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The modeling of spatiotemporal trends in temperature extremes can help
better understand the structure and frequency of heatwaves in a changing
climate and assess the environmental, societal, economic and health-related
risks they entail. Here, we study annual temperature maxima over Southern
Europe using a century-spanning dataset observed at 44 monitoring stations.
Extending the spectral representation of max-stable processes, our modeling
framework relies on a novel construction of max-infinitely divisible processes
which include covariates to capture spatiotemporal nonstationarities. Our new
model keeps a popular max-stable process on the boundary of the parameter
space, while flexibly capturing weakening extremal dependence at increasing
quantile levels and asymptotic independence. This is achieved by linking the
overall magnitude of a spatial event to its spatial correlation range in such a
way that more extreme events become less spatially dependent, thus more lo-
calized. Our model reveals salient features of the spatiotemporal variability of
European temperature extremes, and it clearly outperforms natural alternative
models. Results show that the spatial extent of heatwaves is smaller for more
severe events at higher elevations and that recent heatwaves are moderately
wider. Our probabilistic assessment of the 2019 annual maxima confirms the
severity of the 2019 heatwaves both spatially and at individual sites, espe-
cially when compared to climatic conditions prevailing in 1950–1975. Our
results could be exploited in practice to understand the spatiotemporal dy-
namics, severity and frequency of extreme heatwaves and to design suitable
region-specific mitigation measures.

1. Introduction. In the current era of climate change and ecological transitions, envi-
ronmental risks such as heatwaves or floods are major threats that our society faces more
than ever. High surface air temperature has indeed been shown to directly contribute to the
increase in human mortality rate during the hot season (Ballester et al. (1997), Mitchell
et al. (2016), Brown (2016)). Moreover, major ecosystem disruptions can be triggered in
biodiversity-rich regions such as the Mediterranean basin or the Alps (Theurillat and Guisan
(2001), Klausmeyer and Shaw (2009), Gordo and Sanz (2010), Grabherr, Gottfried and Pauli
(2010)). Available data are becoming increasingly rich and allow us to develop and imple-
ment mathematically sound statistical models to assess the risk associated with spatial envi-
ronmental extreme events. There is now very broad scientific consensus that global warming
is a fact, and climate science research strongly suggests that the nature and magnitude of
extreme events undergo a strong evolution due to global change (Field et al. (2012)). How-
ever, the regional responses may be quite varied, and it is of crucial importance to quantify
region-specific risks. We, therefore, need appropriate statistical models that shed light into the
mechanisms leading to extreme episodes in environmental variables and that can accurately
describe their spatiotemporal dependence and variability.
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The general scientific question that we aim to address in this work is to quantify the impact
that climate change has had on European heatwaves in terms of their frequency, severity and
spatial extent. Understanding the behavior of extreme temperature events over space and time
is key for understanding the (past, present and potential future) risk that heatwaves cause to
society, assessing their real impacts and designing adequate regional mitigation measures
of future extreme events. This point is well illustrated by the 2019 summer, during which
two temporally distinct heatwaves occurred (one in June and one in July), severely affecting
millions of people in major parts of Europe. As temperatures reached unprecedented levels
over a wide area, it is natural to investigate from a risk assessment and mitigation standpoint
whether such spatial extreme events could have been anticipated from historical records, both
in terms of their severity and spatial extent. In the literature some papers claim that heatwaves
in different parts of the world are generally becoming wider due to climate change (see,
e.g., Osborn and Briffa (2006), Lyon et al. (2019)). However, these studies often do not use
actual temperature measurements, but they rather rely on temperature-related proxy records
or gridded climate model outputs which may potentially be subject to strong biases due to
lack of realism of models with respect to certain aspects (see Jun, Knutti and Nychka (2008),
for instance). Moreover, the notion of “spatial extent” in these papers is often defined as the
number of grid cells or sites at which a certain climate index exceeds a high marginal level,
while disregarding their actual spatial dependence. In this paper we exploit real observations
from 44 monitoring stations over the southern part of Europe from 1918 to 2018 in order to
study the spatial dependence range and the severity of nonstationary temperature maxima,
viewed as irregularly-spaced realizations from a spatial stochastic process. Specifically, we
develop new statistical methodology, based on extreme-value theory, to understand whether
the (local) spatial extent of heatwaves varies regionally and temporally. We then specifically
analyze the 2019 European heatwaves and use our new modeling framework to understand
whether such extreme events were particularly abnormal in the light of historical data.

In contrast to traditional statistical models that are appropriate for capturing the “average”
behavior of such phenomena, spatial extreme-value models focus on modeling the joint tails
of spatial processes. In this context, max-stable processes have played a central role, being
the only possible nondegenerate limits of linearly rescaled pointwise maxima of random pro-
cesses (Davison, Padoan and Ribatet (2012), Davison and Huser (2015), Davison, Huser and
Thibaud (2019)). In practice, max-stable processes are commonly fitted to block maxima
which are often based on annual blocks (Davison and Gholamrezaee (2012)). By contrast to
approaches based on high threshold exceedances (Davison and Smith (1990)), the block max-
imum approach focuses on the long-term behavior of extremes, avoiding the intricate treat-
ment of seasonality and short-term temporal dependence. Moreover, it does not rely on the
(sometimes arbitrary) choice of a threshold discriminating extremes from the bulk which can
be awkward under spatiotemporal nonstationarity (Scarrott and MacDonald (2012)). Popu-
lar choices for parametric max-stable models include the Brown–Resnick model (Brown and
Resnick (1977), Kabluchko, Schlather and de Haan (2009)), or the extremal-t model (Opitz
(2013)) which comprises the Schlather model (Schlather (2002)) as a special case and the
Brown–Resnick model as a limiting case. However, max-stable processes {Z(s)}s∈S always
display a property known as asymptotic dependence (except in the trivial case of full inde-
pendence), which means that the limit χ = limu→1 Pr{Z(s1) > G−1

1 (u) | Z(s2) > G−1
2 (u)},

s1, s2 ∈ S , where G1 and G2 denote the cumulative distribution function (CDF) of Z(s1) and
Z(s2), respectively, exists and is positive (χ > 0). This positive value implies that max-stable
processes can only capture strong tail dependence and are inappropriate when maxima—or
the original data from which maxima are extracted—are asymptotically independent (χ = 0)
which corresponds to the situation where the extremal dependence strength eventually weak-
ens and completely vanishes as the quantile level increases (i.e., as u → 1). Max-stability is,
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in fact, a strong theoretical property that arises asymptotically, when considering blocks of
increasing size, and which largely restricts the flexibility of extreme-value models derived
from it. As the block size is often chosen to be one year (or less) in real data applications,
imposing max-stability is often an overly restrictive simplification which yields an artificially
strong extremal dependence structure. This model misspecification is problematic, as it po-
tentially leads to a significant overestimation of joint tail probabilities and thus impacts risk
assessment of spatial extreme events as well as the estimation of their spatial extent. How-
ever, while there is a wide body of literature developing peaks-over-threshold models for
asymptotic independence or hybrid models bridging the two asymptotic dependence regimes
(Wadsworth and Tawn (2012), Opitz (2016), Huser, Opitz and Thibaud (2017), Huser and
Wadsworth (2019), Shooter et al. (2019), Wadsworth and Tawn (2019)), there are only a few
papers, so far, where this problem has been rigorously tackled for block maxima data; see
Bopp, Shaby and Huser (2021) and Huser, Opitz and Thibaud (2021). It is indeed difficult to
develop principled sub-asymptotic models for block maxima, which reasonably depart from
limiting max-stable processes, while keeping certain properties that reflect the specific type
of positive dependence of maxima; see also the review paper Huser and Wadsworth (2020).

In this paper we build upon Bopp, Shaby and Huser (2021) and Huser, Opitz and Thibaud
(2021) and develop flexible spatial models that pertain to the wider class of max-infinitely
divisible (max-id) processes. Max-id processes naturally extend max-stable processes and re-
lax their rigid dependence structure. While the theory behind max-id processes has been well
established for decades (Resnick (1987), Giné, Hahn and Vatan (1990), Dombry and Eyi-
Minko (2013)), Padoan (2013) was the first to propose a max-id model that has a magnitude-
dependent extremal dependence structure. This parametric model stems from taking the limit
of block maxima over independent and identically distributed (i.i.d.) Gaussian process ra-
tios, with correlation strength increasing to one as the block size tends to infinity. However,
while this model captures asymptotic independence, it has quite an artificial construction and
is rather inflexible in its ability to capture weakening but strong spatial dependence. In fact,
it was found to be the worst-performing model fitted in the application of Huser, Opitz and
Thibaud (2021) and was even largely outperformed by a relatively simple Gaussian process.
More importantly, this model does not have a max-stable model as a special case which makes
it unsuitable for maxima defined over large blocks. Alternatively, Huser, Opitz and Thibaud
(2021) proposed general construction principles for building relatively flexible max-id mod-
els that remain in the “neighborhood” of the extremal-t max-stable process. In particular, they
adapted the spectral representation of max-stable processes to construct flexible max-id mod-
els that have a smooth transition between asymptotic dependence classes on the boundary
of the parameter space. However, the dependence structure of those max-id models remains
quite rigid for describing the central part of the distribution of componentwise maxima. Alter-
natively, Bopp, Shaby and Huser (2021) recently developed a Bayesian hierarchical max-id
model that scales well with large datasets and keeps the Reich and Shaby (2012) max-stable
model as a special case but whose tail properties are less flexible than the models proposed by
Huser, Opitz and Thibaud (2021). In this paper we extend the max-id models of Huser, Opitz
and Thibaud (2021) even further in order to retain their appealing tail dependence properties
and gain significant flexibility in the bulk of the max-id distribution with just one additional
parameter. The novel approach that we develop here is to construct max-id processes by tak-
ing maxima over random fields whose spatial correlation range depends on a random variable
representing the overall event magnitude. Furthermore, the max-id models of Padoan (2013),
Huser, Opitz and Thibaud (2021) and Bopp, Shaby and Huser (2021) have stationary and
isotropic dependence structures, both in space and time, which is not realistic when model-
ing environmental data (e.g., temperature) over relatively large areas and long time periods.
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In this paper we develop nonstationary max-id models that have a rather parsimonious con-
struction and include spatial and temporal covariates in their dependence structure in order to
flexibly capture spatiotemporal variations.

The remainder of the paper is organized as follows. In Section 2 we introduce the dataset
used in our application, and an exploratory analysis illustrates the main applied scientific
questions that we aim to address in this paper. In Section 3 we develop our general modeling
framework. More precisely, after giving some background theory about max-id processes,
we build a new nonstationary max-id model with a spatial dependence structure that varies
according to the three dimensions of: (i) space, (ii) time and (iii) event magnitude. In Sec-
tion 4 we develop our inference approach based on a pairwise likelihood and demonstrate
its good performance with a simulation study. In Section 5 we further detail our parametric
max-id models, and we detail a substantial application of these models to study European
temperature extremes in order to assess the risk of spatial extreme temperatures, such as the
2019 European heatwaves. Concluding remarks are enclosed in Section 6.

2. Dataset and explanatory analysis. In our study we use the dataset of Klein Tank
et al. (2002) from which we extract annual maximum temperatures for the period 1918–2018
at D = 44 (irregularly-spaced) monitoring stations in Europe covering a belt between lati-
tudes 40◦ and 50◦ from Western to Eastern Europe with the mountain range of the Alps in
its central part. The distance between stations, calculated using the great-circle metric (i.e.,
geodesic distance), ranges between 22.6 km and 2227.42 km, while elevations vary moder-
ately from 48 m (Debrecen airport, Hungary) to 893 m (Hohenpeissenberg, Germany) above
mean sea level. The study region and the monitoring stations are displayed in Figure 1. This
dataset contains 22 stations with complete records (i.e., without any missing data over the
whole century-long study period), but, overall, missing values account for about 14.7% of
observations across the 44 stations. Europe is climatologically very diverse: while Western
Europe is mostly characterized by an oceanic climate, Southern Europe has a Mediterranean
climate, and Central-Eastern Europe has a continental climate. Therefore, when modeling

FIG. 1. Study region, with the 44 monitoring stations (dots) distributed over Europe. The color of each dot
represents the empirical quantile level of the annual maximum temperature observed in 2019, calculated from
the sample of annual temperature maxima available at each site from 1918–2018, with yellow corresponding
approximately to the median and dark red corresponding to higher quantiles. White dots show stations where no
data were available in 2019.
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temperature data over such a large region, it is important to account for such regional varia-
tions that affect marginal distributions and, potentially, also the spatial dependence structure.
Here, the only available covariates that we have at our disposal are the geographical informa-
tion about the monitoring stations, including longitude, latitude and elevation.

During the summer of 2019, major parts of Europe were hit hard by two consecutive heat-
waves in late June and late July, with new temperature records observed at many locations.
The color of the dots plotted in Figure 1 represents the severity of the 2019 temperature max-
ima at all the stations, compared to the sample of maxima from the years 1918–2018. For
many stations the 2019 temperature maxima were very extreme and, in some cases, more
extreme than any past observations. This raises the natural question of how likely the tem-
perature levels, reached during the 2019 summer, were compared to historical observations.
A major applied objective of this work is thus to build a flexible, nonstationary statistical
model that reliably quantifies the severity of the 2019 heatwaves in terms of the return pe-
riod of marginal and spatial events. Such an assessment requires a specialized extreme-value
model that properly accounts for spatiotemporal trends and dependence. In Section 5.1 we
detail how we flexibly model margins using a semiparametric model that uses a penalized
tensor product of splines in terms of covariates (longitude, latitude, elevation and time) to
capture complex local temperature variations. In Section 5.2 we further detail our nonstation-
ary modeling of the dependence structure to capture local patterns in spatial extreme events,
while in Section 5.3 we precisely assess the severity of the 2019 heatwaves.

To further explore the data’s temporal and spatial properties, Figure 2 displays the daily
maximum temperatures for the months of June, July and August from 2013 to 2019 at the 23
stations with the most complete temperature records. The red dots represent the annual tem-
perature maxima that are used in our analysis. From these data, plotted over a much shorter
period, the time series appear roughly stationary from year to year, and it is (visually) hard
to detect any time trend. However, as mentioned above, we shall nevertheless include a flex-
ible time trend component in our spatial extremes model (see Sections 5.1–5.2), both in the
margins and the dependence structure, in order to precisely quantify the effect of climate
change on the local distribution of temperatures which should be evident when considering
our entire century-long dataset. Furthermore, from Figure 2 it appears that annual maxima
often occur around the same time of year at most stations, even for stations that are far away
from each other. Within the same country, annual maxima even often occur on the exact same
day. This is an indication that spatial dependence among temperature extremes over Europe
is quite strong and that heatwaves are large-scale natural processes that typically affect a
wide area simultaneously. However, from these simple exploratory plots it is unclear what
the actual size of heatwaves is, whether the spatial extent of heatwaves changes with time or
whether certain regions are more prone than others to spatially widespread extreme temper-
ature events. Osborn and Briffa (2006) and Lyon et al. (2019) studied the spatial extent of
heatwaves in different parts of the world in terms of their affected areas using indirect and
potentially biased data (i.e., temperature-related proxy records or gridded climate model out-
puts, respectively). They claimed that the spatial extent of heatwaves has been increasing and
might further increase in the future. Another major applied objective of our work is to verify
this claim, based on real temperature measurements and sound statistical methodology for the
spatial and temporal window considered in this study, and to precisely quantify by how much
the spatial extent of heatwaves might have increased—if it has. However, since our dataset
comprises real observations at irregularly-spaced monitoring stations, directly measuring the
size of heatwaves is not feasible. Therefore, we instead define the spatial extent of heatwaves
through the effective (extremal) dependence range of the continuous-space stochastic pro-
cess fitted to extreme temperatures. This definition intuitively describes the spatial extent
through the “expected size” of individual extreme events. To the best of our knowledge, our
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FIG. 2. Daily temperature maxima (solid black curves) for the months of June, July and August during the
period 2013–2019 at the 23 stations with the most complete records. Annual temperature maxima are indicated
by red dots. The corresponding country code (in alphabetical order from bottom to top) and elevation of each
station are provided on the right-hand side. In our data analysis we used only the annual maxima until 2018 for
fitting and left the 2019 maximum out for risk assessment.

approach to measure the spatial extent of heatwaves and its potential temporal changes from
irregularly-spaced data, based on a rigorous spatial extreme-value theory framework, is novel
in the literature; see Section 5 for details on the application and the results of our study.

3. Modeling based on max-infinitely divisible processes.

3.1. Max-infinitely divisible processes. A random process {Z(s)}s∈S is called max-
infinitely divisible (max-id) if, for any finite collection of sites D = {s1, . . . , sD} ⊂ S , the
joint distribution G of the random vector {Z(s1), . . . ,Z(sD)}T is such that Gt defines a
valid CDF for any positive real t > 0. While this property is always true in the univariate
case (D = 1) or when t is a positive integer, it may not be true for D ≥ 2 with noninte-
ger, for example, fractional, values of t . Moreover, Gt does not necessarily stay within the
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same location-scale family as G; this property is only satisfied for the subclass of max-stable
distributions G̃, for which G̃m(amz + bm) = G̃(z), for any integer m = 1,2, . . . and some
normalizing vectors am ∈ (0,∞)D and bm ∈ R

D . In this work we build new max-id mod-
els for spatial extremes, which nest a certain family of max-stable processes that have been
used extensively for modeling extremes in the literature, while accommodating more flexible
forms of dependence structures that remain natural for spatially-indexed block maxima.

Giné, Hahn and Vatan (1990), Resnick (1987) and Balkema, de Haan and Karandikar
(1993) showed that any max-id process can be constructed by taking pointwise maxima
over a Poisson point process (PPP), defined on a suitable functions space. Let {Xi(s); i =
1,2, . . . ,N}s∈S be the points of a Poisson point process with mean measure � on the space
C of continuous functions defined on a compact support S , where the measure � must satisfy
certain regularity constraints such as being finite on compact sets; see the above references
for details. When �(C) = ∞ (such that N = ∞ almost surely), we get a max-id process on
S by setting

(1) Z(s) = sup
i=1,2,...

Xi(s), s ∈ S.

Therefore, max-id processes can be constructed as pointwise maxima over an infinite number
of continuous functions from the space C, and the Poisson process weights the functions
through its deterministic mean measure � when sampling from C.

The mean measure � is also called the exponent measure of the max-id process, and it
determines joint probabilities. Specifically, for a finite number of sites D = {s1, . . . , sD} ⊂ S ,
the joint distribution G of Z = {Z(s1), . . . ,Z(sD)}T is

(2) G(z) = Pr(Z ≤ z) = exp
{−�D

([−∞,z]C)}
, z = (z1, . . . , zD)T ∈R

D,

where [−∞,z] = [−∞, z1] × · · · × [−∞, zD] ⊂ R
D , AC denotes the complement of the set

A, �D is the restriction of � to the subspace D ⊂ S (i.e., taking measurable sets of RD rather
than C as input), and VD(z) = �D([−∞,z]C) is called the exponent function. To simplify no-
tation, we henceforth drop the subscript D in VD and �D when no confusion can arise. In the
case of max-stable processes with unit Fréchet margins, that is, Pr(Z(s) ≤ z) = exp(−1/z),
z > 0, (1) can be expressed more specifically through the following spectral construction:

(3) Z(s) = sup
i=1,2,...

RiWi(s), s ∈ S,

where {Ri; i = 1,2, . . .} are the points of a Poisson point process on the positive half-line
[0,∞] with mean measure κ([r,∞)) = r−1, r > 0, and {Wi(s)}s∈S , i = 1,2, . . . , are inde-
pendent copies of a random process {W(s)}s∈S with E[max{W(s),0}] = 1 which are also
independent of the points {Ri; i = 1,2, . . .}; see de Haan (1984) and Schlather (2002). Let
�(dw) be the probability distribution associated with the process {W(s)}s∈S (specified to
be Gaussian in our model described below in Section 3.2). Hence, the independent random
processes {Xi(s) = RiWi(s); i = 1,2, . . .}s∈S are points from a Poisson process with mean
measure �(A) = ∫

{rw∈A} r−2 dr�(dw) for measurable sets A ⊂ C. The exponent function
of the max-stable process (3) can be written as V (z) = E[max{W(s1)/z1, . . . ,W(sD)/zD}],
z = (z1, . . . , zD)T ≥ 0 = (0, . . . ,0)T , where a/0 = ∞ for a > 0.

Using (2), the marginal distribution of Z at a given site s0 ∈ S for general max-id processes
is G0(z0) = exp{−�s0({z : z > z0})}. To focus on dependence properties, we now assume
that the max-id process (1) has been standardized using the probability integral transform to
have common unit Fréchet margins such that �s0({z : z > z0}) = 1/z0, z0 > 0 for all sites
s0 ∈ S . Then, for any finite collection of sites D = {s1, . . . , sD} ⊂ S , we define the level-
dependent extremal coefficient at (unit Fréchet) quantile level z0 > 0 as

(4) θD(z0) = log{G(z0)}
log{G0(z0)} = �D([−∞,z0]C)

�s0({z : z > z0}) = z0�D
([−∞,z0]C) ∈ [1,D],
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z0 = (z0, . . . , z0)
T ∈ R

D . A similar dependence coefficient was defined by Padoan (2013)
and Huser, Opitz and Thibaud (2021). It is easy to see from the definition (4) that

Pr(Z ≤ z0) = G0(z0)
θD(z0).

Therefore, the coefficient θD(z0) can be interpreted as the effective number of independent
variables among {Z(s1), . . . ,Z(sD)}T at quantile level z0. In the bivariate case, D = 2,
the pair of variables Z = {Z(s1),Z(s2)}T turn out to be asymptotically independent, if
limz0→∞ θ2(z0) = 2, and asymptotically dependent otherwise. It can indeed be verified that
Pr{Z(s2) > z0 | Z(s1) > z0} ∼ 2 − θ2(z0), as z0 → ∞.

With max-stable distributions, the extremal coefficient θD(z0) is always constant in z0 be-
cause the exponent function V (z) is homogeneous of order −1, that is, V (tz) = t−1V (z)
for all t > 0. Thus, max-stable processes cannot capture weakening dependence as events
become more extreme. Moreover, they can only capture asymptotic dependence or full inde-
pendence, but they cannot capture intermediate joint tail decay rates arising with asymptotic
independence. The broader class of max-id processes relaxes such rigid restrictions and yields
more flexible models that remain in the “neighborhood” of max-stable processes.

3.2. A new magnitude-dependent max-id model. For modeling temperature extremes, we
build on a max-id construction proposed by Huser, Opitz and Thibaud (2021). It extends the
spectral representation of max-stable processes in (3) and allows capturing asymptotic inde-
pendence and asymptotic dependence in a single parametric model. In the max-stable case
the heavy power-law tail of the mean measure κ([r,∞)) = r−1, r > 0, of the Poisson process
{Ri; i = 1,2, . . .}, which determines the overall magnitude of the spatial process {Z(s)}s∈S
in (3), generates cooccurrences of very large values and leads to asymptotic dependence,
while the same level of dependence persists at all quantiles (i.e., θD(z) in (4) is constant in
z). We can deploy two modifications for the dependence in Z(s) to weaken as the magnitude
of extreme events increases. The first modification is to use a lighter-tailed intensity measure
κ of the Poisson process {Ri; i = 1,2, . . .} to attenuate the strong cooccurrence patterns at
increasingly high quantiles. The second modification is to relax the independence assump-
tion between the points {Ri} and the processes {Wi} in such a way as to link the spatial
dependence range of Wi with the magnitude of Ri , which makes the processes {Wi} noniden-
tically distributed, given {Ri}. While the first modification was already exploited by Huser,
Opitz and Thibaud (2021), the second modification is a new idea. In this paper we combine
both modifications, in order to construct a flexible yet parsimonious and identifiable max-id
model that interpolates between the (asymptotically dependent) extremal-t max-stable model
and asymptotic independence with a relatively fast joint probability decay and a flexible form
in the bulk.

Following Huser, Opitz and Thibaud (2021), we use a Weibull-tailed mean measure κ for
{Ri} given as

(5) κ
([r,∞)

) = r−β exp
{−α

(
rβ − 1

)
/β

}
, r > 0, (α,β)T ∈ (0,∞)2.

We further specify {Wi(s)}s∈S to be standard Gaussian processes, characterized by the corre-
lation function ρ(s1, s2;Ri), which may depend on Ri . Because limβ→0 κ([r,∞]) = r−α ,
this max-id process reduces to the max-stable extremal-t process with α > 0 degrees of
freedom when β → 0 and ρ(s1, s2;Ri) ≡ ρ(s1, s2) is independent of Ri (Opitz (2013)).
Furthermore, Huser, Opitz and Thibaud (2021) showed that, when {Wi(s)}s∈S , i = 1,2, . . . ,
are identically distributed standard Gaussian processes with correlation function ρ(s1, s2)

(independent of Ri), the coefficient of tail dependence (Ledford and Tawn (1996)), which
characterizes the joint tail decay rate for two sites s1, s2 ∈ S , may be expressed as

η(s1, s2) = lim
z↑∞

log{1 − G1(z)}
log{1 + G(z, z) − 2G1(z)} = [{

1 + ρ(s1, s2)
}
/2

]β/(β+2)
,
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where G(·, ·) and G1(·) represent the bivariate and univariate CDFs of {Z(s1),Z(s2)}T and
Z(s1) (or Z(s2)), respectively. Hence, the parameter β and the correlation ρ of the Gaussian
process W together strongly influence the joint tail decay rate. In particular, as β → 0 or
ρ(s1, s2) → 1, we get η(s1, s2) = 1 which yields asymptotic dependence. In all other cases
we get η(s1, s2) < 1, thus asymptotic independence, and we retrieve the tail decay rate of a
Gaussian process as β → ∞.

Here, we extend the model of Huser, Opitz and Thibaud (2021) by letting the correlation
function of Wi in (3) depend on Ri such that ρ(s1, s2;Ri) decreases as Ri increases. In
other words, the spatial dependence strength weakens when the overall event magnitude,
represented by the points {Ri}, gets larger. In the stationary and isotropic case, one possibility
is to consider the exponential correlation function

(6) ρ(s1, s2;Ri) = exp
{−‖s1 − s2‖(1 + Ri)

ν/λ
}
,

for some baseline range parameter λ > 0, and “modulation” parameter ν ∈ R. When ν = 0,
ρ(s1, s2;Ri) ≡ ρ(s1, s2) does not depend on Ri (hence retrieving the max-id models of
Huser, Opitz and Thibaud (2021)), but when ν > 0, the spatial range parameter λ(1 + Ri)

−ν

gets smaller (i.e., the dependence strength decreases) as Ri increases (and vice versa when
ν < 0) with the value of ν controlling the rate at which the correlation decays with larger
points Ri . This modification allows us to get more flexible forms of dependence in the
bulk, while keeping appealing tail dependence properties with the Huser, Opitz and Thibaud
(2021) model as a special case when ν = 0. To illustrate the flexibility of this model, Fig-
ure 3 displays the bivariate level-dependent extremal coefficient θ2(z) for various values of
β and ν. The case β = 0 and ν = 0 yields the extremal-t max-stable model so that θ2(z) is
constant in z. When β = 0 but ν > 0, we get asymptotic dependence (limz→∞ θ2(z) < 2)
with weakening dependence strength at increasing quantiles. And when β > 0 and ν ≥ 0, we
get asymptotic independence (limz→∞ θ2(z) = 2). Moreover, the extremal coefficient grows
with ν and β . At any fixed value of β , the curvature of θ2(z) varies significantly for different
values of ν which implies that introducing dependence between Ri and Wi adds consider-
able flexibility to the model and improves its ability to appropriately capture the dependence
of moderately extreme events. In Section 3.3 we extend this model to the nonstationary,
anisotropic case. Note that although both β and ν influence the joint tail decay rate simulta-
neously, they have different roles: β controls the asymptotic dependence class (with asymp-
totic dependence when β = 0 and asymptotic independence when β > 0), while ν improves
the flexibility of the model to capture the dependence strength of moderate extreme events.

FIG. 3. Bivariate level-dependent extremal coefficient θ2(z) = zV (z, z) with respect to unit Fréchet quantiles z,
plotted on a logarithmic scale. Our max-id model is defined as in (3), where the mean measure κ of the Poisson
points {Ri} is based on (5), here with α = 1 and β = 0,0.5,1,2 (left to right) and where the correlation function
of the Gaussian processes Wi is here assumed to be ρ(s1, s2;Ri) = exp{−‖s1 − s2‖(1 + Ri)

ν/λ} with λ = 0.5
and ν = 0 (black), ν = 0.25 (red), ν = 0.5 (green), ν = 1 (blue). The distance ‖s1 − s2‖ is here set to 0.5. The
horizontal grey lines represent the lower and upper bounds of 1 and 2, respectively.
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In fact, when β = 0, the parameter ν is the only one left to control how fast the spatial de-
pendence strength weakens, as we move to higher quantile levels. A deeper interpretation of
how β and ν act on the stochastic representation of the spatial extreme fields is as follows.
While Gaussian processes are well adapted for capturing central tendencies thanks to central
limit theory, they typically lack in flexibility for appropriately capturing extremal dependence
since their extremal correlation decays in a relatively fast and rigid way for increasingly high
quantile levels. The role of the scaling variables Ri is to lift moderate Gaussian values (where
the dependence can be relatively strong) jointly toward the extreme quantiles, which then in-
duces stronger than Gaussian dependence among extremes, and we can get arbitrarily close to
max-stability arising asymptotically for extremes. The parameter β controls this mechanism.
Moreover, in the distribution of maxima we can also differentiate between “bulk maxima”
and “extreme maxima,” and the parameter ν allows us to further modulate the differences in
the strength of spatial correlation that may arise between bulk and extreme levels. In short,
this means that the two parameters β and ν are theoretically identifiable. In Section 4.3, we
further demonstrate that they are also numerically identifiable, given that both parameters can
be estimated from the data reasonably well.

By conditioning on the variables {Ri}, we can prove that the general form of the exponent
function of {Z(s1), . . . ,Z(sD)}T for our proposed max-id model may be expressed as

(7) V (z) = �
([−∞,z]C) =

∫ ∞
0

{
1 − �(z/r; r)}κ(dr),

where �(·; r) is the joint distribution of the Gaussian vector {Wi(s1), . . . ,Wi(sD)}T | {Ri =
r} with correlation ρ(s1, s2; r). Partial and full derivatives of the exponent function, which
are required for likelihood-based inference, can be obtained by differentiating (7) with respect
to the components of z under the integral sign. Standard formulas, similar to those derived
in Huser, Opitz and Thibaud (2021), can be easily obtained, although they are expressed in
terms of unidimensional integrals that have to be numerically approximated in practice.

3.3. Nonstationary dependence structure. Over large study areas or long periods of time,
the strength of extremal dependence and, therefore, the spatial extent of clusters of extreme
values may vary. We here extend the exponential correlation model, presented in Section 3.2,
to the nonstationary context, and we show how spatiotemporal covariates may be naturally
incorporated. We now index the correlation function of the process Wi in (3) by time t as
ρt (s1, s2;Ri) to emphasize that it may vary over time. Building upon Paciorek and Schervish
(2006) and Huser and Genton (2016), such a nonstationary correlation function on R

2 may
be obtained as follows:

(8)
ρt (s1, s2;Ri) = ∣∣
s1,t (Ri)

∣∣1/4∣∣
s2,t (Ri)
∣∣1/4

∣∣∣∣
s1,t (Ri) + 
s2,t (Ri)

2

∣∣∣∣−1/2

× C
{
Q

1/2
s1;s2,t

(Ri)
}
,

where 
s,t (Ri) is a 2-by-2 covariance matrix that may depend on spatial location s, time
t and the Poisson points {Ri}, C(h) is a stationary isotropic correlation function with unit
range, for example, C(h) = exp(−h), h ≥ 0, and Qs1;s2,t (Ri) is the quadratic form

Qs1;s2,t (Ri) = (s1 − s2)
T

{

s1,t (Ri) + 
s2,t (Ri)

2

}−1
(s1 − s2).

Covariates, such as time and elevation as used in our temperature data application in Sec-
tion 5, can be linked to the matrix 
s,t (Ri). As explained in Section 3.2, we also allow the
variables {Ri} to directly influence the range of spatial dependence which is in contrast with
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TABLE 1
Interesting special cases of Model (9), categorized into stationary/nonstationary and (locally)

isotropic/anisotropic models with Ri independent/dependent of Wi in (3)

Stationarity Anisotropy Value of ν Model type

λs,t ≡ λ a = 1 ν = 0 Stationary, isotropic, Ri ⊥⊥ Wi

λs,t ≡ λ a = 1 ν �= 0 Stationary, isotropic, Ri �⊥⊥ Wi

λs,t ≡ λ a �= 1 ν = 0 Stationary, anisotropic, Ri ⊥⊥ Wi

λs,t ≡ λ a �= 1 ν �= 0 Stationary, anisotropic, Ri �⊥⊥ Wi

λs,t �≡ λ a = 1 ν = 0 Non-stationary, locally isotropic, Ri ⊥⊥ Wi

λs,t �≡ λ a = 1 ν �= 0 Non-stationary, locally isotropic, Ri �⊥⊥ Wi

λs,t �≡ λ a �= 1 ν = 0 Non-stationary, locally anisotropic, Ri ⊥⊥ Wi

λs,t �≡ λ a �= 1 ν �= 0 Non-stationary, locally anisotropic, Ri �⊥⊥ Wi

Huser and Genton (2016). More precisely, we propose the following general model for the
covariance matrix 
s,t (Ri), whose modeling of anisotropy through covariates is also differ-
ent from the form used in Huser and Genton (2016):

(9)


s,t (Ri) = λ2
s,t (1 + Ri)

−2νA(θ),

A(θ) =
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
1 0
0 a

][
cos(θ) − sin(θ)

sin(θ) cos(θ)

]T

,

where λs,t > 0 is a baseline range parameter that may vary over space and time, ν ∈ R is a
“modulation” parameter as in Section 3.2, a > 0 is a geometric anisotropy scaling that con-
trols the ratio of principal axes of elliptical correlation contours and θ ∈ [0, π/2] is a rotation
angle of these elliptical contours. The value a = 1 corresponds to the isotropic case, with
A(θ) reducing to the 2-by-2 identity matrix I2×2 such that 
s,t (Ri) = λ2

s,t (1 + Ri)
−2νI2×2,

and thus (8) corresponds to the correlation (6) if λs,t ≡ λ > 0. To capture spatiotemporal
variations in the dependence structure, covariates may be included in λs,t . For example, in
our real data application in Section 5, we specify λs,t = exp(λ0 +λ1 × elevs +λ2 × t), where
λ0, λ1, λ2 ∈ R are range parameters corresponding to the intercept, the effect of elevation
and the effect of time, respectively, on the spatial dependence range. More precisely, while
λ0 measures the overall strength of spatial dependence, the parameters λ1 and λ2 determine
whether the dependence structure, and thus the spatial extent of extreme events, changes ac-
cording to elevation and time, respectively. Several submodels of (9), described in Table 1,
may be of interest. In Section 5 we specifically focus on the nonstationary but locally isotropic
case (a = 1), with Ri and Wi potentially dependent of each other with ν ∈ R (i.e., Ri �⊥⊥ Wi

when ν �= 0), which already yields a rich class of models capturing complex dependence
patterns.

4. Inference using the pairwise likelihood approach.

4.1. Two-step modeling of marginal distributions and dependence. We use a two-step
estimation method that is known as “inference functions for margins” in the literature and
for which consistency and asymptotic normality have been established under mild conditions
(Joe and Xu (1996), Joe (2005, 2015)). Precisely, in the first step we model marginal dis-
tributions using a parametric model in which the model parameters are further described in
terms of semiparametric spline functions with respect to covariates, and we fit this model
jointly across stations using an independence composite likelihood (Varin, Reid and Firth
(2011)) built under the working assumption that the data are spatially independent (given the
covariates). In our real data application we use the generalized extreme-value (GEV) distri-
bution to model stationwise block maxima. We then use the fitted marginal GEV distribution
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functions to transform the observed data to pseudo-uniform Unif(0,1) scores through the
probability integral transform. In the second step we fit the dependence structure (i.e., the
copula) of the max-id dependence model to the transformed data using a pairwise likelihood
approach, treating the margins as exactly Unif(0,1). This two-step inference procedure has
the major advantage of making computations much simpler and significantly less intensive,
compared to estimating marginal and dependence parameters at once. Moreover, such an ap-
proach offers the flexibility of choosing different types of inference procedures in the two
steps, for example, using a generalized additive model with independence likelihood for mar-
gins (for which robust fitting procedures are already implemented in R) and a more specific
pairwise likelihood inference procedure for the dependence structure. Furthermore, results
in the Supplementary Material (Zhong, Huser and Opitz (2022)) show that it performs very
well. However, we also have to bear in mind that the two-step inference procedure assumes in
the second step that the margins have been estimated with no uncertainty in the first step, and
thus the overall uncertainty might be underestimated if not properly accounted for; see the
Supplementary Material (Zhong, Huser and Opitz (2022)) for further details and experiments.

4.2. Pairwise likelihood approach. Pairwise likelihood has become the standard infer-
ence technique for max-stable models, owing to the computational intractability of full like-
lihood expressions in high dimensions (Padoan, Ribatet and Sisson (2010), Padoan (2013),
Huser and Davison (2013), Huser, Davison and Genton (2016), Castruccio, Huser and Genton
(2016), Huser et al. (2019)). The pairwise likelihood approach offers tools akin to classical
likelihood inference, is much faster than a full likelihood approach and usually retains high
efficiency. We adapt this approach, here, to our max-id models. Let {zk = (zk1, . . . , zkD)T }nk=1
be n independent replicates of the max-id process Z(s) with parameter vector ψ ∈ � ⊂ R

p

observed at locations D = {s1, . . . , sD} ⊂ S . From (2) the full likelihood is

(10) L(ψ;z1, . . . ,zn) =
n∏

k=1

[
exp

{−V (zk)
} ∑

π∈PD

|π |∏
l=1

{−Vτl
(zk)

}]
,

where PD is the collection of all partitions π = {τ1, . . . , τ|π |} sets of {1, . . . ,D} and Vτl
(zk)

denotes the partial derivatives of the exponent function V (zk) with respect to the variables
{zkj }j∈τl

, τl ∈ π ; see, for example, Huser et al. (2019). The number of terms in the sum in (10)
grows super-exponentially with D. The pairwise likelihood approach eases the computational
burden by maximizing the pairwise likelihood function PL(ψ;z1, . . . ,zn), defined as

(11)
∏

1≤j1<j2≤D

[
n∏

k=1

exp
{−V (zkj1, zkj2)

}{
V1(zkj1, zkj2)V2(zkj1, zkj2)−V12(zkj1, zkj2)

}]ωj1,j2

,

where ωj1,j2 ≥ 0 are nonnegative weights attributed to the pairs {j1, j2}. Here, we fit the
marginal distribution first and compute the pseudo-uniform scores ukj = Ĝkj (zkj ), where
Ĝkj is the fitted marginal distribution for the kth time point and the j th site sj . Let ĝkj be the
corresponding fitted marginal density. The pairwise likelihood function PL(ψ;u1, . . . ,un)

based on pseudo-uniform scores {uk = (uk1, . . . , ukD)T }nk=1 may thus be written as

(12)

PL(ψ;u1, . . . ,un) = ∏
1≤j1<j2≤D

(
n∏

k=1

exp
[−V

{
Ĝ−1

kj1
(ukj1), Ĝ

−1
kj2

(ukj2)
}]

× [
V1

{
Ĝ−1

kj1
(ukj1), Ĝ

−1
kj2

(ukj2)
}
V2

{
Ĝ−1

kj1
(ukj1), Ĝ

−1
kj2

(zkj2)
}

− V12
{
Ĝ−1

kj1
(ukj1), Ĝ

−1
kj2

(ukj2)
}]

× [
ĝkj1

{
Ĝ−1

kj1
(ukj1)

}
ĝkj2

{
Ĝ−1

kj2
(ukj2)

}]−1

)ωj1,j2

.
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Different approaches can be used to select the pairwise likelihood weights ωj1,j2 , for ex-
ample, using binary weights ωj1,j2 ∈ {0,1} fixed, according to the distance between sites,
in order to improve both the computational and statistical efficiency (see, e.g., Castruccio,
Huser and Genton (2016)). In our simulation study in Section 4.3, we choose ωj1,j2 =
I (‖sj1 − sj2‖ ≤ δ) for some cut-off distance δ > 0 for computational reasons, where I (·)
is the indicator function, whereas in our application in Section 5 we use the pragmatic ap-
proach of setting ωj1,j2 = 1 for all pairs {j1, j2}.

It is known that under mild regularity conditions, the pairwise likelihood estimator max-
imizing (11) with known margins is strongly consistent and asymptotically normal with the
Godambe variance-covariance matrix which could, in principle, be used to assess the variabil-
ity of the estimator; see, for example, Varin, Reid and Firth (2011) and Padoan, Ribatet and
Sisson (2010) for the max-stable case. A similar asymptotic behavior holds for the estimator
ψ̂ , based on the two-step estimator (12) (with unknown margins), though the asymptotic vari-
ance is generally slightly larger, due to the uncertainty in estimating marginal distributions;
see, for example, Genest, Ghoudi and Rivest (1995) who treat the case where margins are es-
timated nonparametrically, Joe and Xu (1996) for the parametric case and Huser and Davison
(2014) and Huser, Davison and Genton (2016) who compare various parametric estimation
schemes for extremes, including one-step and two-step pairwise likelihood estimators. How-
ever, since the computation of the asymptotic variance is intricate, especially when the data
contain many missing values, here we rely on a parametric bootstrap procedure (see, e.g.,
Davison and Hinkley (1997), page 15) to assess the estimation uncertainty: we repeatedly
sample maxima data at the data locations from the fitted max-id model (with the same sam-
ple size and with the same number of missing values inserted as in the original dataset),
and we then reestimate parameters using the same pairwise likelihood. Using 300 bootstrap
samples, we can then approximate the distribution and variability of estimated parameters.
Alternatively, the jackknife method, originally developed by Quenouille (1949, 1956) and
Tukey (1958), could also be used, treating each year as an independent (spatial) replicate,
but its theoretical validity, when the data are not missing-at-random, can be questioned. By
contrast, the parametric bootstrap has solid theoretical foundations and is easier to apply in
case of missing data (see Davison and Hinkley (1997), page 88). In the Supplementary Ma-
terial (Zhong, Huser and Opitz (2022)) we compare our parametric bootstrap scheme with
the jackknife used in our application. Although there are some differences between these
two methods, as expected, the estimated standard errors are reasonably consistent in gen-
eral. Overall, we find that the bootstrap, which was originally inspired from the jackknife,
is more suitable in our case, as it better handles missing values and is more widely applica-
ble, as pointed out by Efron (1979). In the Supplementary Material (Zhong, Huser and Opitz
(2022)) we further provide evidence that our proposed parametric bootstrap procedure yields
satisfactory coverage probabilities in simplified settings (namely, univariate GEV-distributed
data, bivariate logistic max-stable data and spatial extremal-t max-stable data similar to our
real data application). This gives us confidence that it should also perform satisfactorily in
our most complex spatial max-id setting, though this is difficult to verify formally, due to the
heavy computational burden of fitting our proposed max-id process.

4.3. Simulation experiments. We conducted a simulation study, in order to assess the per-
formance of the pairwise likelihood estimator ψ̂ under a nonstationary setting that resembles
our real data application in Section 5.

We simulated data from our proposed max-id model, built from (3) using the mean mea-
sure (5) and the nonstationary correlation function (8) combined with (9), on the domain
S = (0,1)2. Here, we focused on the nonstationary, but locally isotropic case (recall Table 1),
where 
s,t = λ2

s,t (1 + Ri)
−2νI2×2, with I2×2 the identity matrix, and we only considered
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nonstationarity in space such that λs,t ≡ λs only varies with spatial location s ∈ S . To mimic
the effect of a “mountain range,” we used the covariate defined as xs = 2φ(sx;0.5,0.25)− 1,
where s = (sx, sy)

T and φ(·;μ,σ) denotes the Gaussian N (μ,σ 2) density and then defined
λs,t ≡ λs = exp(λ0 + λ1 xs), with λ0 = −0.5 and λ1 ∈ {−0.5,−0.25,0}. Negative values of
λ1 correspond to weaker dependence at higher “elevation,” here represented by the covariate
xs , while λ1 = 0 corresponds to a stationary model. For the mean measure of the Poisson
points {Ri} defined in (5), we chose α = 1 and β ∈ {0,0.5,1} (from asymptotic dependence
with β = 0 to asymptotic independence with β > 0), while we selected ν ∈ {0.25,0.5,1}
to control the interaction between the points {Ri} and the processes {Wi} in (3). Over-
all, this yields 27 simulation scenarios (three values of λ1 times three values of β times
three values of ν), and we then jointly estimated the five dependence parameters, namely,
ψ = (α,β,λ0, λ1, ν)T ∈ (0,∞)2 × R

3, treating margins as known here for simplicity. For
each case, we generated a dataset comprising 50 independent replicates of the process at 49
sites on S , roughly located on a 7 × 7 grid with some small additional random perturbations.
The dependence parameters were jointly estimated using the pairwise likelihood approach,
described in Section 4.2, with the pairwise likelihood weights ωj1,j2 set to be 0 when the
distance between the sites sj1 and sj2 exceeds the cutoff distance δ = 0.375 and ωj1,j2 = 1
otherwise, in order to ease the computation burden. We repeated the above steps 200 times to
assess the variability and bias of estimated parameters. Figure 4 reports the results and shows

FIG. 4. Boxplots of estimated parameters for the simulation study described in Section 4.3. Each panel corre-
sponds to a different simulation scenario with λ1 = −0.5,−0.25,0 (top to bottom) and β = 0,0.5,1 (left to right)
(see details in the text) and shows boxplots for each of the five parameters, based on 200 experiments. Red dots
indicate the true values.
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boxplots of estimated parameters in the case ν = 0.25, with one display for each {λ1, β}-
scenario. Results for ν = 0.5 and ν = 1 are similar and reported in the Supplementary Ma-
terial (Zhong, Huser and Opitz (2022)) for completeness. The parameters are well estimated
overall without any strong biases, overly large variances or notable outliers which suggests
that they are well identifiable. The true values (red dots) are close to the medians and always
within the interquartile range in all scenarios. While the estimated parameters for α and β

seem comparatively more variable, especially when β is large, the covariate effect λ1 always
has a fairly small variability. Finally, we can notice that the estimated values of ν are always
positive, even if the domain of definition for this parameter is fixed to the whole real line in
our implementation. This result shows that it is easy to identify that the dependence strength
is weakening (rather than strengthening), as the severity of extreme events increases. More-
over, bivariate scatterplots of estimated parameters, displayed in the Supplementary Material
(Zhong, Huser and Opitz (2022)), do not reveal any significant correlation between β and
ν. In our simulations, correlations turn out to be stronger between the dependence range λ0
and α, and between λ0 and ν, but in the application such correlation values are quite weak.
Overall, by considering all simulation results summarized in Figure 4 and the Supplementary
Material (Zhong, Huser and Opitz (2022)), it is clear that all parameters—and in particular β

and ν—can be reasonably well identified from the data in a wide range of parameter settings.
This confirms that β and ν indeed play a different role and that both of them help improve
the flexibility of the model’s bulk and tail dependence structures in different ways.

5. Application to European temperature extremes.

5.1. Spatial and temporal trends in marginal distributions. The first step of our statisti-
cal analysis is to adequately model the nonstationary marginal distributions of maxima. We
assume the annual temperature maxima follow a generalized extreme-value (GEV) distribu-
tion which arises as the only possible asymptotic distribution for block maxima of univariate
random variables (Fisher and Tippett (1928)); it is defined as

(13) G(z) = exp
[−{

1 + ξ(z − μ)/σ
}−1/ξ
+

]
, ξ �= 0,

with support {z : 1 + ξ(z − μ)/σ > 0}, where a+ = max(0, a), and the Gumbel distribution
exp[− exp{−(z − μ)/σ }], z ∈ R, is obtained as ξ → 0. Here, μ, σ > 0 and ξ are location,
scale and shape parameters, respectively. We distinguish three types of GEV distributions,
depending on the value of ξ : Fréchet, Gumbel and reversed Weibull, corresponding to ξ > 0
(heavy-tailed), ξ → 0 (light-tailed) and ξ < 0 (bounded tail), respectively. All three parame-
ters could potentially depend on longitude, latitude, elevation as well as time. To reduce the
uncertainty in estimated marginal parameters, we pool the data together in a single general-
ized additive model with penalized cubic regression splines to accurately describe the time
trend and spatial variation of GEV parameters and then estimate parameter surfaces by max-
imizing an independence composite likelihood (Varin, Reid and Firth (2011)). As explained
in Section 4.1, this approach provides valid inference for marginal parameters. Specifically,
let {Z(s, t)}s∈S,t∈[0,1] denote the spatiotemporal process of annual maxima (defined over the
space-time domain S × [0,1]), and let Zkj = Z{sj , k/(n + 1)} be the annual maximum for
the kth year at the j th station (k = 1, . . . , n, j = 1, . . . ,D). After some experimentation our
final model assumes that Z(s, t) has a marginal GEV distribution with location parameter,
μs,t , and constant scale and shape parameters, σ > 0 and ξ , respectively. Since the loca-
tion parameter μs,t determines the overall magnitude of extreme values, we link it with the
covariates lons , lats , elevs representing longitude, latitude and elevation, respectively, and
(rescaled) time t ∈ [0,1]. We also tried to let σ vary over space and time, but this did not
improve the model significantly. We can thus formulate the marginal model as

(14) Z(s, t) ∼ GEV(μs,t , σ, ξ), μs,t = ti(lons, lats, elevs) + ti(t), s ∈ S, t ∈ [0,1],
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where “ti” refers to the tensor product of penalized cubic regression splines. This marginal
model was chosen to provide a good balance between flexibility (for a good model fit) and
parsimony (for robustness and to avoid overfitting), and diagnostics described below suggest
that the margins are appropriately modeled over the study region. For each observation, (14)
yields Zkj ∼ GEV(μkj , σ, ξ), where μkj = μsj ,k/(n+1), and we fit the marginal model jointly
combining all observations by pretending that the Zkj ’s are independent. Because the geo-
graphical location is jointly determined by lons , lats and elevs , they are put together in (14) to
account for interaction effects, while we keep the time t separate to avoid an overly complex
model with too many spline coefficients to be estimated. Here, we take four spline knots for
each dimension, which is rich enough to provide good marginal fits, as demonstrated below.
Therefore, ti(lons, lats, elevs) has 43 = 64 spline knots in total. The estimated scale and shape
parameters are σ̂ = 17.7 with 95% confidence interval (17.2,18.1) and ξ̂ = −0.20 with 95%
confidence interval (−0.22,−0.18), respectively, where the uncertainty in this marginal set-
ting is here estimated using the delta method, as done in the function gam of the R package
mgcv. Because ξ̂ is negative, the temperature distribution is estimated to have a finite upper
endpoint which is meaningful in view of the results obtained in similar studies about extreme
temperatures (see, e.g., Davison and Gholamrezaee (2012), Huser and Genton (2016)). The
estimated endpoint μ̂s,t − σ̂ /ξ̂ varies with the covariates (longitude, latitude, elevation, time)
according to the estimated location surface μ̂s,t . To check the marginal goodness-of-fit, we
then transform the maxima Zkj to the standard Gumbel scale as ξ̂−1 log{1+ ξ̂ (Zkj − μ̂kj )/σ̂ }
by plugging in estimated parameters μ̂s,t , σ̂ , ξ̂ , and we produce marginal quantile-quantile
(QQ)-plots based on theoretical and empirical standard Gumbel quantiles for each station and
by pooling all stations together. Figure 5 displays QQ-plots for the pooled dataset and two
randomly selected stations (s11 and s34). Overall, the marginal goodness-of-fit looks satisfac-
tory, with the dots well aligned along the main diagonal for the vast majority of stations. To
further examine the quality of the marginal fit, we perform a two-sided Kolmogorov–Smirnov
test for the data from each station and for the pooled dataset by comparing the empirical dis-
tributions and the fitted distributions. All the Kolmogorov–Smirnov tests fail to reject the null
hypothesis (i.e., equality of distributions) with large p-values. Most of the p-values are greater
than 0.9, and the smallest is 0.28 which does not provide evidence against good marginal fits
at all monitoring stations. A marginal homogeneity analysis (see the Supplementary Material,
Zhong, Huser and Opitz (2022)) also concurs that there is not sufficient evidence to justify
making the model more complex by including covariates or splines into the scale and shape
parameters.

FIG. 5. QQ-plots of maxima transformed to the standard Gumbel scale based on the fitted marginal model. Left:
All stations pooled together. Middle and right: Stations s11 and s34.
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FIG. 6. Plot of observed annual maxima (dots), estimated time trend (solid black), and estimated 10, 100 and
1000 year-return level curves (from light to dark red) for three selected stations located in Germany, Switzerland
and Hungary (left to right). The red dot in each panel represents the observed annual maximum for 2019 (not
used to fit the model). The four vertical dashed lines correspond to the reference years of 1950, 1975, 2000 and
2018.

We then examine the fitted time trend as well as the estimated time-varying M-year re-
turn level zM

s,t , defined for each site s ∈ S as the (1 − 1/M)-quantile from the fitted GEV
distribution, that is, zM

s,t = μ̂s,t − σ̂ [{− log(1 − 1/M)}−ξ̂ − 1]/ξ̂ . Under temporal stationar-
ity conditions the M-year return level is expected to be exceeded once every M years (at
each site). With global warming, return levels from the past may be exceeded much more
frequently in the present and future. In other words, observations that were extreme in the
past may no longer be as rare under the current conditions. The effect of climate change can
thus be assessed based on return levels. Figure 6 exhibits the estimated time trend and the
corresponding 10, 100 and 1000 year-return level curves for three selected stations located
in Germany, Switzerland and Hungary. The estimated time trend is at its lowest around 1975
and its highest in 2018 which corroborates other studies about climate change. The red dot
in each plot represents the observed annual maximum for 2019 (not used to fit the model).
For station 9 the 2019 annual maximum exceeds the 1000 year-return levels corresponding
to 1950 and 1975. However, it barely reaches the 100 year-return level for 2018. For station
27 the 2019 annual maximum approximately corresponds to the 100-year event when taking
1975 as the reference year, but it becomes a 10-year event when taking 2018 as the reference.
For these two stations in Germany and Switzerland, the 2019 heatwave was, therefore, very
extreme compared to mid-20th century conditions, but only moderately extreme with respect
to current climate. As for the station 32 in Hungary, our model suggests that the 2019 annual
maximum was not very extreme overall (both with respect to past and current conditions).

5.2. Spatial dependence structure and model comparison. We now use the estimated
marginal distributions and transform the data to the standard uniform Unif(0,1) scale. We
next estimate the dependence structure (i.e., the copula) through maximum pairwise like-
lihood inference using the max-id model, introduced in Sections 3.2–3.3. The most com-
plex model that we fit is the nonstationary, but locally isotropic, dependence structure,
specified in Section 3.3 and Table 1, and we also fit several submodels for comparison.
Specifically, our most general model assumes that 
s,t (Ri) in (9) has the form 
s,t (Ri) =
λ2

s,t (1 + Ri)
−2νI2×2, λs,t = exp(λ0 + λ1 × elevs + λ2 × t). Using (5) for the mean measure

of the Poisson points {Ri} arising in the spectral representation (3), the parameter vector to
be estimated is thus ψ = (α,β,λ0, λ1, λ2, ν)T ∈ (0,∞)2 × R

4. We compare this model to
the fits of five simpler models, contained as special cases (or limiting cases) of our model,
leading to features such as stationarity or max-stability. Specifically, Model 1 corresponds
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TABLE 2
Parameter estimates for the six max-id models fitted to annual European temperature maxima, with 95%
confidence intervals (indicated as subscripts) based on the parametric bootstrap procedure described in

Section 4.2 using 300 replications. Here, λ̂1 and λ̂2 represent the increase in log λ̂s,t (log-range) per km in
elevation, and per century in time, respectively

α̂ β̂ λ̂0 λ̂1 λ̂2 ν̂

Model 1 5.0(3.5,10.0) 0 0.04(−0.31,0.71) 0 0 0
Model 2 5.1(3.7,10.0) 0 0.09(−0.29,0.92) −0.31(−0.44,−0.13) 0.31(−0.40,0.89) 0
Model 3 2.5(0.5,6.5) 1.5(0.4,3.9) −0.35(−0.60,0.19) 0 0 0
Model 4 2.5(0.6,6.4) 1.5(0.3,4.2) −0.28(−0.55,0.45) −0.40(−0.56,−0.17) 0.30(−0.43,0.76) 0
Model 5 5.0(0.5,9.9) 2.3(1.1,9.8) 1.85(0.60,3.88) 0 0 2.9(1.2,6.0)

Model 6 5.5(2.7,8.3) 2.4(1.0,7.3) 2.12(1.71,2.92) −0.31(−0.43,−0.12) 0.23(−0.55,0.83) 3.2(2.6,4.3)

to the stationary extremal-t max-stable process and Model 3 to a stationary max-id model,
proposed by Huser, Opitz and Thibaud (2021). Models 2 and 4 are their nonstationary coun-
terparts. Finally, Models 5 and 6 are our new stationary and nonstationary max-id models
with an explicit magnitude-dependent range of dependence. These six different models are
specified with the following parameter configurations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Model 1: {α > 0, β ↓ 0, λ0 ∈ R, λ1 = 0, λ2 = 0, ν = 0}, stationary max-stable;
Model 2: {α > 0, β ↓ 0, λ0 ∈ R, λ1 ∈ R, λ2 ∈ R, ν = 0}, nonstationary max-stable;
Model 3: {α > 0, β > 0, λ0 ∈ R, λ1 = 0, λ2 = 0, ν = 0}, stationary simple max-id;
Model 4: {α > 0, β > 0, λ0 ∈ R, λ1 ∈R, λ2 ∈ R, ν = 0}, nonstationary simple max-id;
Model 5: {α > 0, β > 0, λ0 ∈ R, λ1 = 0, λ2 = 0, ν ∈R}, stationary general max-id;
Model 6: {α > 0, β > 0, λ0 ∈ R, λ1 ∈R, λ2 ∈ R, ν ∈ R}, nonstationary general max-id.

To assess the uncertainty of estimated parameters in the spatial dependence fit (without ac-
counting for marginal uncertainty), we used the parametric bootstrap procedure with 300
bootstrap samples for each model, as described in Section 4.2. The estimates and the 95%
bootstrap confidence intervals are reported in Table 2. For comparison, the Supplementary
Material (Zhong, Huser and Opitz (2022)) also reports the standard errors of parameter esti-
mates when approximated using the jackknife, whereby each replicate (i.e., one year) is left
out at a time and the model refitted sequentially to the remaining n − 1 years and all D = 44
stations. The jackknife variance estimate is then obtained as a rescaled version of the sample
variance of these n − 1 parameter estimates. There are some differences when comparing
the jackknife and bootstrap estimates, but, generally speaking, the estimated uncertainty is
roughly of the same order in both cases, and our general conclusions about the asymptotic
dependence class remain the same. Since the parametric bootstrap has been shown to be
more widely applicable than the jackknife and better deals with missing values, we believe
that the confidence intervals shown in Table 2 are reliable. The estimates for α and β are
relatively large with lower confidence bounds clearly above 0, indicating that the data are
asymptotically independent. Moreover, in Models 5 and 6 we obtain relatively large esti-
mates ν̂ with lower confidence bounds above 1 and 2, respectively, which suggests that the
range of spatial dependence is substantially smaller for more severe extreme events. In all
nonstationary models, the estimates for the elevation coefficient λ1 are significantly negative
such that the range of dependence diminishes in subregions with higher elevations. From
our new Model 6, λ̂1 = −0.31, so the spatial extent of heatwaves is estimated to be about
exp(0.31) ≈ 1.36 smaller one km higher in elevation. The estimates of λ2 are positive in all
three nonstationary models, hinting that the spatial extent of heatwaves has increased in re-
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cent years, and Model 6 suggests that it has increased by a factor about exp(0.23) ≈ 1.26 per
century. Qualitatively, this confirms the general findings of previous studies, such as Osborn
and Briffa (2006) and Lyon et al. (2019), though here this effect is not significant, based on
the available data.

To assess the relative goodness-of-fit and to test the predictive performance of the six
models, we use a cross-validation scheme, whereby each station sj0 , j0 = 1, . . . ,D, is left
out at a time and the six models refitted. We then compare the models using the (negatively
oriented) logarithmic score,

(15) LogSj0
= ∑

j �=j0

[
n∑

k=1

V (zkj , zkj0) − log
{
V1(zkj , zkj0)V2(zkj , zkj0) − V12(zkj , zkj0)

}]
,

which is the sum of the negated log pairwise-densities by considering only the pairs com-
posed of the left-out station sj0 and one of the other stations sj , j �= j0. Logarithmic scores
are strictly proper in the sense of Gneiting and Raftery (2007) such that they enable us to
appropriately compare the predictive power of different models. The final score of a model is
obtained by summing scores for all stations, that is, using LogS = ∑D

j0=1 LogSj0
. The lower

LogS, the better the model at predicting pairwise interactions. In our model comparison we
also include traditional geostatistical models from the spatial statistics literature which do not
have the strong theoretical motivation from extreme value theory. Precisely, we also fit the
Gaussian copula and the Student-t copula models with α > 0 degrees of freedom, using the
same stationary or nonstationary correlation function as before. For consistency, we use the
same pairwise likelihood inference approach. We label these models as follows: Model 7 is
the stationary Gaussian copula model; Model 8 is its nonstationary counterpart; Model 9 is
the stationary Student-t copula model; Model 10 is its nonstationary counterpart.

The final ranking of all models, based on the logarithmic score, is reported in Table 3. Inter-
estingly, the “traditional” models from spatial statistics and extreme value theory, namely, the
Gaussian copula (Models 7, 8) and max-stable (Models 1, 2) models, perform worst. Further-
more, the nonstationary Gaussian copula (Model 8) outperforms its max-stable counterpart
(Model 2), despite the additional parameters of the latter, which casts strong doubts about the
max-stability assumption and suggests that the dependence strength of maxima weakens at
higher quantiles. The four estimated max-id (but not max-stable) models have the best results,
and the most complex model that we propose (Model 6), which includes covariate effects of
elevation and time as well as the magnitude-dependent probabilistic structure, performs the
best overall. Finally, the nonstationary Student-t copula (Model 10) ranks fifth, right behind
the max-id (non-max-stable) models. Its flexible structure—being at the same time in the
domain of attraction of the max-stable extremal-t limit and also very close to the Gaussian
copula for large degrees of freedom—seems to compensate for some of the weaknesses of
max-stable and Gaussian copula models.

We then conduct a parametric bootstrap simulation experiment in order to confirm our
conclusions from this model comparison, assess the uncertainty of the ranking and remove
any model selection bias. Precisely, we simulate 50 datasets, according to the best model
(Model 6), where we use the same sample size and structure of missing values, as in the

TABLE 3
Ranking of the 10 models using the cross-validated logarithmic score (15) for pairwise predictions. Lower rank

means better predictive performance

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

9 8 4 3 2 1 10 7 6 5
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FIG. 7. Logarithmic score (15) ranks computed for 50 bootstrap simulations from the fitted Model 6, for each of
the 10 models. The bars show the percentage of ranks ranging from 1 (best score) to 10 (worst score) for each of
the Models 1–10, with darker grey (toward the left side of each histogram) indicating better rank. The letter “s”
means “stationary,” whereas “ns” means “nonstationary.”

real dataset. For each of the 50 simulated datasets, we then refit the 10 different models and
recompute the ranking based on the logarithmic score, LogS. This gives 50 rankings for the
models 1–10. Figure 7 shows the percentage of times that a given model was ranked first to
tenth, with high bars toward the left being generally better. We note that, although the most
complex model (Model 6) was used to resample the datasets in this bootstrap experiment,
the cross-validation criterion that we use is designed to identify the model that gives the
best prediction of bivariate interactions, which could well be a simpler, more parsimonious
and robust model. It is indeed well known that the best-fitting models are not necessarily
the best ones for prediction. In other words, our parametric bootstrap experiment is fair,
as our criterion does not only take the model fit into consideration, but it also implicitly
penalizes model complexity. From Figure 7 we clearly see that our most complex max-id
models (Models 5 and 6) have the best performances, and Model 6 is ranked first overall
in about 40 out of the 50 cases. This Monte Carlo experiment, therefore, confirms our initial
findings and the advantage of the very flexible dependence structure of our proposed Model 6
with respect to the other models.

If a model appropriately captures the dependence structure of the data, it is expected that
the fitted extremal coefficients θ̂D(z) from the model are close to the empirical extremal
coefficients θ̂

emp
D (z) = −z log[P̂r{Z(s1) ≤ z, . . . ,Z(sD) ≤ z}] at level z (assuming here unit

Fréchet marginals), where P̂r is the empirical probability measure. Since Models 2, 4 and
6 are nonstationary, empirical extremal coefficients are more tricky to estimate accurately
in these cases. Therefore, for simplicity, we here only compare the fitted extremal coeffi-
cients of Models 1, 3 and 5, which are the stationary versions of the max-stable model, the
simple max-id model of Huser, Opitz and Thibaud (2021) and our proposed general max-id
model, respectively, with their empirical counterparts in dimensions D = 2–20. In dimen-
sions D = 2 and 3, we computed extremal coefficients for all pairs and triplets of the 44 sta-
tions, whereas, in higher dimensions, we only computed coefficients for a maximum of 1000
randomly sampled combinations of stations among the 22 stations without missing values.
Figure 8 shows the average absolute difference between the empirical and fitted extremal
coefficients θD(z) in dimensions D = 2–20 at unit Fréchet quantile levels z = −1/ log(q)

with q = 0.25,0.5,0.75 and 0.95 for Models 1, 3 and 5. Notice that under stationarity, these
levels are, on average, marginally exceeded three times in four years, once in two years, once
in four years and once in 20 years, respectively, so they correspond to moderately extreme
events. All three models are comparable for moderate quantiles q = 0.5 and q = 0.75, rep-
resenting the behavior in the bulk of the max-id distribution. The relatively complex max-id
Model 5 (green curve) performs sensibly better than the max-stable model (black curve) and
the simple max-id model (red curve) at quantile levels q = 0.25 and 0.95, especially in higher
dimensions. Model 5 thus better captures the dependence structure of spatial extreme events
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FIG. 8. Mean absolute difference between empirical and fitted extremal coefficients θD(z), plotted with respect
to dimension D = 2–20, for Models 1 (black), 3 (red) and 5 (green), at unit Fréchet quantile levels z = −1/ log(q)

with q = 0.25,0.5,0.75 and 0.95 (left to right).

of relatively small and large magnitudes. Throughout, the observed absolute differences are
not excessively large, compared to the theoretical range [1,D] of extremal coefficients.

To further assess the goodness-of-fit and verify the fidelity of our fitted max-id Model 5
to the data, Figure 9 compares boxplots of empirical bivariate coefficients θ2(z) for all pairs
of sites within 15 equally spaced distance classes to their model-based counterparts for three
different quantile levels z. Although the variability of estimated bivariate extremal coeffi-
cients is quite high, the fitted curves are quite close to the boxplot medians and seem to
adequately capture the decay of spatial dependence with distance. Our fitted model suggests
that extremal dependence persists at very large distances which is consistent with heatwaves
being large-scale phenomena having the potential of simultaneously affecting large parts of
Europe. We also verify the goodness-of-fit in higher dimensions, which is important here,
since the spatial extent of extreme episodes (e.g., the size of hotspot areas) may be driven by
highly multivariate (and not only bivariate) extremal behavior. Figure 10 shows scatterplots
of empirical vs. fitted extremal coefficients θD(z) for Model 5 in dimensions D = 2,5,10
for unit Fréchet quantile levels z = −1/ log(q) with q = 0.25,0.5 and 0.75. The dots tend to
concentrate around the main diagonal, especially in high dimensions, which confirms a satis-
factory model fit. Nevertheless, the fitted model tends to be slightly smoother in general than
empirical data in terms of the range of values of empirical coefficients, but such behavior can
be expected since our model cannot perfectly capture all the nonstationarities of extremal de-
pendence arising over this very large and geographically heterogeneous study region. While
the stationary max-id Model 5 already produces a very decent fit, our nonstationary Model 6
is expected to perform even better.

In order to visualize the spatiotemporal variation in the estimated extremal dependence
structure and to assess whether the spatial extent of heatwaves has changed a lot over time

FIG. 9. Boxplots of empirical bivariate extremal coefficients θ2(z) computed for all pairs of sites within 15
equally spaced distance classes, and theoretical curve (blue) based on the fitted Model 5 plotted with respect to
spatial distance, for unit Fréchet quantile levels z = −1/ log(q) with q = 0.25,0.5 and 0.75 (left to right).
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FIG. 10. Scatterplots of empirical vs. fitted extremal coefficients θD(z) for Model 5 in dimensions D = 2,5,10
(top to bottom) for unit Fréchet quantile levels z = −1/ log(q) with q = 0.25,0.5,0.75 (left to right). The main
diagonal indicates a perfect fit.

due to climate change, we then compute the effective extremal dependence range for 1918
and 2018, based on the fitted nonstationary Model 6. We define the effective extremal depen-
dence range (at a given point in space and time) as the minimum spatial distance (from that
point) such that θ2(z) = 1.95 for a given level z, under constant covariate values. Figure 11
displays a map of the results for 1918, taking z as the level z = −1/ log(0.9), as well as the
difference between the results for 2018 and 1918. From the top panel we can see that the
effective extremal dependence range varies from about 400 km at high elevations to 1500 km
at low elevations. Elevation is thus a major (significant) covariate, though we should also be
careful not to over-interpret the results, as the model may not perfectly extrapolate far outside
the range of covariate values used for fitting. From the bottom panel we see that our Model 6
estimates the change in extremal dependence range over the last century to be between about
150 km at high elevations and 400 km at low elevations. Heatwaves might, therefore, have
become slightly larger in extent, especially at low elevations. In the Supplementary Material
(Zhong, Huser and Opitz (2022)) we compare the effective extremal dependence range esti-
mated for Models 2, 4, 5 and 6, in order to show how our assessment of risk based on Model 6
differs because: (i) it is asymptotically independent; (ii) it has a magnitude-dependent corre-
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FIG. 11. Map of the effective extremal dependence range (km) for 1918 (top), and of the difference between
2018 and 1918 (bottom), based on Model 6. The extremal dependence range is here defined as the minimum
spatial distance such that θ2(z) = 1.95 at the level z = −1/ log(0.9). Monitoring stations are shown as red dots.

lation structure and (iii) it is nonstationary. The results show major differences across models,
suggesting that all the assumptions (i), (ii) and (iii) are key in practice. This shows once again
the importance of correctly specifying the dependence structure for an accurate risk assess-
ment of spatial extreme events, and we believe that Model 6 is the most suitable in our case
based on various model diagnostics.

5.3. Probabilistic assessment of the 2019 European heatwaves. We conclude our real
data analysis with a probabilistic assessment of the extremes observed during the 2019 Euro-
pean heatwaves which affected large parts of Europe. Over the summer of 2019, many mon-
itoring stations across Europe indeed recorded the highest temperature in almost a century.
A natural question is whether this could have been anticipated from historical data. To assess
the severity of the 2019 European heatwaves, we here complement the marginal analysis of
Section 5.1 by simulating 105 replicates from our best fitted nonstationary Model 6 at 31
stations for which the 2019 annual maxima are available and transforming these simulated
data to their estimated marginal GEV scales. From these 105 replicates, we then compute
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FIG. 12. Boxplots of bootstrapped return periods (on logarithmic scale) of the 2019 annual maximum, computed
for the spatial maximum, minimum and average (left to right) over 31 stations, based on 105 random fields
simulated from our best nonstationary spatial Model 6 (fitted to the annual maxima for the period 1918–2018),
with respect to 1950, 1975, 2000, 2018 and 2019 as reference years. Red dots are pointwise estimates of these
return periods.

empirical return periods for the spatial maximum, spatial minimum and spatial average of
the observed 2019 maxima with respect to the reference years 1950, 1975, 2000, 2018 and
2019. To estimate the variability of our return period estimates, we use the 300 bootstrap
fits and recompute these return periods. Figure 12 shows boxplots of the bootstrapped re-
turn periods as well as the point estimates (red dots). Due to the estimated time trend (both
in margins and dependence), return periods are always highest when compared to 1975 and
lowest when compared to 2018–2019. When considering return periods for the spatial max-
imum (left panel), which is large when at least one site experiences an extreme event, we
get a return period of about 500 years when compared to the climatic conditions of 1975,
but only about 10 years when compared to current climatic conditions. When considering the
spatial average (right panel), we get a return period of about 20–30 years when compared
to 1975, but only two years for 2018–2019. Finally, when considering the spatial minimum
(middle panel), which is large only when all sites experience simultaneous extreme events
and which is usually observed at one of the locations near the Alps, the 2019 heatwaves were
not especially extreme, corresponding only to a 1 to 1.5 year event for all reference years.

6. Conclusion. We have proposed a nonstationary max-id spatial model for block max-
ima, which embeds spatiotemporal covariates in its dependence structure, while having a
very flexible form of weakening dependence strength at increasingly high quantiles, in order
to model extreme temperatures over Southern Europe. A novelty of our proposed approach is
that, unlike contributions from the existing climate literature, it exploits extreme value theory
and real measurements from a century-spanning dataset to estimate the spatial extent of heat-
waves through the estimated effective extremal dependence range. Our fitted models reveal
that the dependence structure of temperature annual maxima is significantly weaker at higher
elevations, and similarly for more severe heatwaves. The estimated parameters of our models
with temporal nonstationarity also suggest that the spatial extent of heatwaves has become
wider in recent years, confirming the general findings of previous studies, though this effect
was not significant based on our parametric bootstrap procedure.

Modeling approaches in classical Gaussian-based geostatistics and spatial extreme value
analysis often use a setting where the dependence structure is stationary over both space and
time. This assumption is problematic when spatial and temporal scales are large and lead
to heterogeneous regional and temporal characteristics in cooccurrence patterns of extreme
values, and even more so when we aim to detect and analyze such patterns. The max-id mod-
els developed in this paper are a step forward toward more accurate inference while keeping
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parsimonious specifications. Trends in dependence are notoriously difficult to estimate when
data are not abundant, and one has to carefully avoid confusion with marginal trends. Indeed,
the accurate modeling of marginal trends in extremes remains of paramount importance, and
it is a prerequisite to avoid estimating spurious trends in dependence models. In our real data
application we implemented semiparametric spline functions for capturing marginal trends
in the GEV parameters, and we opted for a flexible tensor product specification to allow in-
teraction of trends arising in latitude, longitude and elevation. We also assessed spatial return
periods associated with the 2019 Europe heatwaves over Southern Europe and concluded that
the summer 2019 was very extreme when considering the spatial maximum over the monitor-
ing stations (especially compared to mid-twentieth century conditions), moderately extreme
when considering the spatial average, and not especially extreme when considering the spa-
tial minimum. Furthermore, our analysis provided clear evidence for climate change and its
impact on spatial extreme temperature events.

Finally, we underline the main methodological novelty of building magnitude-dependent
max-id models, where the spatial dependence range becomes shorter as events become more
extreme. Our construction explicitly accounts for this behavior and allows us to capture three
distinct regimes in a single parsimonious parametric model: (i) max-stable asymptotic depen-
dence; (ii) weakening asymptotic dependence; (iii) weakening asymptotic independence. By
keeping a flexible max-stable process on the boundary of the parameter space, our proposed
model achieves the subtle trade-off of combining the strength of theoretically-motivated max-
stable models together with the pragmatism of flexible max-id extensions with weakening de-
pendence strength. Our sophisticated extreme-value model, combined with covariates and ge-
ometric anisotropy, thus provides a very rich class of models for spatially-indexed block max-
ima and opens the door to more realistic risk assessment of extreme environmental events.
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SUPPLEMENTARY MATERIAL

Supplement to “Modeling nonstationary temperature maxima based on extremal de-
pendence changing with event magnitude” (DOI: 10.1214/21-AOAS1504SUPPA; .pdf).
We provide further results in our simulation study for alternative parameter settings, and also
provide further details and simulation results on the performance of our proposed parametric
bootstrap inference scheme in the context of our real data application. We also conduct a
detailed homogeneity analysis to assess the validity of the marginal model structure assumed
in our data application, and provide further results on the effect of model assumptions on the
estimated spatial extremal dependence range.

Code and data (DOI: 10.1214/21-AOAS1504SUPPB; .zip). We provide R code to re-
produce the results shown in our data application, and also a toy example to show how to
simulate from the proposed max-id process and fit the max-id model with simulated data on
a grid.
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