤ d , no
nonparametric additive model has been studied even for H = R. Our treatment covers all the
cases 0 ≤ � ≤ d with general H.

Examples of Hj include Euclidean spaces, simplices and their product spaces. We note that
simplices are domains for compositional data. Examples of connected and compact Rieman-
nian manifolds without boundary include spheres S

qj = {xj = (xj,1, . . . , xj,qj+1) ∈ R
qj+1 :∑qj+1

l=1 x2
j,l = 1}, toruses S

1 × · · · × S
1, planar shape spaces [23], special orthogonal groups

and their product manifolds. Spheres are domains for spherical data, and toruses are domains
for toroidal data. Both data types cover circular data. Planar shape spaces are domains for
shape data, and special orthogonal groups are domains for special orthogonal-matrix-valued
data. More details on the aforementioned spaces are in Section 3.3.
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We assume that we observe n i.i.d. copies of (Y,X), which we denote by (Yi ,Xi),
1 ≤ i ≤ n. Each component Xj of X is a random element taking values, either in the com-
pact subset Xj of the Hilbert space Hj or in the Riemannian manifold (Xj , gj ). For each
Hilbertian predictor Xj , let ηj : Hj → R

qj be an isometric isomorphism. We choose μj to
be the pushforward measure on B(Hj ) such that μj(A) = Lebqj

(ηj (A)). For each Rieman-
nian predictor Xj taking values in the Riemannian manifold (Xj , gj ), we choose μj to be
the Riemannian volume measure induced by gj ; see Section 3.3.2 for the definition.

If � = d and Xj are compact and convex subsets of Rqj , so that we may take ηj to be
the identity map on R

qj and μj = Lebqj
, then the results here and in Section 4 completely

generalize those in [18] to “multivariate additive models” having multivariate component
maps. The latter generalization, but still a specialization of our general formulation, may ac-
commodate interaction effects between real-valued predictors. This means that our general
framework provides useful tools in various scenarios filling the gap between univariate addi-
tive models and entirely unstructured models. Moreover, we may deal with predictors having
more general types of support such as (rotated) ellipses, circular cylinders and polygons,
which [18] does not cover.

3.1. Kernel functions. In this subsection, we specify the weight functions Lj,n at (2.3)
to kernel functions Khj

to be defined below. With the kernel functions, we may obtain from
(2.4) the corresponding system of sB-SBF equations to solve for the sB-SBF estimators of
the component maps fj . We also have the corresponding sB-SBF algorithm from (2.7) and
the corresponding updating formula (2.9) that we actually iterate.

For 1 ≤ j ≤ d , let Kj : [0,∞) → [0,∞) be continuous functions vanishing on (1,∞) and
satisfying

∫
R

qj Kj (‖t‖
R

qj ) dt = 1, where ‖ · ‖
R

qj denotes the Euclidean norm on R
qj . For

Hilbertian predictors (1 ≤ j ≤ �), we use new kernel schemes Khj
, for hj > 0 called the

bandwidths, defined by

Khj
(xj , uj ) = Kj(‖xj �j uj‖j /hj )∫

Xj
Kj (‖vj �j uj‖j /hj ) dμj (vj )

(3.1)

whenever
∫
Xj

Kj (‖vj �j uj‖j /hj ) dμj (vj ) �= 0, and we set Khj
(xj , uj ) = 0 otherwise.

Here, we write Khj
instead of Kj,hj

for simplicity of notation. We note that, if the denomi-
nator in (3.1) is nonzero, then the kernel functions Khj

satisfies (2.3).
For Riemannian predictors, we use the kernel function of [33] defined by

Khj
(xj , uj ) = 1

h
qj

j

1

θj (xj ;uj )
Kj

(
dj (xj , uj )

hj

)
I
(
dj (xj , uj ) < inj(Xj )

)
,(3.2)

where θj (·;uj ) is the volume density function of Xj at uj ∈ Xj , and inj(Xj ) is the injectivity
radius of Xj . For the definitions of volume density function and injectivity radius, see [12] or
the Supplement S.3. Since Xj is compact, inj(Xj ) > 0. We note that θj (xj ;uj ) is defined only
for xj and uj such that dj (xj , uj ) < inj(Xj ), and it holds that θj (xj ;uj ) > 0, θj (xj ;uj ) =
θj (uj ;xj ) and θj (xj ;xj ) = 1 for such xj and uj . Also, θj (·;uj ) is smooth on {xj ∈ Xj :
dj (xj , uj ) ≤ r} for any r < inj(Xj ). The kernel function Khj

(xj , uj ) defined at (3.2) satisfies
(2.3) if hj < inj(Xj ).

We note that Jeon and Park [18] studied the additive model (2.1) with Xj = [0,1] ⊂R for
all 1 ≤ j ≤ d and kernel Khj

defined by

Khj
(xj , uj ) = K((xj − uj )/hj )∫ 1

0 K((vj − uj )/hj ) dvj

,(3.3)

where K : R → [0,∞) is a measurable function that vanishes on (−∞,−1) ∪ (1,∞) and
satisfies

∫ 1
−1 K(t) dt = 1. The new kernel at (3.1) generalizes the kernel at (3.3) when K is

symmetric.
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3.2. Existence of sB-SBF estimator and convergence of sB-SBF algorithm. For 1 ≤ j ≤
�, we denote dj (xj , uj ) = ‖xj �j uj‖j and (ηj (Xj )−ηj (xj ))/hj = {(ηj (uj )−ηj (xj ))/hj :
uj ∈ Xj }. For 1 ≤ j ≤ d and r > 0, we define BXj

(xj , r) = {uj ∈ Xj : dj (xj , uj ) < r}. We
denote by 0qj

the zero vector of Rqj , and by B(0qj
, r) the Euclidean open ball centered at

0qj
with radius r . Throughout this paper, we separate the conditions for each result to make

it clear what are minimally required for the result. We stress that each condition is weak.
Below, we collect sufficient conditions for the conclusions of Propositions 2.1 and 2.2. We
note that Propositions 2.1 and 2.2 are nonasymptotic results stated for each dataset. Thus, the
following conditions are for the datasets that are used to construct the sB-SBF estimators.

CONDITION (B).

(B1) (Hilbertian predictors: 1 ≤ j ≤ �). κj := supxj∈Xj
min1≤i≤n dj (xj ,Xij ) < hj , and

Kj is bounded away from zero on [0, κj /hj ]. Also, for all xj ∈ Xj ,

Lebqj

((
ηj (Xj ) − ηj (xj )

)
/hj ∩ B(0qj

, κj /hj )
)
> 0.(3.4)

(B2) (Riemannian predictors: � + 1 ≤ j ≤ d). γj := supxj∈Xj
min1≤i≤n dj (xj ,Xij ) <

hj < inj(Xj ), and Kj is bounded away from zero on [0, γj /hj ].
We note that the condition (B) implies (S) and that κj < ∞ and γj < ∞ since dj (·,Xij ) :

Xj → [0,∞) are continuous and Xj are compact. The condition that the functions Kj are
bounded away from zero on [0, t] for some 0 < t < 1 is standard in kernel smoothing theory.
The latter is satisfied by most popular kernel functions; see Remark 4.1 in Section 4.1 for spe-
cific examples. Under (B1), the denominator of Khj

(xj ,Xij ) as defined at (3.1) is nonzero.
We also note that a large class of Xj satisfies (3.4) in (B1). Below, we introduce a proposition
that gives a class of Xj satisfying the condition.

DEFINITION 3.1. We say a connected Lebesgue measurable set S in a Euclidean space is
fat if, for any s ∈ S, the intersection of S and any neighborhood of s has a positive Lebesgue
measure.

We may show that Lebqj
((ηj (Xj ) − ηj (xj ))/hj ∩ B(0qj

, r)) > 0 for any xj ∈ Xj , hj > 0
and r > 0 if ηj (Xj ) is fat. Most of connected sets in Euclidean spaces are fat. Examples
include polygons in R

2. The following proposition gives another large class of fat sets.

PROPOSITION 3.1. If Xj is a convex subset of Hj , then ηj (Xj ) is fat.

Since the condition (B) implies the condition (S), we obtain the following proposition that
demonstrates the existence and uniqueness of the sB-SBF estimator and the convergence of
the sB-SBF algorithm.

PROPOSITION 3.2. Under the condition (B), the conclusions of Propositions 2.1 and 2.2
are valid.

For the validity of the asymptotic algorithm convergence, as stated in Proposition 2.3, we
give sufficient conditions that guarantee the high-level condition (A). Let ∂Xj , for 1 ≤ j ≤ �,
denote the boundary of Xj .

CONDITION (C).

(C1) E(‖Y‖α) < ∞ for some α > 2, and E(‖Y‖2 | Xj = ·) are bounded on the respective
Xj for 1 ≤ j ≤ d .
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(C2) For 1 ≤ j �= k ≤ d , (i) pj > 0 on Xj and pjk is continuous on Xj × Xk ; (ii) the
bandwidths satisfy hj = o(1), logn/(nh

qj

j h
qk

k ) = o(1) and infn ncj h
qj

j > 0 for some cj <

(α − 2)/α.
(C3) (Hilbertian predictors: 1 ≤ j ≤ �). (i) μj(∂Xj ) = 0 and there exist positive con-

stants τj < 1 and εj such that

inf
n

inf
xj∈Xj

Lebqj

((
ηj (Xj ) − ηj (xj )

)
/hj ∩ B(0qj

, τj )
)≥ εj ;(3.5)

(ii) Kj is Lipschitz continuous on [0,∞) and bounded away from zero on [0, τj ].
(C4) (Riemannian predictors: � + 1 ≤ j ≤ d). (i) there exist positive constants rj <

inj(Xj ) and Lj such that, for all uj ∈ Xj and xj , x
∗
j ∈ BXj

(uj , rj ),∣∣(θj (xj ;uj )
)−1 − (θj

(
x∗
j ;uj

))−1∣∣≤ Lj · dj

(
xj , x

∗
j

);
(ii) Kj is Lipschitz continuous.

We note that the condition (C) implies (A) except (A4) and (A7). It is for asymptotic anal-
ysis while the condition (B) is for nonasymptotic analysis. Hence, the two sets (B) and (C) are
of different nature. For example, (B) is imposed on each dataset while (C) is on the population
generating the observations of (X,Y). Nevertheless, they are related. Indeed, one may show
that the condition (C2)-(i) with infn ncj h

qj

j > 0 for some cj < (α − 2)/α in (C2)-(ii) implies
that the condition supxj∈Xj

min1≤i≤n dj (xj ,Xij ) < hj in (B) holds with probability tending
to one. For the proof of the latter implication, one may need to use the fact that there exists
a constant 0 < c(qj ) < ∞ depending only on qj such that, for μj being either the pushfor-
ward measure or the Riemannian volume measure, infxj∈Xj

μj (BXj
(xj , δ)) ≥ c(qj ) · δqj for

sufficiently small δ > 0.
The conditions (C1)–(C2) are versions of the standard regularity conditions in Euclidean

kernel smoothing theory. In the condition (C1), E(‖Y‖2 | Xj = ·) is bounded on Xj if it
is continuous on Xj . The condition μj(∂Xj ) = 0 in (C3) is weak and holds for most of
sets. For example, the convexity of Xj implies the condition; see [22]. We may also show
that (3.5) in (C3) holds when Xj is convex, using Proposition 3.1 and the fact that the map
xj �→ Lebqj

((ηj (Xj ) − ηj (xj ))/hj ∩ B(0qj
, r)) is continuous on Xj for any hj > 0 and

r > 0. The condition on (θj (·;uj ))
−1 in (C4) is weaker than the Lipschitz continuity of

(θj (·;uj ))
−1. The latter condition is satisfied for all Riemannian manifolds considered in

Section 3.3.2.

PROPOSITION 3.3. Under the conditions (C), and (A4) and (A7) in Section 2.2, the
consequences of Proposition 2.3 hold.

3.3. Implementation of sB-SBF algorithm. We discuss the implementation of the sB-SBF
algorithm for Hilbertian and Riemannian predictors. Here, we collect all necessary ingredi-
ents including relevant theory for implementing the integrals in (2.9). They are very useful
not only for the problems discussed here but also for others that require evaluating integrals
over nonstandard domains with nonstandard measures. Some specific results presented here
are not well known and do not exist in the literature, to the best of our knowledge.

3.3.1. Implementation for Hilbertian predictors. In the case of Xk ⊂Hk , we may imple-
ment the integral over Xk in (2.9) using the property∫

Xk

f (xk) dμk(xk) =
∫
ηk(Xk)

f
(
η−1

k (t)
)
dt,

where f is any integrable function on Xk . Below, we give detailed examples of the imple-
mentation.
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3.3.1.1. (i) Euclidean spaces. In the case of Xk ⊂ R
qk , we may take ηk to be the identity

map on Xk . Then it is a standard practice to implement the integral over Xk with respect to
μk = Lebqk

in (2.9) since it is the usual numerical integration.

3.3.1.2. (ii) Simplices. Consider the qk-dimensional simplex Sqk+1
1 defined by

Sqk+1
1 =

{
xk = (xk,1, . . . , xk,qk+1) ∈ (0,1)qk+1 :

qk+1∑
l=1

xk,l = 1

}
.

The inner product 〈·, ·〉k on Sqk+1
1 is given by

〈xk, uk〉k = 1

2(qk + 1)

qk+1∑
l=1

qk+1∑
l′=1

log
(

xk,l

xk,l′

)
log
(

uk,l

uk,l′

)
.

Let {e1, . . . , eqk
} be its orthonormal basis. In this case, we may take ηk to be the isometric

log-ratio transformation ilrk : Sqk+1
1 →R

qk defined by

ilrk(xk) = (〈xk, e1〉k, . . . , 〈xk, eqk
〉k),

and use the Aitchison measure μk defined by μk(A) = Lebqk
(ilrk(A)). The notion of Aitchi-

son measure has been studied in density estimation and regression analysis for compositional
data; see [1] and [7], for example. The μk is a natural measure on the simplex Sqk+1

1 , which
inherits the properties of the corresponding Lebesgue measure. One of the most important
properties of the Aitchison measure is that integrals with respect to the measure reduce to
Lebesgue integrals. Specifically, for any integrable function f on Sqk+1

1 and any Borel set

A ⊂ Sqk+1
1 , it holds that ∫

A
f (xk) dμk(xk) =

∫
ilrk(A)

f
(
ilr−1

k (t)
)
dt.

To introduce an orthonormal basis of Sqk+1
1 , define the (qk + 1)-dimensional vector

ξm = (
exp
((

m(m + 1)
)−1/2)1m, exp

(−(m/(m + 1)
)1/2)

,1qk−m

)
,

where 1l is l-vector with all entries being equal to one. Denote the lth entry of ξm by ξm,l . De-
fine em = (ξm,1/

∑qk+1
l=1 ξm,l, . . . , ξm,qk+1/

∑qk+1
l=1 ξm,l). Then {e1, . . . , eqk

} forms an orthonor-

mal basis of Sqk+1
1 ; see Proposition 2 of [9]. With this basis, the mth entry of ilrk(xk) ∈ R

qk

for xk = (xk,1, . . . , xk,qk+1) ∈ Sqk+1
1 is given by

√
m/(m + 1) log(

∏m
l=1 x

1/m
k,l /xk,m+1). Then

the integral over Xk ⊂ Sqk+1
1 with respect to the Aitchison measure μk in (2.9) can be evalu-

ated by the usual numerical integration:∫
Xk

w
[r]
ik (xk) · p̂jk(xj , xk) dμk(xk) =

∫
ilrk(Xk)

w
[r]
ik

(
ilr−1

k (t)
) · p̂jk

(
xj , ilr−1

k (t)
)
dt.

3.3.1.3. (iii) Product of Hilbert spaces. Suppose that (Hk, 〈·, ·〉k) itself is the product
of Hilbert spaces ((Hk,j , 〈·, ·〉k,j ) : 1 ≤ j ≤ J ) and Xk ⊂ Hk , where dim(Hk,j ) = qk,j

and J ∈ N. We note that this space enables us to accommodate interaction effects be-
tween Hilbertian predictors. In this case, the inner product is given by 〈xk, uk〉k =∑J

j=1〈xk,j , uk,j 〉k,j and the isometric isomorphism ηk : Hk → R

∑J
j=1 qk,j is given by

ηk(xk) = (ηk,1(xk,1), . . . , ηk,J (xk,J )), where ηk,j : Hk,j → R
qk,j are isometric isomor-

phisms. With this ηk and the corresponding pushforward measure, we may implement the
integral over Xk in (2.9).
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3.3.2. Implementation for Riemannian predictors. We first introduce Riemannian vol-
ume measure, which takes the role of the measure μj on B(Xj ) when Xj is a Riemannian
manifold. Let (M, g) be a m-dimensional compact Riemannian manifold. A pair (U,ϕ) of
an open set U ⊂ M and a homeomorphism ϕ : U → ϕ(U) ⊂ R

m is called a chart of M.
Let {(Uβ,ϕβ)}β be a finite collection of charts in an atlas for M such that M = ⋃

β Uβ .
Such a finite collection exists since M is compact. We write ϕβ = (ϕβ,1, . . . , ϕβ,m), where
ϕβ,l : U → R. Let {ρβ}β be a partition of unity subordinate to {Uβ}β . Also, let ∂

∂ϕβ,l
|
ϕ−1

β (t)

denote the function defined by ∂
∂ϕβ,l

|
ϕ−1

β (t)(h) = Dl(h ◦ ϕ−1
β )(t) for each smooth function

h : Uβ → R, where Dl for 1 ≤ l ≤ m are the usual partial differential operators acting on
real-valued functions on R

m. Define Gβ(ϕ−1
β (t)) to be the m×m matrix whose (l, l′)th entry

is given by

g
(
ϕ−1

β (t)
)( ∂

∂ϕβ,l

∣∣∣∣
ϕ−1

β (t)
,

∂

∂ϕβ,l′

∣∣∣∣
ϕ−1

β (t)

)
.

Let C(M,R) denote the class of real-valued continuous functions defined on M. Define
F : C(M,R) →R by

F(f ) =∑
β

∫
ϕβ(Uβ)

f
(
ϕ−1

β (t)
) · ρβ

(
ϕ−1

β (t)
) ·√det

(
Gβ

(
ϕ−1

β (t)
))

dt.(3.6)

The value of F(f ) is independent of the choices of {(Uβ,ϕβ)}β and {ρβ}β ; see Chapter 2
of [38], for example. Due to the Riesz representation theorem, there exists a unique regular
Borel measure ν on M such that

F(f ) =
∫
M

f (x) dν(x), f ∈ C(M,R).(3.7)

We call such a ν the Riemannian volume measure induced by g.
According to (3.7), the integral of a continuous function over Xj with respect to the corre-

sponding Riemannian volume measure μj can be converted to an integral over an Euclidean
space with respect to a Lebesgue measure. For the application of this idea to the integrals
in (2.9), we need to verify that the functions involved there are continuous on the respective
spaces. For this, we have the following proposition.

PROPOSITION 3.4. Assume the condition (B). Then the maps xk �→ w
[r]
ik (xk) ·p̂jk(xj , xk)

are continuous on the respective Xk for all xj ∈ Xj and for all r ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ d

and � + 1 ≤ k ≤ d with k �= j .

For � + 1 ≤ k ≤ d , let {(Uβk
, ϕβk

)}βk
be a finite collection of charts in an atlas for the Rie-

mannian manifold Xk such that Xk =⋃
βk

Uβk
, and {ρβk

}βk
be a partition of unity subordinate

to {Uβk
}βk

. For the integrals in (2.9) with 1 ≤ j ≤ d and � + 1 ≤ k ≤ d but j �= k, making use
of (3.7) and Proposition 3.4, we get that, under the condition (B),∫

Xk

w
[r]
ik (xk) · p̂jk(xj , xk) dμk(xk) =∑

βk

∫
ϕβk

(Uβk
)
w

[r]
ik

(
ϕ−1

βk
(t)
) · p̂jk

(
xj , ϕ

−1
βk

(t)
)

· ρβk

(
ϕ−1

βk
(t)
) ·√det

(
Gβk

(
ϕ−1

βk
(t)
))

dt,

(3.8)

where Gβk
(ϕ−1

βk
(t)) is the qk × qk matrix whose (l, l′)th entry is given by

gk

(
ϕ−1

βk
(t)
)( ∂

∂ϕβk,l

∣∣∣∣
ϕ−1

βk
(t)

,
∂

∂ϕβk,l
′

∣∣∣∣
ϕ−1

βk
(t)

)
.

We derive more concrete forms for the integral on the right hand side of (3.8) in several
important classes of Riemannian manifolds.
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3.3.2.1. (i) Toruses. Consider the case where Xk =∏qk

l=1 S
1 for qk ≥ 1. Then inj(Xk) = π

and

dk(xk, uk) =
( qk∑

l=1

arccos2(x�
k,luk,l

))1/2

.

In this case, we may prove that θk(·; ·) ≡ 1. Clearly, this volume density function satisfies
(C4). Define a map ϕ−1 : (0,2π)qk →∏qk

l=1 S
1 by

ϕ−1(ϑ1, . . . , ϑqk
) = (cosϑ1, sinϑ1, . . . , cosϑqk

, sinϑqk
).

Then (ϕ−1((0,2π)qk ), ϕ) is a chart on
∏qk

l=1 S
1, where ϕ is understood to be the inverse of

the map ϕ−1. Assume the condition (B). Then, since μ(Xk) = μk(ϕ
−1((0,2π)qk )), it holds

that ∫
Xk

w
[r]
ik (xk) · p̂jk(xj , xk) dμk(xk)

=
∫
(0,2π)qk

w
[r]
ik

(
ϕ−1(ϑ1, . . . , ϑqk

)
) · p̂jk

(
xj , ϕ

−1(ϑ1, . . . , ϑqk
)
)
dϑ1 · · ·dϑqk

;
see Chapter 16 of [41].

3.3.2.2. (ii) Spheres. Consider now the case Xk = S
qk ⊂ R

qk+1 for qk ≥ 2. In this case,
inj(Xk) = π and dk(xk, uk) = arccos(x�

k uk). Also, we may prove

θk(xk;uk) = (
sin
(
dk(xk, uk)

)
/dk(xk, uk)

)qk−1 for xk �= ±uk

and θk(xk;xk) = 1. This volume density function satisfies the condition (C4). Define a map
ϕ−1 : (0,2π) × (0, π)qk−1 → S

qk by

ϕ−1(ϑ,φ1, . . . , φqk−1) =
(

cosϑ

qk−1∏
j=1

sinφj , sinϑ

qk−1∏
j=1

sinφj , cosφ1

qk−1∏
j=2

sinφj ,

cosφ2

qk−1∏
j=3

sinφj , . . . , cosφqk−2 sinφqk−1, cosφqk−1

)
.

Then (ϕ−1((0,2π) × (0, π)qk−1), ϕ) is a chart on S
qk . Assume the condition (B). Since

μk(Xk) = μk(ϕ
−1((0,2π) × (0, π)qk−1)), we have∫

Xk

w
[r]
ik (xk) · p̂jk(xj , xk) dμk(xk)

=
∫
(0,2π)×(0,π)qk−1

w
[r]
ik

(
ϕ−1(ϑ,φ1, . . . , φqk−1)

) · p̂jk

(
xj , ϕ

−1(ϑ,φ1, . . . , φqk−1)
)

·
qk−1∏
j=1

(sinφj )
j dϑ dφ1 · · ·dφqk−1;

see Chapter 16 of [41].

3.3.2.3. (iii) Planar shape spaces. Here, we consider Xk = �b
2 for b ≥ 3, where �b

2 denotes
the planar shape space with b ≡ b(k) landmarks, suppressing the dependence of b on k for
simplicity. Roughly speaking, an element of �b

2 is obtained by removing the location, scale
and rotation of a shape in R

2. For a concrete definition, let {(z1,1, z1,2), . . . , (zb,1, zb,2)} ⊂R
2

be b landmarks of a shape and z = (z1,1 +√−1 · z1,2, . . . , zb,1 +√−1 · zb,2)
� ∈ C

b the com-
plex representation of the landmarks. Also, let H be the (b−1)×b Helmert submatrix whose
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j th row is (−1/
√

j (j + 1)1�
j ,

√
j/(j + 1),0�

b−j−1). Define zH = Hz/‖Hz‖Cb−1 , where

‖ · ‖Cb−1 denotes the complex norm on C
b−1. Consider equivalent classes [z] = {zH · e

√−1·ϑ :
0 ≤ ϑ < 2π}. Then �b

2 is defined as the collection of these equivalent classes of b landmarks.
It is known that �b

2 is a (2b − 4)-dimensional connected and compact Riemannian manifold
without boundary. The Riemannian distance function on �b

2 is given by

dk

([z], [w])= arccos
(∥∥zH

�wH

∥∥
C

)
,

where z denotes the conjugate of z, and inj(�b
2) = π/2. Also,

θk

([z]; [w])= (
sin
(
2dk

([z], [w]))/(2dk

([z], [w])))2b−5 if [z] �= [w]
and θk([z]; [z]) = 1, as proved by [40]. This volume density function satisfies (C4). We note

that zH = (
√

sz
1 · e

√−1·ϑz
1 , . . . ,

√
sz
b−1 · e

√−1·ϑz
b−1) for some

sz := (
sz

1, . . . , s
z
b−2
) ∈
{
(a1, . . . , ab−2) ∈ [0,1]b−2 :

b−2∑
j=1

aj ≤ 1

}
=: Sb−2

with sz
b−1 = 1 − ∑b−2

j=1 sz
j and ϑz

j ∈ [0,2π) for all 1 ≤ j ≤ b − 1. Let φz
j = (ϑz

j −
ϑz

b−1)mod(2π), 1 ≤ j ≤ b − 2, and φz = (φz
1, . . . , φ

z
b−2) ∈ [0,2π)b−2. For the interior

So
b−2 of Sb−2, define a map ϕ−1 : So

b−2 × (0,2π)b−2 → �b
2 by ϕ−1(sz,φz) = [z]. Then

(ϕ−1(So
b−2 × (0,2π)b−2), ϕ) is a chart on �b

2 [20]. Since μk(Xk) = μk(ϕ
−1(So

b−2 ×
(0,2π)b−2)), under the condition (B), we get∫

Xk

w
[r]
ik

([z]) · p̂jk

(
xj , [z])dμk

([z])

=
∫
So

b−2×(0,2π)b−2
w

[r]
ik

(
ϕ−1(sz,φz)) · p̂jk

(
xj , ϕ

−1(sz,φz)) · 22−b dsz dφz;

see Chapter 4 of [8].

3.3.2.4. (iv) Product Riemannian manifolds. Suppose that Xk is the product of connected,
compact and boundaryless Riemannian manifolds (Mj , gMj

, dMj
), 1 ≤ j ≤ J , where

dim(Mj ) = mj and J ∈ N. Then Xk is again a
∑J

j=1 mj -dimensional connected, compact
and boundaryless Riemannian manifold with the corresponding product Riemannian met-
ric. With this type of Xk , we may handle interaction effects between Riemannian predic-
tors. The Riemannian distance function is given by d⊗(x,u) = {∑J

j=1(dMj
(xj , uj ))

2}1/2 for
x = (x1, . . . , xJ ) and u = (u1, . . . , uJ ) in M⊗ := M1 × · · ·×MJ . Let θj (·; ·) and inj(Mj ),
respectively, denote the volume density function and injectivity radius of Mj . Also, let θ⊗
and inj(M⊗) be those for M⊗. Below, we present a new proposition.

PROPOSITION 3.5. It holds that

θ⊗(x,u) =
J∏

j=1

θj (xj ;uj ), inj(M⊗) ≥ min
1≤j≤J

inj(Mj ).

Suppose we are given an atlas {(Uβj
, ϕβj

)}βj
for each Mj , 1 ≤ j ≤ J . Define

∏J
j=1 ϕβj

:∏J
j=1 Uβj

→R

∑J
j=1 mj by

J∏
j=1

ϕβj
(u1, . . . , uJ ) = (

ϕβ1(u1), . . . , ϕβJ
(uJ )

)
.
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Then {(∏J
j=1 Uβj

,
∏J

j=1 ϕβj
)}β1,...,βJ

is an atlas for M⊗. Based on the preceding discus-
sion, we may derive a more concrete form for the integral at (3.8) specific to each product
Riemannian manifold under consideration.

4. Theory for Hilbertian and Riemannian predictors. In this section, we discuss the
rates of convergence and the asymptotic distributions of the individual estimated component
maps f̂j and the estimated regression map f̂ = Ȳ ⊕ f̂1 ⊕ · · · ⊕ f̂d .

4.1. Rates of convergence. One of the main ideas in the derivation of the rates of con-
vergence here and the asymptotic distributions in Section 4.2 for Riemannian predictors is to
convert the integrals of Hilbert space-valued maps defined on Riemannian manifolds, to those
of the corresponding Hilbert space-valued maps defined on Euclidean spaces. The following
theorem materializes the idea, which is new and an extended version of (3.7) for Hilbert
space-valued maps. We present it here since the extension is of interest in its own right. To
state the theorem, consider the class C(M,H) of H-valued continuous maps defined on a m-
dimensional compact Riemannian manifold (M, g). Let F : C(M,H) →H be a map defined
by

F(f) =⊕
β

∫
ϕβ(Uβ)

f
(
ϕ−1

β (t)
)� (

ρβ

(
ϕ−1

β (t)
) ·√det

(
Gβ

(
ϕ−1

β (t)
)))

dt,(4.1)

where the integration is in the Bochner sense and with respect to the m-dimensional Lebesgue
measure, and (Uβ,ϕβ), ρβ and Gβ are defined as in Section 3.3.2.

THEOREM 4.1. The map F as defined at (4.1) is independent of the choices of charts and
partition of unity. Moreover, there exists a unique regular Borel measure ν on M such that∫
M f(x) dν(x) = F(f) for all f ∈ C(M,H), and ν equals the Riemannian volume measure

induced by g.

We now derive the rates of convergence for two types of component maps. The first is
for Hölder continuous maps and the second is for Fréchet differentiable maps. The former
type has not been considered even for real-valued responses and predictors in the existing
SBF literature. An H-valued map f defined on a semimetric space (S, dS) is called Hölder
continuous with exponent b > 0 if there exists a constant L > 0 such that ‖f(s) � f(s∗)‖ ≤
L · (dS(s, s∗))b for all s, s∗ ∈ S . The following theorem gives the rates of convergence for
Hölder continuous component maps. For concise presentation, let δ1,j = (nh

qj

j )−1/2 and

δ2,j = (nh
qj

j )−1/2(logn)1/2.

THEOREM 4.2. Assume the condition (C) in Section 3.2 and that fj are Hölder continu-
ous with respective exponent bj > 0 for 1 ≤ j ≤ d . Then

(∫
X

∥∥f̂(x) � f(x)
∥∥2

p(x) dμ(x)

)1/2
= Op

(
d∑

j=1

(
h

bj

j + δ1,j

))
.

If we further assume the condition (A7) in Section 2.2, then for all 1 ≤ j ≤ d ,

f̂j (xj ) � fj (xj ) = Op

(
d∑

j=1

(
h

bj

j + δ1,j

))
for all xj ∈ Xj ,
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(∫
Xj

∥∥f̂j (xj ) � fj (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
d∑

j=1

(
h

bj

j + δ1,j

))
,

sup
xj∈Xj

∥∥f̂j (xj ) � fj (xj )
∥∥= Op

(
d∑

j=1

h
bj

j +∑
k �=j

δ1,k + δ2,j

)
.

Since dim(
∏�

j=1 Hj ) = ∑�
j=1 qj and dim(

∏d
j=�+1 Xj ) = ∑d

j=�+1 qj , full-dimensional
nonparametric estimators suffer from the curse of dimensionality as the number of predictors
increases. However, Theorem 4.2 demonstrates that our estimators do not since the rates de-
pend on individual qj not the sum of them. In fact, when bj = b, qj = q and hj � n−1/(q+2b)

for all 1 ≤ j ≤ d , our estimators achieve the optimal q-dimensional rates of convergence in
the pointwise, L2 and uniform modes. It also shows that the usual assumption (A7) is not re-
quired for the L2 error rate of the regression estimator f̂. The latter is not noted in the existing
SBF literature even for real-valued responses and predictors.

Now, we give the rates of convergence for Fréchet differentiable type component maps.
For the Hilbertian domains Xj , which are the compact subsets of the Hilbert spaces Hj , we
define a new notion of interior regions.

DEFINITION 4.1. Let S be a subset of a semimetric space S . For ε > 0, we call s ∈ S

an ε-interior point of S if the open ball centered at s with radius ε is contained in S. We call
s ∈ S an ε-boundary point of S if s is not an ε-interior point of S.

We also extend the notion of differentiation for Hilbert-space-valued maps defined on Rie-
mannian predictors. Recall that a real-valued function f defined on a m-dimensional smooth
manifold M is called l-times differentiable at x ∈ M if, for any chart (U,ϕ) of x, the func-
tion f ◦ ϕ−1 : ϕ(U) → R is l-times differentiable at ϕ(x) ∈ R

m. The real-valued function f

is called l-times differentiable on M if f is l-times differentiable at every x ∈ M. It is well
known that the definition is independent of the choice of chart. We generalize this definition
to Hilbert space-valued maps.

DEFINITION 4.2. We say that an H-valued map g defined on an m-dimensional smooth
manifold M is l-times Fréchet differentiable at x ∈ M if, for any chart (U,ϕ) of x, the map
g ◦ ϕ−1 : ϕ(U) → H is l-times Fréchet differentiable at ϕ(x) ∈ R

m. We say that g is l-times
Fréchet differentiable on M if g is l-times Fréchet differentiable at every x ∈ M.

We may show that the above definition is also independent of the choice of chart. Hence,
if fj : Xj →H is Fréchet differentiable on Xj , then fj ◦ϕ−1 is differentiable at ϕ(xj ) for any
chart (U,ϕ) and for any xj ∈ Xj . We note that fj ◦ ϕ−1 is also differentiable on ϕ(U), since
(U,ϕ) is also a chart for any points in U .

We introduce a special chart here. Let {exj ,1, . . . , exj ,qj
} be an orthonormal basis of

Txj
(Xj ), where Txj

(Xj ) is the tangent space of Xj at xj . Define an isometric isomor-

phism ιxj
: Rqj → Txj

(Xj ) by ιxj
(t1, . . . , tqj

) = ∑qj

l=1 tlexj ,l . This is a diffeomorphism
since its inverse ι−1

xj
: Txj

(Xj ) → R
qj is a global chart between the two manifolds. Let

expxj
: Txj

(Xj ) → Xj be the exponential map and 0 < r < inj(Xj ). We denote expxj
◦ιxj

:
R

qj →Xj by Expxj
. Then the pair (BXj

(xj , r),Exp−1
xj

) is called a normal chart at xj .

In what follows, we let Dl denote the lth order Fréchet differential operator. We simply
write D for D1. For Banach spaces W and Y and an open subset V of W , we denote by
Df(v)(w) the Fréchet derivative of a map f : V → Y at v ∈ V in the direction w ∈ W . We
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let D2f(v)(w1,w2) denote its second-order derivative at v in the direction (w1,w2), and so
on. Recall that Df(v) is a map from W to Y and D2f(v) is a map from W × W to Y . We
note that, when W and Y are Euclidean spaces, the Fréchet differential operators are reduced
to the usual differential operators. Below, we let Dj for j ≥ 1 denote the first-order partial
Fréchet differential operator with respect to the j th argument.

CONDITION (D).

(D1) For 1 ≤ j ≤ d ,
∫
R

qj tKj(‖t‖
R

qj ) dt = 0qj
.

(D2) (Hilbertian predictors: 1 ≤ j ≤ �). (i) Xj is convex; (ii) For 1 ≤ k ≤ d with k �= j ,
D2fj is bounded on Xj and D1pjk is bounded on Xj ×Xk .

(D3) (Riemannian predictors: �+1 ≤ j ≤ d). There exists a constant Cj > 0 and a neigh-
borhood Nj of 0qj

such that D2(fj ◦ Expxj
) and D(pj ◦ Expxj

) for all xj ∈ Xj are bounded
by Cj on Nj .

We note that the above conditions are versions of the standard regularity conditions in
kernel smoothing theory for Xj ≡ [0,1] and H= R. Conditions similar to (D3) were adopted
in [33] and [16] for density estimation on Riemannian manifolds. We also note that in (D3) we
do not need a version of the condition on pjk in (D2). This is because Xj for �+1 ≤ j ≤ d do
not have boundaries. We make a note that dealing with predictor domains without boundaries
is the first time in the SBF method. We are able to get proper bounds for the magnitudes
of various stochastic terms in a quite different way from the cases with boundaries, without
expanding pjk in the direction of the first coordinate.

REMARK 4.1. The conditions on kernel functions for the theory in Sections 3 and 4
are (B1), (B2), (C3), (C4) and (D1). They are satisfied by commonly used kernel func-
tions. For example, the Epanechnikov kernel Kj(u) = (3/4)(1 − u2)I (|u| < 1) on [0,∞)

satisfies the conditions when qj = 1, and its scaled versions Kj(u) = sj (1 − u2)I (|u| < 1)

with sj = qj (qj + 2)/(2 × |Sqj−1|) satisfy the conditions when qj ≥ 2, where |Sqj−1| de-
notes the surface area of the unit sphere S

qj−1 ⊂ R
qj . We note that |Sqj−1| = 2π(I (qj =

2) + ∏qj−2
k=1

∫ π
0 (sinφk)

k dφk · I (qj > 2)). Also, the biweight kernel Kj(u) = (15/16)(1 −
u2)2I (|u| < 1) on [0,∞) satisfies the conditions when qj = 1, and its scaled versions
Kj(u) = sj (1 − u2)2I (|u| < 1) with sj = qj (qj + 2)(qj + 4)/(8 × |Sqj−1|) satisfy the con-
ditions when qj ≥ 2.

We are now ready to state the rates of convergence. In the following theorem, we do
not fix the magnitudes of the bandwidths hj , which requires careful evaluation of vari-
ous terms in the asymptotic expansion. For each 1 ≤ j ≤ �, we let Xj,2hj

denote the set

of 2hj -interior points of Xj as defined in Definition 4.1. Recall δ1,j = (nh
qj

j )−1/2 and

δ2,j = (nh
qj

j )−1/2(logn)1/2.

THEOREM 4.3. Under the conditions (D), and (C1), (C2), (C3)-(ii) and (C4) in Sec-
tion 3.2, it holds that(∫

XA

∥∥f̂(x) � f(x)
∥∥2

p(x) dμ(x)

)1/2
= Op

(∑
j∈A

h
3/2
j + ∑

j∈Ac

h2
j +

d∑
j=1

δ1,j

)

for any index subset A of {1, . . . , �}, where XA =∏
j∈AXj ×∏

j∈Ac Xj,2hj
×∏d

j=�+1 Xj

and Ac = {1, . . . , �} \ A. If we further assume the condition (A7) in Section 2.2, then the
followings hold:
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(i) for all 1 ≤ j ≤ �,

f̂j (xj ) � fj (xj ) = Op

(
d∑

j=1

h2
j +

d∑
j=1

δ1,j

)
, xj ∈ Xj,2hj

,

f̂j (xj ) � fj (xj ) = Op

(
hj +∑

k �=j

h2
k +

d∑
j=1

δ1,j

)
, xj ∈ Xj \Xj,2hj

,

(∫
Xj,2hj

∥∥f̂j (xj ) � fj (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
d∑

j=1

h2
j +

d∑
j=1

δ1,j

)
,

(∫
Xj

∥∥f̂j (xj ) � fj (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
h

3/2
j +∑

k �=j

h2
k +

d∑
j=1

δ1,j

)
,

sup
xj∈Xj,2hj

∥∥f̂j (xj ) � fj (xj )
∥∥= Op

(
d∑

j=1

h2
j +∑

k �=j

δ1,k + ∑
1≤k≤�,k �=j

hkδ2,k + δ2,j

)
,

sup
xj∈Xj

∥∥f̂j (xj ) � fj (xj )
∥∥= Op

(
hj +∑

k �=j

h2
k +∑

k �=j

δ1,k + ∑
1≤k≤�,k �=j

hkδ2,k + δ2,j

)
;

(ii) for all � + 1 ≤ j ≤ d ,

f̂j (xj ) � fj (xj ) = Op

(
d∑

j=1

h2
j +

d∑
j=1

δ1,j

)
, xj ∈ Xj ,

(∫
Xj

∥∥f̂j (xj ) � fj (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
d∑

j=1

h2
j +

d∑
j=1

δ1,j

)
,

sup
xj∈Xj

∥∥f̂j (xj ) � fj (xj )
∥∥= Op

(
d∑

j=1

h2
j +∑

k �=j

δ1,k + ∑
1≤k≤�

hkδ2,k + δ2,j

)
.

We note that Jeon and Park [18] dealt with real-valued predictors and fixed bandwidth rates
hj � n−1/5. Theorem 4.3 is for Hilbertian/Riemannian predictors without fixing bandwidth
rates. If we choose hj � n−1/(qj+4) for all 1 ≤ j ≤ d , then our estimator of the regression
map f achieves the optimal L2 rate n−2/(qmax+4) in the region

∏�
j=1 Xj,2hj

× ∏d
j=�+1 Xj ,

where qmax = max1≤j≤d qj . Moreover, when qj = qmax and hj � n−1/(qmax+4) for all 1 ≤
j ≤ d , the estimators of the component maps achieve the optimal pointwise, L2 and uniform
rates.

4.2. Asymptotic distributions. We now investigate the asymptotic distributions of our
estimators. To the best of our knowledge, the asymptotic distributions of the regression esti-
mators based on the kernels at (3.1) or (3.2) have not been studied even for full-dimensional
estimators. Lemma S.5 in the Supplementary Material provides basic ingredients for the study
of the asymptotic distributions. Define pj,x−j

: Xj → R by pj,x−j
(xj ) = p(x), where x−j is

(d − 1)-tuple resulting from omitting xj from a d-tuple x = (x1, . . . , xd). Below, we first
collect the conditions we use. Let {el}Ll=1 be an orthonormal basis of H, where we allow
L = ∞.
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CONDITION (E).

(E1) E(‖ε‖α) < ∞ for some α > 2. For 1 ≤ j �= k ≤ d and l, l′ ≥ 1, E(‖ε‖α | Xj = ·)
and E(〈ε, el〉〈ε, el′ 〉 | Xj = ·,Xk = ·) are bounded on Xj and Xj × Xk , respectively, and
E(〈ε, el〉〈ε, el′ 〉 | Xj = ·) is continuous on Xj .

(E2) p > 0 on X and hj � n−1/(qj+4) for 1 ≤ j ≤ d .
(E3) (Hilbertian predictors: 1 ≤ j ≤ �). For 1 ≤ k ≤ d with k �= j , D2fj is continuous on

Xj , D1pjk is continuous on Xj ×Xk , and Djp is bounded on X .
(E4) (Riemannian predictors: �+1 ≤ j ≤ d). For 1 ≤ k ≤ d with k �= j , there exist a con-

stant Cj > 0 and a neighborhood Nj of 0qj
such that D3(fj ◦ Expxj

), D2pjk(Expxj
(·), xk)

and D(pj,x−j
◦ Expxj

) for all x ∈ X are bounded by Cj on Nj . Also, the map (xj , xk) �→
Dpjk(Expxj

(·), xk)(0qj
) is continuous on Xj ×Xk .

We note that a version of (E1) is used in [18]. Also, (E3)–(E4) are versions of the standard
regularity conditions in kernel smoothing theory for real-valued responses and predictors. The
latter two imply (D2)-(ii) and (D3), respectively. Examples of component maps satisfying
(E3) and (E4) are numerous. The component maps in our simulation study in Section 6.1
satisfy the conditions, for example.

We define several maps to describe the asymptotic biases and variances of our estimators.
For 1 ≤ j ≤ � and 1 ≤ k ≤ d with k �= j , define

δj (xj ) = Dfj (xj )

(∫
B(0qj

,1)
η−1

j (t) �j

(Dpj(xj )(η
−1
j (t))

pj (xj )
· Kj

(‖t‖
R

qj

))
dt
)
,

δjk(xj , xk) = Dfj (xj )

(∫
B(0qj

,1)
η−1

j (t) �j

(D1pjk(xj , xk)(η
−1
j (t))

pjk(xj , xk)
· Kj

(‖t‖
R

qj

))
dt
)
,

where D denotes the Fréchet differential operator we introduced in Section 4.1, and �j is the
scalar multiplication on Hj . The above terms involve integration in the direction of a Hilber-
tian predictor. The corresponding terms involving integration on a Riemannian manifold are
defined, for � + 1 ≤ j ≤ d and 1 ≤ k ≤ d with k �= j , by

δj (xj ) = D(fj ◦ Expxj
)(0qj

)

(∫
B(0qj

,1)
t · D(pj ◦ Expxj

)(0qj
)(t)

pj (xj )
· Kj

(‖t‖
R

qj

)
dt
)
,

δjk(xj , xk) = D(fj ◦ Expxj
)(0qj

)

(∫
B(0qj

,1)
t · D(pjk(Expxj

, xk))(0qj
)(t)

pjk(xj , xk)
· Kj

(‖t‖
R

qj

)
dt
)
.

Let αj = limn hj · n1/(qmax+4). Note that αj = 0 for j with qj < qmax, according to (E2). For
1 ≤ j ≤ d , define

�̃j (xj ) = α2
j � δj (xj ) ⊕⊕

k �=j

∫
Xk

δjk(xj , xk) �
(
α2

k · pjk(xj , xk)

pj (xj )

)
dμk(xk).

Let (�j : 1 ≤ j ≤ d) be the solution of the system of equations

�j (xj ) = �̃j (xj ) �⊕
k �=j

∫
Xk

�k(xk) � pjk(xj , xk)

pj (xj )
dμk(xk), 1 ≤ j ≤ d(4.2)

subject to the constraints∫
Xj

�j (xj ) � pj (xj ) dμj (xj ) =
∫
Xj

δj (xj ) � (
α2

j · pj (xj )
)
dμj (xj ), 1 ≤ j ≤ d,

∫
Xj

∥∥�j (xj )
∥∥2

pj (xj ) dμj (xj ) < ∞, 1 ≤ j ≤ d.

(4.3)
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Also, define

cj (xj ) =
∫
B(0qj

,1)
D2fj (xj )

(
η−1

j (t), η−1
j (t)

)� (
1

2
Kj

(‖t‖
R

qj

))
dt, 1 ≤ j ≤ �,

cj (xj ) =
∫
B(0qj

,1)
D2(fj ◦ Expxj

)(0qj
)(t, t) �

(
1

2
Kj

(‖t‖
R

qj

))
dt, � + 1 ≤ j ≤ d.

Then, as demonstrated in Theorem 4.4 below, it turns out that �j (xj ) := α2
j � cj (xj ) ⊕

�j (xj ), 1 ≤ j ≤ d , are the asymptotic biases of f̂j (xj ).
To describe the asymptotic variances, define

aj,ll′(xj ) = α
−qmax
j · pj (xj )

−1 · E
(〈ε, el〉〈ε, el′ 〉 | Xj = xj

) ∫
R

qj
K2

j

(‖t‖
R

qj

)
dt

if qj = qmax, and aj,ll′(xj ) ≡ 0 if qj < qmax. Let Cj,xj
: H → H be the covariance operator

characterized by 〈
Cj,xj

(h), el

〉= ∑
l′≥1

〈h, el′ 〉 · aj,ll′(xj ), h ∈ H, l ≥ 1.

We denote by G(0,Cj,xj
) the Hilbertian Gaussian random element with mean zero and co-

variance operator Cj,xj
. When H = R, G(0,Cj,xj

) is reduced to a normal random variable

with mean 0 and variance α
−qmax
j ·pj (xj )

−1 ·E(ε2 | Xj = xj )
∫
R

qj K2
j (‖t‖

R
qj ) dt if qj = qmax,

and it degenerates to zero if qj < qmax.
We are now ready to state the theorem. We note that, in general, the derivation of asymp-

totic distribution is more involved than that of rate of convergence since the former needs ex-
act evaluation of leading terms in asymptotic expansions. This is particularly the case with the
theorem given below, in the proof of which exact asymptotic expansions for (f̂j : 1 ≤ j ≤ d)

with Hilbertian vector operations on abstract Hilbertian/Riemannian predictor spaces require
far more sophisticated evaluation of various stochastic terms.

THEOREM 4.4. Assume the conditions (E), (C2)-(ii), (C3)-(ii) and (C4) in Section 3.2,
and (D1) and (D2)-(i) in Section 4.1. Then (i) the solution of (4.2) subject to (4.3) is unique
in the sense that, if (��

j : 1 ≤ j ≤ d) is another solution, then �j = ��
j a.e. with respect to

μj for all 1 ≤ j ≤ d; (ii) for a.e. x ∈∏�
j=1(Xj \ ∂Xj ) ×∏d

j=�+1 Xj with respect to μ,⎛
⎜⎜⎝

n2/(qmax+4) � (
f̂1(x1) � f1(x1)

)
...

n2/(qmax+4) � (
f̂d(xd) � fd(xd)

)
⎞
⎟⎟⎠ d−→

⎛
⎜⎝

�1(x1) ⊕ G(0,C1,x1)
...

�d(xd) ⊕ G(0,Cd,xd
)

⎞
⎟⎠ ,

n2/(qmax+4) � (
f̂(x) � f(x)

) d−→
d⊕

j=1

�j (xj ) ⊕ G

(
0,

d∑
j=1

Cj,xj

)
,

where �1(x1) ⊕ G(0,C1,x1), . . . ,�d(xd) ⊕ G(0,Cd,xd
) are independent.

Now, we compare the asymptotic distributions of the sB-SBF estimators with the oracle
estimators. For j with qj = qmax, we let f̂ora

j be the Nadaraya–Watson type oracle estimator
of fj that we may obtain using the knowledge of all other component maps fk , k �= j . Using
Lemma S.5 in the supplement, we may prove that

n2/(qmax+4) � (
f̂ora
j (xj ) � fj (xj )

) d−→ α2
j � (

δj (xj ) ⊕ cj (xj )
)⊕ G(0,Cj,xj

).
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We note that the above result is also new. Therefore, f̂j and f̂ora
j have the same asymp-

totic covariance operator, but differ in their asymptotic biases. The difference of asymp-
totic biases is α2

j � δj (xj ) � �j (xj ) =: βj (xj ) and it holds that E(βj (Xj )) = ∫
Xj

βj (xj ) �
pj (xj ) dμj (xj ) = 0 by (4.3).

5. Some generalization. In this section, we provide a novel theorem on the rates of con-
vergence for predictors taking values in general semimetric spaces. We believe that it would
be useful for other non-Euclidean objects that we do not treat in Sections 3 and 4. To the best
of our knowledge, this type of theorem has not been studied even for real-valued responses
and predictors. The theorem is based on high-level conditions without assuming that (Yi ,Xi)

are identically distributed or independent. We stress that the derivation requires careful inves-
tigation on the underlying structure of SBF theory that involves various stochastic terms.

For the statement of the theorem, we define

δ̂
A

j (xj ) = 1

n
�

n⊕
i=1

(
Lj,n(xj ,Xij ) � εi

)
,

δ̂
B

j (xj ) = 1

n
�

n⊕
i=1

(
Lj,n(xj ,Xij ) � (

fj (Xij ) � fj (xj )
))

,

δ̂
C

j (xj ) =⊕
k �=j

(
1

n
�

n⊕
i=1

∫
Xk

(
fk(Xik) � fk(xk)

)� (
Lk,n(xk,Xik)Lj,n(xj ,Xij )

)
dμk(xk)

)
,

where Lj,n are arbitrary measurable weight functions depending on n and satisfying (2.3).

For 1 ≤ j ≤ d , let �j ∈ B(Xj ) and A
(1)
nj (xj ), A

(2)
nj , A

(3)
nj (�j ), B

(1)
nj (xj ), B

(2)
nj (�j ), B

(3)
nj (�j ),

B
(4)
nj , C

(1)
nj (xj ), C

(2)
nj , C

(3)
nj (�j ), D

(1)
n and D

(2)
nj be nonnegative sequences converging to zero

such that

(i) rates for δ̂
A

j :

δ̂
A

j (xj ) = Op

(
A

(1)
nj (xj )

)
, sup

xj∈�j

∥∥δ̂A

j (xj )
∥∥= Op

(
A

(3)
nj (�j )

)
,

(∫
Xj

∥∥δ̂A

j (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
A

(2)
nj

);
(ii) rates for δ̂

B

j :

δ̂
B

j (xj ) = Op

(
B

(1)
nj (xj )

)
, sup

xj∈�j

∥∥δ̂B

j (xj )
∥∥= Op

(
B

(3)
nj (�j )

)
,

(∫
�j

∥∥δ̂B

j (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
B

(2)
nj (�j )

)
,

∑
k �=j

sup
xj∈Xj

∥∥∥∥
∫
Xk

δ̂
B

k (xk) � p̂jk(xj , xk)

p̂k(xk)
dμk(xk)

∥∥∥∥= Op

(
B

(4)
nj

);
(iii) rates for δ̂

C

j :

δ̂
C

j (xj ) = Op

(
C

(1)
nj (xj )

)
, sup

xj∈�j

∥∥δ̂C

j (xj )
∥∥= Op

(
C

(3)
nj (�j )

)
,

(∫
Xj

∥∥δ̂C

j (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
C

(2)
nj

);
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(iv) rates for sample mean:

E(Y) � Ȳ = Op

(
D(1)

n

)
, E

(
fj (Xj )

)� n−1 �
n⊕

i=1

fj (Xij ) = Op

(
D

(2)
nj

)
.

Put Rn =∑d
j=1(A

(2)
nj + B

(4)
nj + C

(2)
nj ) + D

(1)
n , E

(1)
nj (xj ) = A

(1)
nj (xj ) + B

(1)
nj (xj ) + C

(1)
nj (xj ) and

E
(3)
nj (�j ) = A

(3)
nj (�j ) + B

(3)
nj (�j ) + C

(3)
nj (�j ).

THEOREM 5.1. Assume the conditions (A1), (A2) and (A6) in Section 2.2. Also, assume
that pj is bounded away from zero on Xj and pjk is bounded on Xj × Xk for all 1 ≤ j �=
k ≤ d . Then(∫

∏d
j=1 �j

∥∥f̂(x) � f(x)
∥∥2

p(x) dμ(x)

)1/2
= Op

(
Rn +

d∑
j=1

B
(2)
nj (�j )

)
.

If we further assume (A7), then for all 1 ≤ j ≤ d ,

f̂j (xj ) � fj (xj ) = Op

(
Rn + E

(1)
nj (xj ) +∑

k �=j

D
(2)
nk

)
,

(∫
�j

∥∥f̂j (xj ) � fj (xj )
∥∥2

pj (xj ) dμj (xj )

)1/2
= Op

(
Rn + B

(2)
nj (�j ) + D

(2)
nj

)
,

sup
xj∈�j

∥∥f̂j (xj ) � fj (xj )
∥∥= Op

(
Rn + E

(3)
nj (�j ) +∑

k �=j

D
(2)
nk

)
.

6. Numerical study. In this section, we present the results of two simulation studies
and two real data analyses. Some details of practical issues such as bandwidth selection are
presented in the Supplement S.4.

6.1. Simulations. In the first simulation, we considered the case where the response
variable was a random density and the predictors were Euclidean vectors taking values
in flexible domains. Specifically, we considered the case where Y = [Y(·)] belongs to the
Bayes–Hilbert space B2(U,B(U),Leb1) for U = [−1/2,1/2], where [Y(·)] denotes the
equivalence class of a density function Y(·). More details on Bayes–Hilbert spaces can
be found in the Supplement S.1. We generated X1 = (X1,1,X1,2) uniformly on the ellipse
{(x, y) ∈ R

2 : x2/4 + y2/9 ≤ 1} and X2 = (X2,1,X2,2,X2,3) uniformly on the circular cylin-
der {(x, y, z) ∈R

3 : x2 + y2 ≤ 1,0 ≤ z ≤ 1/2}.
In this simulation, we compared two approaches. One is based on the multivariate additive

model that is additive in predictor vectors Xj . As noted in Section 3, our general framework
provides a tool for estimating this type of model, which is missing in the literature. The other
is based on the univariate additive model that is additive in univariate predictors Xj,k . For
this we may apply the method of [18], which is a special case in our general treatment. For
proper comparison, some additive maps in Xj were chosen not to be additive in the univariate
predictors Xj,k . Specifically, we took

f add
1 (X1)(u) = (

1 − X2
1,1/5 · ∣∣sin(u)

∣∣) · (1 − X2
1,2/5 · ∣∣sin(u)

∣∣),
f non

1 (X1)(u) = (
1 − (X1,1 + X1,2)

2/5 · ∣∣sin(u)
∣∣),

f add
2 (X2)(u) = exp

(−(X2
2,1 + X2

2,2 + X2
2,3
) · |u|),

f non
2 (X2)(u) = exp

(−(X2,1 + X2,2) · X2,3 · |u|)
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for u ∈ [−1/2,1/2]. We note that f add
1 (X1)(·) is the product of two functions of X1,1 and

X1,2, respectively. Hence, [f add
1 (X1)(·)] is an additive map of the two scalar predictors X1,1

and X1,2 with respect to the ⊕ operation in B2(U,B(U),Leb1). Similarly, [f add
2 (X2)(·)] is

also the additive map of the three scalar predictors X2,1, X2,2 and X2,3. On the other hand,
the two maps f non

1 and f non
2 are nonadditive so that they contain some interaction effects

between the scalar elements of X1 and X2, respectively.
We generated Y(·) according to the following three scenarios:

Y(·) = f add
1 (X1)(·) · f non

2 (X2)(·) · fe(ε)(·),(I)

Y(·) = f non
1 (X1)(·) · f add

2 (X2)(·) · fe(ε)(·),(II)

Y(·) = f non
1 (X1)(·) · f non

2 (X2)(·) · fe(ε)(·),(III)

where fe(ε)(u) = (f0(u))ε , f0(u) = exp(−u2) and ε is a N(0,0.252) variable independent
of X = (X1,X2). We note that E([fe(ε)(·)] | X) = E(ε � [f0(·)]) = 0 � [f0(·)] = 0. Hence,
the true conditional means E(Y | X) for the three scenarios are given by [f add

1 (X1)(·)] ⊕
[f non

2 (X2)(·)], [f non
1 (X1)(·)] ⊕ [f add

2 (X2)(·)] and [f non
1 (X1)(·)] ⊕ [f non

2 (X2)(·)], respec-
tively. We repeatedly generated, for M = 100 times, training samples of sizes n = 125 and
500, and test samples of size N = 100.

As a measure of performance we computed the mean squared prediction error (MSPE)
defined by

(6.1) MSPE = M−1
M∑

m=1

N−1
N∑

i=1

∥∥f(Xtest(m)
i

)� f̃
(
Xtest(m)

i

)∥∥2
,

where Xtest(m)
i is the ith predictor value in the mth test sample, f = E(Y | X = ·) is the true

conditional mean and f̃ denotes either our estimator f̂ based on the multivariate additive mod-
els or the estimator in [18] based on the respective univariate additive models.

Table 1 shows that the multivariate additive estimator adapted to each scenario indeed
outperforms the univariate additive estimator considered in [18]. The difference between the
MSPEs of the two estimators is larger for the third scenario than for the other two. We believe
that it is because both components f non

1 and f non
2 are nonadditive in the third scenario. This

indicates that we may construct a better estimator based on our approach when there are some
interaction effects between the elements of each predictor vector Xj . This is considered as an
example demonstrating that our general framework provides useful tools for the estimation of
various interim models between two extremes, one that is additive in all univariate predictors
and the other that is entirely unstructured.

TABLE 1
The values of MSPE, multiplied by 103, of the proposed method adapted to each scenario and the method of [18]

based on univariate additive models. The latter method is a special case of the proposed method

Scenario n Multivariate additive Univariate additive

(I) 125 0.1944 0.3478
500 0.0674 0.2542

(II) 125 0.2219 0.3724
500 0.0897 0.2405

(III) 125 0.2154 0.5067
500 0.0852 0.4125
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The second simulation is for Riemannian predictors. For this we compared our estima-
tor with the full-dimensional Nadaraya–Watson type estimator for Riemannian predictors
studied by [34]. To implement the latter estimator, we used Proposition 3.5. Since the lat-
ter estimator was studied only for real-valued responses, we considered a scalar response Y

here, which our framework also covers. We generated predictors X1, X2 and X3 uniformly
on the two-dimensional shape space �3

2 , two-dimensional sphere S
2 and two-dimensional

torus S1 ×S
1, respectively. The first one corresponds to the case where we observe triangular

shapes or three landmarks of shapes in R
2. We considered the following three component

functions:

f1(X1) = arctan
(
ϑmin

X1
/ϑmax

X1

)
,

f2(X2) = cos(2ϑX2) + 2 sin2(ϑX2) cos2(φX2),

f3(X3) = 1 + cos
(
ϑ

(1)
X3

− ϑ
(2)
X3

)
,

where (ϑmin
X1

, ϑmax
X1

) ∈ (0, π/3] × [π/3, π) are the smallest and largest angles of the triangle
that X1 forms, (ϑX2, φX2) ∈ [0,2π) × [0, π] are the longitude and latitude corresponding to
X2 living on the sphere and (ϑ

(1)
X3

, ϑ
(2)
X3

) ∈ [0,2π) × [0,2π) are the angles corresponding to
X3 lying on the torus. We generated Y according to the following three scenarios:

Y = f1(X1) + · · · + fd(Xd) + +ε,(Additive)

Y = (
f1(X1) + · · · + fd(Xd)

)2 + ε,(Nonadditive 1)

Y = f1(X1) × · · · × fd(Xd) + ε,(Nonadditive 2)

where ε is again a N(0,0.252) variable independent of X = (X1,X2,X3). As in the first
simulation, we generated M = 100 training and test samples. Here, we added an additional
training sample size n = 2000 to see more about the behavior of the estimators depending on
the sample size. As a comparison criterion we used the MSPE defined at (6.1) with f and f̃
being replaced by f and f̃ , ‖ · ‖ by | · | and � by −, where f = E(Y | X = ·) and f̃ is either
our estimator or the estimator in [34].

The results in Table 2 confirm our theory. In the additive scenario, our sB-SBF estimator
outperforms the full-dimensional Nadaraya–Watson type estimator (henceforth, F-NW). Ex-
amining the values of the ratio in the table for d = 2 and d = 3, especially in the additive
scenario, we find that the margin by which the sB-SBF method wins the F-NW gets larger
as d increases. Also, the former’s decreasing speed of MSPE, as the sample size increases,
does not change much when d = 2 increases to d = 3, while for the latter it gets slower
when d = 3. This indicates that the unstructured F-NW suffers from the curse of dimen-
sionality while ours does not. We note that the actual dimension of X equals 2 × d , instead
of d . Thus, increasing d by one increases the dimension by two. In the nonadditive scenar-
ios, however, the MSPE of the sB-SBF estimator decreases much slower than in the case of
the additive scenario, although it still wins the F-NW except the second nonadditive scenario
with (d, n) = (2,2000). This is mainly because the model assumption the sB-SBF estimator
is based on is violated. The bias caused by the model misspecification does not vanish as
the sample size increases. Nevertheless, the results suggest that, for high-dimensional predic-
tors, our additive regression approach may dominate unstructured estimators in finite-sample
performance even when the model assumption is violated.

We conclude this subsection by noting that our general framework covers models con-
taining some interaction effects between Riemannian predictors, thanks to our treatment of
product Riemannian manifolds in Section 3.3.2. We also note that our approach accommo-
dates the case of mixed Hilbertian and Riemannian predictors as well, tools for which are
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TABLE 2
The values of MSPE of the proposed method and the full-dimensional method of [34], and their ratios MSPE

(Full-dimensional Nadaraya–Watson)/MSPE (Proposed)

Scenario d n Proposed Full-dim. NW Ratio

Additive scenario 2 125 0.0490 0.0977 1.99
500 0.0153 0.0473 3.09

2000 0.0056 0.0224 4.00

3 125 0.1192 0.3900 3.27
500 0.0323 0.2141 6.63

2000 0.0129 0.1298 10.06

Nonadditive 1 scenario 2 125 0.1394 0.2429 1.74
500 0.0757 0.1347 1.78

2000 0.0535 0.0678 1.27

3 125 2.1889 4.6004 2.10
500 1.1295 2.6316 2.33

2000 0.8868 1.6131 1.82

Nonadditive 2 scenario 2 125 0.0244 0.0290 1.19
500 0.0160 0.0192 1.20

2000 0.0127 0.0106 0.83

3 125 0.0509 0.0627 1.23
500 0.0372 0.0492 1.32

2000 0.0356 0.0394 1.11

rare even for real-valued responses in simpler models. We believe that the flexibility of our
setup provides with powerful methods of estimating regression maps/functions in a variety of
situations, which may offer superior performance compared to the existing methods, if any.

6.2. Real data analysis. In this subsection, we present two real data applications. The
first one is for a real-valued response and mixed Euclidean and circular predictors. The sec-
ond one is for a functional response and mixed Euclidean and spherical predictors. In the
Supplement S.5, we also present an additional application which is for a compositional re-
sponse and mixed Euclidean and compositional predictors.

6.2.1. First example. Recently, air pollution caused by particular matter whose size is
less than 2.5 micrometer, called PM2.5, has been a serious problem throughout the world.
It is known that this tiny matter can penetrate lungs and blood vessels, which causes health
problems when exposed for a long term. In Korea, it has been a usual thought that the level
of PM2.5 is affected by weather conditions such as humidity and wind direction. There has
been no investigation on this usual mind using an advanced statistical method, however. In
the first application, we took daily measured PM2.5 level in Seoul, the capital city of Korea,
as a real-valued response Y , and daily measured humidity (X1) and daily measured wind
direction (X2) as predictors. We note that X2 can be understood as a circular variable. We
also took the day of a year when the measurement was made, as the third predictor X3 tak-
ing values in {1, . . . ,365} or {1, . . . ,366}, since the level of PM2.5 is believed to have a
yearly periodic trend. We note that X3 is also considered as a circular variable. The j th
day in a year is converted to the point on the unit circle in R

2 having the clockwise angle
(j − 1) × 2π/(the number of days in the year) in radian from the point (0,1) ∈ S

1. We col-
lected the data on these variables for the period January 2016–December 2018 from the Korea
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air pollution information system https://www.airkorea.or.kr/web and the Korea meteorologi-
cal administration https://data.kma.go.kr/cmmn/main.do. We deleted 3 missing observations
among total 366(days) + 365(days) × 2(years = 1096 observations.

We analyzed the data using seven methods. The first method is to apply the sB-SBF tech-
nique with X2 and X3 as two separate circular predictors (sB-SBF-2CIRC). That is, it is
based on the model (2.1) with one real-valued predictor and two circular predictors (d = 3).
The second method is to take (X2,X3) as a torus-valued predictor (sB-SBF-TORUS), so that
it applies (2.1) with one real-valued predictor and one torus-valued predictor (d = 2). The
third one is to apply a partially linear model (PLM, [12]), Y = β0 + β1X1 + ζ(X2,X3) + ε,
where (X2,X3) enters as a torus-valued predictor. To estimate ζ in the PLM, we used the ker-
nel at (3.2) as in [12]. The fourth one is to apply a spline additive model (SAM, [42]) where
the component function for X1 is smoothed with a cubic spline basis, and the component
functions for X2 and X3 with cyclic cubic spline bases. The remaining three methods are the
random forest (RF), neural network (NN) and support vector machine (SVM) techniques. Al-
though the latter three are not designed for circular predictors, we included them by treating
X2 and X3 as real-valued predictors, to see how well the popular machine learning techniques
perform in this non-Euclidean setting. To compare the methods, we divided the observations
into 10 partitions Sk , 1 ≤ k ≤ 10, and then computed the 10-fold average squared prediction
error (ASPE) defined by

(6.2) ASPE = 10−1
10∑

k=1

|Sk|−1
∑
i∈Sk

(
Yi − Ŷ

(−Sk)
i

)2
,

where |Sk| is the number of observations in Sk and Ŷ
(−Sk)
i is the prediction of Yi based on

the sample without the observations in Sk . We found that ASPE was 116.31, 136.73, 146.85,
122.34, 121.22, 132.61 and 139.04 for sB-SBF-2CIRC, sB-SBF-TORUS, PLM, SAM, RF,
NN and SVM, respectively. Thus, sB-SBF-2CIRC is most predictive. The observation that
sB-SBF-2CIRC performed better than sB-SBF-TORUS indicates that there is no strong in-
teraction between X2 and X3. Also, comparing sB-SBF-TORUS with the method based on
PLM suggests that the effect of X1 is nonlinear.

Figure 1 depicts the estimated component maps based on the sB-SBF-2CIRC. We note
that, by respecting the circular geometry in X2 and X3, our approach produced estimated
component maps that are continuous everywhere on the circular domains. It is well admitted
that such circular continuity is essential in circular data analysis. The first component map
shows that the PM2.5 level increases as the humidity goes up to around 70, and then decreases
after that level. We interpret this as that air pollutants such as nitrogen oxide produce PM2.5
if they combine with moisture, but at high-level of humidity, possibly due to rain, PM2.5 is
washed away. The second component map reveals that, when wind blows from NNE or SSW,
the PM2.5 level gets high. Also, the third component map shows that the level is relatively
low from summer to autumn, while it is relatively high from winter to spring. In particular,
between March and April, the level is very high due to the dust storm that usually happens in
that season. In conclusion, our analysis suggests that humidity, wind direction and season are
key elements in the prediction of PM2.5 levels.

6.2.2. Second example. Although surface temperatures on the globe have been analyzed
in many studies, the effect of altitude on temperature has received less attention. Adding
altitude as a predictor may enhance the accuracy of temperature prediction. Recently, In-
tegrated Global Radiosonde Archive (IGRA) collected weather data using radiosondes at
various altitude levels ranging from the sea-level to the one where air pressure is 1 hec-
topascal. We collected from https://www1.ncdc.noaa.gov/pub/data/igra/igra2-station-list.txt

https://www.airkorea.or.kr/web
https://data.kma.go.kr/cmmn/main.do
https://www1.ncdc.noaa.gov/pub/data/igra/igra2-station-list.txt
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FIG. 1. Estimated component maps for the PM2.5 data based on the sB-SBF-2CIRC, the proposed method
taking wind direction and day in a year as two separate circular predictors. In the two bottom panels, they are
depicted on circles with continuously varying radii, where the radius of each circle corresponds to each value of
the component map. The directional position of a point on the solid curve represents the corresponding value of
the circular predictor.

the longitudes and latitudes of IGRA stations spread out in the world, and also from
https://www1.ncdc.noaa.gov/pub/data/igra/monthly/monthly-por/ the monthly averaged tem-
peratures measured by each station at various air pressure levels for the period January
2018–December 2018. Note that altitude is well represented by air pressure level. We took
log (air pressure) as a real-valued predictor (X1) and (longitude, latitude) as a spherical pre-
dictor (X2). To ensure that each observed (X1,X2) has an observation of the response, a
temperature trajectory on the entire time domain (Jan–Dec), we actually collected the cases
at which all the 12 monthly temperatures were recorded. For each station and altitude level,
we smoothed the monthly temperatures to get a functional response variable Y = Y(·) de-
fined on [1, 15]. Here, Y(1.5), for example, can be understood as the mean temperature
between mid-January and mid-February. To the best of our knowledge, there has been no
other method designed for a functional response coupled with spherical predictor(s). Hence,
we applied only our method to this dataset having sample size n = 7891.

The estimated component map of X1 in Figure 2 demonstrates a clear elevation effect. It
shows that elevation up to a medium-high level pushes down the temperature, while further
elevation raises it up sharply. This confirms the known temperature trend in the stratosphere.
The estimated component map of X2 in Figure 3 reveals that the seasonal effect on tempera-
ture gets stronger as the latitude moves away, to the south and to the north, from around the
level 20 at which it looks weakest. The effect is generally stronger in the southern hemisphere
than in the northern hemisphere. The effect of latitude for each given time during a year is
also strong, which seems obvious, while the effect of longitude at each given latitude is rel-
atively low although there is a sign of interaction between them. In conclusion, through this

https://www1.ncdc.noaa.gov/pub/data/igra/monthly/monthly-por/
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FIG. 2. Estimated component map based on the proposed method for the temperature data, corresponding to
the real-valued predictor.

particular example we confirm that our method is also capable of analyzing quite successfully
the effect of a mixture of real and spherical predictors on a functional response.

7. Conclusion and discussion. In this paper, for the first time in structured nonparamet-
ric regression, we studied the estimation of the additive model (2.1) that can deal with general
Hilbertian responses and general semimetric space-valued predictors. The model allows for
a wide range of data types. It accommodates any of Euclidean, compositional, functional and
density-valued variables as a response, and any mixture of Euclidean, compositional, spheri-
cal, toroidal and shape variables as a predictor set, for example. Our general framework may
also feed into the model possible interaction effects between predictors in the predictor set
by considering product Hilbert spaces or product Riemannian manifolds for various combi-
nations of predictors. In this general setting, we gave full practical details of implementing
the proposed method for finite-dimensional Hilbertian/Riemannian predictors, which include

FIG. 3. Estimated component map based on the proposed method for the temperature data, corresponding to
the spherical predictor.
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integration over nonstandard domains with nonstandard measures. We also developed a com-
plete theory for Hilbertian/Riemannian predictors. We proved that our estimators of the re-
gression map and its components achieve the optimal rates of convergence in various modes
under general bandwidth conditions, and that they converge weakly to Hilbertian Gaussian
distributions. In particular, we further generalized the theory on the rates of convergence to
semimetric space-valued predictors and to non-i.i.d. data pairs (Xi ,Yi). Moreover, our theory
establishing the existence of the sB-SBF estimator and the convergence of the sB-SBF algo-
rithm also covers non-i.i.d. data with predictors taking values in general semimetric spaces.
We also demonstrated that our approach performed better and gave better interpretation than
competing methods on a variety of simulated and real data sets.

We note that our work in this paper focuses mainly on finite-dimensional predictors. How-
ever, we may also treat functional predictors, which are of infinite-dimension, in the frame-
work of this paper by taking their functional principal components (FPC) as predictors. The
latter is the approach taken by [13] for real-valued responses, where the effects of estimat-
ing the FPCs based on the eigendecomposition of the sample autocovariance surfaces of the
functional predictors are analyzed. It may be of interest then to extend the work of [13] to
Hilbertian responses based on the theory we developed in this paper. In the latter extension,
we may take each individual FPC as a univariate predictor, or each vector of the individual
FPCs corresponding to each functional variable as a multivariate predictor. There are other
topics that deserve future study. For example, one may study additive regression for Rieman-
nian responses and for incompletely observed responses such as those subject to missing or
censoring. Another topic would be high-dimensional additive regression for non-Euclidean
predictors and responses. In the latter problem, one may adopt a penalization scheme to
choose a smaller number of relevant predictors.
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