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DNA methylation can be transmitted through generations. This paper
proposes a clustering method to identify the intergenerational patterns from
parents to their offspring. Motivated by the potential of correlation between
DNA methylation sites, we use the multivariate generalized beta distribution
to model the blockwise correlation structure among the sites. A stochastic
EM algorithm is implemented to estimate the parameters, and BIC is applied
to determine the optimal number of clusters. Simulations demonstrate the
feasibility of the proposed method. We further applied the approach to cluster
DNA methylation data generated from a cohort study on asthma and allergic
conditions.

1. Introduction. Epigenetics represent DNA modifications that do not change DNA
sequences but do influence gene activities. Epigenetic changes such as DNA methylation
(DNAm) is potentially inheritable. Different from the intergenerational transmission of in-
herent properties such as eye color, environmental influences, such as exposure to famine,
and anxiety may contribute to heritable epigenetic modifications (Stenz et al. (2018)).

As a common type of epigenetic modification, DNA methylation is a biochemical process
that Methyl groups are added to certain segments of DNA molecules. In mammals the study
of DNA methylation focuses on 5-CG-3 dinucleotides (CpG sites) which are distributed un-
evenly on the DNA sequence. Like other epigenetic modifications, there is evidence that DNA
methylation can be transmitted through generations (Padmanabhan et al. (2013)). The trans-
mission mechanism has not been fully understood, but the importance of DNA methylation
transmission has been recognized in different fields. For instance, in genome-wide associa-
tion studies of allergic asthma, genetic effects can only explain a rather small proportion of
disease risk and fail to explain the observed heritability of allergic phenotypes completely;
DNA methylation has the potential to make up for this “missing heritability” (Lee, Park and
Park (2011), Lockett et al. (2013)).

Some effort has contributed to understanding DNA methylation transmission patterns. For
instance, the methods developed by Han et al. (2015), referred to as HAN for the rest of the
article, is based on a beta regression to examine DNA methylation inheritance heterogeneity
at different CpG sites between mothers, fathers, and their offspring. HAN grouped CpG sites
based on beta regression coefficients. Given one CpG site, HAN built a linear relationship
to bridge the population mean of DNA methylation levels between parents and offspring and
evaluated the inheritance strength based on the magnitude of regression coefficients. One ba-
sic assumption of HAN is the mutual independence of all CpG sites. However, when CpG
sites on a chromosome are close in distance, this independence assumption can hardly hold;
see, for example, Bell et al. (2011), Eckhardt et al. (2006). The correlation of CpG sites
in DNAm has been utilized in DNAm prediction (Zhang et al. (2015)) and imputation (Yu
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et al. (2020)). To take into account correlations between CpG sites, this study employed the
multivariate generalized beta distribution to model the blockwise correlation structure among
CpG sites. We propose a stochastic expectation-maximization (EM) algorithm to estimate the
parameters and apply the Bayesian information criterion (BIC) to determine the number of
clusters and blocks. The proposed method generalizes HAN and thus owns its advantages,
such as no reliance on the assumption of normality for DNAm levels, and the ability to eval-
uate inheritance strength in comparison to alternative methods (Park and Jun (2009), Qin and
Self (2006)). By accounting for possible correlations among CpG sites, the proposed model
has a better fit to the data. Consequently, the clustering process built upon the proposed model
is more sensitive to underlying DNA methylation transmission patterns from one generation
to the next.

One important step of utilizing the correlation structure is to partition the correlated CpG
sites into blocks. We propose two block-partition approaches: One is focusing on the highly
correlated CpG sites that are close in terms of chromosomal coordinates. More generally,
CpGs far from each other with respect to coordinates may still be close to each other spatially.
Thus, we propose the other approach by removing the constraint of proximity in distance and
basing on the observed correlation to find blocks.

The rest of the article is arranged as follows: In Section 2 we present the methodology,
including notations, assumptions, and a stochastic EM algorithm for model estimation. In
Section 3 we discuss the approach to determine the number of clusters and blocks and then
provide six simulation settings to compare the proposed model to HAN. In Section 4 we
assess our method on a DNA methylation dataset generated from a cohort study on asthma
and allergic conditions conducted on the Isle of Wight, United Kingdom.

2. Methodology.

2.1. Notations and assumptions. In this study we define a triad to be a group consist-
ing of two parents and one offspring. Suppose there are I triads. For each member in a
triad, we observe J CpG sites which are further divided into B nonoverlapping blocks
where CpG sites in a block are correlated in DNA methylation. The length of each block
is allowed to be different: There are Lb CpG sites in the bth block, where b = 1, . . . ,B

and
∑B

b=1 Lb = J . The methylation level of a CpG site was measured by the beta value
M/(M + U + c), where M and U are signal intensities of methylated and unmethylated
probes, and c (usually equals 100 by default) is an offset constant (Du et al. (2010)). The
higher the beta value, the higher the CpG site is methylated. Let Z1ibl , Z2ibl , and Z0ibl de-
note the mother’s, father’s, and offspring’s methylation level of the lth CpG site in the bth
block of the ith triad, where 0 < Z1ibl , Z2ibl,Z0ibl < 1, i = 1 . . . I , l = 1 . . .Lb. In the ith
triad, let Z1ib = (Z1ib1, . . . ,Z1ibLb

) denote the mother’s methylation of CpGs in the bth
block. With a little abuse of notation, denote by Z1i = (Z1i1, . . . ,Z1iB) the methylation of
CpGs in all B blocks, so are Z2ib and Z2i for father, and Z0ib and Z0i for offspring. We fur-
ther assume CpG sites are independent between blocks while dependent within each block
(see Figure 1 for an example of data structure for the ith triad).

To account for within-block dependence, we introduce the multivariate generalized beta
distribution specified in Libby and Novick (1982).

DEFINITION 2.1. A random vector R follows an L-variate generalized beta distribution,
denoted by GBeta(α, β), when

R = (R1, . . . ,RL) =
(

P1

P1 + Q
, . . . ,

PL

PL + Q

)

in which Pl ∼ Gamma(αl,1) and Q ∼ Gamma(β,1), where l = 1 . . . ,L, α = (α1, . . . , αL);
Pl’s and Q are mutually independent.
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FIG. 1. An example of data structure of the ith triad. In this example we assume there are two CpG sites in the
first block.

The closed-form density function of R ∼ GBeta(α, β) can be expressed as

f (R|α, β) = �(
∑L

l=1 αl + β)
∏L

l=1{( Rl

1−Rl
)αl−1( 1

1−Rl
)2}

�(β)
∏L

l=1 �(αl){1 + ∑L
l=1(

Rl

1−Rl
)}∑L

l=1 αl+β
,(1)

where αl’s and β are positive. We propose to use f (R|α, β) to model the distribution of DNA
methylation for CpG sites in block b. There are two distinct advantages of this utilization:
(1) The marginal distribution of DNA methylation at each CpG site is still beta distribution,
which is consistent with prior literature, for example, Houseman et al. (2008); (2) The CpG
sites within each block are dependent. Following this definition, the DNAm levels of the Lb

CpG sites of the bth block for mother, father, and offspring in the ith triad are denoted by

Z1ib ∼GBeta
(
αM

b ,βM
b

)
,

Z2ib ∼GBeta
(
αF

b ,βF
b

)
,(2)

Z0ib ∼GBeta
(
αO

b ,βO
b

)
,

where Z1ib, Z2ib, Z0ib are random vectors of length Lb denoting mother, father, and off-
spring’s DNAm levels; αM

b = (αM
b1, . . . , α

M
bLb

), αF
b = (αF

b1, . . . , α
F
bLb

), αO
b = (αO

b1, . . . , α
O
bLb

);

αM
bl , αF

bl , αO
bl , βM

bl , βF
bl , βO

bl > 0; l = 1, . . . ,Lb; b = 1, . . . ,B .

2.2. The clustering method. Now, we present our method to group CpG sites, based on
the inheritance pattern passing from parents to their offspring. Same as in HAN, given one
CpG site, for example, the lth CpG site of the bth block, we assume a linear relationship in the
logit mean of the methylation level between parents and offspring, which can be expressed as

Obl = γ0 + γ1Mbl + γ2Fbl,

where Obl = log(αO
bl ) − log(βO

bl ), Mbl = log(αM
bl ) − log(βM

bl ), Fbl = log(αF
bl) − log(βF

bl),
and γ0, γ1, γ2 are coefficients. The inheritance pattern is fully determined by the vector
γ = (γ0, γ1, γ2), and the inheritance strength can be evaluated by the magnitude of γ1 and γ2:
If |γ1| > |γ2|, the offspring’s methylation inherits more from mother and vice versa. If γ1 =
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γ2 = 0, the offspring’s methylation has no relationship with that of parents at the population
level.

Since it is possible that some CpG sites follow a similar inheritance pattern, we further
assume γ is equal to one of the K vectors, denoted by γ k = (γ0k, γ1k, γ2k) for a certain
number of CpG sites, where k = 1, . . . ,K and K � J . That is, we cluster the J CpG sites
into K clusters, and, if the lth CpG site of the bth block has a intergenerational pattern k, then
we have

Obl = γ0k + γ1kMbl + γ2kFbl.(3)

Given the observations Z1i , Z2i , and Z0i , our goal is to label each CpG site with one of the
K transmission patterns correctly and estimate the coefficients γ k for k = 1, . . . ,K .

We propose an EM algorithm to achieve this goal. We start by introducing the la-
tent cluster assignment Sbl , where b = 1, . . . ,B and l = 1, . . . ,Lb; Sbl = k means the lth
CpG site in the bth block has a transmission pattern k. Let πk denote the probability that
one CpG site is in a cluster with transmission pattern k, that is, P(Sbl = k) = πk . Note
that πk is independent of the index b and l. Utilizing the definitions in (2), let AM =
(αM

1 , . . . ,αM
B ), AF = (αF

1 , . . . ,αF
B), AO = (αO

1 , . . . ,αO
B ), A = (AM,AF ,AO). Similarly,

let BM = (βM
1 , . . . , βM

B ), BF = (βF
1 , . . . , βF

B ), BO = (βO
1 , . . . , βO

B ), B = (BM,BF ,BO);
γ k = (γ0k, γ1k, γ2k) and γ = (γ 1, . . . ,γ K); θ = (A,B,γ ), the ensemble of all parameters
mentioned above. Let π = (π1, . . . , πK). Lastly, denote by Sb = (Sb1, . . . , SbLb

), the cluster
assignments of Lb CpG sites in the bth block; S = (S1, . . . ,SB), the cluster assignments of all
CpGs across block b = 1, . . . ,B; Z = (Z1i ,Z2i ,Z0i ), the ensemble of all observed DNAm
levels across I families, where i = 1, . . . , I . Recalling that we write Z0i = (Z0i1, . . . ,Z0iB),
the likelihood function L(θ ,π;Z,S) can be expressed as

P(S|π) ×
I∏

i=1

P(Z|S, θ)

=
B∏

b=1

Lb∏
l=1

πSbl
×

I∏
i=1

{
P

(
Z1i |AM,BM)

P
(
Z2i |AF ,BF ) B∏

b=1

P(Z0ib|Sb1, . . . , SbLb
, θ)

}

=
B∏

b=1

Lb∏
l=1

K∏
k=1

π
I(Sbl=k)
k ×

I∏
i=1

{
P

(
Z1i |AM,BM)

P
(
Z2i |AF ,BF )}

×
I∏

i=1

B∏
b=1

K∏
k1=1

· · ·
K∏

kLb
=1

P(Z0ib|k1, . . . , kLb
, θ)I(Sb1=k1,...,SbLb

=kLb
),

where I(·) is the indicator function. The last term

P(Z0ib|k1, . . . , kLb
, θ) = f

(
Z0ib|αO

b ,βO
b

)
,

where f is the density of generalized beta distribution specified in (1). The parameters αO
b

and βO
b are dependent on αM

b , βM
b , αF

b , βF
b , and k1, . . . , kLb

through the link function (3). In
the Supplementary Material (Mou, Zhang and Arshad (2022a)), we show that the likelihood
is reduced to HAN if assuming independence over all CpG sites, that is, Lb = 1 for b =
1, . . . ,B .

The common way to label the latent cluster assignments is the EM algorithm, where the
cluster assignments Sbl’s are treated as “missing data.” However, challenges arise when eval-
uating the Q function

Q
(
θ ,π |θ (t−1),π (t−1)) = E

[
log

{
L(θ ,π;Z,S)

}|θ (t−1),π (t−1)](4)
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in the Expectation step, where θ (t−1) and π (t−1) is the estimation in previous iteration. The
Q function involves the calculation of

K∑
k1=1

· · ·
K∑

kLb
=1

E
[
I(Sb1 = k1, . . . , SbLb

= kLb
) log

{
P(Z0ib|k1, . . . , kLb

, θ)
}|Z, θ (t−1)].

(5)

This summation contains KLb terms, which increases exponentially with respect to Lb, and
thus is computationally infeasible for large block sizes. A similar challenge is seen in the Q
function when evaluating

E
{
I(Sbl = k) log(πk)|Z, θ (t−1)} = P

(
Sbl = k|Z, θ (t−1)) log(πk)

=
K∑

k1=1

· · ·
K∑

kl−1=1

K∑
kl+1=1

· · ·
K∑

kLb
=1

P
(
Sb1 = k1, . . . , SbLb

= kLb
|Z, θ (t−1)) log(πk).(6)

To overcome these challenges, we use Markov chain Monte Carlo simulations, in particular, a
Gibbs sampler to approximate these values in our algorithm. This technique is often referred
to as a stochastic EM algorithm (Nielsen (2000)). Additionally, to improve the computational
efficiency we use the maximum likelihood estimation α̂M

bl , α̂F
bl , β̂M

b , β̂F
b , β̂O

b of αM
bl , αF

bl , βM
b ,

βF
b , βO

b and M̂bl = log(α̂M
bl ) − log(β̂M

b ), F̂bl = log(α̂F
bl) − log(β̂F

b ) instead of updating them
in each iteration. Furthermore, the Q function in (4) is written as Q(γ ,π |γ (t−1),π (t−1)) since
A and B in θ are not updated. The detailed algorithm is shown in Algorithm 1.

3. Simulation evidence. In this section we first discuss the selection of the number of
clusters K and the block size L. Then, we use simulations to assess the performance of the
proposed method (GBClust, short for generalized beta clustering) and compare it to HAN
which assumes CpG sites are mutually independent. It is worth noting that the purpose of
this section is to evaluate the finite-sample performance of both methods under various block
sizes and correlation strengths. Thus, for conciseness we assume all CpG blocks are of the
same size L throughout this section. The block sizes may be different with each other in the
real data analysis; we will illustrate the method of partitioning blocks in Section 4.

3.1. Selection of K and L. In this study, BIC is applied to select the optimal K and L.
The BIC of our model is given by

−2l + (2J + 3B + 4K − 1) log(3 × I × J ),

where l = log{L(θ ,π;Z,S)}, 2J + 3B + 4K − 1 is the number of free parameters and
3 × I × J is the number of observations. We use a grid search to find the optimal K and
L corespondent to the minimum BIC value.

To assess whether the proposed BIC criterion could identify the correct K and L, we sim-
ulated J = 5000 CpG sites, each of which was randomly assigned to one of K = 4 clusters.
The coefficients of each cluster γ 1 = (0.4,0,0.2), γ 2 = (−0.01,−0.3,0), γ 3 = (0.15,0,0),
and γ 4 = (−0.26,−0.2,0.14) correspond to patterns where DNA methylation is mainly in-
herited from father, mother, neither, and both, respectively. The probability that a CpG site
falls in each of the four clusters is given by π = (0.25,0.25,0.25,0.25), that is, approxi-
mately 25% of CpG sites fall in each cluster. The L = 5 neighboring CpG sites in a block are
correlated, following the generalized beta distribution described in Section 2. Parameters of
the generalized beta distribution A and B are randomly selected such that CpG sites follow
different marginal beta distributions. The number of triads I = 50; both I and J are compa-
rable to the real data analysis in Section 4. In this simulation study we generated 100 Monte
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Algorithm 1: The Stochastic EM algorithm

Result: γ (t), S(t)

1. Initialize γ (0), π (0) and S(0). Set t = 1.
2. For b = 1, . . . ,B:

(a) Initialize α
O(t−1)
b = (α

O(t−1)
bl ), in which α

O(t−1)
bl satisfies

log(α
O(t−1)
bl ) − log(β̂O

b ) = γ
(t−1)
0k∗ + γ

(t−1)
1k∗ M̂bl + γ

(t−1)
2k∗ F̂bl,

where l = 1, . . . ,Lb and k∗ = S
(t−1)
bl .

(b) For l = 1, . . . ,Lb:
i. For k = 1, . . . ,K :

A. Set S(t−1)
b,k = (S

(t)
b1 , . . . , S

(t)
b(l−1), k, S

(t−1)
b(l+1), . . . , S

(t−1)
bLb

).

B. Set α
O(t−1)
b,k = (α

O(t)
b1 , . . . , α

O(t)
b(l−1), α

O(t)
bl,k , α

O(t−1)
b(l+1) , . . . , α

O(t−1)
bLb

),

where α
O(t)
bl,k satisfies

log(α
O(t)
bl,k ) − log(β̂O

b ) = γ
(t−1)
0k + γ

(t−1)
1k M̂bl + γ

(t−1)
2k F̂bl.

C. Calculate

pk = π
(t−1)
k

I∏
i=1

P(Z0ib|S(t−1)
b,k ,α

O(t−1)
b,k , β̂O

b )

and qk = pk/
∑K

k=1 pk .

ii. Sample S
(t)
bl ∼ Multinomial(q1, . . . , qK). Set α

O(t)
bl = α

O(t)

bl,k† , where k† = S
(t)
bl .

3. Approximate (5) and (6) with log{P(Z0ib|S(t)
b1 , . . . , S

(t)
bLb

, θ)} and log(π
S

(t)
bl

),

respectively, in Q(γ ,π |γ (t−1),π (t−1)). Set

(γ (t),π (t)) = argmax Q(γ ,π |γ (t−1),π (t−1)).

4. Increase t by 1. Repeat Step 2 to Step 4 until convergence.

Carlo (MC) replicates of this setting. In each MC replicate we calculate the BIC values for
K = 2,3,4,5,6 and L = 1,2,5,10,20,25 for computational efficiency (in total, 30 combi-
nations). As an illustration, Figure 2 presents the average BIC values over 100 MC replicates

FIG. 2. Scree plot of BIC at different K’s and L’s. Left: Given true K = 4, the average BIC over 100 MC
replicates with L = 1,2,5,10,20,25. Right: Given true L = 5, the average BIC over 100 MC replicates with
K = 2,3,4,5,6.
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TABLE 1
Occurrence frequencies of optimal parameters selected from the BIC

method. No values of L other than 5 are selected and thus omitted

K = 2 K = 3 K = 4 K = 5 K = 6

L = 5 0 0 96 4 0

given K = 4 and L = 5 separately. In the left plot, fixing K = 4, BIC drops significantly at
the beginning and reaches the lowest at L = 5. Similarly, fixing L = 5, BIC reaches the mini-
mum at K = 4 in the right plot. After checking other K’s and L’s combinations, the minimum
BIC value is achieved at K = 4 and L = 5 which is the underlying setting in this simulation
study. Table 1 summarizes the frequencies of optimal K’s and L’s in the 100 MC replicates.
The result supports using BIC to select K and L: 96 out of 100 MC replicates choose the
correct K = 4 and L = 5, and the remaining four replicates select the correct L = 5 but a
bit larger K = 5. We repeated the same procedure when the underlying L = 1,2,10 and ob-
tained similar results as when L = 5: At least 99 out of 100 MC replicates choose the correct
K’s and L’s in these settings.

3.2. Model comparison. Both GBClust and HAN are evaluated in six settings (S1–S6,
listed below). The results are summarized in Tables 2 and 3. In each setting, 100 MC repli-
cates are generated. The performance is measured by the mean and standard deviation (SD)
of classification accuracy, defined as the number of CpGs assigned to the correct clusters
divided by the total number of CpGs J :

TABLE 2
Accuracies of GBClust and HAN in S1–S5

L = 1 L = 2 L = 5 L = 10 L = 20

S1
GBClust

Mean 0.8882 0.8911 0.9152 0.9296 0.9411
SD 0.0047 0.0087 0.0073 0.0214 0.0220

HAN
Mean 0.8882 0.8175 0.7142 0.7116 0.7097
SD 0.0047 0.0501 0.0532 0.0343 0.0367

S2
GBClust

Mean 0.9587 0.9639 0.9531 0.9604 0.9752
SD 0.0228 0.0033 0.0114 0.0097 0.0076

HAN
Mean 0.9587 0.9554 0.9442 0.9473 0.9381
SD 0.0228 0.0035 0.0352 0.0221 0.0467

S3
GBClust

Mean 0.8860 0.8931 0.9178 0.9265 0.9441
SD 0.0272 0.0057 0.0049 0.0514 0.0048

HAN
Mean 0.8860 0.8226 0.7139 0.7096 0.7121
SD 0.0272 0.0475 0.0460 0.0421 0.0396

S4
GBClust

Mean 0.8706 0.9024 0.9163 0.9176 0.9200
SD 0.0751 0.0309 0.0312 0.0465 0.0523

HAN
Mean 0.8706 0.8638 0.8010 0.7833 0.7741
SD 0.0751 0.0259 0.0382 0.0348 0.0288

S5
GBClust

Mean 0.8650 0.8391 0.8761 0.8879 0.8908
SD 0.0187 0.0520 0.0521 0.0567 0.0814

HAN
Mean 0.8650 0.7371 0.7006 0.6971 0.6986
SD 0.0187 0.0600 0.0425 0.0393 0.0380
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TABLE 3
Accuracies of GBClust and HAN in S6. The L = 1 column corresponds to the independent case. The L = 5, 10,
and 20 columns correspond to cases when the average pairwise correlation ρ = 0.1, 0.5, and 0.9, respectively

L = 1 L = 5 L = 10 L = 20

Setting 1
GBClust

Mean 0.7730

ρ = 0.1

0.8214 0.8413 0.8361
SD 0.0088 0.0203 0.0277 0.0463

HAN
Mean 0.7730 0.7720 0.7761 0.7768
SD 0.0088 0.0293 0.0394 0.0368

Setting 2
GBClust

Mean 0.7527

ρ = 0.5

0.7626 0.7947 0.8193
SD 0.0318 0.0418 0.0574 0.0503

HAN
Mean 0.7527 0.5494 0.5475 0.5289
SD 0.0318 0.0556 0.0595 0.0582

Setting 3
GBClust

Mean 0.7483

ρ = 0.9

0.7592 0.8669 0.9227
SD 0.0225 0.0389 0.0587 0.0430

HAN
Mean 0.7483 0.6321 0.6325 0.6267
SD 0.0225 0.0299 0.0209 0.0238

S1. This scenario aims to study the effect of block size L. Given each of L =
1,2,5,10,20, we simulated J = 5000 CpG sites with every L neighbouring CpG sites fol-
lowing the generalized beta distribution. Other settings, such as K , I , π and coefficients γ 1
to γ 4, are the same as in Section 3.1.

S2. More triads I . The setting is the same as S1, except that the number of triads I = 100
instead of 50. This scenario aims to evaluate the consistency of both methods as sample size
increases.

S3. Different number of CpG sites J . The setting is the same as S1, except that J =
10,000 instead of 5000. This scenario aims to evaluate the performance of both methods
when a larger number of CpG sites are available.

S4. Unequal number of CpG sites in each cluster. The setting is the same as S1, except
that π = (0.4,0.3,0.2,0.1) instead of (0.25,0.25,0.25,0.25). This setting intends to check
the robustness of both methods when the number of CpG sites in each cluster is unevenly
distributed.

S5. More varieties in transmission pattern. We set K = 5, adding an extra cluster with
γ 5 = (−0.46,−0.1,0.1) to S1. We reassign the probability of the five clusters π to be
(0.2,0.2,0.2,0.2,0.2). This scenario aims to assess the robustness of both methods when
more transmission patterns exist.

S6. Different correlation strength. Recall that the methylation levels of the L CpG sites
follow the generalized beta distribution which describes dependency among CpGs within
each block. We measure the blockwise correlation strength by averaging the correlation
of each pair of CpG sites within a block. We constructed three settings with different
sets of θ ’s such that, when L > 1, the average pairwise correlation approximately equals
ρ = 0.1,0.5,0.9 from settings 1 to 3. The goal of this scenario is to examine the performance
of GBClust and HAN under different strengths of correlations.

In Table 2, when L = 1, both methods give the same result since GBClust is trivialized to
HAN when all CpG sites are independent. In S1, as L increases, the performance of GBClust
improves while HAN’s accuracy deteriorates. This is within expectation, since large blocks
of correlated CpGs violate the independence assumption of HAN. In practice, we expect to
analyze more than 10,000 CpG sites. When L = 5, for instance, the average accuracy of GB-
Clust rises by approximately 20 percentage than HAN, according to Table 2. The percentage
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of increase at the level of 20% can lead to an average of 2000 CpGs correctly classified, as-
suming in total 10,000 CpGs under investigation. In S2, as I increased from 50 to 100, the
performance of GBClust and HAN is improved with increased accuracy in comparison to S1,
indicating consistency of both methods. For S3–S5, GBClust demonstrates its robustness,
against different scales of J and unbalanced π , and its ability to detect various transition
patterns. As in S1 and S2, GBClust always outperforms HAN.

In Table 3, when the correlation is weak (ρ = 0.1), GBClust is improved significantly
while HAN stays the same, generally, as L increases. However, in the setting of stronger
correlation (ρ = 0.5,0.9), GBClust’s accuracies still rise while HAN drops significantly.
This pattern also follows our expectation: Stronger correlation means a larger deviation from
HAN’s independence assumption. It is worth noting that the comparison of Table 3 is “hor-
izontal:” Controlling one of the three settings, we evaluate both methods for different L’s.
It is meaningless to compare the results of Table 3 “vertically,” for example, fixing L = 10
to compare the performance across different ρ’s. Unlike the horizontal comparison, where
the performances are solely dependent on L, in the vertical comparison the accuracies are
not only determined by ρ but also by other factors, such as the Euclidean distances between
γ k’s in each setting. In summary, as shown in Tables 2 and 3, GBClust reduces to HAN
when L = 1. When dependence exists (L ≥ 2), although results from HAN are acceptable in
various situations, GBClust uniformly outperforms HAN across all the settings.

4. Real data analysis. In this section we apply the proposed method to DNA methyla-
tion data, measured in whole blood of I = 41 triads, such that at least one of the two parents
is a participant of a birth cohort. This birth cohort study, carried out on the Isle of Wight
in the United Kingdom, was established in 1989–1990 to investigate risk factors of allergic
diseases over two generations (Arshad et al. (2018)). DNA methylation was measured us-
ing the Infinium Human Methylation 450 BeadChip platform (Bibikova et al. (2011)). The
raw data contains methylation levels of 484,000 CpG sites. DNA methylation of these 41
triads (123 subjects) was assessed across seven batches. After excluding unreliable CpG sites
in different batches, clearing background noise and correcting for batch effect (Aryee et al.
(2014), Johnson, Li and Rabinovic (2007), Wang et al. (2012)), there are 308,000 CpG sites
remaining; details on DNA methylation generation and preprocessing are included in the
Supplementary Material (Mou, Zhang and Arshad (2022a)). Since the aim of the study is to
identify parent-to-offspring transmission patterns, only CpG sites with, at least, a moderate
correlation between the two generations are of most interest. Thus, we further removed CpG
sites whose mother-offspring and father-offspring Pearson correlation coefficient < 0.5. Af-
ter the screening, 4063 CpG sites of interest are left which are included in our analysis. We
further analyzed the data based on a relaxed correlation cutoff 0.4; see Section 4.3 for details.

4.1. Two block-partition approaches. One main challenge of applying the proposed
method is to identify the dependent blocks. We provide two approaches with the first based
on physical distance and the second utilizing the observed correlation of CpG sites. Approach
one is established on the phenomenon that the methylation levels of CpG sites are more likely
to be correlated, as their physical locations are closer on a DNA sequence (Bell et al. (2011),
Eckhardt et al. (2006)). This phenomenon can be observed in Figure 3, where the DNAm lev-
els of CpG cg02954987 to cg11566975 are highly correlated with each other for offspring,
mother, and father. Approach one consists of two steps: First, we order CpG sites by the
chromosomal coordinates and calculate the correlation of methylation levels between every
CpG site and the one next to it (“neighboring” pairs). Next, a chain of consecutive CpG sites
forms a block if the correlation of neighboring CpGs is larger than the threshold = 0.7. For
instance, the correlation between CpG sites 1 and 2, 2 and 3, 3 and 4, 4 and 5 are 0.2, 0.87,
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FIG. 3. From left to right: Offspring, mother, and father’s DNAm correlation heatmap of a genomic region
near gene LAMB2 on Chromosome 3. The labels on x and y axes are CpG names designated by Illumnia. The
correlation structure is consistent across three family members.

0.72, 0.43, respectively, then we treat CpG sites 2, 3, and 4 as a dependent block. In Sec-
tion 4.3 we further investigated smaller correlation thresholds to assess the sensitivity of this
approach.

In approach two, we determine the dependent blocks solely on the observed correlation.
First, the 4063 CpG sites of interest are partitioned into 2000 subgroups by the k-means
clustering method. The number of subgroups is determined based on the phenomenon that
the majority of dependent blocks contain 2–5 CpGs in our dataset; by setting 2000 subgroups,
which is approximately half of the 4063 CpGs in the analysis, the average block size equals 2
which fits our observations. Other subgroup numbers are assessed in Section 4.3. Following
the property of the k-means method, CpG sites within one subgroup (when group size >

1) tend to have similar DNA methylation series. Thus, if a subgroup consists of only one
CpG site (group size = 1), then it is treated as an independent site; a subgroup containing
multiple CpGs is considered as a potential block candidate. In the next step we screen the
block candidates by evaluating the correlation strength. The average pairwise correlation in
each subgroup is calculated: If the average correlation > 0.7, we keep it as a dependent block,
or, else, we break it into independent sites.

4.2. Findings from two approaches. After partitioning the blocks using either approach,
the proposed stochastic EM algorithm is applied, and the BIC criterion is used to select the
optimal K . We also apply HAN to the data set, assuming all CpG sites are independent.
Figure 4 presents the scree plot of the BIC values across varying K’s for the proposed ap-
proaches and HAN’s model. The BIC values of both approaches in Figure 4 are uniformly

FIG. 4. BIC scree plot of HAN and GBClust’s two block-partition approaches. DIST corresponds to approach
one based on distance; CORR corresponds to approach two based on correlation.
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TABLE 4
Mean and standard deviations (in parentheses) of coefficient estimates for approach one when intergenerational
correlation threshold = 0.5 and correlation cutoff point of neighboring CpGs = 0.7, based on 100 starting seeds

to accommodate sampling errors

Cluster index γ0 γ1 (mother) γ2 (father) Num of CpGs

1 0.7079 (0.0201) 0.4956 (0.0569) 0.5085 (0.0582) 70
2 0.3951 (0.0132) 0.4788 (0.0471) 0.5461 (0.0480) 207
3 0.1797 (0.0096) 0.5257 (0.0302) 0.5037 (0.0296) 510
4 0.0082 (0.0069) 0.6428 (0.0218) 0.3741 (0.0214) 1403
5 −0.2394 (0.0127) 0.5491 (0.0112) 0.5015 (0.0113) 1873

smaller than HAN across all K’s, indicating a better fit. The scree plots of both approaches
decrease sharply at the beginning, until K = 5, where they reach a plateau. By the elbow
method, K = 5 is selected as the elbow point and used for the subsequent analysis. In Ta-
bles 4 and 5 we repeat the stochastic EM algorithm with 100 starting seeds and present the
mean/SD of γ k’s and the number of CpG sites in each cluster. In comparison with the two
tables, two approaches present comparable estimation of intercepts across the five clusters.
Recalling that the magnitudes of γ1 and γ2 represent the inheritance strength from mother
and father, respectively, cluster 4 in both approaches is maternally dominated since γ1 is sig-
nificantly larger than γ2. Similarly, cluster 5 can be identified as equally inherited from both
parents with comparable γ1 and γ2. The coefficients of clusters 1 to 3 show some differences
in patterns between the two approaches: In approach one, cluster 2 can be identified as pa-
ternally dominated with a moderate difference between γ2 and γ1, while clusters 1 and 3 are
equally inherited. In approach two, clusters 1–3 are significantly paternally dominated. Ap-
proach two can be treated as a generalization of approach one by removing the constraint that
only neighboring CpGs can form blocks. Supported by patterns shown in Figure 4, where
the BIC values of approach two is uniformly better than approach one, approach two shows
a better fit to the data. Results from approach two also indicate a stronger potential of pa-
ternal dominance in DNA methylation inheritance at the population level. In summary, both
approaches lead to consistent results in clusters 4 and 5 which contains a majority of CpGs
(81% and 80% CpGs in Tables 4 and 5, respectively); approach two is able to identify more
paternally inherited CpG sites in the rest clusters.

When comparing the findings from the proposed method and the results of HAN (Han et al.
(2015)), patterns of clusters 4 and 5 are consistent with the patterns of clusters 6 and 4 in the
Table 7 from Han’s work, which indicates that transmission patterns of these two clusters
are insensitive overall with respect to the use of blocks. More importantly, it is interesting to
see that a much larger number of CpGs showing paternal-predominance in DNA methylation

TABLE 5
Mean and standard deviations (in parentheses) of coefficient estimates for approach two when correlation

threshold = 0.5 and k-means clusters = 2000 based on 100 starting seeds to accommodate sampling errors

Cluster index γ0 γ1 (mother) γ2 (father) Num of CpGs

1 0.6939 (0.0141) 0.3442 (0.0649) 0.6346 (0.0614) 70
2 0.3788 (0.0085) 0.3925 (0.0496) 0.6021 (0.0563) 210
3 0.1619 (0.0065) 0.4323 (0.0315) 0.5740 (0.0334) 514
4 −0.0041 (0.0058) 0.5921 (0.0181) 0.4125 (0.0188) 1751
5 −0.2643 (0.0132) 0.5271 (0.0128) 0.5210 (0.0148) 1518
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transmission are identified, using the proposed method, especially when we use approach two
to determine dependent blocks. We use results from block-determination approach two (the
less restrictive approach) to illustrate the differences. In Table 8 from Han et al. (2015), 53
CpGs were identified as paternal-predominated transmission sites. Our approach identified
three clusters (clusters 1 to 3; Table 5) with in total 794 out of 4063 CpG sites (around
15 times as in Han’s work) such that DNA methylation transmission at those CpGs was
mainly from paternal transmission and each cluster showed different levels of dominance
with cluster 1 demonstrating the strongest paternal predominance and cluster 3 the weakest.
A closer examination of these three clusters revealed that all of the 53 CpGs in Han’s work
are also identified by the proposed method as paternal-predominated transmission sites. In
particular, 41 (77%) of the 53 CpGs in Han’s work are in our cluster 1, and the remaining
are in cluster 2. Based on results from the proposed approach, at a much larger portion of
CpGs in the genome than what was found in Han’s result, DNA methylation transmission
was predominantly paternal. Some studies have indicated the stability of DNA methylation
inheritance (Hofmeister et al. (2017)). In conjunction with the regulatory functionality of
DNA methylation on gene activities, it is rather important to improve the accuracy in the
detection of CpG sites such that DNA methylation transmission is paternally or maternally
dominated.

4.3. Further investigations. We further applied the proposed methods to the DNAm data,
based on intergenerational correlation = 0.4 instead of 0.5, which results in 14,791 CpG
sites. To assess the sensitivity of the two block-partition approaches, we also tested different
correlation thresholds of neighbouring CpGs (denoted by C) in approach one and different
numbers of k-means clusters (denoted by N ) in approach two. The combinations of these
settings yield 10 tables (Tables C.1–C.10) which are available in the Supplementary Material
(Mou, Zhang and Arshad (2022a)). There are mainly two findings: (1)When intergenera-
tional correlation = 0.4, the BIC scree plot finds K = 6 clusters, based on the elbow method.
The inheritance patterns are in general consistent with the results when intergenerational
correlation = 0.5. But with the inclusion of more CpG sites, the transition patterns seem to
be clearer (Tables C.5–C.10): The majority of CpG sites are equally or maternally inher-
ited, while smaller proportion (approximately 3000 CpG sites in clusters 1–3) is paternally
inherited. (2) Different C’s and N ’s do not have a significant impact on the patterns of the
clusters in most settings. However, as we lower C to 0.3 (Tables C.2 and C.7) or reduce N
to less than J/2 (Tables C.4 and C.10), growing inconsistencies in transmission patterns and
large standard deviations of coefficients increase are observed. One possible reason is that
both operations encourage the formation of large blocks, while the common block sizes in
our dataset ≤ 5, as shown in Figure 3 as an example. The mismatch between theoretical and
real block sizes might have weakened the performance. We recommend setting C ≥ 0.7 and
N ≥ J/2 to avoid unnecessary large blocks.

4.4. Computational efficiency and source code. The computing time of the proposed
methods can be divided to two parts: preliminary calculation and stochastic EM algorithms.
Preliminary calculation includes data loading, block partition, and pre-estimation of parame-
ters in which, block partition occupies the majority of time. After the preliminary calculation
stage the stochastic EM algorithm (Algorithm 1 in Section 2.2) will be applied to assign CpG
sites to clusters and estimate the coefficients. The time cost is related to multiple factors: The
number of CpG sites J , the number of triads I , the number of clusters K that CpG sites are
assigned to, the maximum allowed iterations in the stochastic EM algorithm, and the block-
partition approaches we are using. The real data analysis in this study was run on Xeon gold
6148 CPU (frequency = 2400 MHz) on a computing cluster. In this real data application,
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for J = 4063 CpG sites, I = 41 triads, and K = 5 clusters, maximum iterations = 1000,
the computing time is less than five minutes in both block-partition approaches; in the Sup-
plementary Material (Mou, Zhang and Arshad (2022a)), we also investigated the scenarios
when intergenerational correlation threshold = 0.4 (J = 14,791, I = 41, K = 6, maximum
iterations = 1000); it consumes less than 25 minutes to finish with memory cost less than
4000 MB for both block-partition approaches. Note that in Tables 4 and 5, although it is
not mandatory, we ran the estimation procedure 100 times each with a different seed to
account for sampling errors. This procedure was carried out via parallel computing on a
high-performance computing (HPC) cluster. To systematically evaluate the computational
complexity, we employed both block-partition approaches on a DNAm dataset irrelevant to
the current study. It has a total of 54 triads. We used the same HPC cluster and recorded the
time spent in different J ’s and K’s. The details are presented in the Supplementary Mate-
rial (Mou, Zhang and Arshad (2022a)). There are three findings: (1) The number of clusters
K does not have a significant influence on computing time. (2) The computing time for ap-
proach one increases approximately linearly with the increase of the number of CpG sites
J : When K = 5, as J increases from 4435 to 105,883 (24 times), time cost increases from
four minutes to 104 minutes (26 times). (3) The computing time for approach two is slower
as sample size increases. Time cost increases from five minutes to 758 minutes when J in-
creases from 4435 to 105,883. While the time spent in block partition for approach one is
negligible, the k-means method applied in approach two is time-consuming: The computa-
tional complexity of k-means is O(J 2), that is, time will quadruple when J doubles. In Table
D.1 and Figure D.1, one can observe the time spent in k-means method increases dramati-
cally as J increases. Thus, from the perspective of computational efficiency, approach one
may suit large dataset better. Source codes in the form of R code that implement our method
is available in both Supplementary Material (Mou, Zhang and Arshad (2022b)) and Github
(https://github.com/abc1m2x3c/GBClustering).

5. Summary and discussion. This article proposes a clustering method to group CpG
sites by the parent-to-offspring transmission pattern of DNA methylation. For CpG sites in
the same cluster, their inheritance strength can be estimated by the coefficients of mater-
nal/paternal transmission. Understanding the strength of intergenerational transmission can
potentially help the prediction of health conditions and prevention of new onset of diseases.
Accounting for the potential correlation between CpG sites, the proposed method improves
the classification accuracy of HAN and leads to a better model fit, as was shown in the simu-
lation evidence and real data analysis results.

Parental effects may differ in the intergenerational inheritance transmission to offsprings.
For instance, childhood allergies have an asymmetric association with maternal and paternal
allergic conditions (Arshad et al. (2012)). However, the role that epigenetics plays in this
phenomenon is unclear. Paternal effects can be achieved through environmentally-induced
epigenetic variations (Curley, Mashoodh and Champagne (2011), Soubry et al. (2014)), and
mother-offspring interactions can cause DNA methylation changes in offspring (Kappeler and
Meaney (2010)). It will be informative to identify CpG sites in the whole genome showing
parent-specific dominance in DNA methylation inheritance. We hope our work paves a way
to this direction.

The main challenge of applying the proposed method is to group correlated CpGs into
blocks. In our analysis of data collected from a cohort study on asthma and allergic condi-
tions, we propose two approaches to achieve this goal: one is based on physical distance, and
the other approach relies solely on observed correlations. Both approaches showed improved
BIC compared to the BIC in HAN. Approach two can be considered as a generalized version
of approach one by removing the constraints on CpG sites’ locations. However, one con-
cern is that some high correlations identified by approach two may stem from random noise

https://github.com/abc1m2x3c/GBClustering
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(spurious correlation), due to the high-dimensional data structure (Clarke et al. (2008)); thus,
there might be a potential risk of overfitting. On the other hand, approach one is based on
the physical structure of the DNA molecule and is more stringent for practitioners. In terms
of choosing between the two approaches for block design, we believe it is study-specific in
the applied fields. Since the correlation-based approach takes into account spatial distances,
if a study is not limited to neighboring CpGs, findings from approach two (based on the ob-
served correlation) are deemed to be comprehensive. However, as discussed in Section 4.4,
the quadratic time complexity of k-means clustering prevents approach two from being ef-
fectively used when J is large. Thus, the choice between the two approaches may also be
influenced by computing capacity.

The idea of using a generalized beta distribution to model the correlation between CpG
sites may be applied in other problems; see, for example, Houseman et al. (2008). When
DNA methylation is measured by the beta value M/(M + U + c), it is common to model the
methylation data using beta distribution. By generalizing the univariate beta distribution in the
process of model building, one is expected to observe higher accuracy and improved goodness
of fit, as shown in this study. In the proposed method, CpG sites in a block share the same
β , while different α’s are allowed. This may limit the flexibility of model fitting. However,
this is the price we pay to introduce correlation and improve the goodness of fit. A promising
future study is to apply a more generalized version of multivariate beta distribution to allow
different β’s which may need more theoretical work and requires intensive computing.

Besides analyzing the triads’ data, the proposed method has the potential to be extended
to other scenarios. For instance, one can analyze the transgenerational inheritance pattern of
a large pedigree dataset by breaking down it into triads. One concern in this direction is the
potential violation of the independence assumption between families. One possible way to
deal with this type of situation when inferring clusters is to utilize the concept of composite
likelihoods, but sensitivity of findings to the dependence between families certainly deserves
an in-depth investigation.
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(2015) when CpG sites are independent with each other. Appendix B demonstrates the DNA
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uation of computational efficiency for the proposed methods.

Computer codes for “Identifying intergenerational patterns of correlated methyla-
tion sites” (DOI: 10.1214/21-AOAS1511SUPPB; .zip). Source codes in the form of R code
and examples for the proposed methods.
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