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We consider the problem of single-molecule identification in super-
resolution microscopy. Super-resolution microscopy overcomes the diffrac-
tion limit by localizing individual fluorescing molecules in a field of view.
This is particularly difficult since each individual molecule appears and dis-
appears randomly across time and because the total number of molecules in
the field of view is unknown. Additionally, data sets acquired with super-
resolution microscopes can contain a large number of spurious fluorescent
fluctuations caused by background noise.

To address these problems, we present a Bayesian nonparametric frame-
work capable of identifying individual emitting molecules in super-resolved
time series. We tackle the localization problem in the case in which each
individual molecule is already localized in space. First, we collapse obser-
vations in time and develop a fast algorithm that builds upon the Dirichlet
process. Next, we augment the model to account for the temporal aspect of
fluorophore photophysics. Finally, we assess the performance of our methods
with ground-truth data sets having known biological structure.

1. Introduction. Light microscopes are the workhorse of cellular biology, enabling the
study of molecular processes within the cell. The resolution of light microscopes is limited by
the interaction of light with the microscope’s optical system, due to the physics of diffraction.
Diffraction causes a blur on each light point source (lps). The response of the imaging system
to a lps was first described by Airy (Airy (1835)) and is represented by the point spread func-
tion (psf) of the microscope. The image of an object under a microscope is the superposition
of all the lps comprising the object convolved with the psf (Figure 1A). If two lps are close
enough, the finite size of the psf prevents their separate recognition. Using this fact in 1873,
Abbe (Abbe (1873)) formalized the definition of resolution as the smallest distance between
two objects that prevent their individual identification. In particular, Abbe established that
two light-emitting sources can be distinguished only if they are separated by a distance of at
least d = λ

2NA
, where λ is the wavelength of incoming light and NA is the numerical aperture

of the microscope. The resolution of conventional light microscopy is typically limited to
around 200 nm.

Super-resolution microscopy (SRM) is an imaging methodology that allows researchers
to overcome the diffraction limit imposed by conventional light microscopy (Betzig et al.
(2006), Rust, Bates and Zhuang (2006)). SRM resolves photoswitchable fluorophores in a
field of view by sparsely and randomly activating individual light emitters and then local-
izing them with subdiffraction precision (Figure 1B). This technique has revolutionized the
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FIG. 1. Principles of conventional (CM) and super-resolution (SRM) light microscopy: A) Light emitted by a
light point source (lps) gets blurred after traversing the optics of microscopes due to the physics of diffraction. The
point spread function (psf) characterizes this spatial light pattern. B) Comparison between CM and SRM in the
case of a sample composed of two lps. Left, CM activates both lps preventing their individual identification. Right,
in SRM, each lps is activated at different times enabling the localization of each lps circumventing the diffraction
limit resolution. C) The result of an SRM experiment is a series of images at different times. A different set of
fluorophores is activated at each time point. Localization algorithms transform images into a list of candidate
fluorophore locations in space and time.

field of cellular microscopy by enabling the study of intracellular proteins within cellular
compartments at nanometer resolution (Hansen et al. (2018)), the organization of the actin
cytoskeleton in neuronal axons and dendrites (Xu, Zhong and Zhuang (2013)), the structure
of receptors and scaffolding proteins at synapses (Specht et al. (2013)) and the study of the
protein complexes forming the nuclear pore (Szymborska et al. (2013)), to cite a few exam-
ples. The typical resolution of diffraction-unlimited microscopy is 10 nm.

Of the many techniques that have been developed to achieve super-resolution imag-
ing, we focus on a class of methods that are generally referred to as single-molecule-
localization microscopy (SMLM). These techniques include stochastic optical reconstruc-
tion microscopy (STORM) (Rust, Bates and Zhuang (2006)), photoactivation localization
microscopy (PALM) (Betzig et al. (2006)) and other variants. SMLM techniques rely on the
ability of photoactivatable fluorescent proteins (Lippincott-Schwartz and Patterson (2009)) or
photoswitchable fluorophores (Dempsey et al. (2011), Heilemann et al. (2005), van de Linde,
Heilemann and Sauer (2012)) to alternate between a fluorescence-emitting state and a dark
state. By only activating a subset of the total number of fluorophores within the field of view,
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the emitting molecules can be individually localized, thereby circumventing the diffraction
limit of light.

SMLM experiments are performed routinely and experimental protocols have been honed.
The latter includes sample preparation (Olivier et al. (2011)) (Kaplan and Ewers (2015)), flu-
orophore selection (Dempsey et al. (2011)) (Shcherbakova et al. (2014)) and data acquisition
(Pertsinidis, Zhang and Chu (2010)) (Huang (2011)). An SMLM experiment produces data in
the form of a time series of images, each of them representing a random and unknown num-
ber of fluorophores activated at each time (Figure 1C). Next, the first data-analysis challenge
centers on the identification and localization of fluorophores in each image (Deschout (2014),
Small and Stahlheber (2014)). Subsequently, a pointillistic representation of the data is built
in which each point represents the location of a candidate fluorophore. At this stage, two chal-
lenges are intertwined. On the one hand, observations arising from the same fluorophore at
different time points should be accounted for (Annibale et al. (2011a), Annibale et al. (2011),
Veatch et al. (2012)). On the other hand, once fluorophores are identified, researchers need to
extract biological insights from SMLM data by identifying spatial properties of the molecules
under study (Kapoor-Kaushik et al. (2016), Owen et al. (2010), Rossy et al. (2014), Sengupta
(2011)).

In principle, once observations arising from each fluorophore across time are correctly
identified, SMLM is poised to enable accurate counting of single molecules. This process en-
ables the study of protein stoichiometry and dynamics under physiological conditions (Košuta
et al. (2020), Lee et al. (2012), Nicovich, Owen and Gaus (2017), Puchner et al. (2013)).
Counting is, however, highly dependent on the characteristics of the molecule used as a flu-
orescent tag, and, in order to obtain an accurate count, several obstacles must be overcome.
For example, fluorophore photophysics result in molecule overcounting when fluorescent
molecules “blink” by transiently alternating between nonemitting dark and emitting light
states (Heilemann et al. (2009), Roy et al. (2011)). Even more troublesome is the possibility
that photoconvertible probes can be reactivated after a lengthy stay in the dark state (Annibale
et al. (2010), Annibale et al. (2011)). Many algorithms have been devised to compensate for
blinking, ranging from semiempirical approaches (Annibale et al. (2011)) to more robust pro-
cedures that account for a single dark state (Lee et al. (2012), Rollins et al. (2015)), many
dark states (Hummer, Fricke and Heilemann (2016)) or the presence of many fluorophores
and binding sites within a diffraction limited spot (Nino et al. (2017)). An ideal workflow,
designed to analyze SRM data sets, would be capable of accounting for the different blinking
properties of fluorophores while separating each fluorophore in space.

In this article we focus on two of the key statistical challenges in super-resolution data
analysis: the localization of individual point-source fluorophores and the estimation of the
identity of the observation arising from each fluorophore. These tasks must be carried out
with only rough prior knowledge of the number of activated fluorophores and the dynamics of
their activation. We devise a statistical approach to analyze STORM or PALM localizations
computed by any conventional detection software (Holden, Uphoff and Kapanidis (2011),
Ovesnỳ et al. (2014), Sergé et al. (2008)) and to infer the most likely fluorophore arrangement
in the field of view. We cast this task as a doubly stochastic marked Poisson process. We use
this framework to transform the problem into a density estimation model (Kottas and Sansó
(2007), Taddy and Kottas (2012)) and use Bayesian nonparametric (BNP) priors to model the
number of fluorophores present in the sample (Blei and Jordan (2006), Broderick, Jordan and
Pitman (2013), Huggins and Wood (2014)).

To create a scalable approach able to analyze a high number of points, we avail ourselves
of four strategies. First, we create an algorithm capable of creating a high-quality initial con-
dition for our inference algorithm. To do so, we collapse observations across time and use a
Dirichlet process (DP) mixture model to infer fluorophore events in the field of view. The DP
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is a BNP prior with the flexibility of accounting for an unbounded number of fluorophores.
Second, we perform approximate Bayesian posterior inference through the use of variational
mean field methods. Variational inference uses numerical optimization to approximate the
posterior distribution (Blei, Kucukelbir and McAuliffe (2017), Jordan et al. (1999)), result-
ing in a procedure which is often orders of magnitude faster than traditional Markov chain
Monte Carlo methods. Third, to build a high-performance implementation capable of ana-
lyzing millions of points, we accelerate our posterior inference algorithm by exploiting a
quadtree data structure (Finkel and Bentley (1974)). Fourth, we explore different fluorophore
configurations through the use of fast state-space search techniques. The combination of these
strategies creates a scalable inferential workflow able to process large data sets. Finally, to
model time dependencies between fluorophore observations, we incorporate the photophysi-
cal properties of the fluorophores. We develop a model based on the Markovian Indian Buffet
process (Gael, Teh and Ghahramani (2009)). This model is able to discover fluorophore po-
sitions, assign observations to each active fluorophore and estimate fluorophore dynamics
jointly.

The paper is organized as follows. In Section 2 we begin by presenting the SMLM data
sets analyzed in this work. In Section 3 we review the Dirichlet process and discuss a time-
independent model for pointillistic data. Then, in Section 4 we extend the model to include
fluorophore photophysics and create a time-dependent formulation based on the Markovian
Indian Buffet process. In Section 5 we explore the performance of our algorithms on biolog-
ical data sets and assess the accuracy of our method. Next, in Section 6 we analyze a real
biological data set of known geometrical structure. In Section 7 we describe related work.
We conclude in Section 8.

A list of notational conventions and further details on our algorithms and experiments can
be found in the Supplementary Material (Gabitto et al. (2021)).

2. Experimental data sets. In this work we consider real biological data sets obtained
using STORM imaging. The first data set consists of a 3D DNA origami scaffold equipped
with multiple handles for the attachment of different molecules (Zanacchi et al. (2017)). The
scaffold is 225 nm long and consists of a 12-helix bundle with six inner and six outer helices.
It contains 15 attachment points, separated by a distance of 14 nm, that project outward and
provide site- and sequence-specific positions to which fluorophores or proteins of interest can
be functionalized (Figure 2A). First, at handle position 14, TAMRA fluorophores are attached
to enable identification of the DNA scaffold under wide field imaging. Next, complementary
handle sequences labeled with Alexa Fluor 647 were attached to handles 1, 7 and 13 of helix
0 to permit identification of single fluorophores (Figure 2B–D). STORM data sets generated
using the scaffold were kindly provided by the authors of the original work (Zanacchi et al.
(2017)) for the demonstration of our method. We localized individual molecules present in
single frames and used these positions as the input to our analysis. A second data set con-
sists of super-resolution STORM imaging of the nuclear pore complex (NPC) in nuclear en-
velopes. NPCs provide access to the cell nucleus, thereby permitting the transport of proteins
and RNA through the nuclear envelope. The function of the NPC is not limited to molec-
ular trafficking; NPCs are also involved in diverse cellular processes (D’Angelo and Hetzer
(2008)). The nuclear pore possesses a highly stereotyped configuration: proteins within NPCs
are arranged in an eight-fold symmetric, cylindrical assembly consisting of approximately 30
different proteins of the nucleoporin (Nup) family (Kim et al. (2018)). Here, we analyzed a
nuclear pore complex data set in which the Nup-107 protein is tagged with Alexa Fluor 647
in the nuclear pore membrane of U-2 OS cells and imaged using dSTORM on a commercial
Leica SR GSD 3D microscope (kindly provided by the Reiss Lab, data from Li et al. (2018))
(Figure 3A). Nup-107 proteins belong to the best-studied module within the NPC, the Y-
complex (its name describes the shape in which proteins in the module assemble). Nup-107
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FIG. 2. Super-resolution imaging of a DNA origami scaffold: a) DNA origami scaffold representation. Left,
cross-section depicting the double helix barrels, sequence specific handles protrude outward from outside helices.
Right, the scaffold is 225 nm long and possess 15 handles. Fluorophores with handle complementary sequence
are attached to handles 1, 7 and 13. At handle position 14, TAMRA fluorophores are joined for visualization under
wide field fluorescent microscopes. b-c-d) Example of super-resolution imaging of DNA origami scaffold in which
sequence specific Alex Fluor 647 fluorophores are attached to handles 1,7 and 13. b) Fluorophore localizations
smoothed with a Gaussian kernel (width = 10 nm) and aggregated across the time series. c) x-y positions of
fluorophore observations. d) Time traces depicting the frames in which each of the three fluorophores is observed.

surrounds the NPC, localizing to the nuclear rim and forming an eight-fold symmetrical ring
(Beck and Hurt (2017)) (Figure 3B). This highly reproducible symmetrical ring provides a
ground-truth structure to which we can compare in order to evaluate our algorithms.

3. A time-independent model of fluorophore locations. A variety of existing tech-
niques produce pointillist representations of fluorophore centers (Holden, Uphoff and Ka-
panidis (2011), Ovesnỳ et al. (2014), Sergé et al. (2008)). These locations are prone to error
due to their lack of correction for temporal effects (i.e., blinking) and their failure to integrate
measurement uncertainty into the analysis. Moreover, spurious fluorophore locations can be
created as the result of inaccurate modeling of the microscopic point spread function and the
nuances of optimization algorithms. Any algorithm attempting to correct these errors faces
a tremendous computational complexity, given that a typical SRM dataset contains ∼100k
observations interspersed among ∼10k time points.

Our approach addresses these limitations within a Bayesian framework by precomputing
an initial fluorophore configuration with a fast algorithm. This algorithm collapses time infor-
mation and performs inference in a timeless data set, reducing the computational complexity
of the problem. Moreover, to account for uncertainty in the number of fluorescent proteins
in the sample, our modeling formulation is based on a Bayesian nonparametric approach. To
perform posterior parameter inference at the scale of our application, we avail ourselves of
variational inference methods. Once a robust initial fluorophore configuration is calculated,
we use it as a seed to a more complex time-dependent model.

We begin this section by briefly reviewing the BNP prior that we used to model fluorophore
centers follow by the description of our time-independent model and posterior parameter
inference.
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FIG. 3. Super-resolution imaging of the nuclear pore complex: a) Example field of view in which nuclear
pore complexes are imaged with super-resolution microscopy. Nuclear pore complexes are identified by template
cross-correlation and enclosed by blue rectangles. b) Nuclear pore complex schematic. Left, cross-section of the
nuclear pore complex on the nuclear membrane indicating in black, Nup-107. Right, top view of the nuclear pore
complex highlighting Nup-107 octagonal symmetry labeled with Alexa Fluor 647.

3.1. The Dirichlet process. The Dirichlet process (DP) (Ferguson (1973)) is a distribu-
tion over probability measures. The DP is characterized by a scaling parameter α0 ∈ R

+ and
a base probability measure G0, defined on the set �. A draw from a DP is an atomic proba-
bility measure. Sethuraman (1994) provided an explicit representation of a draw from a DP,
via a stick-breaking construction,

G =
∞∑

k=1

πkδθk
,(3.1)

where δθk
is an atom located at θk ∈ �, θk ∼ G0 and the random weights π̄ = [π1, π2, . . . ]

depend on α0 as follows:

νk ∼ Beta(1, α0),

πk = νk

∏
j<k

(1 − νj ), k = 1,2, . . . .
(3.2)

The random sequence π̄ sampled according to equation (3.2) is said to follow a GEM distri-
bution (Ewens (1990)).

The atomic nature of the DP has been exploited by many authors by using a DP as a prior
for Bayesian mixture models (Escobar and West (1995), Neal (1992), Rasmussen (2000)).
In this setting the random weights of the atomic measure correspond to mixing proportions,
and the locations of the atoms represent the parameters of the mixture components. Given
observations (xn) with parameters (θn), each θi is sampled from G, while each xi has dis-
tribution P(θi) parametrized by θi . The following generative process describes the overall
nonparametric mixture model:

G|α0,G0 ∼ DP(α0,G0),

θi |G ∼ G,(3.3)

xi |θi ∼ P(θi).
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Clustering arises under this model, due to the fact that G is discrete, such that many θi can
take the same value. An alternative way to capture this aspect of the model is by using a
stick-breaking construction, including cluster assignment variables zi sampled from π̄ . This
respresentation is described as follows:

π̄ |α0 ∼ GEM(α0),

zi |π̄ ∼ Categorical(π̄),

θk|G0 ∼ G0,

xi |zi, (θk) ∼ P(θzi
).

(3.4)

3.2. Model overview. Our observed data is a set of two- or three-dimensional fluorophore
locations xn (i.e., putative fluorophores at different time frames). Each observation xn has an
associated localization accuracy σ 2

n that informs confidence in the estimated location (σ 2
n

is obtained by typical preprocessing steps). We begin our analysis by collapsing observa-
tions across time and inferring fluorophore centers in this timeless collapsed data set. These
inferences can be performed quickly, and they provide a seed for our more complex time-
dependent model, described below in Section 4.

We model observations as arising from a nonhomogeneous marked spatial Poisson process
(NHMSPP), defined on a space R×R

+, where R denotes the observation box R = [a1, b1]×
[a2, b2] × [a3, b3]. This NHMSPP represents a marked process in which each observation
x ∈ R contains a mark σ 2 ∈ R

+. We define the conditional intensity function λ(x|σ 2) : R ×
R

+ −→R
+. For such random processes, the following hold true:

(i) For any bounded set S ∈ R, the number of points in S is Poisson distributed, N(S) ∼
Po(
(S)) = 
(S)N(S)e−
(S)

N(S)! , where 
(S) = ∫
S λ(x|σ 2) dx.

(ii) Given N(S), the point locations within S are i.i.d. with density λ(x|σ 2)

(S)

.

By specifying the mean measure in terms of two independent factors—a total scalar in-
tensity λ0 and a spatial density f (x|σ 2), λ(x|σ 2) = λ0f (x|σ 2)—we can write the Poisson
process likelihood in separable form, thereby transforming the problem into one of density
estimation,

p
(
x|σ 2, λ

) = p
(
x|σ 2,N

)
p(N) = e− ∫

R λ0f (x|σ 2)
∏
n

λ0f
(
x|σ 2)

= e−λ0λN
0

∏
n

f
(
x|σ 2)

.
(3.5)

Placing a gamma prior on λ0 permits Bayesian inference in a manner that is independent of
the spatial density.

Next, we transform the process into a doubly stochastic Poisson process (Cox process) by
specifying a random process density f (x|σ 2), making use of the Dirichlet process (Ickstadt
and Wolpert (1999), Kottas and Sansó (2007)). Building on Rubin-Delanchy et al. (2015),
we propose a mixture of two components: spatially random background noise with constant
density 1

Vol(R)
(where Vol(R) represents the volume of the box R) and a DP containing a

random unbounded number of fluorophores. The DP prior is consistent with the idea that
not every fluorophore is observed during the imaging experiment and that the number of
fluorophores would increase if the experiment would have continued. We have

f
(
xi |σ 2

i ,G,π0
) = π0

1

Vol(R)
+ (1 − π0)

∫
T Normal

(
xi |μ,σ 2

i

)
dG(μ),

G|α0,G0 ∼ DP(α0,G0),

(3.6)
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FIG. 4. Time-independent and time-dependent Graphical Models for super-resolution localization: a)
Time-independent graphical model. b) Different states for the hidden Markov model used to model storm or
palm data sets. c) Time-dependent graphical model.

where π0 is a mixing proportion guaranteeing integration over the volume to 1. In this con-
struction we assume that every observation arises either from a constant background noise
distribution or is a fluorophore which is distributed according to a truncated Gaussian distri-
bution defined in R with mean μ, denoting the fluorophore position.

We define priors for the parameters of the model as follows. To infer a random number of
fluorophores and random fluorophore location, we parametrize our DP prior using the stick-
breaking (SB) construction. The graphical model representation is summarized in Figure 4,
and the specification is as follows:

π̄ |α0 ∼ GEM(α0),

μk|μ0, σ
2
0 ∼ Normal

(
μ0, σ

2
0
)
, k = 1,2, . . . ,

π0|a0, b0 ∼ Beta(a0, b0),(3.7)

zn|π0, π̄ ∼ Categorical
(
π0, (1 − π0)π̄

)
,
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xn|zn = 0 ∼ 1

Vol(R)
,

xn|zn = k, (μk) ∼ Normal(μk, σ
2
n )I(xn ∈ R)∏

i=x,y,z[�((bi − μi
k)/σ

i
n) − �((ai − μi

k)/σ
i
n)]

,(3.8)

where n ∈ {1, . . . ,N} in the last three equations, I is an indicator function, � is the standard
Gaussian cumulative function needed to normalize the truncated Gaussian and σ 2

n denotes a
diagonal covariance matrix which ensures the factorization of the normalization constant.

These modeling assumptions define a joint distribution, p(x, z,π0,μ, ν|σ), for the data
and the latent structure of the model, where we use ν for the stick-breaking representa-
tion (3.2). After observing data (x, σ 2), our inferential goal is to obtain the posterior dis-
tribution of the fluorophore locations μ and assignments z. We refer to μ and the parameters
of the stick-breaking prior as global parameters because they generalize to new observations,
in contrast to the states zn which are local to a specific observation.

3.3. Mean field variational inference. Exact posterior inference is infeasible in our
model. The two most common approaches to perform approximate posterior inference are
Markov chain Monte Carlo (MCMC) (Gelfand and Smith (1990)) and variational inference
(VI) (Wainwright and Jordan (2008)). MCMC proceeds by sampling an ergodic Markov chain
constructed such that its stationary distribution is the posterior; the posterior is then approxi-
mated by an empirical estimate. VI approximates the posterior distribution by projecting onto
a family of candidate distributions, turning an integration problem into one of optimization.

While MCMC procedures have asymptotic convergence guarantees, VI can underestimate
the variance of the posterior density (Turner and Sahani (2011)). However, in many large-
scale problems empirical research has shown that VI does not produce inaccurate poste-
rior predictive densities, and exhibits computational speedups that can be orders of magni-
tude faster than MCMC (Blei and Jordan (2006), Blei, Kucukelbir and McAuliffe (2017),
Braun and McAuliffe (2010), Regier et al. (2019)). In our case the computational issues are
critical—the inference algorithm must scale to millions of observations, and it should be able
to quickly explore different fluorophore configurations and infer their fluorescent state (see
next section).

We, therefore, resort to computing an approximation to the posterior distribution using
VI. Let Q be a family of distributions on � = (π0, ν, z,μ), the space of latent variables.
For q ∈ Q, we search for a family of distributions that maximizes the evidence lower bound
(“ELBO” = L(q)),

logp(x) = log
∫

p(x,�)d� = log
∫

p(x,�)
q(�)

q(�)
d� = logEq

[
p(x,�)

q(�)

]

≥ Eq

[
logp(x|�)

] − DKL
(
q(�),p(�)

)
(3.9)

=: L(q).

We seek a distribution q over the latent variables that is close to the true posterior and also
lies within a factorized family, q(�) = q(π0)q(ν)q(μ)q(z). Each of the factors belongs to a
particular member of the exponential family, except for the truncated normal distribution that
characterizes the fluorophore centers. For the latter we make use of the fact that our problem
contains strong spatial information. In particular, we possess a priori information regarding
the scale of the variance of each fluorophore center, given by the average uncertainty of the
observations. By augmenting the size of the bounding box, we can assume that �(

a−μ
σ

) ∼ 0

and �(
b−μ
σ

) ∼ 1, removing the need to explicitly truncate. Numerical exploration of the
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validity of this approximation is performed in the Supplementary Material (Gabitto et al.
(2021)).

By approximating the generative model in an unconstrained space, we restrict our subse-
quent analysis to a variational distribution with the following factorized density:

q(�) = q(π0)

N∏
n=1

q(zn)

K∏
k=1

q(vk)q(μk),(3.10)

where

q(zn) = Categorical(rnk),

q(vk) = Beta(αk1, αk2),

q(μk) = Normal(μ̃k, ˜̄σk),

q(π0) = Beta(ã, b̃).(3.11)

3.4. Inference. The computational task for our posterior inference algorithm is to find a
set of parameters that maximizes the ELBO. Our algorithm updates free parameters in the
variational distribution via coordinate ascent variational inference (CAVI). We present up-
dates for global and local factors that converge to a local maximum. To simplify calculations,
the ELBO is arranged into three terms that account for data generation, global variables char-
acterizing our stick-breaking construction and an entropic term,

L(q) = Eq

[
logp(x|�) + logp(�) − logq(�)

]
= L(q)Data +L(q)Global +H,

(3.12)

where

L(x, r, μ̃)Data = Eq

[
logp(x|z,μ) + log

p(μ)

q(μ)

]
,

H(z) = −Eq

[
logq(z)

]
,

L(r, ν̃)Global = Eq

[
logp(z|π) + log

p(ν)

q(ν)
+ log

p(π0

q(π0)

]
,

where all expectations are taken with respect to the variational distribution. Due to the con-
jugate exponential family terms in the ELBO, the CAVI updates are easy to compute; see the
Supplementary Material for the details (Gabitto et al. (2021)).

Finally, we treat the hyperparameter α0 as random in both the generative model and the
variational distribution (Blei and Jordan (2006)),

α0|γ1, γ2 ∼ Gamma(γ1, γ2).(3.13)

We explore the accuracy of our variational approximation in the Supplementary Material
(Gabitto et al. (2021)).

3.5. Scalable inference by exploiting spatial constraints. Standard variational inference
assigns to each data point a positive posterior probability rnk , effectively assuming that each
observation can arise from any fluorophore. This instantiates matrices that demand dense
memory storage and computation that scales with the total number of clusters. Our problem
presents certain advantages due to the locality of its fluorophore assignments. This advantage
translates into near certainty that only a few clusters have meaningful posterior mass for
any given observation. Unlike approaches that instantiate a fixed number of clusters (Rubin-
Delanchy et al. (2015)), our approach assigns nonzero mass to clusters residing within a
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certain spatial distance of each observation; this distance acts as a threshold and is the only
tunable parameter.

We harness the spatial locality to speed up computations by making use of a quadtree,
a tree-like data structure that recursively subdivides two-dimensional space into four quad-
rants (Finkel and Bentley (1974)). We exploit quadtree decomposition during the computation
of local assignments. This step computes the posterior probability of assigning an observa-
tion n to fluorophore k for each observation rnk . Our CAVI algorithm optimizes r̄n by fixing
global fluorophore parameters according to the following objective:

Ln(rn) = Eq

[
logp(x|μ)

] +Eq[logπ ] − rn log(rn),(3.14)

subject to the constraint that
∑

k rn,k = 1 and rn,k > 0. The first two terms represent the log
posterior assignment of observation n to cluster k. Following Rubin-Delanchy et al. (2015),
we replace the variational objective with a new objective that dynamically limits the number
of clusters to which an observation can be assigned. Instead of instantiating rn as a dense
vector, we compute only the nonzero mass entries for each observation as determined by the
clusters found within a certain distance of the observation. The new optimization problem
can be written as

r∗
n = arg max

rn

Ln(rn)

s.t.
∑
k

rn,k = 1, rn,k ≥ 0,∀k ∈ Sk,
(3.15)

where the set Sk is computed dynamically at each iteration by querying a quadtree structure
built on the locations of the K fluorophores. Observations that return no fluorophore centers
are automatically designated as noise. Selecting the threshold distance results in a tradeoff
between execution speed and inferential accuracy. In our case the tradeoff is a favorable one,
due to the strong locality of the observations arising from each cluster. This new constrained
optimization problem can be solved by exponentiation of the log posterior assignment and
normalization of the subset of active fluorophores; see Figure 5 for a numerical example of
quadtree scaling.

3.6. Reliable Bayesian inference via state space adaptation. Variational inference algo-
rithms converge to local optima. We thus implement a multiple trial procedure that yields
an algorithm that has the flexibility to improve initial assignment estimates. Specifically, we
develop a series of fluorophore proposals aimed to obtain improvements in the ELBO. We
interleave proposals that randomly split or merge observations assigned to fluorophores. We
also create proposals that create or delete fluorophores by removing or assigning points to
noise. To evaluate proposals rapidly, we simplify ELBO calculations for the gap between old
and new fluorophores’ configurations (see Figure 6). These calculations are reproduced in the
Supplementary Material (Gabitto et al. (2021)).

4. A time-dependent model of fluorophore locations. We turn to the second phase of
our single-molecule localization procedure. Here, we consider each individual observation in
space and time, taking into account the photophysical properties of the emitting molecules.
In this formulation a large number of fluorescent molecules are present in the sample, but
only a fraction of them are visible at each time point. We design a statistical model capable
of analyzing spatiotemporal localization by relating observations at each time point to a col-
lection of K fluorescent time series, where K is unknown and subject to posterior inference.
Major challenges include the need to distinguish observations from background noise and
the possibility of assigning more than one observation to a given time series at each time
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FIG. 5. Performance of quadtree acceleration. For three different data sets, containing 100, 12 × 103 and
1.2 × 106 points, respectively, the algorithm was initialized with three initial conditions that gave rise to different
numbers of initial clusters: a) Computational time for one iteration for each of the three data sets. b) Total time
to compute 20 complete iterations, including local and global steps. By varying the threshold distance, every
quadtree query returns a different number of clusters k′ < K for each point. c) Average number of points per
center and d) average number of centers per point. Thresholds lower than 150 nm return an equal number of
centers independently of the size of the data set.

FIG. 6. State space exploration through different proposal configurations: a) Cartoon representation showing
how different configurations can evolve under birth, death, split and merge proposals. b). ELBO evolution with
and without state space exploration on a data set of 12,000 points.
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point. To address these challenges, we based our model on a Bayensian nonparametric prior
representing an unbounded number of components, each consisting of a Markov chain. At
each time point, observations can be assigned to only one of the active chains. Our model is
based on the Markovian Indian Buffet process (M-IBP) (Gael, Teh and Ghahramani (2009),
Valera, Ruiz and Perez-Cruz (2015)) together with a time-dependent Dirichlet distribution.

4.1. A dynamic prior that shares features across time points. In this section we derive
a prior distribution over binary matrices with a finite number of columns, each column rep-
resenting a Markov chain model of a fluorophore. This formulation is closely related to the
M-IBP, having a temporal dynamics that is specialized to the time evolution of fluorophores.
We begin by introducing a latent state variable, sk

t , representing the state of the fluorophore k

at time point t . The dynamics of this variable is governed by a transition matrix A such that

sk
t |A, sk

t−1 = ask
t−1,s

k
t
, A =

⎛
⎜⎜⎝

a00 a01 0 0
0 a11 a1b a1d

0 ab1 abb 0
0 0 0 1

⎞
⎟⎟⎠ ,(4.1)

with prior distributions given by

ak
01|α0 ∼ Beta(α0/K,1), ai |α ∼ Dir(α), i = 1, b.(4.2)

The transition matrix models an inactive state (0), a light-emitting state (1), a blinking state
(b) and a dead state (d). Next, we introduce a feature vector f t

k associated with the presence
(f t

k = 1 or sk
t = 1, on) or absence (f t

k = 0 or sk
t = 0, 2, 3 inactive, blinking or dead) of

fluorophore k at time point t . This feature vector represents a binary matrix having as many
columns as there are fluorophores present in the sample. Each feature vector follows a time
evolution generated through the latent states,

P
(
f k

t

) ∼ Bernoulli
(
a

[Sk
t−1=0]

01 a
[Sk

t−1=b]
b1 a

[Sk
t−1=1]

11

)
.(4.3)

By introducing a set of count variables, c, to indicate the number of transitions between two
states (e.g., c01 is the number of transitions from the state 0 to 1), we can write the probability
of the entire binary matrix as follows:

P(F |A) = ∏
k

a
ck

01
01 (1 − a01)

ck
00a

ck
b1

b1 (1 − ab1)
ck
bba

ck
11

11 a
ck

1b

1b (1 − a1b − a11)
ck

1d .(4.4)

In a manner similar to the M-IBP, we calculate the marginal over the matrix F by integrat-
ing out transition probabilities,

P(F |α0, α) = αK
0

KK

∏
k


(ck
00 + 1)
(ck

01 + α0
K

)


(ck
00 + 1 + ck

01 + α0
K

)


(2α)
(3α)


(α)5

· 
(ck
bb + α)
(ck

b1 + α)


(ck
bb + ck

b1 + 2α)


(ck
11 + α)
(ck

1b + α)
(ck
1d + α)


(ck
11 + ck

1b + ck
1d + 3α)

.

(4.5)

This represents the probability of each binary matrix under our time-dependent prior. Next,
we use this matrix to assign observations to one of the active chains at each time point (f k

t =
1). We do so by associating to each chain a gamma variable (γ k). Then, at each time point
we form a Dirichlet distribution by normalizing the gamma variables over the space of active
chains,

πk
t |γ k, f k

t =
⎧⎪⎨
⎪⎩

γ k∑
l γ

lf l
t

, if f k
t = 1;

0, otherwise.
(4.6)
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Finally, observations at time t are assigned to active chains by using a categorical distribution,
Categorical(πt ).

In the Supplementary Material we present the infinite, that is, nonparametric, limit of our
model (Gabitto et al. (2021)). To obtain this model, we need to define two infinite mathe-
matical constructs. In the first one we derive a BNP prior over binary matrices that follows
the fluorophore dynamics. The prior is exchangeable in the columns, and it is also Markov
exchangeable in the rows. In the second construct we use the language of completely random
measures (CRM) to show that a thinned CRM, based on the Gamma process, represents our
model in the infinite case (Foti et al. (2013)).

4.2. Model overview. Our model relies on the Markovian dynamics of the time-
dependent binary matrix prior to generate a sparse set of active fluorophores at each time
point from which observations can be drawn. We present the time-dependent fluorophore
model as a graphical model in Figure 4, and we provide the full specification as follows:

(1) Draw parameters

π0|a0, b0 ∼ Beta(a0, b0), ai |α ∼ Dir(α), i = 1, b.

(2) For k = 1, . . . ,K , draw chain parameters

μk|μ0, σ
2
0 ∼ Normal

(
μ0, σ

2
0
)
, γk|
0 ∼ Gamma

(

0

K
,1

)
,

ak
01|α0 ∼ Beta

(
α0

K
,1

)
.

(3) For each time point t = 1, . . . , T :
For k = 1, . . . ,K :

sk
t |sk

t−1, Ak ∼ ak
st ,st−1

πk
t |γ k, sk

t =
⎧⎪⎨
⎪⎩

γ k∑
l γ

l[sl
t = 1] , if sk

t = 1;
0, otherwise.

For nt = 1, . . . ,Nt :

zt
nt

|π0, π̄
t ∼ Categorical

(
π0, (1 − π0)π̄

t )
xt
nt

|zt
nt

= 1 ∼ 1

Vol(R)

xt
nt

|zt
nt

= k, (μk) ∼ Normal
(
μk,σ

t,2
nt

)
.

4.3. Mean field variational inference. In this section we develop a variational inference
algorithm to approximate the posterior distribution of the temporal model. We leverage the
fact that a correspondence exists between the assignment of an observation at a particular
time point to a fluorophore, only if the fluorophore is active. Our approach employs the
time-independent model as a seed, or initial condition, and we refine this solution through
incremental move proposals. In particular, we propose a distribution from a factorized fam-
ily, q(�) = q(π0)q(μ)q(γ )q(z)q(S)q(a), restricting our analysis to distributions q with the
following dependence structure:

q(�) = q(π0)q(a)

K∏
k=1

q
(
Sk)q(

ak
i

)
q(γk)q(μk)

T∏
t=1

Nt∏
nt=1

q
(
zt
n

)
,(4.7)
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where

q
(
ak

01
) = Beta(ν̃k1, ν̃k2), q(ai) = Dir

(
α̃k),

q
(
γ k) = Gamma(η̃k1, η̃k2), q(μk) = Normal(μ̃k, σ̃k),(4.8)

q(π0) = Beta
(
ι̃t1, ι̃

t
2
)
, q

(
zt
n

) = Categorical
(
rt
nk

)
.

Finally, we fit the state-variable dynamics via a structured variational proposal with Marko-
vian structure (Hughes, Kim and Sudderth (2015)),

q(Sk) ∼
[

m∏
j=1

(ψk0i)
δS0

k=i

][
T∏

t=1

m∏
i=1

m∏
j=1

(
φktij

ψkti

)δSt
k=i,δSt−1

k =j
]
,

ψkti =
m∑

j=1

φktij ,

(4.9)

where the variational parameter φktij represents the joint probability φktij = q(s
t+1=j
k , st=i

k )

and ψkti defines the marginal probability ψkti = q(st=i
k ).

4.4. Inference. We turn again to ELBO computation for the spatiotemporal model. In
particular, we optimize the parameters of the fully factorized variational proposal via coordi-
nate ascent (CAVI). We arrange the ELBO into three terms accounting for data generation,
entropy and the KL divergence between our global parameter prior distributions and the cor-
responding variational proposals,

(4.10) L(q) = Eq

[
logp(x|�) + logp(�) − logq(�)

] = L(q)Data +H+L(q)Global,

where

L(x, σ, r, μ̃, σ̃ , η̃, ι̃)Data = Eq

[
logp(x,σ, z|γ, z,μ,S,π0)

]
,

H(r) = −Eq

[
logq(z)

]
,

L(μ̃, σ̃ , ν̃, α̃, η̃, ι̃)Global = Eq

[
log

p(μ)

q(μ)
+ log

p(γ )

q(γ )
+ log

p(a01)

q(a01)

+ log
p(π0)

q(π0)
+ log

p(S)

q(S)

]
.

(4.11)

We compute the ELBO for this new model and take partial derivatives with respect to
each variational parameter to derive the coordinate ascent updates. Most of the updates are
straightforward to compute, due to the conjugate exponential family factors. To optimize
the local variables involved in the likelihood equation, we relax our generative model by
introducing a variable ε 
 1,

P
(
xt
n, σ

t
n, z

t
n|γ, st ,μ

) =
K∏

k=0

P
(
xt
n, σ

t
n|μzt

n

)[zt
n=k][st

k=1]
P

(
zt
n|γ, st )[zt

n=k][st
k]

=
(

1

R
π0

)[zt
n=0] K∏

k=1

P
(
xt
n, σ

t
n|μzt

n

)[zt
n=k][st

k=1](4.12)

∗
[
(1 − π0)

(γ k)[st
k=1]ε[1−st

k=1]∑
l γ

l[st
l = 1] + ε[st

l = 0]
][zt

n=k]
.

This relaxation smooths the ELBO and helps convergence. Finally, as noted by Sun, Paisley
and Liu (2017) in a similar setting, the gamma normalization term presents computational
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difficulties, and we follow those authors in introducing an auxiliary variable ξt to further
lower bound this term (Sun, Paisley and Liu (2017)),

− log
(∑

l

γl

[
st
l = 1

] + ε
[
1 − [

st
l = 1

]])

≥ − log ξt −
∑

l γl[st
l = 1] + ε[1 − [st

l = 1]] − ξt

ξt

.

(4.13)

To obtain the value of ξt , we differentiate the lower bound and set to zero which yields the
following update rule:

ξt = ∑
l

Eq

(
γl

[
st
l = 1

] + ε
[
1 − [

st
l = 1

]])
.(4.14)

We reproduce the entire list of CAVI updates in the Supplementary Material (Gabitto et al.
(2021)).

4.5. Algorithmic work flow. To summarize, the analysis of a particular data set, based
on a given set of fluorophore localizations in space and time, proceeds as follows. First, we
collapse observations in time and select an initialization. We refine this initialization through
our time-independent model. We interleave birth-death, split-merge proposals to explore dif-
ferent configurations of the state space and prune existing clusters. The final configuration of
our time-independent algorithm seeds our time-dependent model. Finally, clusters are refined
by split-merge moves that help to separate time-overlapping clusters. We approximate the en-
tire time evolution of each fluorophore state when splitting or merging fluorophores in this
model. To efficiently propose split moves, we calculate the posterior number of fluorophores
inside clusters with an unusually high number of observations and evaluate split proposals.
The calculation of the posterior number of fluorophores, given blinking statistics, is detailed
in the Supplementary Material (Gabitto et al. (2021)). Finally, at the end, for each fluorophore
we compute the time evolution of each fluorescent trace.

5. Realistic simulation studies. In this section we present studies assessing the perfor-
mance of our algorithm on data sets derived from the DNA origami platform and the nuclear
pore complex. Both data sets were presented in Section 2.

5.1. Data preprocessing and data set construction. To create realistic SMLM data sets,
we make use of the DNA origami platform introduced in Section 2. Raw images of every
data set were preprocessed with Thunderstorm (Ovesnỳ et al. (2014)). Briefly, raw images
were imported into FIJI (Schindelin et al. (2012)), and the Thunderstorm plugin was run with
camera parameters and default approximate and subpixel molecule localization parameters.
Next, observations with an unusual variance, uncertainty or intensity value (five standard
deviations above or below the mean) were filtered out. We use these raw localizations to
generate realistic data sets.

We isolated single fluorophores present in the data set in which fluorophores are attached
to handle complementary sequences (Figure 3A). We verified that observations are localized
with the reference TAMRA signal, that three sets of cloud points co-localized and that cloud
distances were close to 84 nm (distance between handles 1–7 and 7–13). When these condi-
tions were met, we then isolated individual clouds of points and considered each of them as an
isolated fluorophore. For each extracted fluorophore, we computed its posterior fluorophore
location, according to our algorithm, for just one fluorophore. This is the ground-truth fluo-
rophore location against which we test our algorithm.
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5.2. Model hyperparameters. For all subsequent computational experiments, we used
weakly informative hyperpriors. We placed a Gamma(1, 0.01) prior on the concentration pa-
rameters α0. The parameters of the base measure were set from the data, with μ0 was chosen
to be the center of the field of view and σ0 the maximum distance between observations. To
set the prior on π0, we reasoned that, in a real experiment, most of the points arise from real
fluorophores. Accordingly, we chose a0 = 1, b0 = 100. We chose the augmentation factor of
the bounding box to be 1.25 times the average standard deviation of the points. This value
seemed to be robust across the different data sets that we analyzed. For the time-dependent
model, 
0 was given a Gamma(100, 1) prior. The prior on the transition matrix was given via
pseudo-counts αon,on/blink/dead ∈ {1,5,10} and αblink,on/blink ∈ {1,10}.

5.3. Computational experiments. In this section we present several different experimen-
tal scenarios that we employed to test the limits of our algorithm. In particular, we aimed to
assess: 1) when our algorithm fails to distinguish nearby fluorophores, 2) how well our move
proposals explore the ELBO, finding global optima and 3) how well our procedures scales
with an increasing number of fluorophores in the field of view.

To achieve this goal, we simulated fluorophore observations by randomly sampling a DNA
origami fluorophore and placing its observations in a ground-truth position. To contaminate
data sets with noise, we randomly selected observations from any fluorophore and randomly
positioned them in the field of view. We quantified the noise level by measuring the ratio of
noise points over points that belong to a ground-truth fluorophore. By these means we were
able to construct realistic simulated data sets with realistic ground-truth observations. We
judged performance with reference to a variety of metrics: the algorithm’s ability to correctly
segment the data according to the underlying fluorophore location, the robustness to the al-
gorithm to different number of fluorophores and noise level as well as fluorophore detection
based on fluorophore proximity.

5.4. Identifying nearby fluorophores. We simulated two fluorophores at different dis-
tances and different noise levels and compared our algorithms (both the time-dependent and
time-independent algorithms) to DBScan (Ester et al. (1996)) in Figure 7a. We explored the
ELBO through different move proposals and returned the best configuration seen. In all cases,
automatic DBScan settings explored through optics (Schubert et al. (2017)) failed to identify
the correct number of fluorophores. As seen in the figure, our algorithm performed signif-
icantly better than DBScan. Our algorithm performed poorly when observations are nearer
than two times the standard deviation of the observations, although the dispersion of the lo-
calizations of each fluorophore also played a role in the performance. This limit is extended
through the use of our time-dependent formulation. This limit is an intrinsic property of our
model, as revealed by the average ELBO gap between the true fluorophore configuration
and one in which fluorophores are merged (see Figure 7b). The gap trace switches sign at
the limit, indicating a preferred incorrect fluorophore configuration. Our algorithm exhibits
performance above this limit that is robust to noise. Below this limit, even if data-driven pro-
posals can identify more than one fluorophore in the cloud of points, their location cannot be
correctly determined.

We explored robustness to different noise scenarios, revealing that performance is main-
tained even when the noise level reaches a value of two. This noise corruption means that,
locally, two out of three points belonged to noise. Experimentally, it is highly unlikely to
encounter such scenarios, and we did not observe it in our nuclear pore experiments. Finally,
our time-dependent algorithm seems to be more accurate than our time-independent model
in correctly localizing fluorophores’ true positions (Figure 7c).
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FIG. 7. Realistic simulated experiments, distinguishing two individual fluorophores: a) Number of inferred
fluorophores under different noise regimes, varying the distance between them. b) For a noise level of 0.6, ELBO
gap computed as the difference between a model with two fluorophores and a model with one fluorophore. When
the gap becomes negative, the model prefers the incorrect configuration of just one fluorophore. c) Error of inferred
fluorophore positions.

5.5. Scaling fluorophore numbers. Next, we simulated an increasing number of fluo-
rophores at different distances, localizing them on a grid. We imposed a realistic level of
noise of 0.5 (Figure 8a–b). We varied fluorophore distances while remaining above our iden-
tification limit. We then applied our algorithms to every condition, randomly simulating the
conditions six times and computing averages of inferred fluorophore numbers. As seen in
Figure 8c, our algorithm is robust to an increasing number of fluorophores as long as we in-
crease the number of proposals explored. There was a mild decrease in fluorophore recovery
when the distances approached the detection limit. As expected, true fluorophore localization
degraded as fluorophores approached each other (see Figure 8d).

6. Application to nuclear pore complex data. Finally, we present results of applying
our algorithms to the nuclear pore complex, a real biological data set of known structure. To
focus on the NPC, a field of view needs to be preprocessed and NPCs isolated. To select sev-
eral instances of the imaged NPCs, we proceeded by isolating a few candidates in the image
and creating a searching template (Figure 9a). This template was cross-correlated against the
entire image, and candidates’ data sets were created from regions in which the correlation
score exceeded a threshold (Figure 3a). These NPC datasets with localized emitters served as
input to our analysis (examples of NPCs are reproduced in Figure 9b).

We applied our algorithms to 369 NPC datasets, running them for a fixed budget of iter-
ations (although convergence was recognized well before exhausting the budget) and iden-
tifying underlying fluorophores (Figure 9c–d)). We were specifically interested in assessing
the validity of our inferred fluorophores. Therefore, we made use of the aforementioned NPC
symmetry and counted fluorophore distance to the closest neighbor. Given the NPC octag-
onal shape, we thereby obtained a minimal fluorophore distance of 41.5 nm, where the raw
data minimal distance is close to three nm (as illustrated in Figure 9e–f)). Moreover, as seen
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FIG. 8. Realistic simulated experiments, scaling the number of fluorophores: a) True configuration for an
example of 16 fluorophores in the field of view. b) For a configuration such as in a), inferred fluorophore positions.
c) Number of inferred fluorophores when the ground truth number in the field of view is increased. d) Average
error ± standard deviation for the inferred fluorophores’ positions.

in Figure 9g–h, the inferred time dependent parameters were in accordance with published
results with the blinking probability exhibiting a clear exponential decay (Lee et al. (2012)).

7. Related work. There has been a great deal of previous work on the development
to software to deconvolve super-resolution movies (Holden, Uphoff and Kapanidis (2011),
Ovesnỳ et al. (2014), Sergé et al. (2008), Small and Stahlheber (2014)). Most of this work
focuses on computationally efficient algorithms for detecting the Gaussian shape of the point
spread functions without attempting to explicitly model latent temporal dynamics. Software
that incorporates temporal information is extremely computationally costly and is prone to
producing artifacts (Rosten, Jones and Cox (2013)). Recently, deep generative models have
been used to identify fluorophores from SR images, taking into account different PSF shapes
(Nehme et al. (2019), Speiser, Turaga and Macke (2015), Sun, Archer and Paninski (2017)).
Some of these approaches are complementary to ours and of similar computational com-
plexity; others are significantly more costly computationally. Our software builds upon fast
single-frame deconvolution algorithms to incorporate temporal information into the localiza-
tion analysis. Furthermore, we use spatially sensitive data structures to speed up calculations
and facilitate scalability.

More broadly, identifying the number of different time series and assigning observations
at each time point is a difficult task when the number of observations does not match the
number of time series. This problem has been partially addressed by different authors. Sev-
eral BNP approaches that capture time evolution—most based on the hierarchical Dirichlet
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FIG. 9. Analysis of nuclear pore datasets: a) Top left, the image of a nuclear pore convolved with a Gaussian
filter. Bottom left, the nuclear pore complex is rotated eight times, and these rotated images are aggregated to
generate a nuclear pore complex template. Right, an eight-fold rotation of the nuclear pore complex. b) Nuclear
pore complexes isolated through template matching. c) Localizations extracted from nuclear pore complex data
sets. Inferred fluorophore centers highlighted with a cross in different colors. d) ELBO evolution during our
inference procedure for the four datasets shown in c). e) A histogram depicting the distance for each point to
its closest neighbor. f) Same as in c) but this time for each inferred fluorophore location. g) Inferred fluorophore
durations. h) Inferred time interval between subsequent observations of each fluorophore.

process (HDP) (Teh et al. (2006))—have been developed in the setting of topic models. The
HDP assumes that the probability of topics and the proportion of words explained within each
document are coupled. This is undesirable, however, when there are rare topics explained by
a large proportion of words in a small number of documents. A similar problem has been en-
countered in sparse topic modeling (Archambeau, Lakshminarayanan and Bouchard (2014),
Faisal et al. (2012), Williamson et al. (2010)), where it is important to distinguish the prob-
ability that a topic belongs to a document from the probability of inclusion of the topic into
the analysis. To address this issue, the authors proposed the use of a compound Indian buf-
fet process-Dirichlet process. However, their work did not consider the dependency of the
features across time and is limited by the sampling scheme developed.

The use of Bayesian nonparametric feature models for the modeling of time series was
initiated by Fox et al. (2009). Their work focused on motion capture data, a domain without
the complexities and the scale of single-molecule imaging domain that is our focus. There has
been significant follow-up work in this vein, including the use of a time-dependent beta pro-
cess as a Bayesian nonparametric prior for feature allocation models (Perrone et al. (2017)).
Again, however, the focus has been on small-scale problems, and the methods are not directly
applicable to the single-molecule imaging problem.

8. Discussion. We have presented a Bayesian nonparametric method for the identifica-
tion of fluorescent molecules in super-resolution experiments. To obtain a procedure that is
viable at the scale of realistic experiements, we developed a statistical methodology that pro-
ceeds in two phases. The first phase is based on a model that analyzes localization microscopy
observations by collapsing temporal information. This model relies on the Dirichlet process
as a prior on the underlying number of fluorophores present in the sample. To speed calcula-
tion, we used spatial data structures (quadtrees) to obtain individual fluorophore assignments.
Inference in this model is performed using mean field variational inference, and the feature
space is explored using state space adaptation techniques. Next, we developed a statistical
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model that incorporates temporal information into the analysis and accounts for fluorophore
photophysics. Taking the infinite limit of this model defines a nonparametric prior that is
comprised of an infinite factorial hidden Markov model and a dependent Gamma process.
This prior allows the assignment of different probabilities to the inclusion of a fluorophore at
each time point and determines the probability of assigning an observation to each active flu-
orophore. To refine the inferred fluorophore numbers, we incorporate data-driven split-merge
moves that split fluorophores based on fluorophore blinking statistics.

We demonstrated the utility of our model using realistic simulated data and a real data
set in which the underlying biological structure is known. In this real data set we were able
to correctly infer fluorophore localization consistent with the geometry of the sample, as
demonstrated by the interfluorophore position distributions. By using realistic simulated data,
we showed that our model is robust to noise conditions encountered in real experiments. We
expect our method to perform poorly in cases where fluorescent molecules are out of focus
which results in an inferred position that differs greatly from the true location.

A key feature of our algorithm is that it can be used as a postprocessor for any software
pipeline that extracts raw fluorophore localizations from data. Our approach aims to integrate
temporal information into the analysis and correct mistakes produced during single-molecule
identification. We illustrated our method using the external software package Thunderstorm
to process our images. In practice, there is evidence that such localization software produces
mistakes when two nearby fluorescent molecules are active in the same frame due to a failure
to correctly infer molecule locations. Future work could consider alternative ways of prepro-
cessing imaging datasets. In this case, to further improve localization accuracy, it might be
desirable to incorporate modeling of the point spread function into the model and to directly
process raw images within a more sophisticated statistical framework.

Software. Our method is implemented in python with a C++ kernel, available on github
at https://github.com/marianogabitto/Lightning and in the Supplementary Material (Gabitto
et al. (2021)).
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material to support the results in this paper. This Supplementary Material includes detailed
derivations of parameter update rules, cluster refinement procedures and possible extensions
of our model to different time distributions.

Source code to “A Bayesian nonparametric approach to super-resolution single
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