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Statistical models for landslide hazard enable mapping of risk factors and
landslide occurrence intensity by using geomorphological covariates avail-
able at high spatial resolution. However, the spatial distribution of the trigger-
ing event (e.g., precipitation or earthquakes) is often not directly observed. In
this paper we develop Bayesian spatial hierarchical models for point patterns
of landslide occurrences using different types of log-Gaussian Cox processes.
Starting from a competitive baseline model that captures the unobserved pre-
cipitation trigger through a spatial random effect at slope unit resolution, we
explore novel complex model structures that take clusters of events arising
at small spatial scales into account as well as nonlinear or spatially-varying
covariate effects. For a 2009 event of around 5000 precipitation-triggered
landslides in Sicily, Italy, we show how to fit our proposed models efficiently,
using the integrated nested Laplace approximation (INLA), and rigorously
compare the performance of our models both from a statistical and applied
perspective. In this context we argue that model comparison should not be
based on a single criterion and that different models of various complexity
may provide insights into complementary aspects of the same applied prob-
lem. In our application our models are found to have mostly the same spa-
tial predictive performance, implying that key to successful prediction is the
inclusion of a slope-unit resolved random effect capturing the precipitation
trigger. Interestingly, a parsimonious formulation of space-varying slope ef-
fects reflects a physical interpretation of the precipitation trigger: in subareas
with weak trigger, the slope steepness is shown to be mostly irrelevant.

1. Introduction. Landslides are ubiquitous in mountainous regions around the globe.
A landslide can be defined as a mass movement of rock, debris or earth down a slope under
the influence of gravity (Varnes (1958)). It can occur whenever the friction along a sliding
plane is less than the downward-facing forces acting on the same surface (Bout et al. (2018)).
The term landslide includes several modes of mass movement, namely, falls, topples, slides,
spreads or flows (Hungr, Leroueil and Picarelli (2014)). In this work we consider debris flows,
and we develop spatial predictive models for a particularly severe event in 2009 during which
multiple landslides were triggered simultaneously by heavy rainfall in a region of the island
of Sicily, Italy. Debris flows are phenomena that consist of a mixed mass of water, soil and
fragmented rocks which: (i) flows over mountainsides, (ii) funnels into channels, (iii) entrains
objects while propagating downhill and (iv) lays waste through its path before (v) stopping
over valley floors (van den Bout et al. (2021)). As debris flows are primarily triggered by
precipitation, rain discharge is positively correlated with landslide frequency. The collection
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of debris flows that we study was caused by an extreme rainfall event with a return period
estimated at 30 years (Cama et al. (2015)); see Section 2 for more details on the dataset.

The operational use of statistical models for natural hazards is to combine the predic-
tive information on landslide occurrences (Reichenbach et al. (2018)) with the distribu-
tion of elements at risk, such as infrastructure and built-up areas, and/or with the distri-
bution of human population (Corominas et al. (2014)) to estimate potential losses. Most
of the current approaches to mapping landslide hazard exploit auxiliary information from
geomorphological covariates and focus on one of its components—known as the landslide
susceptibility—through the modeling of presence-absence information (Atkinson and Mas-
sari (1998), Ayalew and Yamagishi (2005), Castro Camilo et al. (2017), Goetz et al. (2015),
Rossi et al. (2010)); see Reichenbach et al. (2018) for a recent review. Such approaches
are predominantly based on machine learning techniques using binary classification over
fine pixel grids, where subsampling of zero observations is often inevitable to cope with
high spatial resolution and highly imbalanced designs. Recently, Lombardo, Opitz and Huser
(2018, 2019) and Lombardo et al. (2019, 2020) introduced the “intensity” concept for spatial
landslide prediction by focusing on event counts and not only presence-absence data. Specif-
ically, they proposed a novel probabilistic approach based on Bayesian hierarchical models,
where landslides are viewed as spatial or spatiotemporal point processes of log-Gaussian
Cox type. Using the integrated nested Laplace approximation (Illian, Sgrbye and Rue (2012),
Rue, Martino and Chopin (2009)), they developed accurate statistical inference with high
grid resolution and with sophisticated latent structures for capturing intensity variations not
explained by observed covariates. In this paper we use one of their models as a highly com-
petitive baseline and explore various more complex model extensions described below. While
observed covariates are available at high pixel resolution, spatial random effects can be re-
solved at multiple scales. Here, we use slope units (SUs, Amato et al. (202), Carrara et al.
(1995)), which allow fast computations by being at lower spatial resolution than pixels, while
delimiting physically-motivated zones that are relevant to the landsliding process which is
known to show a relatively homogeneous response to slope instabilities within each SU. SUs
are commonly used in landslide science (and more generally geomorphology), because of the
empirical evidence that landslides occur on slopes (Guzzetti and Reichenbach (1994)).

We study nontrivial model extensions with respect to two important aspects: first, we in-
clude spatially unstructured effects at pixel or SU scale to capture residual spatial clustering
at small scales; second, we construct complex models with nonlinear or space-varying co-
variate effects in order to improve the baseline model’s predictive performance and allow for
new insights and interpretations from an applied perspective. Space-varying regression has
been established as a useful concept when the response to a covariate is not constant in space
(Gamerman, Moreira and Rue (2003), Gelfand et al. (2003)). In our context we consider it as
a natural—yet difficult to implement—solution to account for the spatially-varying influence
of the landslide trigger (such as a heavy precipitation event), which is usually not observed
at good spatial resolution in the study area, or not observed at all. In this paper we conduct a
thorough and rigorous structural analysis based on models that explore how the unobserved
trigger interacts with observed covariate effects, here highlighted with the example of the
slope steepness. Throughout our statistical analysis our aim is to integrate physical under-
standing about the landsliding process into the model structure, for example, by assuming
that the slope steepness should become irrelevant as a predictor in places where there is only
a weak—or no—trigger influence. Such improvements have never been considered in the
landslide modeling literature, despite being of high practical relevance. More generally, we
also discuss diagnostics to comprehensively compare the goodness-of-fit and spatial predic-
tive performance of a range of models of varying complexity in order to study improvements
with respect to the baseline. We argue that decisions should not be based on a single criterion
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FI1G. 1. Satellite image of the study area on the island of Sicily, Italy.

but rather on a combined assessment of several criteria to more objectively appreciate the rel-
ative strengths and weaknesses of models. Different models may in fact give complementary
insights into the statistical or physical behavior of landslide activations.

In the remainder of the paper, Section 2 describes the landslide data and geomorphological
covariates that we use in our analysis. Then, Section 3 provides the necessary background the-
ory on log-Gaussian Cox processes and presents our new models, while Section 4 discusses
implementation and model comparison using the integrated nested Laplace approximation. In
Section 5 we compare and interpret the fitted models, which we exploit to map the landslide
intensity and slope-related risk factors. We conclude with some discussion in Section 6.

2. Landslides data and predictor variables.

2.1. Precipitation-triggered landslide occurrences. On October 1, 2009, a major rainfall
discharge occurred in an area of around 100 km? on the island of Sicily (Southern Italy, see
Figure 1 for a satellite image of the study area), with approximately 250 mm of rain measured
at nearby weather stations. This weather event followed two relatively smaller precipitation
events just one and two weeks before, with about 190 mm and 75 mm of rain, respectively
(Lombardo et al. (2016a)). Within just a few hours this extreme precipitation event triggered
several thousands of rapid shallow landslides that led to the death of 37 people and eco-
nomic infrastructure damage of around half a billion Euro. Using remote sensing images
before and after the event, the identification of 4874 separate debris-flow landslides (Hungr,
Leroueil and Picarelli (2014)) was made possible. So-called landslide identification points
(LIPs, Lombardo et al. (2014)) were then extracted from remotely sensed images (at 0.25m
resolution) for each mass movement. Precisely, the triggering location was set to the point
of highest altitude in the area affected by the movement. The left panel of Figure 2 shows a
digital elevation model of the study area and the LIP inventory at 15 m pixel resolution. For
the coordinate projection system we use the metric Monte Mario projection for the Zone 2
of Italy (EPSG 3004); we then transform coordinates to km units and shift the values of both
coordinates such that they start at zero for our study area. Most LIPs were recorded in distinct
pixels, but with a few exceptions: 353 pixels contained two landslides, 44 pixels contained
three landslides and two pixels contained four landslides.
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FI1G. 2. Landslide inventory and geomorphological features. The maps show the digital elevation model (DEM,
left) and the Slope Steepness (right) as well as the landslide inventory (with black dots representing the LIPs).

2.2. Geomorphological covariate information. We use covariate information that has
been aggregated to a 15 m x 15 m grid based on a digital elevation model (DEM) with 2 m
resolution. This grid resolution has been shown to be sufficiently fine to avoid degrading the
predictive performance of models in this study area (Arnone et al. (2016), Cama et al. (2016),
Lombardo et al. (2016b)) while allowing for reasonably fast inference. Lombardo, Opitz and
Huser (2018) provide a more detailed description of the calculation and meaning of covari-
ates. Aggregation from two meters to 15 meters was done by averaging values for continu-
ous covariates or by selecting the prevailing category for categorical covariates. Covariates
are as follows, where we use upper-case notation throughout to refer to the names of these
covariates: Elevation (or Digital Elevation Model, abbreviated DEM); Aspect, that is, the an-
gle in [0, 27) describing the exposition of the area with respect to the north (Zevenbergen
and Thorne (1987)); Slope Steepness (Zevenbergen and Thorne (1987)); Planar Curvature
(Heerdegen and Beran (1982)), which is measured perpendicular to the steepest slope angle
and characterizes the convergence and divergence of flow across the surface; Profile Curva-
ture (Heerdegen and Beran (1982)), which indicates the direction of maximum slope; To-
pographic Wetness Index (TWI) (Beven and Kirkby (1979)), which quantifies topographic
properties related to hydrological processes using slope and upstream contributing area as
input; Stream Power Index (SPI) (Moore, Grayson and Ladson (1991)), which takes similar
input as TWI and measures more specifically the erosive power of flowing water; Landform
(with 10 categories, see Wilson and Gallant (2000)); the distance of each pixel to the clos-
est tectonic fault line (Dist2Fault, in m); Normalized Difference Vegetation Index (NDVI)
(Rouse Jr. et al. (1974)), which measures the “greenness” of a landscape and serves as a proxy
for vegetation; Lithology, that is, soil type with 22 categories, where rare soil types with less
than 500 occurrence pixels have been summarized in a single class “other;” Land Use (with
13 categories). The choice of a 15 m x 15 m grid yields a representation of the study area
through 449,038 pixels. When using continuous covariates for modeling purposes, we scale
them to have empirical mean 0 and empirical variance 1. Additional information about the
covariates can be found in Section 1 of the Supplementary Material (Opitz et al. (2022)).



HIGH-RESOLUTION BAYESIAN MAPPING OF LANDSLIDE HAZARD 1657

Adjacency Adjacency
Count per SU Graph

. 19 # SU centroid
\_ Link

oA NN
RIS

AL
KU
1R

F1G. 3. Ilustration of slope units (SUs) and of their adjacency structure. Left: Number of adjacent SUs to each
SU indicated by color. Right: Adjacency graph.

Figure 2 shows the spatial distribution of the Elevation (left panel) and the Slope Steep-
ness (right panel) on their original scale. In this work we stress the importance of accurately
capturing the influence of the Slope Steepness which has a major effect on landslide activa-
tions. Landslides are very unlikely to be triggered in flat areas; they are much more likely on
steeper slopes, and they become unlikely again on very steep slopes, since movable material
has already gone through erosion and during previous mass movements. Below, we seek to
construct models that can capture this nonmonotonic and highly nonlinear influence of the
Slope Steepness.

In our Bayesian hierarchical models, described in Section 3, we additionally exploit
modeling units at an intermediate resolution (between 15 m pixels and the full study
area), known as slope units (SUs), which can be automatically extracted from the DEM
data (Alvioli et al. (2016), Lombardo, Opitz and Huser (2018)). Precisely, the SU parti-
tion defines a phyically-motivated and moderately-sized spatial discretization, here used
for capturing latent random effects, such as the influence of the spatially-varying precip-
itation event. These SUs can be viewed as relatively homogeneous mapping units with
respect to geomorphological and geophysical features that are relevant to landslide ac-
tivations. In our study area we have 3484 SUs which are displayed on the left panel
of Figure 3. Some landslides triggered within the same SU may be due to a joint trig-
gering mechanism, which may potentially lead to some residual stochastic dependence
in the landslide occurrence process (conditional on the geomorphological structure and
the precipitation trigger), but such spatial dependence is likely to be very weak when
considering events arising in separate SUs. In other words, landslide data in different
SUs can be safely assumed to be conditionally independent given fixed and random
effects. In the next section we describe our proposed log-Gaussian Cox process mod-
els.
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3. Bayesian hierarchical modeling of landslide point patterns.

3.1. Log-Gaussian Cox processes. Spatial point processes are stochastic models for the
occurrence of events in space, when the event positions are random but obey certain density
patterns and small-scale clustering or inhibition behavior. We refer to the bounded study area
as S, shown in Figure 2. Point processes characterize the joint probability distribution of the
number of points N (A;) in subareas Ay, A3 ..., that is, the marginal distribution and depen-
dence structure of the random count variables N(A;). An important characteristic of point
processes is the intensity function A(s), which determines the expected number of points
over any area A C S, that is, E{N(A)} = [, A(s) ds. For Poisson processes, N(A) has the
Poisson distribution for any set A, and the occurrence of points is independent, given the
(deterministic) intensity function A.

Log-Gaussian Cox processes (LGCPs, Mgller, Syversveen and Waagepetersen (1998)) are
Poisson processes with a stochastic intensity function A (s) given by a log-Gaussian process.
Their doubly-stochastic structure allows capturing spatial clustering of points, due to unob-
served or unavailable predictor variables. LGCPs are convenient for Bayesian hierarchical
modeling, where the latent Gaussian process may encompass both fixed effects of observed
covariates z;(s) and random effects.

Throughout, we use the notation x(s) and x for random effects by adding context-specific
subscripts and superscripts. Precisely, we follow the convention that x (s) corresponds to the
value of a random effect evaluated at the location s € S, and we write x for the vector of the
finite number of latent variables (following a multivariate Gaussian distribution) that are used
to represent this random effect. For example, a random effect x sy, described at SU resolution,
corresponds to a multivariate Gaussian random vector with 3484 components, one for each
SU, while xsy(s) is the value that corresponds to the SU containing the location s € S.

The log-intensities of our models are structured as

J K
log A(s)=Bo+ Y Bjzj($) + ) _xi(s), seS.
j=1 k=1

The random effects x4 (s) may directly depend on location s or only indirectly through a
covariate 7 (s) observed at s, for instance, if x; (s) is used to capture the potentially nonlinear
influence of a covariate. The probability density function of an observed finite point pattern
X=(X,...,.X N)T, composed of a random but finite number N > 0 of points X; € S in the
observation window S, corresponds to the expectation

N
fiaep(X) =Ea [exp(— (R0 ds) I1 A(X,-)],

i=1

using the convention that ]_[lN: | A(X;) =1if N =0. Closed-form expressions of this expecta-
tion are not available in general, but Bayesian inference techniques, such as implementations
based on the integrated nested Laplace approximation (Rue, Martino and Chopin (2009)), as
used here, have been developed to approximate it numerically. In our Bayesian framework
the Gaussian processes used to construct the log-Gaussian intensity function in LGCPs can
also be viewed as prior distributions for deterministic components of the intensity function
of a Poisson process.

3.2. Penalized complexity priors for hyperparameters. Hyperparameters (e.g., standard
deviations of random effects) are important to control the behavior of components of the
latent Gaussian process log A (s). They must be set or estimated carefully since different val-
ues for a hyperparameter may correspond to strong differences in the structure of the latent
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components. Throughout all considered models, we here make systematic use of the concept
of penalized complexity (PC) priors (Simpson et al. (2017)) to define the priors for hyper-
parameters. The rationale of PC priors is to control model complexity by assigning priors
that are not noninformative to avoid overfitting. With PC priors, complexity of a model or
model component is measured through a certain distance from a simpler baseline. PC priors
are constructed to satisfy a list of natural criteria set out by Simpson et al. (2017) for priors
of complex hierarchical models. Specifically, a PC prior controls “what a hyperparameter
does” (i.e., how it acts on the model) rather than controlling its numerical value, which may
differ according to different choices of parameterizations. For instance, if o > 0 is a standard
deviation, then o2 is the corresponding variance, and 1/0? is the corresponding precision.
Nevertheless, the three values o, o2 and 1/0% express the same general behavior, and their
priors should behave accordingly. This is naturally achieved through PC priors. Thanks to
their intuitive use and their contribution toward the stability of Bayesian inference proce-
dures in sophisticated models, PC priors are now recommended as the standard choice for
use with the integrated nested Laplace approximation (INLA).

With landslide models we define a simple baseline model for each latent component, typ-
ically corresponding to its absence (i.e., to a standard deviation of 0) such that all the latent
variables pertaining to the component are set to 0. PC priors are constructed by assuming a
constant-rate penalty for the distance of a model component with respect to its baseline. This
distance is a measure of complexity, and the idea of PC priors, developed by (Simpson et al.
(2017)), consists of expressing it in terms of the Kullback-Leibler divergence. The user has
to specify the rate parameter for the penalty and can do so in an indirect, intuitive way by pro-
viding a threshold # and a probability o € (0, 1) such that Pr(hyperparameter > u) = «. For
illustration, let us consider a precision parameter T > 0 in a Gaussian random vector having
distribution A/(0, 7=' @~ 1) with fixed precision matrix Q. All PC priors used in our landslide
models are of this type and can be obtained as follows. We define the baseline model through
79 = o0o. To derive the PC prior from the Kullback—Leibler divergence of N (0,7~' Q")
with respect to N (0, Ty ! Q_l ), (Simpson et al. (2017)) consider finite but very large to. The
result is a prior distribution with penalty rate parameter A > 0, which incorporates tp and can
be fixed by the user as described above. The PC prior for the precision t corresponds to a
Fréchet distribution with density

A
m(t) = 51_3/2 exp(—rt71?), >0,

which, in turn, corresponds to an exponential distribution with rate A for the standard devia-
tion parameter /1/7.

3.3. Models. We now present the baseline model and our proposed model extensions.

3.3.1. MO (baseline): Fixed effects and spatial random effect. Our baseline model, called
MO, has structure similar to the best model found by Lombardo, Opitz and Huser (2018), al-
though here with relevant improvements through the choice of prior distributions penalizing
model complexity. In the model extensions presented subsequently, we ensure easy compari-
son and consistency with MO by keeping the same prior distributions for components that are
in common. Before giving details on components of the log-intensity of M0, we provide its
full formula,

Mcont 3 4
(MO)  log Ag(s) = Y BS™z5™ () + D D B54S0(s) + x%ﬁ,\g’c{ (s) + x$GR(s).
j=1 j=le=1
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The intercept and the continuous covariates, zj.om(s), including the Slope Steepness but
with the exception of the circular Aspect variable, appear as fixed effects with coefficients
ﬁj‘?om, Jj=1,...,mcon. To guide the estimation algorithm for faster convergence and to sta-
bilize the fitted model, we fix moderately informative Gaussian prior distributions with preci-
sion 1 and mean O for fixed effects, except for the intercept where the mean is —2. This leads
to posterior distributions that are strongly concentrated around zero for those covariates that
cannot improve posterior predictions. Due to the log-link function, a latent Gaussian variable
with a given mean, but either high or low variance, contributes very differently to the predic-
tions obtained after applying the inverse link function exp(-). Recall that if x ~ N (i, 02),
then exp(x) has mean exp(u 4+ o2/2). Our prior choice, therefore, reduces the gap between
the generally higher variance in the prior model and the lower variance in the posterior model.

PC priors are used for the precision of the independent and identically distributed (i.i.d.) ef-
fects of the three categorical, nonordinal covariates (Lithology, Landform, Land Use), zjaé (s),
which possess a substantial number of categories (1 = 22, £ = 10 and ¢3 = 13, respec-
tively). Priors for their coefficients 8; ¢, £ =1,...,¢;, j = 1,2, 3, are centered at 0, and we
impose a sum-to-zero constraint on the coefficients of each of the three factors to ensure
identifiability. The priors for the three precision parameters, denoted by 71 1TH, TLF and 1Ly,
respectively, are relatively informative and are determined by the a priori specification of
Pr(,/1/t > 1) = 0.01) for the corresponding standard deviations 1/1/7. As outlined in Sec-
tion 3.2, the PC prior for the standard deviation is given by an exponential distribution, whose
rate parameter, corresponding to the above specification, amounts to 4.6. Therefore, we let
the data drive the posterior distribution away from O if a clear signal is present in the data.
This allows us to shrink the model toward a parsimonious formulation and to avoid unstable
inference, such as excessively high posterior variances or difficulties in calculating Laplace
approximations.

The Aspect covariate, xggj\gclt (s), reports an angle within the interval [0, 27), which
we here discretize into 16 equidistant bins, each spanning 27/16 = 22.5° for a near-
continuous treatment. The prior model of this random effect is a cyclic first-order ran-
dom walk (CRW1) over the bins with a sum-to-zero constraint for identifiability. Writing

xglsggclt = (XA0,.--5XA,1 5)T, we characterize its multivariate Gaussian prior through the fol-

lowing conditional specification (where i = i modulo 16):
~+x, 7 1

X, .
) o Y A,i—1 A,i+1
xA,l | {XA,i—l’ xA,i+1} N( 2 P TA‘L’A 0

), i=0,...,15,

where the constraint Z}io xa.; = 01is imposed to ensure identifiability and where 74 9 > 0 is
a fixed scaling constant such that 1/t4 corresponds to the marginal variance of the variables
xa,i, 1 =0,...,15. The CRW1-structure makes sure that the estimated piecewise constant
curve is “smooth” by borrowing strength between neighboring classes. We set an informative
PC prior distribution for xglggclt by specifying that, a priori, Pr(/1/7ao > 1) =0.01.

For the latent spatial effect xSC{J*R(s) structured at the SU level, we implement Besag’s clas-
sical conditional autoregressive (CAR) model (Besag (1975), Rue and Held (2005)). Writing
xg{}R = (xscé}}, e x§é§484)T, this model links the value xscélf in SU i to adjacent SUs,

described by the index set NB(i) of size n; > 1, as

1 1
CAR | | CAR Y CAR .
xsu.i | {xSU,j}jeNB(i) N<n, Z Xsu,j i TSUTSU 0)* i=1,...,3484,
I jeNB(i) i :

where the constraint 2?1814 xgél} = 0 is imposed for identifiability and where sy o > 0 is
a fixed scaling constant such that 1/7sy corresponds to the (generalized) marginal variance
(Sgrbye and Rue (2014)) of the variables xSC(}lf, i=1,...,3484; the generalized marginal
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variance is the square of the geometric mean of the (nonstationary) standard deviations of the
variables. We set a moderately informative PC prior distribution for x(sjl‘?R by specifying that,
a priori, Pr(y/1/tsy > 5) = 0.01. The PC prior for the standard deviation /1/tsy is again
given by an exponential distribution (recall Section 3.2), whose rate parameter corresponding
to the above specification amounts to 0.92.

The number of adjacent SUs, |[NB(i)|, varies moderately in our dataset, with 90% of val-
ues between 3 and 8 and 60% between 4 and 6, while the minimum is 1 and the maximum
is 19; see Figure 3. In general, this spatial random effect captures SU-resolved effects that
cannot be explained by other model components, in particular, by observed covariates. With
the landslides’ data the spatial effect will absorb the local intensity variation of the precipita-
tion trigger, which is, at most, weakly correlated with some of the other, geomorphological
covariates.

3.3.2. Model 1: Spatially unstructured effects. Overdispersion in count data refers to the
situation where the variance is larger than the mean which stands in contrast to the Poisson
distribution whose mean and variance are equal. Conceptually, our LGCP models are defined
over continuous space and exclude multiple events at the same location s € S such that (theo-
retically) the notion of overdispersion does not apply. However, overdispersion in the counts
for spatial units, such as pixels or SUs, can still arise if our intensity model is misspecified
and fails to pick up all sources of spatial variation in the data. Our models assume constant
intensity within pixels, and the spatial random effect has coarser resolution at the SU level.
Pixel resolution is very high in our case and approximates continuous space, with only a very
small proportion of pixels counting multiple events, such that we will not explore nonsta-
tionary behavior of the point process intensity within pixels. However, we propose to explore
models with spatially unstructured effects at the pixel level or the SU level, which are capable
of capturing sharp differences in intensity between neighboring pixels or SUs, respectively.
In our first model extension we, therefore, include i.i.d. Gaussian variables in the latent linear
predictor, either by adding one variable to each pixel (Model 1a) or by adding one variable to
each SU (Model 1b). We estimate the precision parameters, r;r‘iid and té‘[‘}, of these pixelwise
and SU-wise unstructured effects, respectively. Writing i(s) and SU(s) to denote the pixel i
and slope unit containing location s € S, respectively, these models are given as

(Mla) log A1a(s) =1log Ao(s) + xpia{i(9)}.  Xhdg ~ Noyia (0. Lnga/Tia) -

(MIb)  log A1p(s) =log Ao(s) + x5 {SU®)},  x8h ~ Nagy (0, Ingy /T80)
where sum-to-zero constraints are imposed on xiSi% and x“ﬁd, 0 denotes the zero vector, I,
is the n-by-n identity matrix and ngiq = 449,038, ngy = 3484. For both effects the preci-

sion parameter T (= giir‘iid or réi{}) is endowed with an informative PC prior determined by
Pr(/1/t > 1) =0.01.

3.3.3. Model 2: Nonlinear effect. In this second model extension we replace the linear

Slope Steepness effect of the form “Bsiope X Slope(s)” (with Slope(s) a known covariate) by

a nonlinear random effect xlszl\:‘)ge, defined through a first-order random walk prior using 10

equidistant classes to partition Slope Steepness values. Denote the log-intensity of the base-
line model without the linear Slope Steepness effect by log Ao, —siope (). Here, we consider
the modified model

(M2) log A(s) =108 Ag,—slope (5) + Xgone (5).

which can capture nonlinear and, in particular, nonmonotonic influence of the Slope Steep-
ness covariate. We set the prior distribution of the precision parameter ‘L’SX‘;L > 0 of xgg;e by

analogy with the Aspect effect in MO, that is, Pr(,/1/ t&%é > 1) =0.01.
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3.3.4. Model 3: Space-varying regression (SVR). Another extension of our baseline
model is possible by keeping a linear coefficient for Slope but allowing it to vary over space.
This allows the model to capture local variations of the strength of the Slope Steepness effect,
due to the precipitation trigger. We keep the global linear Slope Steepness coefficient and add
a spatially-varying correction, defined at the SU level, in the following model:

(M3) log A3(s) = log Ag(s) + Slope(s) x xgjon(s).

The role of the additional space-varying regression component is to locally correct the global
effect where necessary. By analogy with the latent spatial effect xg{?R, the prior on nggﬁe

corresponds to a Gaussian process with CAR structure and with its own precision parameter
rscl?; > 0 for which we set an informative prior distribution, according to Pr(,/1/ rsclépli >
0.1) = 0.01. This corresponds to assigning an exponential distribution with rate 46 as the
prior of the standard deviation ,/1/ rs(i?;. The penalty rate is very high since the addition of
the SVR-component makes the model considerably more complex.

3.3.5. Model 4: Nonlinear effect and space-varying regression. In this model we com-
bine both the nonlinear Slope Steepness effect of M2 and the SVR-coefficient component of
M3 into a single model, leading to the following structure:

(M4) log A4(s) =log Ao, —siope(s) + xsli\;\;,t(s) + Slope(s) x xgl‘g&(s),

where hyperparameter priors are fixed as above.

3.3.6. Model 5: Parsimonious space-varying regression (P-SVR). Finally, we construct
a model similar to M4 but which links the latent spatial effect xscl‘?R (s) and the SVR compo-
nent. If the latent spatial effect acts as a proxy for the precipitation trigger, then its low values
indicate a weak or absent trigger effect, and then the Slope Steepness value becomes irrel-
evant since no landslides occur, whatever the geomorphological conditions. In this case the
SVR may locally neutralize (i.e., counteract) the globally estimated Slope Steepness effect.
We here consider the following parsimonious model:

(M5) log As(s) =1og Ao, —Slope(s) + xslﬁ\ége(s) + B x Slope(s) x st{?R(s)

with the interaction coefficient 8 € R to be estimated. Unlike the more complex model M4,
this model features only one single CAR effect, ng}R (s), instead of the two a priori indepen-
dent effects, xgﬁ“R (s) and xgl’g‘ge (s), in model M4 such that we consider it as a parsimonious
variant of space-varying regression. The prior for the parameter 8 is set to be moderately

informative; it is Gaussian with mean 1 and precision 10.
4. Approximate Bayesian inference.

4.1. The integrated nested Laplace approximation (INLA). INLA (Rue, Martino and
Chopin (2009)) has found widespread interest in a wide range of applications (Krainski et al.
(2018), Lombardo, Opitz and Huser (2018), Moraga (2019), Opitz et al. (2018)) thanks to its
ability to provide fast and accurate posterior inference for the general class of latent Gaus-
sian models, including log-Gaussian Cox processes (Tierney and Kadane (1986)). The R-
INLA package (see http://www.r-inla.org/), in which the core statistical methodology is effi-
ciently and conveniently implemented, privileges sparse matrix calculations in large dimen-
sions through systematic use of Gauss—Markov conditional independence structures. With
hierarchically structured models, including several components with different structures at
the latent layer, INLA is typically faster and simpler to tune than simulation-based Markov
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chain Monte Carlo (MCMC) methods (Illian, Sgrbye and Rue (2012), Opitz (2017), Rue and
Held (2005), Rue, Martino and Chopin (2009), Rue et al. (2016)). INLA is an approximate
inference method, but the approximation quality is generally superior to MCMC-based ap-
proaches when using similar computation times (Teng, Nathoo and Johnson (2017), Vranckx,
Neyens and Faes (2019)), especially in cases where achieving good mixing properties within
MCMC is difficult. The INLA method can be applied to models where the observations are
conditionally independent with respect to a latent multivariate Gaussian random vector which
parameterizes the observation model. The distribution of the observations is of Poisson type
in our case; in general, INLA imposes only very mild conditions on the distribution of ob-
servations. INLA can be applied to a very wide class of latent Gaussian models (Rue et al.
(2016)). The dimension of the latent Gaussian vector can be large, especially in spatial model-
ing; for instance, in the SU-based spatial random effects we have one latent variable for each
of the 3484 SUs. Therefore, it is important that matrix computations related to the Gaussian
model can be performed efficiently. With INLA this is possible if Gauss—Markov structures
are used, that is, if the precision matrices (inverse covariance matrices) are sparse. By using
a spatial discretization of the study area combined with a graphical structure, such as the
SU structure with graph edges defined through spatial adjacency of SUs in our data, it is
possible to define Gauss—Markov models for spatial data. Here, we use the classical spatial
conditionally autoregressive model of Besag (1975) to estimate spatial random effects. The
structure of log-Gaussian Cox processes perfectly fits into the framework of INLA (Illian,
Serbye and Rue (2012)), since the observed points of the point pattern (and the resulting
Poisson-distributed counts over mapping units, such as pixels in our data) are conditionally
independent with respect to the latent Gaussian process representing the logarithm of the in-
tensity function. A detailed mathematical description of the estimation mechanism of INLA,
which heavily draws on Laplace approximations (Tierney and Kadane (1986)), is given in
Section 2 of the Supplementary Material (Opitz et al. (2022)).

We here write A; = exp(n;) for the stochastic point process intensity at pixel i €
{1,..., ngiq} with ngiq = 449,038, where n = (1, ..., nngrid)T denotes the vector of the
pixel-based latent Gaussian log-intensities for the whole study area. We further use the nota-
tion Xy = (nT, ..)T for a vector with ngy components, where “...” refers to the variables
of the additive random effects included in the log-intensity model, for example, xg{?R, and so
forth. The vector of hyperparameters (i.e., precisions of CAR, RW1 and i.i.d. components) is
denoted by € and has ng components. The distribution of pixel-based landslide counts y;, col-
lected into a vector y = (y1, ..., ynmd)T, is assumed to be conditionally independent given
the (random) intensity values, that is,

ind. . .
Vi | Aj > Poisson(CA;), i=1,...,ngid,

where C = (15 m)? is a scaling factor corresponding to the area of one pixel. The principal
inference goal is the calculation of the posterior densities of hyperparameters and of the
components of x gy, the latent vector with multivariate Gaussian prior distribution, that is,

@.1) 7 (6; | y)=fn(xfuu,0|y>dxfuud0_j, P

(4.2) 7(xi | y) =/71(xl' |10, y)7@|y)dd, i=1,... ¢

However, calculation of (4.1) and (4.2) is hampered by the high-dimensional numerical in-
tegration over the space Rl spanned by the Gaussian vector x . Instead, INLA uses the
Laplace approximation which corresponds to replacing integrand functions by suitable Gaus-
sian density approximations. On the other hand, the integration with respect to the compo-
nents of @ is done through numerical integration schemes such that only a small number of
hyperparameters can be estimated.
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4.2. Model comparison and selection. First, we propose to compare models through the
classical information criteria DIC and WAIC. These goodness-of-fit criteria take the effective
dimension of the latent model into account, thus penalizing model complexity. Their close
relationship to the predictive performance, measured through leave-one-out cross-validation,
has been established, and WAIC is known to better take the stochasticity of the poste-
rior predictive distributions into account (Gelman, Hwang and Vehtari (2014)). With INLA
these quantities are calculated through sensible approximation techniques (Rue, Martino and
Chopin (2009)).

To focus more directly on criteria evaluating the spatial predictive performance, we also
devise a 10-fold cross-validation scheme. Specifically, we randomly partition the SUs into
10 folds, each containing (approximately) the same number of SUs. We calculate predictive
scores for two mapping units, pixels and SUs, for the latter by aggregating observed and
predicted counts over the pixels of each SU. At the pixel level we consider predictive scores
that use either the predlcted counts i; = = E(A; | y), the predicted probabilities of within-
pixel landslide occurrences p; = 1 — exp(— ;) or the full INLA-based posterior predictive
distribution of A; | y. Similarly, at the SU level we consider the predicted counts estimated
as ASU = Y_jesU Ai» the predicted probabilities of within-SU landslide occurrences psy =
1-— exp(—isu) and the INLA-based posterior predictive distributions of (3 ;csy Ai) | ¥. An
alternative approach for predictive diagnostics, studied by Leininger and Gelfand (2017),
would be to construct hold-out sets by removing points at random from the point pattern; this
is known as thinning. Here, we prefer the more challenging task of predicting entire spatially-
contiguous areas where all data within SUs have been removed which is also more suited to
assessing slopewise landslide hazard.

The INLA-based posterior predictive distributions are obtained by generating a large num-
ber of posterior samples of counts for each cross-validation fit. While INLA does not directly
provide posterior samples because of its use of analytical and not simulation-based approxi-
mations, these can be generated conveniently (Rue et al. (2016)). Using R-INLA’s internal,
discrete approximations for posterior distributions of hyperparameters and latent Gaussian
fields, the simulation algorithm first generates a realization of the hyperparameter vector;
next, conditional on these hyperparameters, a latent Gaussian field is sampled; finally, counts
are simulated from the pixel-based Poisson distributions with intensities defined according to
the simulated latent Gaussian field. In what follows, cross-validation results, using simula-
tions of the posterior predictive distributions, are based on 5000 samples of the full posterior
model.

We consider four types of cross-validated predictive scores: the area-under-the-curve
(AUC) (Fawcett (2006)) to measure prediction quality for the presence or absence of land-
slides within mapping units, the residual sum of squared errors (RSS) and the residual sum of
absolute errors (RSA), both using predicted and observed counts and the continuous ranked
probability score (CRPS, Gneiting and Katzfuss (2014)) using the predictive distribution
functions and observed counts. The formulas for pixel-based RSS and RSA are as follows:

Ngrid R Ngrid R

RSSgria =D (i —4)>  RSAgia= Y Iyi —hil,

i=1 i=1

Where i = [OOO mwi{log(A) | y}dr with m;(- | y) the INLA-based posterior density of
= log(A;). The general CRPS formula for a single observation yohs and a corre-

spondmg (posterior) predlctlve distribution F (y) from a model may be expressed as
25 {F (y) — 1(y = Yobs)}> dy. For the pixel-based CRPS in our case, we add up the CRPS
Values over all pixels and, therefore, use

Ngrid 00

1 2
CRPsgnd—ZZ[Z f exp(— A) {1og(x)|y}xdx—1(y2yi>} :

i=1y=0~k=0



HIGH-RESOLUTION BAYESIAN MAPPING OF LANDSLIDE HAZARD 1665

Analogous formulas are used for SU-based criteria, where pixel-based observed counts y; and
intensities A; must be aggregated over the pixels for each SU. This requires resorting to the
INLA-based joint posterior distributions of all x; corresponding to the pixels in a given SU.
Since such CRPS formulas are difficult to calculate analytically, we use posterior sampling as
implemented in R-INLA and compute a Monte-Carlo approximation of CRPS values based
on a large number of posterior samples (5000 as above).

The AUC considers only presence-absence data, which is a strong simplification for as-
sessing the prediction of landslide counts, especially at the SU level where counts larger than
one are frequent. By contrast, the other three measures rely on counts: while RSS and RSA
focus on point predictions defined through the posterior mean of intensities at pixel level,
CRPS also accounts for the uncertainty of the predictive distributions and yields good scores
for models that provide predictions that are both calibrated (i.e., correct on average) and sharp
(i.e., having little prediction uncertainty). We calculate these four predictive scores for each
of the 10 folds, both at pixel and SU levels and, finally, we average the predictive scores of
the 10 folds together. Lower final values correspond to better predictive performances.

5. Results and discussion.

5.1. Computational requirements and general prior considerations. INLA-based esti-
mation of all models should be done on a computer with sufficiently high memory resources
(at least 64 Gb). In our implementation we used four cores in parallel when estimating each
model, and the resulting running times were between one and a half hour for the baseline
model and around 18 hours for the model M1a with pixel-based i.i.d. random effect; the
parsimonious-SVR model M5 took less than three hours. While estimation was possible in
our setting without removing data from the sample, we note that estimation would require less
resources, especially much less memory, if we performed subsampling of the pixels without
observed landslides. If subsampling is performed in a stratified way to keep the loss of in-
formation small, then the original sample size could be divided by a factor of up to 10; see
the discussion in Koh et al. (2021) for more background and references on weighted subsam-
pling.

Based on the idea of penalizing model complexity in very complex models such as ours,
we have opted for moderately informative priors in most cases. Specifically, model compo-
nents that make models substantially more complex (e.g., the SVR-component in M4) have
been endowed with informative priors. Since prior choice always involves some subjectiv-
ity, we have conducted several simulation experiments to assess how less informative priors
would change results; their outcomes confirm that only slight differences would arise; see
Section 3.2 of the Supplementary Material. Moreover, we have performed simulation experi-
ments to assess if all the model components are appropriately identifiable in complex models,
such as M4 and M5, and we give an affirmative answer; see Section 3.1 of the Supplementary
Material (Opitz et al. (2022)).

5.2. Comparison of models using basic diagnostics. Table 1 reports results for our mod-
els fitted to the full dataset, including the precision parameter (i.e., inverse variance) of the
estimated latent spatial effect (LSE) ngR included in all models, the effective number of
parameters (i.e., the effective dimension of the linear predictor when accounting for the de-
pendence between the latent variables) and the two information criteria DIC and WAIC. The
similar LSE precisions indicate that the variability of the LSE is relatively stable over dif-
ferent models, even with the most complex models. The effective number of parameters is
relatively similar for all models, except the model with an i.i.d. effect resolved at the pixel
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TABLE 1
Comparison of fitted models in terms of the estimated precision of the latent spatial effect (LSE) xg{}R and
information criteria (DIC and WAIC, respectively). The column negr denotes the effective number of parameters

of the fitted model
Model LSE precision Neff DIC WAIC
MO (baseline) 0.35 (0.06) 1006 40,142 39,869
M1a (pixel-iid) 0.3 (0.02) 4166 41,925 40,834
M1b (SU-iid) 0.32 (0.02) 987 40,120 39,867
M2 (RW1) 0.31 (0.02) 1002 40,132 39,864
M3 (SVR) 0.31 (0.02) 1144 40,005 39,690
M4 (RWI1-SVR) 0.31 (0.01) 1203 39,949 39,745
MS5 (P-SVR) 0.34 (0.02) 1016 40,087 39,817

scale; recall that there is a large number 449,038 of pixels. DIC and WAIC values are rela-
tively similar overall, although both information criteria consistently give preference to mod-
els with space-varying regression components. While DIC ranks first the most complex model
M4 with independently specified RW 1- and SVR-components for the Slope Steepness, WAIC
prefers model M3 which includes only a fixed (i.e., global and linear) Slope Steepness effect
and the SVR component.

We now also report and discuss estimated precision parameters for the specific compo-
nents added in the models extending the baseline. In M1a with pixel-resolved i.i.d. effect, we
estimate a posterior precision of about 1.5 for the i.i.d. component, which indicates the pres-
ence of a rather strong independent effect at the pixel scale, not explained by the aggregated
view based on SUs, and without dependence spanning over neighboring pixels. By contrast,
the precision of the SU-resolved i.i.d. effect in M1b is very high (180), indicating a relatively
small contribution of this effect to the model. In M2 the precision of the nonlinear RW 1-effect
of Slope Steepness is 4.4. In M3 with an SVR component, the precision of the space-varying
coefficient is 4.3. By jointly including the RW1- and SVR-effects of Slope Steepness in M4,
we get RW1-precision of 5.8 and SVR precision of 2.4. The former is higher than without the
SVR component (M2), indicating that the influence of Slope Steepness is now partially cap-
tured by the additional SVR component, whose precision is relatively low. We conjecture that
this low precision shows that the SVR component captures the influence of Slope Steepness
more easily than the global RW1-effect of Slope Steepness; moreover, the noncontinuous
specification of the RW1-curve may require stronger variation of the SVR-component’s con-
tribution at relatively small spatial scales to smooth the RW 1-effect. Finally, model M5 with
a parsimonious SVR component has a RW1-precision estimated of 7.9, and the posterior
mean of the S-coefficient is given by 0.13 with credible interval [0.10, 0.16]. Therefore, a
significant transfer of predictive information has taken place from the LSE (whose precision
is similar to the other models; recall Table 1) to the space-varying Slope Steepness influence,
while the RW1-contribution has been reduced, compared to the other models with RW1-
component. The parsimonious constraint linking the SVR to the latent spatial effect in M5
leads to an improved goodness-of-fit compared to the baseline MO and the models with addi-
tional i.i.d. components, but, based on its DIC and WAIC values, we conclude that it cannot
fully attain the high flexibility of models M3 and M4.

5.3. Influence of fixed effects. In Figure 4 we compare the estimated coefficients for the
eight predictor variables included as fixed effects in our different models. The contribution of
these covariates, and the associated uncertainty of their coefficients, are estimated to be very
similar across the seven models studied here, except for the Slope Steepness, due to the major
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FIG. 4. Estimated fixed effect coefficients (except the intercept) for the seven models (MO, M1a, M1b, M2, M3,
M4, M5, from left to right in each panel corresponding to one of the covariates). Black dots show INLA-based
posterior means, while vertical segments and blue endpoints indicate the size of 95% credible intervals. Fixed
effect coefficients for Slope Steepness are fixed to 0 for some models and appear only through a black dot at level
0 in these cases.

differences in model structure with respect to the contribution of this covariate. Interestingly,
the parsimonious SVR structure seems to have fully absorbed the influence of DEM into the
Slope-SVR part of the model, Slope(s) x xsﬁ?& (s). We do not show results for the categorical
covariates, but the conclusions remain qualitatively similar.

For the models M2, M4 and M5 with a nonlinear Slope Steepness effect modeled through
a RW1 component, Figure 5 shows the resulting estimated curves—for better readability
of the plots, piecewise constant curves are replaced by piecewise continuous interpolations.
Nonlinear influence is obvious from these plots and displays a similar bell shape in all three
models, with intermediately steep slopes between 30 and 60 degrees presenting high relative
risk of landslide occurrence. Models M4 and M5 include additional SVR-components to
capture the slope-specific influence at SU resolution such that the estimated RW1 curves
appear to be flatter which implies smaller variations in relative risk.

5.4. Spatial predictive performance comparison. Table 2 reports spatial predictive scores
based on a 10-fold stratified cross-validation, where folds are composed of a random selection
of entire SUs. For all models, pixel- and SU-based AUC values are very close to each other
and reach around 0.9, indicating a very good performance for predicting the presence of

0
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0.0

Predictor
Predictor
Predictor

-0.5
L

Slope Slope Slope

FI1G. 5. Estimated RW1-effects for the Slope Steepness (from left to right, for models M2, M4 and MS5). IN-
LA-based posterior means are shown in black, 95% pointwise credible intervals in blue.
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TABLE 2
Cross-validation-based comparison of spatial predictive performance of fitted models, with the score of the
best-performing models shown in bold face. Scores are given with four significant digits. Mathematical details on
the different scores are given in Section 4.2. Pixel-based and SU-based scores are denoted with the subscripts
erid and sy, respectively

Model AUCgiq  AUCsyu  RSAgiq  RSAgy  RSSgig RSSgy  CRPSgig CRPSgy
MO (baseline) 0.8958 0.9308 420.0 420.5 2614 2608 466.3 240.6
M1a (pixel-iid) 0.8960 0.9308 590.1 590.0 5628 5602 4747 279.7
M1b (SU-iid) 0.8958 0.9309 420.6 421.2 2615 2635 466.3 240.5
M2 (RW1) 0.8956 0.9310 411.3 411.5 2481 2483 464.7 238.5
M3 (SVR) 0.8963 0.9305 441.1 441.7 2922 2936 467.9 242.8
M4 (RWI1-SVR) 0.8964 0.9302 436.6 437 2770 2801 465.9 241.1
MS5 (P-SVR) 0.8966 0.9311 430.1 429.8 2833 2819 466.4 241.3

landslides, especially at the SU level. When considering sums of absolute and squared errors
(RSA and RSS, respectively), stronger differences between models arise, with model M2 with
nonlinear Slope influence obtaining the best scores, and M1a with pixel-based i.i.d. effects
performing substantially worse than the other models. Throughout, model M2 has a very good
performance and has the best score except for the SU-based AUC value, although differences
are rather small. Therefore, the inclusion of a nonlinear effect of the Slope Steepness, here
implemented through a random effect with RW1 prior, is important for good prediction. The
baseline model shows stable and good performance throughout and does not suffer from
some relatively bad count-based scores arising for some of the extended models (except M2).
Overall, the ranking of models, based on their predictive performance, looks quite different
from the one based on goodness-of-fit measured through information criteria in Table 1. We
emphasize that many of the differences in scores across models in Table 2 are not significant
when we take into account the uncertainty, for instance, measured through the variability
among the 10 scores. In particular, AUC-values show stronger variability across the hold-out
sets for fixed models than across models. A possible reason is that very high stochasticity and
complexity of prior models may lead to more unstable, noisy predictions. We recommend a
careful inspection of the fitted models based on several criteria, for goodness-of-fit and for
out-of-sample prediction. The “best” model M2 is more complex than the baseline model
MO, but we add only a relatively small number of 10 latent components to achieve a nonlinear
contribution of Slope Steepness. We also stress that, for our landslides data, the inclusion of
1.i.d. effects (pixel- or SU-based) could not provide substantial improvements of goodness-
of-fit or predictive performance. Finally, the models M3, M4 and M5, which possess extra
flexibility thanks to a space-varying regression component, are relatively competitive overall,
despite their relatively worse performance on RSS measures. Such models can still be useful
by offering insights into the “physical” interaction of Slope Steepness with the unobserved
precipitation trigger, as further explained in Section 5.6 below.

5.5. Landslide intensity mapping. In Figure 6, we show the INLA-based posterior mean
of the estimated log-intensity (at pixel scale) of model MO and the difference in log-intensity
between the most complex model Model M4 (RW1-SVR) and MO. In the log-intensity of MO,
the influence of geological structures, such as river valleys (very low intensity) and moun-
tain ridges, comes out clearly. The spatial structure of the predicted values is dominated by
the spatial effect xgl‘?R (s), capturing the influence of the spatial variation of the precipitation
trigger. In this model the amplitude of log-predicted intensities is close to that of the posterior

mean of the spatial effect which is evidence that the spatial effect is crucially necessary to
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FI1G. 6. INLA-based posterior mean of the estimated log-intensity at the pixel scale. Left: Baseline model MO.
Right: Difference of log-intensity between models M4 (RW1-SVR) and MO. For better visualization a small number
of difference values outside the interval [—2, 2] have been replaced by —2 (if value < —2) or by 2 (if value > 2).

account for unobserved covariate effects and to locally counteract the influence of observed
covariates. The latter may be locally misestimated, depending on the force of the precip-
itation trigger. Differences between models MO and M4 are usually relatively minor, but in
some small subareas, especially river valleys, model M4 has substantially higher log-intensity
values.

5.6. Interpretation of the slope steepness contribution. The maps in Figure 7 show how
the observed Slope Steepness variable contributes to the linear predictor, according to the
different model structures (MO, M2, M3, M5). The SVR models, M3 and M5, lead to an
overall contribution of Slope Steepness that is strongly conditioned on the precipitation trig-
ger; weakly impacted areas such as the northwestern part of the study area have a very weak
contribution close to 0. In contrast, the simpler models, MO and M2, including a fixed effect
or a RW1-effect, show spatial variation that is closer to the one of the Slope Steepness.

From a physical perspective we expect to observe, at most, a few landslides in areas with
low or absent precipitation trigger, and, intuitively, the effect of covariates may, therefore,
become irrelevant in such areas. While basic models, such as MO and M2, are unable to
capture this behavior, more complex models with space-varying covariate coefficients can
adequately reflect such natural physical constraints and help to better highlight areas where a
covariate substantially increases landslide hazard. Our model M5 (parsimonious SVR) is even
designed to explicitly integrate this interaction between the precipitation trigger (represented
here through the latent spatial effect (LSE), xg{j‘R (s)) and the space-varying coefficient. The

estimated coefficient # = 0.13 in model M5 measures the strength of this interaction; its
credible interval of (0.10, 0.16) is relatively narrow and indicates substantial interaction.

At sites where the precipitation trigger is present, a strong response to Slope Steepness is
expected for intermediate angles. In our models the LSE acts as a proxy for the influence of
the precipitation trigger, and we, therefore, expect a strong interaction between the precipita-
tion trigger and the Slope Steepness effect in the log-intensity of the point process. In Model
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F1G. 7. Contribution of the Slope Steepness covariate to the linear predictor (here expressed through the pos-
terior mean) according to the following models: MO (fixed effect; upper left); M2 (RW1 effect; upper right); M3
(SVR; bottom left); M5 (P-SVR; bottom right). For better visualization, very small number of values outside the
interval [—2, 2] have been replaced by —2 (if value < —2) or by 2 (if value > 2).

M4 the LSE and the space-varying Slope Steepness effect are components without any prior
dependence, but we can investigate the posterior model structure and, in particular, poste-
rior correlation between these components. In Model M5 the interaction structure is fixed
to a linear rescaling determined by the B-hyperparameter. The plots on the left-hand side of
Figure 8 show how the space-varying Slope Steepness coefficient varies with respect to two
other quantities: the SU-based estimated posterior mean of the LSE and the Slope Steepness
value (which we average over the pixels of each SU to obtain SU-based values). In this figure
the estimated Slope Steepness coefficients have been smoothed with a 2D kernel density es-
timator to produce a continuous color map. The original, nonsmoothed values were obtained
at the points shown as small grey dots. A clear interaction pattern between the LSE and the
SVR coefficient arises in M4, with lower LSE corresponding to lower SVR coefficient. We
underline that the parsimonious model M5 is able to reproduce a very similar structure. The
strong similarity of the results for the two models M4 and M5, despite M5 oftering much less
flexibility due to its rigid link between SVR-coefficient and LSE, persists in the plots on the
right-hand side of Figure 8. They show the actual space-varying Slope Steepness effect (i.e.,
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FI1G. 8. Illustration of the interaction structure of Slope Steepness and the precipitation trigger (represented
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Slope(s) x xg'fgll; (s). Small gray dots indicate the LSE values of the 3484 SUs.

Slope(s) x xsclﬁ;i (s)) which corrects the global RW1-Slope Steepness effect. As expected, the

plots show a correction toward lower relative landslide hazard for the combinations of high
LSE/lat slopes and small LSE/steep slopes. A relatively strong correction toward higher rel-
ative landslide hazard is necessary for high LSE/intermediate slopes and relatively low LSE
but Slope Steepness close to the pivotal value of 20 degrees (or slightly above). We conclude
that the parsimonious model M5 offers a correction of the trigger-independent RW1-Slope
Steepness effect that reflects known physical behavior and the typical landsliding response
behavior to Slope Steepness, according to the (approximate) intervals 0-20 degrees, 20-35
degrees and > 35 degrees. Field and empirical evidence suggests that the first interval 0-20
degrees corresponds to slopes that are too flat for landslides to occur, even in the presence of
a strong trigger event, while the last interval of > 35 degrees corresponds to slopes where,
typically, material that is susceptible to sliding has already gone in the past. Therefore, the
trigger primarily acts on slopes in the interval of 20-35 degrees where landslides occur most
easily.

6. Conclusion. For georeferenced landslide events, we have proposed a Bayesian hier-
archical point-process-based modeling framework to assess landslide hazard at high spatial
resolution. Although substantial geomorphological covariate information is available in our
case, it remains crucial for spatial prediction and for the interpretation of covariate effects
to capture the latent activation pattern induced by the unobserved precipitation trigger. The
framework of space-varying regression is appealing and useful, but care is needed to avoid
overly complex models for which model components may be difficult to identify from the
data and to interpret intuitively. When a spatial random effect captures the trigger intensity, it
is natural to include it as a complement of space-varying regression such that local covariate
effects can be locally removed when the trigger is absent or weak.
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The inclusion of additional latent random effects without spatial dependence in the log-
intensity allows us to model small-scale variability, either at the pixel level (here available at
a high 15 m resolution) or at the coarser slope unit (SU) level. This enables capturing overdis-
persion that would otherwise lead to underestimated local variance of counts arising in the
Poisson regression model used to spatially discretize the log-Gaussian Cox process. With our
dataset, the inclusion of such i.i.d. effects did not substantially improve the baseline model.
Rather, information criteria and some of the predictive performance measures indicated that
model M1a with pixel-based i.i.d. effect was much worse which may be explained by the
large number of additional independent latent variables. This leads to a strong increase in
computational complexity of estimation and may hamper the identification of intermediate-
scale spatially structured effects.

The Bayesian approach is useful to incorporate expert knowledge and well-known phys-
ical behavior about the shape of the functional response of processes to predictor variables
into prior models. A large majority of landslides are usually triggered by a specific physical
or weather event, such as extreme precipitation in the case of our dataset, and we need spatial
random effects to capture the trigger if it has not been observed at high spatial resolution.
Moreover, our formulation of the parsimonious space-varying regression is a natural mecha-
nism that allows the model to push the regression coefficient of Slope Steepness toward zero
when the trigger is weak. More generally, including such mechanisms into models seems
particularly promising for improving interpretability and predictions in cases where a large
fraction of the study area experiences only a weak trigger intensity.

Identifiability problems may arise from the use of several latent components, whose spatial
resolution and prior specification allows capturing similar types of variability and which are
not identifiable in a frequentist framework without prior distributions (e.g., spatial random
effects, space-varying regression coefficients and i.i.d. effects, all resolved at the SU level).
Typically, the Bayesian paradigm explains spatial variation through the component that is
most easily “pushed away” from its prior toward the posterior shape of the point process
intensity. Nevertheless, some confounding between such effects is common. For instance, es-
timated coefficients of fixed effects for covariates whose values are relatively smooth in space
often tend be slightly smaller in absolute value in models with spatially indexed random ef-
fects. Despite the complexity of the estimated models, our simulation experiments (see the
Supplementary Material, Opitz et al. (2022)) show that there are no strong confounding issues
when estimating these models for the studied dataset. If the ultimate goal is spatial predic-
tion for unobserved areas (e.g., prediction of landslide intensity for unobserved SUs adjacent
to the observed ones), we must be careful to avoid a transfer of information from spatially
dependent components (such as the latent spatial effect in our model) toward spatially inde-
pendent effects (such as the i.i.d. effect). Our approach relies on penalized complexity priors
where we penalize components rather strongly if they lead to very complex models which is
an appealing solution to cope with sophisticated latent models that include a moderate num-
ber of different random effect components. Moreover, we underscore that the INLA method,
combined with modern computing power, provides a convenient toolbox that allows for rel-
atively simple implementation and estimation of very high-dimensional and sophisticated
models in the Bayesian framework using latent Gaussian models.

We conclude that model choice is not easy when observed spatial data are discrete, only
available through a relatively moderate sample size, not replicated in time, but depend on
predictors that may change rapidly even at small spatial scales—in this setting, there usually
is not a single “best” model, and data cannot inform us about the true, complex structure of
the intensity function of the point process with high certainty. Therefore, careful construc-
tion of a moderate number of candidate models using prior expert knowledge is important.
We recommend that several model diagnostics related to both goodness-of-fit and predictive
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performance be compared and carefully studied in practice. From a pragmatic stance, we
emphasize that calculating DIC or WAIC requires only a single estimation of each model.
Therefore, they could be used to discard models for which the criterion shows a substantially
worse goodness-of-fit than for the group of best-ranking models. For example, our model
MIla with pixel-based i.i.d. effect shows a relatively large gap in its DIC and WAIC value
with respect to all the other models (see Table 1) and could have been discarded from fur-
ther analyses based on this result. Predictive comparisons that require repeated estimation of
models with some of the data held out, such as k-fold cross-validation, could then have been
restricted to a smaller number of models. Since the baseline model considered in this work
was already quite complex and highly competitive from a predictive stance (see Lombardo,
Opitz and Huser (2018) where a comparison with simpler model structures not studied here is
provided), our more sophisticated models could not significantly improve predictive accuracy,
as measured through cross-validated predictive scores. However, different model structures
provide insightful descriptive analyses, especially when prior physical knowledge is reflected
by the model structure, as, for instance, in the parsimonious space-varying regression model
MS5. Our modeling extensions provided increased interpretability while maintaining the pre-
dictive accuracy of simpler reference models. In the literature, the improvement of machine-
learning approaches by making their outputs more interpretable and better explainable has
been identified as a crucial area of research, and our framework appropriately responds to
the three general desiderata formulated for this domain by Murdoch et al. (2019): predictive
accuracy, descriptive accuracy and relevancy of interpretations, where models should ensure
these criteria in the given order of priority.
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SUPPLEMENTARY MATERIAL

Additional material about data, INLA-based inference and prior sensitivity of results
(DOLI: 10.1214/21-A0AS1561SUPP; .pdf). The Supplement contains a detailed description
of geomorphological covariates, an introduction to Bayesian estimation with the integrated
nested Laplace approximation and results from a simulation study.
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