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We consider the mutation–selection differential equation with pairwise
interaction (or, equivalently, the diploid mutation–selection equation) and es-
tablish the corresponding ancestral process, which is a random tree and a
variant of the ancestral selection graph. The formal relation to the forward
model is given via duality. To make the tree tractable, we prune branches
upon mutations, thus reducing it to its informative parts. The hierarchies in-
herent in the tree are encoded systematically via tripod trees with weighted
leaves; this leads to the stratified ancestral selection graph. The latter also
satisfies a duality relation with the mutation–selection equation. Each of the
dualities provides a stochastic representation of the solution of the differen-
tial equation. This allows us to connect the equilibria and their bifurcations to
the long-term behaviour of the ancestral process. Furthermore, with the help
of the stratified ancestral selection graph, we obtain explicit results about the
ancestral type distribution in the case of unidirectional mutation.

1. Introduction. Models of population genetics describe the evolution of biological
populations under the interplay of various forces such as mutation, selection, recombina-
tion, and migration. Traditionally, they come in two categories, deterministic and stochastic.
Deterministic approaches assume that the population is so large that random fluctuations may
be neglected; the resulting models are (ordinary or partial) differential equations or (discrete-
time) dynamical systems, describing the evolution in the usual forward direction of time. This
has led to an elaborate body of theory, which is comprehensively surveyed in the monograph
by Bürger [9]. In contrast, stochastic approaches take into account the fluctuations due to fi-
nite population size; the resulting stochastic processes have a firm place in probability theory.
Here, the corresponding ancestral processes, which describe the ancestry of a sample of in-
dividuals from a population at present, play an eminent role. This retrospective view is linked
to the prospective one via duality relations, which have proven to serve as versatile tools to
investigate the models in question. This area of research is comprehensively surveyed in the
monographs by Durrett [15] and Etheridge [17].

The deterministic models of population genetics are related to their stochastic counter-
parts via a dynamical law of large numbers (also known as mean-field limit). Nevertheless,
the two model classes have largely led separate lives for many decades. Recently, however, a
beginning has been made to build new bridges between them by introducing the genealogical
picture into the deterministic equations [3, 4, 7, 10]. Here, the ancestral lines of an individ-
ual from the present population are described via (random) ancestral graphs. This leads to
stochastic representations of the solutions of the differential equations, thus providing new
insight into the dynamics and the long-term behaviour.

Specifically, this program has been started for the mutation–selection differential equa-
tion, one of the most well-known deterministic models of population genetics. It describes
the interplay between selection (which tends to concentrate the population towards the set
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of fit(test) types) and mutation (which tends to randomise the population). For example, the
mutation–selection equation with unidirectional mutation and genic selection applies when
haploid1 individuals reproduce independently of each other; the corresponding genealogi-
cal structure is the ancestral selection graph (ASG) [28, 35, 36]. The differential equation
displays a bifurcation of its equilibria; this could be explained by long-term properties of a
variant of the ancestral selection graph [4, 7, 10].

Beyond shedding new light on the solution of the differential equation, tracing back the
ancestral lines may be used to determine the type distribution of the ancestors of today’s
population. They are of considerable interest—after all, it is they that have been successful
in the long run. The ancestral type distribution is not directly accessible in the differential
equation context. For the case of genic selection, it was investigated in [6, 20], building on
concepts originally developed for multitype branching processes [24, 25]. The analysis was
later complemented by an approach based on a variant of the ASG [4, 7, 10].

In this article, we extend the results for the mutation–selection equation with genic se-
lection to the case with pairwise interaction between individuals. In the latter setting, the
reproduction rate depends on the type of a uniformly chosen partner. Biologically, this is
a special case of frequency-dependent selection. The resulting equation is equivalent to the
diploid mutation–selection equation, which describes individuals that carry two copies of the
genetic information rather than one as in the haploid case.

With pairwise interaction, the right-hand side of the differential equation is cubic as op-
posed to quadratic in the case of genic selection. This leads to a richer bifurcation structure.
In particular, one now observes bistability in certain parameter regions. While this is well
known, the corresponding ancestral processes are largely unexplored and require new con-
cepts. Starting from ideas in [35], we extend the ASG to the case with pairwise interaction.
This results in a specific random tree marked with mutations. For our purposes, only the em-
bedded tree structure together with the mutations is relevant; it is captured by what we call
the embedded ASG. This process satisfies a duality relation with the solution of the mutation–
selection differential equation; thus leading to a stochastic representation of the solution. The
underlying principle seems to be robust and has also been exploited in other stochastic models
[12, 14, 18].

The embedded ASG as such is rather unwieldy and using it to derive the type and ancestral
type distribution is difficult. To make things tractable, we prune the tree upon mutations, thus
reducing it to its informative parts; and we order the remaining graph and exploit a natural
hierarchy in its leaves to stratify it. This results in a tripod tree with weighted vertices, which
we call stratified ASG. The corresponding process is in duality with the forward dynamic and
is specifically tailored to determine the type distribution of a sample from the population at
present. The stratified ASG is our workhorse to understand the bifurcations of the equilibria
from an ancestral perspective. Indeed, it will turn out that the random genealogical trees have
very different properties in the various parameter regimes.

The derivation of the ancestral type distribution requires tracing back ancestral lines be-
yond the time at which the type of the sample is determined. This is captured by a modifi-
cation of the stratified ASG. With its help, we obtain an explicit expression for the ancestral
type distribution in the biologically relevant case of unidirectional mutation to the deleterious
type.

Our motivation to study ancestral graphs comes from population genetics. But these ob-
jects exhibit interesting connections to issues more rooted in pure probability theory. For
example, our ancestral processes can be embedded into the general framework of recursive
tree processes, which were systemically studied by Mach et al. [33] in parallel to our work.

1That is, carrying only one copy of the genetic information
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Mach et al. identify a large class of differential equations that arise as mean-field limits of
interacting particle systems on the complete graph. They apply their theory to the cooper-
ative branching model with deaths (see also [31]), which corresponds to a special case of
our mutation–selection model with interaction. The analyses via recursive tree processes and
via the stratified ASG provide complementary insight. Mach et al. [33] provide a detailed
comparison of their work with ours in their Section 2.1. We will spell out the similarities and
differences as we go along.

The article is organised as follows. Section 2 contains the formulation of our constructions
and our main results. Proofs and more detailed results are deferred to the subsequent sections.
Section 3 contains the proofs related to the stability analysis of the mutation–selection equa-
tion, and the proof of the law of large numbers for the underlying finite-population model.
A detailed description of our ancestral processes, and the proofs for the connections between
them are given in Section 4. In Section 5 we exploit our constructions to prove the results that
lead to the probabilistic interpretation of the bifurcation structure of the mutation–selection
equation. Finally, the results related to the type distribution of the ancestors of today’s popu-
lation are proved in Section 6.

2. Main results and constructions.

2.1. The mutation–selection equation with pairwise interaction. The general form of the
mutation–selection equation (including an arbitrary number of types) goes back to Wright
[42] and is intensively discussed by Crow and Kimura [13], Akin [1], and Hofbauer [21].
Starting in the 1990s, it has become a popular object of research in the physics literature (for
a review, see [5]). The main interest is targeted towards the long-term behaviour. There may
be one or several (stable or unstable) equilibria, but more complicated dynamical behaviour,
such as periodic solutions [1, 8, 21], is also possible. The model is also used for the analysis
of gene-frequency data (see, e.g., [41] and references therein). Yet another viewpoint comes
from evolutionary game theory. There, each genotype specifies a strategy played in a repeated
game; the payoffs determine the change in frequency of the strategies within the population
over time (see, e.g., [22], Chapter 22).

We now describe the version with pairwise interaction that forms the basis of our analysis.
It is an ordinary differential equation (ODE) that describes the type-frequency evolution in an
infinite population composed of two types, say type 0 and type 1. More precisely, if y0 ∈ [0,1]
is the initial frequency of type 1 and y(t;y0) is its frequency at time t , then y(t;y0) is the
solution of the ODE

(2.1)
dy

dt
(t) = −y(t)

(
1 − y(t)

)[
s + γ

(
1 − y(t)

)] + uν1
(
1 − y(t)

) − uν0y(t) =: F (
y(t)

)
that satisfies y(0) = y0, where u > 0, γ, s ≥ 0, and ν0, ν1 ∈ [0,1] so that ν0 + ν1 = 1. The
underlying model is described as follows. Both types reproduce at a so-called neutral rate
of 1. On top of this, type 0 has a selective advantage reflected by an additional reproduction
rate; we refer to type 0 as the fit or beneficial type, and to type 1 as unfit or deleterious. The
additional reproduction rate has two contributions: one depends on the current type frequen-
cies, and one is independent of it. The former is called interactive reproduction, and the latter
selective reproduction. The rate of selective reproduction is s. Interactive reproduction occurs
at rate γ (1 − y(t;y0)), where γ is the interaction parameter. The interaction is called pair-
wise because the rate reflects that a type-0 individual reproduces here if a randomly-chosen
partner is also of type 0. This is a special case of frequency-dependent selection. Both types
may mutate at rate u, the resulting type being 0 (resp. 1) with probability ν0 (resp. ν1). In the
ODE, the last two terms correspond to mutation; the first term describes the loss of type-1
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individuals if type-0 individuals reproduce selectively or interactively and the offspring re-
places a type-1 individual. The neutral reproduction does not enter the equation since its net
contribution is −(1 − y(t))y(t) + y(t)(1 − y(t)) = 0; as a matter of fact, therefore, the same
ODE results for any neutral reproduction rate c ≥ 0.

REMARK 2.1. Let us briefly connect the mutation–selection equation with pairwise in-
teraction to the diploid mutation–selection equation. In the latter, one identifies the individu-
als in a diploid population with their genotypes, where a genotype is a pair (i, j), i, j ∈ {0,1},
and i and j are combined independently. The corresponding reproduction rates wij are
w00 = 1 + 2s + γ , w01 = w10 = 1 + s, and w11 = 1; this choice of parameters corresponds
to the case where type 0 is (partially) recessive, that is, it needs another 0 to fully play out its
advantage (see also [8]). The ODE (2.1) then describes the proportion of 1’s averaged over
all genotypes in the population.

REMARK 2.2. For a special choice of parameters, the ODE (2.1) corresponds to the
mean-field limit (or law of large numbers) of the cooperative branching model on the com-
plete graph as investigated by Mach et al. [33] (see also [31]). In the underlying interact-
ing particle system, every pair of particles produces, independently at a rate proportional to
some α, a new particle at another site if this site is empty; this is called a cooperative branch-
ing event. Every particle independently dies at rate 1. The authors identify occupied sites
with 1 and free sites with 0. Our notation translates to theirs by interchanging the roles of
type 0 and 1 (their particles are our fit individuals) and by setting γ = α, u = 1, ν0 = 0,
ν1 = 1, and s = 0. This leads to the mean-field equation (1.36) of [33].

Existence and uniqueness of a global solution to (2.1) such that y(0) = y0 ∈ R, and the
positive invariance of [0,1] (which is the biologically relevant domain), follow from standard
theory. We will be particularly interested in the long-term behaviour of such a solution, which
is determined by the equilibria of (2.1) and their stabilities.

Equilibria and bifurcation structure. We now analyse the equilibria of the ODE (2.1),
namely the (real) roots of F . We also discuss the stability of the equilibria in [0,1]. We say
that an equilibrium ȳ is stable2 (resp. stable in an interval I � ȳ) whenever there is ε > 0
such that for all y0 ∈ [ȳ − ε, ȳ + ε] (resp. y0 ∈ [ȳ − ε, ȳ + ε] ∩ I ), limt→∞ y(t;y0) = ȳ.
We say that an equilibrium ȳ ∈ [0,1] is attracting from the left (resp. right) if ȳ is stable in
(0, ȳ] (resp. [ȳ,1)). An equilibrium ȳ is unstable or repelling if there is ε > 0 such that for all
δ > 0, y(t;y0) /∈ [ȳ − ε, ȳ + ε] for some t > 0 and some y0 ∈ [ȳ − δ, ȳ + δ], with the obvious
extensions to instability in an interval, and being repelling to the left and right.

Since F is continuous with F(0) ≥ 0 and F(1) ≤ 0, the ODE (2.1) has at least one equilib-
rium in [0,1]. Let ymin and ymax be the smallest and largest equilibrium in [0,1], respectively.
Let us briefly discuss the case of bidirectional mutation, that is, ν0 ∈ (0,1). In this case, ymin
and ymax are both in (0,1) and they are attracting from the left and right, respectively. If there
is an additional equilibrium between them, F has a positive derivative at this point so that this
equilibrium is unstable. Figure 1 illustrates the equilibria and their stabilities if ν0 ∈ (0,1).
For the remainder of Section 2.1, we assume ν0 = 0. (We will not explicitly discuss the case
ν0 = 1; the biologically reasonable regime is ν0 	 1.)

PROPOSITION 2.3 (Equilibria and stability). Suppose ν0 = 0 and u > 0. If γ = s =
0, then 1 is the only equilibrium and it is stable. If γ = 0 and s > 0, the ODE (2.1) has

2Also referred to as locally asymptotically stable or attracting
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FIG. 1. Equilibria of (2.1) evaluated numerically as functions of u/s for ν0 = 1/100 and s = 1/30. The left,
middle, and right cases correspond to γ = 0, γ = 1/40, and γ = 1/10, respectively.

equilibria 1 and ȳ− = u/s. The minimum of the two is always stable in [0,1]; the other one
(if distinct) is unstable (see Figure 3, left). If γ > 0 and s ≥ 0, define

u� = u�(γ, s) := 1

γ

(
s + γ

2

)2
.

Then for u > u�, 1 is the only equilibrium and it is stable. For u ≤ u�, the ODE has equilibria

(2.2) 1, ȳ− = γ + s −
√

(γ + s)2 − 4uγ

2γ
and ȳ+ = γ + s +

√
(γ + s)2 − 4uγ

2γ
.

The positions of the equilibria and their stabilities are summarised in Table 1.

The proof of Proposition 2.3 will be given in Section 3. For fixed s, the function γ 
→
u�(γ, s) is illustrated in Figure 2.

We now describe the long-term behaviour of the solutions of (2.1). To this end, it is con-
venient to introduce subsets of (0,∞)×[0,∞)2 that partition the parameter set according to
the number of equilibria in [0,1] if ν0 = 0 (see Figures 2 and 3),

(2.3)

�1 = {
(u, s, γ ) : u > u� or γ ≤ s ≤ u ≤ u�},

�a
2 = {

(u, s, γ ) : u < s or u = s < γ
}
,

�b
2 = {

(u, s, γ ) : s < γ and u = u�},
�3 = {

(u, s, γ ) : u ∈ (
s, u�) and s < γ

}
,

where u� is to be understood as ∞ if γ = 0.
By comparing with Proposition 2.3 and Table 1, note that in �1, only 1 is stable in [0,1].

In �a
2, ymin = ȳ− is stable, and ymax = 1 is unstable in [0,1]. In �b

2, ymin = ȳ− = ȳ+ is

TABLE 1
Summary of the stability of the equilibria for ν0 = 0 and 0 < u ≤ u�. Bold indicates equilibria that are stable

in [0,1]

γ < s γ = s γ > s

u < s 0 < ȳ− < 1 < ȳ+ 0 < ȳ− < 1 < ȳ+ 0 < ȳ− < 1 < ȳ+
u = s 1 = ȳ− < ȳ+ = s/γ 1 = ȳ− = ȳ+ 0 < ȳ− = s/γ < 1 = ȳ+
s < u < u� 1 < ȳ− < ȳ+ – 0 < ȳ− < ȳ+ < 1
u = u� 1 ≤ ȳ− = ȳ+ = (γ + s)/(2γ ) 1 = ȳ− = ȳ+ 1

2 ≤ ȳ− = ȳ+ = (γ + s)/(2γ ) < 1
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FIG. 2. Critical mutation rate u� as a function of γ for s = 1/30. Grey vertical lines indicate γ = 1/40 and
γ = 1/10 to compare with Figure 3.

attracting (only) from the left and ymax = 1 is stable. In �3, ymin = ȳ− and ymax = 1 are
stable, and ȳ+ ∈ (ymin, ymax) is unstable.

The monotonicity of y(·;y0) implies that y∞(y0) := limt→∞ y(t;y0) exists and is always
an equilibrium; this straightforwardly leads to the following corollary, which we state without
proof.

COROLLARY 2.4 (Convergence). Assume γ > 0 and ν0 = 0. In �1, y∞(y0) = 1 for all
y0 ∈ [0,1]. In �a

2, y∞(1) = 1 and for y0 ∈ [0,1), y∞(y0) = ȳ−. In �b
2 ∪ �3,

y∞(y0) =

⎧⎪⎪⎨⎪⎪⎩
ȳ−, if y0 ∈ [0, ȳ+),

ȳ+, if y0 = ȳ+,

1, if y0 ∈ (ȳ+,1].

Let us recapitulate from Section 3 of [8], the biological implications of Corollary 2.4.
In �1, the fit type goes extinct regardless of its initial frequency. In �a

2, the fit type persists
if its initial frequency is positive. In �b

2 ∪ �3, it persists if its initial frequency is not below
1 − ȳ+; otherwise it goes extinct. In particular, in this case a beneficial mutant arising in
small frequency in a population that is otherwise unfit dies out.

Recall that one speaks of a bifurcation whenever the variation of the parameter(s) of a
differential equation leads to a qualitative change in the long-term behaviour of its solutions;
the parameter values at which such a phenomenon occurs are called bifurcation values; see
Chapter 3 of [19] for a general account of bifurcation theory for equilibria of ODEs. We close

FIG. 3. The equilibria ȳ of (2.1) as functions of u/s for ν0 = 0 and s = 1/30. The left, middle, and right panels
correspond to γ = 0, γ = 1/40, and γ = 1/10, respectively. Arrows indicate the directions of attraction.
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this section by describing the bifurcations of (2.1) with u as the bifurcation parameter; see
also Section 3 of [8], and Figure 3 for an illustration. For 0 < γ < s (resp. 0 < s < γ ), there
is an exchange of stability of the equilibria 1 and ȳ− (resp. of 1 and ȳ+) at u = s; this is also
known as a transcritical bifurcation. At u = s, 1 switches from unstable to stable; whereas ȳ−
(resp. ȳ+) switches from stable to unstable. If γ < s, this is an instance of the so-called error
threshold [16]. For s < γ , there is an additional saddle-node bifurcation at u = u�, where the
equilibria ȳ− and ȳ+ (one stable, one unstable) collide and both vanish. If s = u�, we see
a pitchfork bifurcation, where the unstable equilibrium 1 passes through the collision point
of ȳ− and ȳ+ and becomes stable (this corresponds to the simultaneous occurrence of the
saddle node and the transcritical bifurcation). It is one of our main goals in the subsequent
analysis to interpret the equilibria of the mutation–selection equation and their bifurcations
in terms of an appropriate ancestral structure.

REMARK 2.5. Recall from Remark 2.2 the setting in the example of [33]. In this case,
u� = γ /4 so that �a

2 is empty. In particular, if γ < 4, there is a unique, stable equilibrium. If
γ > 4, there are three equilibria, two are stable and one is unstable.

2.2. Moran model with mutation, selection, and pairwise interaction and its ASG. Before
establishing ancestral structures for the mutation–selection equation, we connect the ODE to
the Moran model, which has such a structure naturally embedded. We briefly recapitulate it
in our setting.

The two-type Moran model with mutation, selection, and pairwise interaction describes
the evolution of a population of N ∈ N haploid individuals in continuous time. It shares
the types (0 and 1) and the set of parameters with the mutation–selection equation, that is,
u > 0, s, γ ≥ 0, and ν0, ν1 ∈ [0,1] with ν0 + ν1 = 1. When an individual reproduces, its
single offspring inherits the parent’s type and replaces a uniformly chosen individual so that
the population size remains constant. All individuals reproduce independently at the neutral
rate 1; but individuals of type 0 independently reproduce at an additional rate s+γ (N −k)/N

with k the current number of type-1 individuals, where (N − k)/N reflects the probability
that a uniformly chosen partner individual is fit. In particular, the fit type can reproduce by
interacting with another fit individual. Each individual mutates at rate u; its type after the
event is i with probability νi, i ∈ {0,1}.

Let Y
(N)
t be the (random) number of type-1 individuals at time t in a population of size N .

The process Y (N) := (Y
(N)
t )t≥0 is a continuous-time birth-death process with transition rates

q
Y (N)(k, k + 1) = k

N − k

N
+ (N − k)uν1,

q
Y (N)(k, k − 1) = k

N − k

N

(
1 + s + γ

N − k

N

)
+ kuν0,

where k ∈ [N ]0 := [N ] ∪ {0} with [N ] := {1, . . . ,N}.

REMARK 2.6. Recall from the discussion following (2.1) that the Moran model with
pairwise interaction can be translated into the cooperative branching process on a complete
graph ([31], Chapters I.1.2.3 and I.2.1; see also [33]). A deleterious mutation corresponds to
a death event and an interactive reproduction to a cooperative branching event. Other variants
of such dynamics may be found in [34, 37, 39].

The Moran model with pairwise interaction has a well-known graphical representation
as an interacting particle system; see Figure 4. Here, individuals are represented by pieces
of horizontal lines. Time runs from left to right in the figure. We first describe the untyped
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FIG. 4. A realisation of the Moran interacting particle system (all lines) for a population of size N = 5 and the
ASG (bold lines) for a sample of size 1. Time runs forward in the Moran model (→) and backward in the ASG
(←). An arrowhead inscribed into a square marks the joint tip of an interactive and a checking arrow.

version, where no types have been assigned. Potential reproduction events are depicted by
arrows between the lines with the potential parent at the tail of the arrow. If the arrow is
used to produce offspring, this offspring replaces the individual at the tip. We decompose
reproduction events into neutral, selective, and interactive ones. Neutral arrows appear at
rate 1/N per ordered pair of lines; selective arrows appear at rate s/N per ordered pair.
Interactive arrows occur at rate γ /N per ordered pair of lines and are always accompanied
by a checking arrow. This arrow shares the tip with the corresponding interactive arrow;
but its tail is connected to a uniformly chosen line. That is, these arrow pairs occur at rate
γ /N2 per triple of lines. All kinds of arrows (including the interactive/checking pairs) are
laid down via Poisson point processes independently of each other. The rules for their use
are as follows. All individuals use the neutral arrows. In addition, fit individuals use selective
arrows. Interactive arrows are used by fit individuals if there is a fit individual at the tail of
the associated checking arrow. Note that whenever an individual uses a neutral or selective
arrow, it becomes the parent of the individual at the tip. This naturally introduces the concept
of ancestry into the graphical representation.

It will be helpful to give names to the lines that are involved in reproduction events. The
line to the right of the tip of a selective or interactive arrow carries a descendant and will
be referred to as the descendant line, the line left of the tip is called the continuing line,
and the line at the tail of this arrow is called the incoming line. Moreover, the line at the
tail of a checking arrow is called the checking line. Figures 5 (right part) and 6 illustrate the
propagation of types and ancestry; together with the names of the lines.

Mutation events are depicted by circles and crosses on the lines. A circle (cross) indicates a
mutation to type 0 (type 1), which means that the type on the line is 0 (is 1) after the mutation;
see Figure 5 (left part). This occurs at rate uν0 (at rate uν1) on every line, again by way of
independent Poisson point processes.

Given a realisation of the untyped particle system and an initial type configuration (that
is, a type assigned to each line at t = 0), one determines the types on the lines for all t > 0

FIG. 5. Propagation of types across mutations and binary branchings. In the branching event, the descendant
line (D) splits into the continuing line (C) and the incoming line (I). The solid line is parental. � stands for an
arbitrary type, while 0/1 means that the scheme applies with C and D both 0, or both 1.
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FIG. 6. Ternary branching of the descendant line (D) into the continuing line (C), the checking line (J), and
the incoming line (I) along with the associated type propagation rule. The solid line is parental. � stands for an
arbitrary type, while 0/1 means that the scheme applies with C and D both 0, or both 1.

via the propagation rules explained above, thus typing the particle system. The distribution
of the initial types and the law of the graphical elements (arrows, circles, and crosses) are
independent of each other.

The graphical representation gives rise to the ASG via the following construction. Consider
a realisation of the untyped interacting particle system in the interval [0, t] for some time
t > 0, to which we refer as the present. We now construct a process that starts at present and
runs backward in time. Backward time is indicated by the variable r , where r = 0 (r = t)
corresponds to forward time t (forward time 0). Now, pick an untyped sample at present
and trace back the lines of individuals whose type may have an influence on the type of the
sampled individuals where, at this stage, we only take into account the information contained
in the reproduction events, and ignore the additional information due to mutation. The ASG
consists of these lines in [0, t]. See Figure 4 for the ASG embedded into the interacting
particle system.

The true ancestry of the initial sample is obtained after assigning types to all lines in the
ASG at forward time 0 (i.e., r = t), without replacement from a population consisting of
Y

(N)
0 unfit and N − Y

(N)
0 fit individuals. Then propagate the types and resolve the ancestry

at branching events forward in time up to time t (r = 0) according to the propagation rules
of the Moran model. This way, the types of the sampled individuals are recovered together
with their ancestry. For a detailed construction of the ASG in the Moran model we refer to
Section 4.1.

2.3. Large population limit of the Moran model and the ASG. Let us now relate the
Moran model with pairwise interaction to the mutation–selection equation with pairwise in-
teraction. To this end, consider a sequence of Moran models, indexed by their population
size N , sharing the same parameters s, γ , u, ν0, ν1, and let N tend to infinity without rescaling
time or parameters. The existence of such a limit and its relation with the mutation–selection
equation is given in the following proposition, which we prove in Section 3.

PROPOSITION 2.7 (Dynamical law of large numbers). Suppose limN→∞ Y
(N)
0 /N =

y0 ∈ [0,1]. Then for all ε > 0 and t ≥ 0, we have

lim
N→∞P

(
sup
ξ≤t

∣∣∣∣Y (N)
ξ

N
− y(ξ ;y0)

∣∣∣∣ > ε

)
= 0,

where y(·;y0) is the solution of the ODE (2.1) with initial value y0.

The above limit is natural for large populations. After all, mutation is a molecular mech-
anism and is reasonably assumed as independent of population size. Likewise, reproduction
rates may be assumed to be independent of population size as long as available resources
(space, food, . . . ) scale linearly with N . Mutation, selection, and interaction are said to be
strong in this case; in contrast to weak parameters that scale inversely with population size
and give rise to a diffusion limit of the Moran model (for a review, see [15], Section 7.2).
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The connection between the (finite-N ) Moran model and its deterministic counterpart
leads to a candidate for an ancestral structure for the mutation–selection equation with pair-
wise interaction. We start with the ancestral picture of the stochastic model and consider the
limit N → ∞. The resulting process will still be stochastic. Let us first describe it in the spirit
of the graphical representation of Section 2.2 and only then formalise it.

The asymptotic ASG has tree structure. More precisely, it has only binary and ternary
branchings, and mutations. This is because arrows that connect two lines in the finite-N ASG
occur at a rate of order O(1/N) (per ordered pair of lines); see Section 4.1. The lines in the
asymptotic ASG are therefore conditionally independent. So in the limit, the distribution of
an ASG that starts from n individuals is distributed as n independent copies of an ASG started
from a single individual. Thus, we can restrict our analysis to an ASG starting with a single
line.

The asymptotic ASG has the following transitions (see Figures 5 and 6). Binary branch-
ings occur in each line independently at rate s, thus increasing the number of lines by one.
Independently of the other lines and independently of binary branchings, each line has ternary
branchings at rate γ , which increase the number of lines by two. Each line mutates to type 0
at rate uν0 and to type 1 at rate uν1. Mutations occur independently on each line and inde-
pendently of all other events. We will from now on refer to the ASG in this large population
limit just as the ASG, unless stated otherwise.

As in the finite case, the untyped picture turns into a typed one by assigning a type to
each line of the ASG at backward time r = t (the past), this time by sampling independently
according to (1 − y0, y0). We then propagate types and resolve the ancestry according to the
usual rules up to time r = 0 (the present); see Figures 5 and 6. In this way, one determines
the distribution of the type of the sampled individual along with its ancestry.

2.4. The embedded ASG, type propagation, and a sampling duality. One way to formally
construct the ASG is via real trees with marks (see, e.g., [23], page 70). But for our purposes
it is enough to encode the tree structure embedded in the ASG together with the mutation
marks. We do this using an appropriate class of trees with marks.

A directed rooted tree is a finite, directed, acyclic, connected graph with a special vertex
called the root, where the edges are directed away from the root. Vertices are unlabelled3 and
edges have no length. For a directed rooted tree τ , we write V (τ) and L(τ) for the set of
vertices and the set of leaves, respectively. Moreover, we write ρ(τ) for the root of τ . The
outdegree of a vertex v is denoted by deg(v). For a directed edge (v,w) we call w the child
of v, and v the parent of w. Similarly, if a vertex u is on the path from ρ(τ) to a vertex w

in τ , we write u τ w; this induces a partial order on V (τ). We write u ≺τ w if u τ w

but u �= w; we then call u an ancestor of w, and w a descendant of u. (It is unfortunate that
these standard notions for trees are contrary to the genealogical interpretation. However, in
what follows, we stick to the tree notation, unless specified otherwise.) An ordered rooted
tree is a directed rooted tree in which an ordering is specified for the children of each internal
vertex. Such an ordering is equivalent to an embedding of the tree in the plane, with the root
at the bottom and the children of each vertex ordered from left to right and placed above their
parent. This allows us to speak of the left, middle, and right (the left and right) child of a
vertex with outdegree 3 (outdegree 2).

Let � be the set of ordered rooted trees having: (i) vertices with outdegree at most 3, and
(ii) vertices with outdegree 1 marked either with × or ◦. Since vertices are unlabelled, � is
countable, and thus a Polish space if equipped with the discrete topology.

3That is, we consider a tree as an equivalence class with respect to relabelling of the vertices.
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FIG. 7. In the classical visualisation of the ASG (left), horizontal line segments delimited by events translate into
vertices in the embedded ASG (right). Vertices corresponding to segments ending in a beneficial (resp. deleterious)
mutations are marked with a ◦ (resp. ×). The middle picture shows an intermediate stage where the segments
appear as sausages, which then shrink into vertices with edges between them that have no (meaningful) lenghts.

For α ∈ � and v ∈ V (α) with deg(v) = 3 (with deg(v) = 2), we denote by v̀, v, and v́

(by v̀ and v́) the left, middle, and right (the left and right) child of v. If deg(v) = 1, its single
child is v. We symbolise by the tree that is only an unmarked root.

Let us now explain how to associate to an ASG in [0, t] a unique element at ∈ � (see
Figure 7). First, we identify each line segment in the ASG enclosed between two consecutive
events, that is, between branching, mutation, or the terminal time t , with a unique vertex in
V (at ), and vice versa. If the segment ends at time t , the vertex is a leaf (so has outdegree 0).
If the segment ends in a beneficial (resp. deleterious) mutation, the vertex has outdegree 1,
and we equip it with mark ◦ (resp. ×). If the segment ends in a binary branching, the vertex
has outdegree 2, and we make it the parent of the vertices corresponding to the continuing
(left child) and incoming line (right child). Finally, if the segment ends in a ternary branching,
then the vertex has outdegree 3, and we make it the parent of the vertices corresponding to the
continuing (left child), checking (middle child), and incoming line (right child). We call at

the embedded ASG (eASG).
The type propagation along the lines in the ASG, as illustrated in Figures 5 and 6, translates

into the following notion of type propagation along the vertices of a tree in �.

DEFINITION 2.8 (Type propagation). A leaf-type configuration of α ∈ � is a vec-
tor c := (c)∈L(α) ∈ {0,1}L(α). The vertex-type propagation of c in α is the vector
c

� := (c

�

v)v∈V (α) ∈ {0,1}V (α) constructed from c recursively4 as follows:

(1) If deg(v) = 0 (i.e., v ∈ L(α)), set c

�

 = c.
(2) If deg(v) = 1 and v is marked with × (resp. ◦), set c

�

v = 1 (resp. = 0).
(3) If deg(v) = 2, then c

�

v = 1 if and only if c

�

v̀
= c

�

v́
= 1.

(4) If deg(v) = 3, then c

�

v = 1 if and only if c

�

v̀
= 1 and c

�

v
+ c

�

v́
> 0.

If c

�

v = 1 (resp. = 0), we say that v ∈ V (α) has the unfit (resp. fit) type under c.

Note that the mapping c 
→ c

�

ρ(α) is a Boolean function, which is conveniently encoded via
the underlying tree.

Let now α ∈ �, z ∈ [0,1], and let C(z),  ∈ L(α), be independent Bernoulli random
variables with parameter z; so C(z) := (C(z))∈L(α) is a random leaf-type configuration.
Define H(α, z) to be the probability that the root of α gets the unfit type under C(z).

Our next task is to translate the transitions of the ASG into transitions of the embedded
ASG. To this end, we introduce the following transformations on �; see Figure 8. For α ∈ �

and  ∈ L(α), define:

4The notation c

�

v hints at the construction from the leaves to the root of the tree.
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FIG. 8. A tree α ∈ � that is a single root ρ and its transformations (i)–(iv) used in the eASG process.

(i) α

�

 ∈ �, the tree that arises if we add two children ̀ (left) and ́ (right) with no mark
to  in α. In particular, V (α

�

 ) = V (α) ∪ {̀, ́} and L(α

�

 ) = (L(α) \ {}) ∪ {̀, ́}.
(ii) α

�
 ∈ �, the tree that arises if we add three children ̀ (left),  (middle), and ́ (right)

with no mark to  in α. In particular, V (α
�
 ) = V (α) ∪ {̀, , ́} and L(α

�
 ) = (L(α) \ {}) ∪

{̀, , ́}.
(iii) α×

 ∈ �, the tree that arises if we add a child  to  in α and mark  with ×. In

particular, V (α×
 ) = V (α) ∪ {} and L(α×

 ) = (L(α) \ {}) ∪ {}.
(iv) α◦

 ∈ �, the tree that arises if we add a child  to  in α and mark  with ◦. In

particular, V (α◦
) = V (α) ∪ {} and L(α◦

) = (L(α) \ {}) ∪ {}.
Note that � is invariant under these transformations. We can now define the process that

captures the embedded tree structure of an evolving ASG.

DEFINITION 2.9. The embedded ASG (eASG) process is the continuous-time Markov
chain (at )t≥0 on � with the following transition rates. For α ∈ � and  ∈ L(α),

qa

(
α,α

�



) = s, qa

(
α,α

�


) = γ, qa

(
α,α◦



) = uν0, qa

(
α,α×



) = uν1.

The connection to the ASG is the reason we will occasionally refer to the marks × and ◦
also as deleterious and beneficial mutations. The next result relates the eASG process to the
mutation–selection equation.

THEOREM 2.10 (Duality eASG). Let (at )t≥0 be the embedded ASG process and let
y(·;y0) be the solution of the ODE (2.1) with initial value y0 ∈ [0,1]. Then, for α ∈ � and
t ≥ 0,

H
(
α,y(t;y0)

) = Eα

[
H(at , y0)

]
,

where the subscript indicates the initial state. In particular, y(t;y0) = E [H(at , y0)].

The proof of Theorem 2.10 is provided in Section 4.2.

REMARK 2.11. The duality is a special case of a more general result within the frame-
work of recursive tree processes. More precisely, Theorem 2.10 follows from [33], Theorem
1.6 and Remark 1.7. The authors apply their result in the setup of Remark 2.2; our deleteri-
ous mutations and ternary branchings translate to their local maps dth (“deaths”) and cob
(“cooperative branchings”), respectively. The propagation rule in Definition 2.8 (2) and (4)
coincides with their equation (1.13) (with their 1’s being our 0’s).

A natural way of computing H(at , y0) is to determine first those leaf-type configurations
of at that lead to an unfit root and then to evaluate the probability of observing these leaf-type
configurations if each leaf type is independently sampled 0 and 1 according to (1 − y0, y0).
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This is the approach pursued by Mach et al. [31], but the general idea is also present in the
work of Dawson and Greven ([14], Chapter 5.5).

In contrast, we aim at resolving all information contained in the evolving tree on the spot.
This requires to transform (i.e., prune and graft) the eASG upon mutations via suitable op-
erations, which we introduce in the next subsection; this leads to a second duality for (2.1).
It turns out that the resulting trees can be condensed even further, leading to a simpler pro-
cess and to a third duality for (2.1). We use this more tractable process in Section 2.7 to
establish the connection between the long-term behaviour of the eASG and the bifurcation
structure of (2.1). Before we lay out the details of the transformations, we briefly explain the
simplifications in the noninteractive case (γ = 0), where the concepts become particularly
transparent. This is the model treated in [4].

The root of an eASG without ternary branchings and mutations gets the unfit type if and
only if all leaves are assigned the unfit type; this follows from the type propagation and holds
regardless of the tree structure. Now allow for mutations. The type of a marked vertex is
determined by the type of the mutation mark. In particular, the types of the descendants of
such a vertex do not propagate beyond that vertex and are thus irrelevant for the type of the
root, so that we can remove (or prune) them. If all such descendants are removed from the
tree, only leaves can have marks. If one of them is marked with ◦, the root gets the fit type,
irrespective of the types of the other leaves; we thus stop reading the eASG and kill it, that
is, send it to a cemetery state �. If there is no leaf marked with ◦, the root gets the unfit
type if and only if all unmarked leaves are assigned the unfit type—irrespective of the tree
structure. The pruning can be implemented dynamically as the eASG process evolves, and
the information required for the root type can be condensed by only counting the number of
unmarked leaves.

Let Rr be the number of unmarked leaves in the eASG process at time r , where Rr := �

if the eASG has been sent to �. The (generalised) leaf-counting process R := (Rr )r≥0 is a
continuous-time Markov chain on N�

0 := N0 ∪ {�} with transition rates

qR(k, k + 1) = ks, qR(k, k − 1) = kuν1, qR(k,�) = kuν0, k ∈N0,

which reflect that selection leads to an additional leaf, a leaf is pruned immediately when it
experiences a deleterious mutation, and the entire process is killed when a beneficial mutation
arrives. The process has absorbing states 0 and �, where absorption in 0 (in �) implies that
the root of the eASG gets the unfit (fit) type. The process R is in moment duality with
the mutation–selection model without interaction (see [4], Theorem 2), that is, we have for
y0 ∈ [0,1] and n ∈ N�

0 ,

(2.4) y(t;y0)
n = En

[
y
Rt

0

]
.

2.5. Profiting from mutations: The pruned ASG. The reasoning underlying (2.4) does not
directly translate if the tree has ternary branchings. We can still safely remove all descendants
of marked vertices without altering the type at the root; but a leaf with mark ◦ in the remaining
tree does not necessarily imply that the root is fit (recall Figure 6). To circumvent this prob-
lem, we now introduce appropriate pruning operations. In the Boolean function c 
→ c

�

ρ(α),
these operations correspond to the removal of variables, which do not alter the value of the
function. First, we explain the state space of the pruned trees.

Since we will remove the descendants of marked vertices, our pruned trees will only have
marks on the leaves. In addition, we will get rid of any mark ◦ arising in the eASG, unless
it propagates to the root, which then results in the tree consisting only of the root marked
with ◦ (playing the role of � in R). We will also get rid of any mark ×, unless it is on a
leaf that is the left child of a vertex with outdegree 3 or it propagates to the root. In the latter
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case, it becomes the tree × that consists only of the root marked with × (playing the role
of 0 in R). The resulting set of pruned trees is denoted by �

S
; it consists of × , , and

all ordered rooted trees with vertices of outdegree 0, 2, or 3, and leaves that can have mark
× only if they are the left child of a vertex with outdegree 3. For ᾱ ∈ �

S
, denote by L̂(ᾱ)

the set of its unmarked leaves. The notion of type propagation given in Definition 2.8 can be
extended to �

S
as follows.

DEFINITION 2.12 (Type propagation in �
S
). Let ᾱ ∈ �

S
. A reduced leaf-type config-

uration of ᾱ is a vector ĉ := (ĉ)∈L̂(ᾱ)
∈ {0,1}L̂(ᾱ). The leaf-type configuration induced by

ĉ is the vector c := (c)∈L(ᾱ) defined via c := ĉ for  ∈ L̂(ᾱ) and c = 1 (c = 0) for
 ∈ L(ᾱ) \ L̂(ᾱ) with mark × (with mark ◦). The vertex-type propagation of ĉ is the vector
ĉ

� := (ĉ

�

v)v∈V (ᾱ) obtained as the vertex-type configuration of c in ᾱ in the sense of Defini-
tion 2.8 (after removing the marks from ᾱ).

Let ᾱ ∈ �
S
, z ∈ [0,1], and let Ĉ(z),  ∈ L̂(ᾱ), be independent Bernoulli random variables

with parameter z; so Ĉ(z) := (Ĉ(z))∈L̂(ᾱ)
is a random reduced leaf-type configuration.

Define H(ᾱ, z) to be the probability that the root of ᾱ gets the unfit type under the type
propagation, given Ĉ(z).

DEFINITION 2.13 (Admissible pruning). We say that ᾱ ∈ �
S
is an admissible pruning

of α ∈ � if:

(1) V (ᾱ) ⊂ V (α) and L̂(ᾱ) ⊂ L(α),
(2) for any u, v ∈ V (ᾱ), u ≺ᾱ v implies u ≺α v,
(3) for any leaf-type configuration c = (c)∈L(α) of α, the type assigned to ρ(α) under c

coincides with the type assigned to ρ(ᾱ) under the reduced leaf-type configuration (c)∈L̂(ᾱ)
.

In what follows, we construct a process (āt )t≥0 on �
S
that can be coupled to the eASG

process (at )t≥0 such that for any t ≥ 0, āt is an admissible pruning of at .
The operators α 
→ α�

 and α 
→ α
�
 that we have defined to act on � translate to operators

on �
S
in the obvious way. For mutations, we define modified mutation operators that prune

away all vertices that become irrelevant for the type of the root. We start with the beneficial
mutations. To this end, note that a beneficial mutation in some vertex v determines the types
of all ancestors of v up to the first ancestor that is a middle or right child in a ternary branching
event.

DEFINITION 2.14 (Region). Let ᾱ ∈ �
S
. For every vertex w ∈ V (ᾱ) with deg(w) = 3,

remove the edges (w,w) and (w, ẃ). We refer to the connected components in the resulting
graph as the regions of ᾱ. For v ∈ V (ᾱ), denote by Rv(ᾱ) the region of ᾱ that contains v.

Clearly, a region is a (maximal) subtree within which the type propagation works as in the
noninteractive case. In particular, if v gets the fit type, then ρ(Rv(ᾱ)) gets the fit type as well;
however, the type of the parent of ρ(Rv(ᾱ)) remains undetermined, so ρ(Rv(ᾱ)) acts as a
“barrier” to type propagation.

The set of vertices affected by a deleterious mutation is more complicated, and a case by
case analysis is required. However, here too, some vertices act as barriers for the effect of
deleterious mutations.
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FIG. 9. Three pruned trees. Grey vertices are firewalls, and subtrees delimited by sausage-like sets are regions.

DEFINITION 2.15 (Firewall). For ᾱ ∈ �
S
, v ∈ V (ᾱ) is said to be a firewall if either (i)

v = ρ(ᾱ), (ii) deg(v) = 2, (iii) the parent w of v has deg(w) = 3 and v = ẁ, or (iv) deg(v) = 3
and v̀ has no mark. For  ∈ L̂(ᾱ), let w(ᾱ) be the most recent ancestor of  that is a firewall
(note that w(ᾱ) ≺ᾱ ).

Figure 9 pictures three trees with their regions and firewalls. Building on these notions, we
now introduce the operators that will help us to resolve the mutations arising in the eASG;
see also Figure 10.

DEFINITION 2.16 (pruning operations). Let ᾱ ∈ �
S
and  ∈ L̂(ᾱ). Define π×

 (ᾱ) ∈ �
S

as follows:

(1a) If  is a firewall, then π×
 (ᾱ) is obtained by marking  with ×.

(1b) If  is not a firewall and:

• if deg(w(ᾱ)) = 2, then π×
 (ᾱ) is obtained by replacing the subtree rooted in w(ᾱ) by the

subtree rooted in the child of w(ᾱ) that is not in the path from w(ᾱ) to .5

• if deg(w(ᾱ)) = 3, then π×
 (ᾱ) is obtained by replacing the subtree rooted in wᾱ() by the

subtree rooted in the left child of w(ᾱ).

Define π◦
 (ᾱ) ∈ �

S
as follows:

(2a) If ρ(ᾱ) ∈ R(ᾱ), set π◦
 (ᾱ) := .

(2b) If ρ(ᾱ) /∈ R(ᾱ), let ᾱ∗ be the tree that results when removing from ᾱ the subtree
rooted in ρ(R(ᾱ)). Let v be the parent of ρ(R(ᾱ)) in ᾱ.

• If v̀ has no mark, set π◦
 (ᾱ) := ᾱ∗.

• If v̀ has a mark (which then necessarily is ×), set π◦
 (ᾱ) := π×

v̀
(ᾱ∗).

FIG. 10. Each tree in the picture (except the leftmost one) is obtained from its left neighbour via the pruning
operator π�

 , where  is the leaf indicated by ↓, and � ∈ {×,◦} is the symbol above ↓. The filled grey vertex in the
leftmost tree is w(ᾱ), that is, the most recent ancestor of  that is a firewall; the filled grey vertex in the second
and third tree is ρ(R(ᾱ)), that is, the root of the region containing .

5Alternatively, this operation may be understood as removing the subtree rooted in the child of w(ᾱ) that is
the ancestor of  and contracting the edge between w(ᾱ) and its other child.
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Now, we construct the process (āt )t≥0, which we call the pruned ASG (or pASG) pro-
cess. The idea is to dynamically resolve the mutations arising in the eASG by replacing the
mutation operations by the pruning operations. More precisely, let ᾱ ∈ �

S
and set ā0 := ᾱ.

Define α ∈ � by adding a child without a mark to every marked leaf of ᾱ. Note that ᾱ is
an admissible pruning of α. Let a = (at )t≥0 be the eASG process starting at α. Construct
(āt )t≥0 by updating its state at any transition of (at )t≥0 as follows. Assume (āt )t∈[0,r) has
been constructed in such a way that, for any t ∈ [0, r), āt is an admissible pruning of at , and
that at time r a transition occurs in a at some leaf  ∈ L(ar−). If  /∈ L̂(ār−), set ār = ār−. If
 ∈ L̂(ār−) and ar = (ar−)� with � ∈ {�,

�}, set ār := (ār−)�. If  ∈ L̂(ār−) and ar = (ar−)�
with � ∈ {×,◦}, set ār := π�

 (ār−).
In Section 4.3 we show that the pASG process is a continuous-time Markov chain on �

S

with absorbing states × and , and with the following transition rates. For ᾱ ∈ �
S
and

 ∈ L̂(ᾱ),

qā

(
ᾱ, ᾱ�



) = s, qā

(
ᾱ, ᾱ

�


) = γ, qā

(
ᾱ, π×

 (ᾱ)
) = uν1, qā

(
ᾱ, π◦

 (ᾱ)
) = uν0.

Moreover, we show that the so-constructed process (āt )t≥0 satisfies (1), (2), and (3) of
Definition 2.13. Property (3) of that definition translates the duality in Theorem 2.10 to the
pASG process.

COROLLARY 2.17 (Duality pASG). Let (āt )t≥0 be the pASG process and let y(·;y0) be
the solution of the ODE (2.1) with initial value y0 ∈ [0,1]. Then, for ᾱ ∈ �

S
and t ≥ 0,

H
(
ᾱ, y(t;y0)

) = Eᾱ

[
H(āt , y0)

]
.

The proof of Corollary 2.17 is also provided in Section 4.3.

REMARK 2.18. If s = ν0 = 0 and u = 1, Corollary 2.17 resembles a duality of the mean-
field limit of a cooperative branching process on the complete graph [31], Proposition I.2.1.4.
The main difference is that the dual process in [31] does not resolve all information contained
in the mutation marks on the spot.

2.6. The stratified ASG. Let us now fix a pruned tree and a reduced leaf-type configu-
ration. We have seen above that within each region, types propagate as in the noninteractive
case. To determine the type at the root of a region, it therefore suffices to count the leaves
within the region; the tree structure within it is irrelevant. For the type of the root of the entire
tree, it is then sufficient to count leaves within each region and to determine the connec-
tions between the regions. We encode this structure by collapsing regions into single vertices,
which leads us to a new kind of trees illustrated in Figure 11. The corresponding transforma-
tions will simplify the representation of the Boolean function c 
→ c

�

ρ(α).

DEFINITION 2.19 (Primary and secondary vertices, tripod tree). A tripod tree is a di-
rected rooted tree, where every vertex at an odd distance from the root has outdegree 2.
Let � denote the set of tripod trees, and for every τ ∈ � , let V 1(τ ) and V 2(τ ) be the set of
vertices at an even and odd distance to the root, respectively. V 1(τ ) and V 2(τ ) will be called
primary and secondary vertices, respectively. A weighted tripod tree is a pair T = (τ,m) with
τ ∈ � and m : V 1(τ ) → N0 such that m() > 0 for every  ∈ L(τ). Let ϒ denote the set of
weighted tripod trees. Moreover, ϒ� := ϒ ∪ {�}, where � is an isolated point.

Figure 11 illustrates the definition of a tripod tree with some examples. We denote the
weighted tripod tree that consists only of a root of weight n by n . The set ϒ� is countable
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FIG. 11. Some examples of weighted tripods. Secondary vertices are small bullets, primary vertices are large
open circles and contain a number indicating the weight; the root has a grey filling.

and therefore becomes a Polish space when equipped with the discrete topology. In contrast
to the trees from the previous section, the trees here are unordered. Each primary vertex
corresponds to a region in a pruned tree with the weight indicating the number of leaves in
that region. The secondary vertices encode the connections between the regions.

More precisely, a pruned tree is mapped into a tripod tree in the following way (see Fig-
ure 12). Recall that first all vertices within a region of the pruned tree collapse to form a
primary vertex; its weight is the number of unmarked leaves in that region. The region con-
taining the root in the pruned tree is the root of the tripod tree. A region pair arising at a
ternary branching in the pruned tree corresponds to the two children of a secondary vertex
in the tripod tree, with the parent of this vertex corresponding to the region parental to the
region pair. The following definition formalises this mapping.

DEFINITION 2.20 (Stratification). The stratification map s : �
S
→ ϒ� is defined as

follows. For ᾱ = , set s(ᾱ) = �. For ᾱ �= , set s(ᾱ) = (τ,m), where τ has vertex set
V (τ) := V 1(τ ) ∪ V 2(τ ),

V 1(τ ) := {R : R is a region of ᾱ}, V 2(τ ) := {
v ∈ V (ᾱ) : deg(v) = 3

}
,

and, for any R ∈ V 1(τ ) and v ∈ V 2(τ ):

• v is the child of R in τ if and only if v ∈ R in ᾱ,
• R is a child of v in τ if and only if ρ(R) is a child of v in ᾱ,
• m(R) is the number of unmarked leaves in R.

In particular, if ᾱ �= has no ternary branchings and n unmarked leaves, then s(ᾱ) = n .

To determine the root type of ᾱ ∈ �
S
via the stratification s(ᾱ), we proceed in two steps.

First, we assign a pre-type cR ∈ {0,1} to each region R. For a given reduced leaf-type con-
figuration of ᾱ, this pre-type is defined as the root type of R when types are propagated
within a region as in the nonintercative case, and using the rule that the type of a vertex v

with deg(v) = 1 in R (i.e., deg(v) = 3 in ᾱ) is the type of v̀. Clearly the pre-types and the
root types under the type propagation for the entire tree can differ. In any case, this proce-
dure yields an assignment of types to the primary vertices in s(ᾱ). Next, we associate to this
assignment an output type that takes into account the connections between the regions.

FIG. 12. A pruned tree and its regions (left), an illustration of the stratification procedure (middle), and the
stratification (right); the root of the tripod tree has a bold outline.
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DEFINITION 2.21 (Output type). Let τ ∈ � . A primary vertex-type configuration of τ

is a vector c := (cv)v∈V 1(τ ) ∈ {0,1}V 1(τ ). The output type in τ under c is t(c, τ ) ∈ {0,1}
defined recursively as follows:

• If τ consists only of the root ρ(τ), then t(c, τ ) = cρ(τ).
• If τ has at least one secondary vertex,

t(c, τ ) = cρ(τ)

∏
v child of ρ(τ)

max
{
t(c, τw) : w is child of v

}
,

where τw is the subtree of τ rooted in w.

In Lemma 4.9 in Section 4.4, we prove that the root type of ᾱ ∈ �
S
\ { } equals the output

type in s(ᾱ), if primary vertices in s(ᾱ) are assigned type 1 if and only if all unmarked leaves
in the corresponding regions of ᾱ have type 1.

For z ∈ [0,1], T := (τ,m) ∈ ϒ with vertex set V (τ), let Cv(z), v ∈ V 1(τ ), be independent
Bernoulli random variables with parameter zm(v); we understand C(z) = (Cv(z))v∈V 1(τ ) as a
primary-vertex configuration. Define H(T , z) to be the probability that the output type in τ

under C(z) is 1. Moreover, we set H(�, z) := 0 for all z ∈ [0,1]. Clearly, this is the tripod-
tree analogue to the function H of the previous subsection. Indeed, it will be a consequence
of Lemma 4.9 that for ᾱ ∈ �

S
and z ∈ [0,1],

(2.5) H(ᾱ, z) = H
(
s(ᾱ), z

)
.

Now, T = (Tt )t≥0 with Tt := s(āt ) is called the sASG process. Thanks to (2.5) and Corol-
lary 2.17, T satisfies the following duality with the mutation–selection equation.

THEOREM 2.22 (Duality sASG). The sASG process T and the solution (y(t;y0))t≥0
of (2.1) satisfy the duality relation

(2.6) H
(
T , y(t;y0)

) = ET
[
H(Tt , y0)

]
for y0 ∈ [0,1],T ∈ ϒ�, t ≥ 0.

In particular, for t ≥ 0 and y0 ∈ [0,1], we obtain the stochastic representation

(2.7) y(t;y0) = E 1

[
H(Tt , y0)

]
.

Theorem 2.22 is proved in Section 4.4.
The sASG process is defined on the basis of the pASG process. But the stratification map-

ping was in fact chosen so as to make T a Markov process. The following operators provide
the corresponding transitions.

DEFINITION 2.23. For T ∈ ϒ and v ∈ V 1(τ ), define T

�

v , T
�

v , T ×
v ,T ◦

v ∈ ϒ� as follows.

(1) T

�

v is obtained from T by increasing the weight of v by 1; the tripod tree and all other
weights remain as in T .

(2) T
�

v arises from T by adding a secondary vertex v̄ as a child of v; and adding the primary
vertices v and v́ as children of v̄. Vertices v and v́ obtain weight 1. The remaining tripod
tree and weights remain unchanged. (Here, v, v́ are not meant to indicate orientation of
the tree; they are rather convenient notation for these vertices.)

(3) T ×
v arises from T = (τ,m) as follows. If m(v) > 1, or if v is not a leaf, or if v is the

root, then T ×
v = (τ, m̃), where for z ∈ V 1(τ ) \ {v}, m̃(z) = m(z), and m̃(v) = m(v) − 1.

If v is a leaf that is not the root and m(v) = 1, let w be the closest ancestor of v that is the
root of T or a child of a primary vertex with positive weight; remove from T the subtree
rooted in w to obtain T ×

v .
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(4) T ◦
v is set to � if v is the root of T . If v is not the root, let w and gv be the sibling and

the grandparent of v, respectively. Replace the subtree rooted in gv by the subtree rooted
in w, and add the weight of gv to the weight of w to obtain T ◦

v .

In Section 4.4 we show that T is a continuous-time Markov chain with values in ϒ� and
transition rates

qT

(
T ,T

�

v

) := sm(v), qT

(
T ,T

�
v

) := γm(v),

qT

(
T ,T ×

v

) := uν1m(v), qT

(
T ,T ◦

v

) := uν0m(v),

for T = (τ,m) ∈ ϒ and v ∈ V 1(τ ). The states 0 and � are absorbing.

2.7. Applications I—long-term type frequency. The long-term behaviour of the forward
process can be described in terms of the backward process using our constructions. The basic
idea is to take t → ∞ in the duality relation (2.6). To this end, we consider the long-term

behaviour of H(Tt , y0) as t → ∞. The sASG process T has two traps 0 and �, where the
function H(·, y0) takes the values 1 and 0, respectively, irrespective of the value of y0. Now,
define

T 0 := inf{r > 0 : Tr = 0 }, T� := inf{r > 0 : Tr = �}, and Tabs := min{T 0 , T�}.
If Tabs < ∞ almost surely, then for any y0 ∈ [0,1], H(Tt , y0) converges as t → ∞ to a
Bernoulli random variable with parameter P(T 0 < ∞). In this case, the duality (2.6) also

implies that P(T 0 < ∞) is the unique equilibrium of (2.1) and is stable. The analysis is

more involved if Tabs = ∞ has positive probability.

PROPOSITION 2.24. Define the total weight of T = (τ,m) ∈ ϒ as

M(T ) := ∑
v∈V 1(τ )

m(v).

On {Tabs = ∞}, we have limr→∞ M(Tr ) = ∞.

Proposition 2.24 is proved in Section 5.
If ν0 = 0 and M(Tt ) → ∞, it is reasonable to expect the following behaviour of

H(Tt , y0). If s > u, the weight of a primary vertex that is never pruned (e.g., the root) is
a birth-death process with birth rate s and death rate u and hence converges to 0 or ∞ almost
surely. In the first case, the probability that such a vertex gets the unfit type converges to 1 for
all y0 ∈ [0,1]; in the second case, for all y0 ∈ [0,1), this probability is 0. So, we may expect
that H(Tt , y0) has the same limit for all y0 ∈ [0,1). If s < u the size of a given primary vertex
will tend to 0 almost surely, but if γ is sufficiently large, the number of vertices with positive
weight can grow to infinity; so the limit of H(Tt , y0) can depend on y0 in a more subtle way.

Recall that y∞(y0) = limt→∞ y(t;y0) and that ymin and ymax denote the smallest and
largest equilibrium of (2.1). The long-term behaviour of H(Tt , y0) and its connection with
the mutation–selection equation are given in the next theorem, which is the main result of
this section.

THEOREM 2.25 (Stochastic representation of equilibria). For any y0 ∈ [0,1], H(Tt , y0)

converges almost surely as t → ∞ to a random variable H∞(y0) ∈ [0,1]. In addition, if y0
is not an unstable equilibrium of (2.1) located in (0,1) and T0 = 1 , then H∞(y0) has a
Bernoulli distribution with parameter y∞(y0). Moreover, for any y0 ∈ [0,1], we have

(2.8) y∞(y0) = P 1 (T 0 < ∞) +E 1

[
1{Tabs=∞}H∞(y0)

]
.

In particular, ymin = P 1 (T 0 < ∞) and ymax = P 1 (T� = ∞).
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Note that in particular P 1 (Tabs < ∞) = 1 if and only if ymin = ymax. Let

Attr(ȳ) := {y0 ∈ [0,1] : lim
t→∞y(t;y0) = ȳ}

denote the domain of attraction of an equilibrium ȳ of (2.1). The next result provides a more
precise description of H∞(y0).

COROLLARY 2.26. Assume T0 = 1 and y0 ∈ (0,1) is not an unstable equilibrium
of (2.1). Then, almost surely,

H∞(y0) =
⎧⎨⎩1{T

0
<∞}, if y0 ∈ Attr

(
ymin

)
,

1{T�=∞}, if y0 ∈ Attr
(
ymax

)
.

Theorem 2.25 and Corollary 2.26 are proved in Section 5. Corollary 2.26 tells us that when
T is not trapped, H∞(y0) is 0 for y0 close enough to 0 (for y0 ∈ Attr(ymin)), and 1 for y0
close enough to 1 (for y0 ∈ Attr(ymax)). The critical value associated to this dichotomy is
described in the next result.

PROPOSITION 2.27. Assume that P 1 (Tabs = ∞) > 0. Let

yc := inf
{
y0 ∈ [0,1] : P 1

(
H∞(y0) = 1 | Tabs = ∞) = 1

}
.

Then yc ∈ [ymin, ymax] is an equilibrium of (2.1) and

yc = sup
{
y0 ∈ [0,1] : P 1

(
H∞(y0) = 0 | Tabs = ∞) = 1

}
.

There are no equilibria in [0,1] other than ymin, yc, ymax.

Proposition 2.27 is also proved in Section 5.
Finally, the results of this subsection connect the genealogical picture with the bifurcation

structure described in Section 2.1 in the case ν0 = 0. Recall the parameter domains in (2.3).

�1: Here, y∞(y0) = 1 for all y0 ∈ [0,1]. The sASG process absorbs almost surely in 0

and its long-term output type is 1 almost surely, regardless of y0; see Theorem 2.25.

�a
2: One has y∞(y0) ∈ [0,1) unless y0 = 1. The sASG process either absorbs in 0 or its

total weight tends to ∞, by Proposition 2.24. In the latter case, the long-term output type is
0 (resp. 1) for all y0 ∈ [0,1) (resp. y0 = 1) by Corollary 2.26.

�b
2: One has y∞(y0) = ȳ− for y0 ∈ [0, ȳ−] and y∞(y0) = 1 for y0 ∈ (ȳ−,1]. If the sASG

process does not absorb, its total weight tends to ∞ by Proposition 2.24. In this case, the
long-term output type depends on the initial type frequency: it is 0 if y0 ≤ ȳ−, and it is 1 if
y0 > ȳ−.

�3: There are three equilibria in [0,1]. Again, if the sASG process does not absorb, the
total weight tends to ∞, in which case the long-term output type depends on the initial type
frequency: it is 0 if y0 < ȳ+; it is 1 if y0 > ȳ+.

REMARK 2.28 (Connection to recursive tree processes and endogeny). Let us elaborate
on a connection to [33] and endogeny. A (rather simplified) description of a recursive tree
process (RTP) is as follows. Consider a tree that has a randomly chosen function attached to
each internal vertex. The leaves of this tree are assigned types. Given the types of the children,
the random function determines the type of the parent, and in this way the types propagate
from the leaves, through the tree, to the root. If the type distribution in each generation sat-
isfies a consistency condition induced by a certain recursive distributional equation (RDE)
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(which prescribes the way the functions at the internal vertices are chosen), one can apply
Kolmogorov’s extension theorem to extend this type propagation in some precise sense to
infinite trees (e.g., [32], around equation (2.7)); leading to an RTP associated to the solution
of the RDE. This RTP is said to be endogenous if the type at the root of the infinite tree is
measurable with respect to the σ -field of functions at the internal vertices. Loosely speaking,
the RTP is endogenous if the effect of the typing at the leaves on the root type disappears in
the infinite tree. In our context, the leaves are independently typed according to a Bernoulli
distribution with parameter y0. So if then the state at the root is measurable with respect to
the σ -algebra generated by the functions attached to the internal vertices, then the RTP is said
to be endogenous for y0 (for more details, see [2, 32]).

It follows from [33], [Propositions 1.16 and 1.17, that for y0 an equilibrium of (2.1),
H∞(y0) has a Bernoulli distribution if and only if the RTP corresponding to y0 is endogenous.
In particular, the first part of Theorem 2.25 implies that in our setup, the RTP is endogenous
for all equilibria that are not unstable. Moreover, for y0 ∈ {ymin, ymax}, Corollary 2.26 makes
the endogeny of the underlying recursive tree process corresponding to y0 explicit. An alter-
native way to recover the convergence statement in Theorem 2.25 is via Proposition 1.20 of
[33]; see also Section 2.1 of [33] (alternatively, Lemma 15 of [2]).

For s = ν0 = 0 and u = 1, the first part of Theorem 2.25 can also be recovered from [33],
Theorem 1.18. Moreover, if y0 is an unstable equilibrium, Mach et al. ([33], Lemma 1.19)
determine the first and second moments of H∞(y0) (to avoid confusion, we remark here
that they in fact consider 1 − H∞(y0)). This allows them to infer that H∞(y0) is then not
Bernoulli distributed. Furthermore, they complement the result by numerical evaluations of
the distribution function (Figure 2 of [33]).

2.8. Applications II — ancestral type distribution. So far we have been concerned with
a randomly chosen individual at present and determined its type either via the eASG, pASG,
or sASG. In this section, we change perspective and look at the type of the ancestor of the
chosen individual at time r before the present, where we now return to the notion of ancestry
in the genealogical rather than the tree sense. By construction, the ancestor of the sampled
individual together with its type can be extracted from the eASG after assigning types to its
leaves, as inherent in Figures 5 and 6 and formalised as follows.

DEFINITION 2.29 (Ancestral leaf and ancestral type). Let α ∈ � and c ∈ {0,1}L(α) be a
leaf-type configuration for α. Let c

� ∈ {0,1}V (α) be the vertex-type propagation of c (see Def-
inition 2.8). Define the vector (λc

v(α))v∈V (α) ∈ L(α)V (α) recursively as follows. For  ∈ L(α),
set λc

(α) = . For v ∈ V (α):

• with deg(v) = 1 and child v, set λc
v(α) = λc

v
(α).

• with deg(v) = 2, set λc
v(α) = λc

v́
(α) if c

�

v́
= 0, otherwise set λc

v(α) = λc
v̀
(α).

• with deg(v) = 3, set λc
v(α) = λc

v́
(α) if c

�

v
= c

�

v́
= 0, otherwise set λc

v(α) = λc
v̀
(α).

For any v ∈ V (α), we refer to the leaf λc
v(α) as the ancestral leaf of v under c, and to

J c
v (α) := cλc

v(α) as the ancestral type of v under c.

Let α ∈ �, y0 ∈ [0,1], and C(y0) = (C(y0))∈L(α) be a random leaf-type configuration
consisting of i.i.d. Bernoulli random variables with success parameter y0. Define H�(α, y0)

to be the probability that the ancestral type of the root of α is 1 under C(y0).
Consider the eASG process a = (ar)r≥0 starting in . For r ≥ 0 and y0 ∈ [0,1], let C(r, y0)

be a random leaf-type configuration of ar consisting of i.i.d. Bernoulli variables with param-
eter y0, independent of ar (y0 then represents the proportion of type-1 individuals at time r

before the present). For y0 ∈ [0,1] and r ≥ 0, we define

gr(y0) := P
(
J

C(r,y0)
ρ(ar )

(ar) = 1
) = E

[
H�(ar, y0)

]
.



LINES OF DESCENT WITH PAIRWISE INTERACTION 2421

We refer to gr(y0) as ancestral type distribution at (backward) time r with unfit frequency y0.
The long-term ancestral type distribution at frequency y0 ∈ [0,1] is defined as g∞(y0) :=
limr→∞ gr(y0); we show in Corollary 6.3 that this limit always exists.

It is more involved to find a useful representation for the ancestral type distribution than
for the type distribution, because the former requires to identify the parental branch at ev-
ery branching event. Moreover, some ancestral lines need to be traced back beyond the first
mutation. In the noninteractive case (i.e., γ = 0), this can be done via the pruned lookdown
ancestral selection graph (pLD-ASG), which is a variant of the ASG in which the lines have
an additional labelling that helps to prune the lines in an appropriate way (see [4, 7, 10, 30]).
We now provide an alternative approach building on the eASG in the interactive case.

In the remainder of this section, we assume ν0 = 0. We call the immune line of α ∈ � the
path connecting the root of α to its leftmost leaf (i.e., the path that is continuing to every
branching event). Since ν0 = 0, the ancestral type of the root is 1 if and only if the leftmost
leaf of α is the ancestral leaf of the root and is unfit. Moreover, by construction, the leftmost
leaf is the ancestral leaf of the root if and only if: (i) for any vertex v with deg(v) = 2 on the
immune line, v́ has the unfit type, and (ii) for any vertex v with deg(v) = 3 on the immune
line, v or v́ has the unfit type. To check (i) we keep track of the eASG rooted in v́, for any
vertex v with deg(v) = 2 on the immune line. Similarly, to check (ii) we keep track of the
eASGs rooted in v and v́, for any vertex v with deg(v) = 3 on the immune line. The previous
discussion leads to the following definition.

DEFINITION 2.30 (eASG forest). Let α ∈ �. The eASG forest of α is the collection

F(α) := (
(αv́i

)
N(α)
i=1 , (αwj

, αẃj
)
M(α)
j=1

)
,

where:

(1) N(α) and M(α) are the numbers of vertices on the immune line of α with outdegree 2
and 3, respectively,

(2) (vi)
N(α)
i=1 and (wj )

M(α)
j=1 are the corresponding vertices on the immune line, ordered in

increasing distance to the root,
(3) for i ∈ [N(α)], αv́i

is the sub-eASG of α rooted in v́i ,
(4) for j ∈ [M(α)], αwj

and αẃj
are the sub-eASGs of α rooted in wj and ẃj .

See Figure 13 for an illustration.

The next result formalises the connection between the ancestral type of the root of an
eASG and the types of the roots of the trees in its forest. The proof of the result is provided
in Section 6.1.

FIG. 13. Three eASGs (black and grey), their immune lines (delimited in light blue), and the corresponding
forests (black).
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FIG. 14. Plot of the ancestral type distribution at equilibrium for the parameter regimes from Figure 3. This
illustrates Corollary 2.33. Dotted line (resp. solid line): equilibria ȳ s.t. g∞(ȳ) = 0 (resp. g∞(ȳ) = 1).

PROPOSITION 2.31. Let α ∈ � without mark ◦ and F(α) = ((αv́i
)
N(α)
i=1 , (αwj

, αẃj
)
M(α)
j=1 )

be the corresponding eASG forest. Then, for all y0 ∈ [0,1], we have

H�(α, y0) = y0

N(α)∏
i=1

H(αv́i
, y0)

M(α)∏
j=1

[
H(αwj

, y0)

+ H(αẃj
, y0) − H(αwj

, y0)H(αẃj
, y0)

]
.

(2.9)

Proposition 2.31 and the duality for the eASG process are crucial to derive the following
representation of the ancestral type distribution.

THEOREM 2.32 (Representation of ancestral type distribution). Let ν0 = 0. Then,

(2.10) gr(y0) = y0 exp
(
−

∫ r

0

(
1 − y(ξ ;y0)

)(
s + γ

(
1 − y(ξ ;y0)

))
dξ

)
, y0 ∈ [0,1].

Moreover, g∞(y0) = limr→∞ gr(y0) exists for all y0 ∈ [0,1].
More explicit formulas for gr and g∞ are provided in Proposition 6.2 and Corollary 6.3,

respectively. These results, the proof of Theorem 2.32, and the proof of the following corol-
lary can be found in Section 6.1. Recall the parameter regions (2.3).

COROLLARY 2.33 (Long-term ancestral type distribution at equilibrium). Let ν0 = 0.
We have g∞(y∞(1)) = 1. Moreover, for y0 ∈ [0,1), in �1, we have g∞(y∞(y0)) = 1; in �a

2,
we have g∞(y∞(y0)) = 0; and in �b

2 ∪ �3,

(2.11) g∞
(
y∞(y0)

) =
{

0, if y0 ≤ ȳ+,

1, if y0 > ȳ+.

Figure 14 illustrates this result.
We conclude this section by describing the genealogical picture underlying Corollary 2.33.

Recall that there is a natural coupling between the eASG and the pASG process starting at
such that H(at , y0) = H(āt , y0) = H(s(āt ), y0). In particular, the discussion at the end of
Section 2.7 about the long-term output type in the sASG process translates into the analogous
statements for the long-term type of the root of the eASG process. Assume that y0 ∈ [0,1).

�1: The discussion at the end of Section 2.7 implies y∞(y0) ≡ 1. In particular, all poten-
tial ancestral leaves in the eASGs are unfit.
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�a
2: The long-term type of the root of each eASG branching off the immune line is 0 with

probability 1−ymin > 0 (this is the probability that the corresponding sASG is not absorbed).
Since s > 0, the number of eASGs branching off the immune line at selective events grows
to infinity; hence, the long-term ancestral type of the root is 0 almost surely.

�b
2 ∪ �3: The long-term type of the root of each eASG branching off the immune line is 0

with positive probability if y0 ∈ Attr(ymin), and as in �a
2, the long-term ancestral type of the

root is 0 almost surely. In contrast, for y0 ∈ Attr(1), y∞(y0) = 1, and as in �1, all potential
ancestral leaves in the eASGs are unfit.

2.9. Open questions. Our tree-valued processes capture the genealogies of the model
underlying (2.1) and allow the inference of type and ancestral-type distribution. There remain
several open problems, some of which we list here.

1. If y0 ∈ [0,1] is not an unstable equilibrium located in (0,1), Theorem 2.25 states
that H∞(y0) has Bernoulli distribution. However, for unstable y0 ∈ (0,1) the distribution of
H∞(y0) is unknown. Mach et al. [33] provide some clues: the authors prove that, in their
setting and for γ > 4, there is an atom at 1 (Lemma 1.19 of [33]); to avoid confusion, we
once more stress that they consider 1 −H∞(y0) so that they observe the atom at 0), and they
provide numerical evidence ([33], Figure 2) that suggests that beside this atom, the density
is absolutely continuous with respect to the Lebesgue measure. Is it possible to provide more
details about this distribution?

2. Suppose ν0 = 0. In �1, it follows from Proposition 2.3 and Theorem 2.25 that the
sASG process dies out almost surely. If we are not in �1 and the tree does not absorb, the
total mass of the sASG process tends to ∞ by Proposition 2.24. H∞(y0) then depends on y0.
This raises the question whether the behaviour can be explained explicitly in terms of the
underlying tree structure. While this is relatively straightforward in �a

2 (on which we have
not expanded here in order not to overload the article), it is more of a challenge in �b

2 ∪ �3.
3. We have derived a representation of the ancestral type distribution if ν0 = 0. What is

the representation if ν0 > 0?
4. Pruning parts of the ASG upon mutations is a key step in our constructions. All our

operations are specifically tailored to (2.1); and in particular to the induced type propagation
within the ASG. Replacing the selection and interaction terms in (2.1) by y(t)(1−y(t)s(y(t))

for a general polynomial s yields a model with more general (as opposed to pairwise) inter-
actions (for a related stochastic model; see [12]). Can our pruning operations be systemically
extended to this more general setup?

5. Starting from the Moran model, time and parameters can be rescaled such that one
obtains a Wright–Fisher diffusion with frequency-dependent selection and mutation. In con-
trast to the deterministic limit, coalescences are still present in the corresponding ASG so that
the limiting genealogical structure is a branching-coalescing graph. Cordero et al. [12] give
a useful representation of the ASG in the case of selection only, and we suspect this carries
over to the case with mutations. However, it is unclear whether the effect of mutations can be
resolved on the spot as we do in Sections 2.5 and 2.6.

3. The mutation–selection equation with interaction and the law of large numbers.
We now provide additional context for the mutation–selection equation and prove the results
of Sections 2.1 and 2.3. Moreover, we recover the equilibrium structure without interaction
by taking the limit γ → 0 and establish a sufficient condition for a unique equilibrium in
[0,1] if ν0 ∈ (0,1). We start by determining the equilibrium structure of (2.1) if ν0 = 0.

PROOF OF PROPOSITION 2.3. Since ν0 = 0, the right-hand side of (2.1) reduces to
F(y) = (y − 1)G(y) with G(y) = −γy2 + (s + γ )y − u. If γ = 0, the equilibria follow
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immediately. If γ > 0, we consider the discriminant D = D(u, s, γ ) := (γ + s)2 − 4uγ of
the quadratic polynomial G(y) as a function of u. Note that s ≤ u�, with equality if γ = s.
Assume first that u > u�. Then D is negative, and 1 is the unique equilibrium. Next, as-
sume that u ≤ u�. Then the equilibria are 1 and the real roots of G, which are ȳ− and ȳ+
as claimed. Since D = (γ − s)2 + 4γ (s − u) ≥ (γ − s)2 for u ≤ s (with equality if u = s),
and 0 ≤ D < (γ − s)2 for s < u ≤ u� (with equality if u = u�), the (in)equalities in Table 1
follow easily.

As to the stabilities, note first that F(0) = u > 0, and recall from Table 1 that all zeroes of
F are positive. This entails that the smallest equilibrium that is a simple zero of F is stable.
If all equilibria are simple zeroes, the stabilities alternate. Now, consider first γ = 0. If u �= s,
the zeroes are distinct, so the smaller (larger) equilibrium is stable (unstable). If u = s, the
single equilibrium is a double zero at 1. Since F vanishes without changing sign at this point,
the equilibrium is unstable as an equilibrium in R, but attracting from the left and thus stable
in [0,1].

Next, consider γ > 0 and use the positions of the equilibria from Table 1. If u < s or
s < u < u�, all equilibria are distinct, so their stabilities alternate. If u = s or u = u�, either
two out of the three or all three equilibria coincide. If we have one simple and one double
zero, then the equilibrium at the simple zero is always stable (because this is the smallest
simple zero), while the equilibrium at the double zero is always unstable when considered
in R, or when in (0,1). This also remains true in the case ȳ− < 1 = ȳ+ when considered in
[0,1], since the equilibrium at 1 is repelling to the left. If the equilibrium is a triple zero, it is
stable since F changes sign. �

If ν0 = 0, the two nontrivial roots of F are functions of s, γ , and u, that is, ȳ± =
ȳ±(s, γ, u); the equilibrium attained additionally depends on y0. To stress this, we temporar-
ily write y∞(y0; s, γ, u) instead of y∞(y0). Moreover, ȳ− and ȳ+ are continuous in γ > 0.
Proposition 2.3 yields that for γ < s, 0 < ȳ− < 1 < ȳ+. Hence, 1 and ȳ− are the biologically
relevant equilibria in this parameter regime. The next result establishes the continuity of ȳ−
in γ at 0, and yields another way to recover the equilibrium structure in the noninteractive
case.

PROPOSITION 3.1. For s, u > 0 and ν0 = 0, limγ→0 ȳ−(s, γ, u) = u/s. In particular,

lim
γ→0

y∞(y0, s, γ, u) =
⎧⎨⎩min

{
u

s
,1

}
, if y0 ∈ [0,1),

1, if y0 = 1.

PROOF. Using the expression in (2.2) for ȳ− and a straightforward application of
L’Hôpital’s rule yields the result. �

We close this section by proving that the type-frequency process in the Moran model
converges to the solution of the mutation–selection equation as the population size tends
to ∞.

PROOF OF PROPOSITION 2.7 (DYNAMICAL LAW OF LARGE NUMBERS). (Y (N))N≥1 is
a density-dependent family of Markov chains, because we can rewrite the rates of Y (N) as
q
Y (N)(k, k + ) = Nq( k

N
, ) for  ∈ Z \ {0}, where q : [0,1] ×Z \ {0} →R is continuous and

given by

q(y,1) = y(1 − y) + uν1(1 − y), q(y,−1) = (
1 + s + γ (1 − y)

)
y(1 − y) + uν0y,
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together with q(y, ) = 0 for || > 1. The function q clearly satisfies

(3.1) sup
y∈[0,1]

∑


||q(y, ) < ∞ and lim
d→∞ sup

y∈[0,1]

∑
||>d

||q(y, ) = 0.

Since for any y0 ∈ [0,1] the ODE (2.1) has a unique global solution y(·;y0), the result follows
from the dynamical law of large numbers for density-dependent families of Markov chains
by Theoem 3.1 of Kurtz [29]. �

REMARK 3.2. In the absence of interaction (γ = 0), Proposition 2.7 coincides with [11],
Proposition 3.1.

4. The ASG: Dualities, pruning, and stratification.

4.1. The ASG in the Moran model with interaction. The ASG is naturally embedded in
the graphical representation of the Moran model. We have outlined the main idea in Sec-
tion 2.2: consider a graphical realisation of the Moran model in [0, t] and, starting from
time t , trace back the individuals that potentially influence the type while ignoring the addi-
tional information contained in mutations. Here, we provide the details.

Assume there are currently n lines in the ASG, that is, there are n individuals that poten-
tially influence the type of the sample. When a neutral arrow joins two lines in the current
set, a coalescence event takes place, that is, the two lines merge into the single one at the tail
of the arrow and the number of lines in the graph decreases by one (see Figure 15 (ii)). Since
neutral arrows appear at rate 1/N per ordered pair of lines, in an ASG of size n coalescence
events occur at rate n(n − 1)/N . When a line in the current set is hit by a neutral arrow that
emanates from a line that is currently not in the graph, a relocation event occurs; i.e. the ASG
continues with the incoming branch (the line at the tail of the arrow) and the number of lines
in the graph does not change. Relocation events occur at rate n(N − n)/N .

When a selective arrow hits the current set of lines, the hit individual has two potential
parents, namely the individual at the incoming branch, and the one at the continuing branch.
Which of these is the true parent of the individual at the descendant branch depends on the
type at the incoming branch, but for the moment we work without types. This means that we
must trace back both potential parents; we say the selective event remains unresolved. Such
events can be of two types: a binary branching if the selective arrow emanates from a line
outside the current set of lines, and a collision if the selective arrow links two lines in the
graph (see Figure 15 (iii)). The former increases the number of lines in the graph by one and,
since selective arrows appear at rate s/N per ordered pair of lines, binary branchings occur
at rate sn(N − n)/N = O(1) as N → ∞ in our ASG of size n. The latter does not change
the number of lines in the ASG and occurs at rate sn(n − 1)/N = O(1/N).

When an interactive arrow hits a line in the ASG, the individuals at both the incoming and
the checking branches are potentially influential for the types in the sample. The true parent
depends on the types of both of them; but as before, we work without types. The resulting
additional unresolved reproduction events can now be of various kinds; see Figure 15 (iv)

FIG. 15. Relocation (i), coalescence (ii), and various types of collision events (iii)–(v).
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and (v). A ternary branching occurs if both the incoming and the checking arrows emanate
from different lines currently not in the ASG. This increases the number of lines by two. If the
incoming and the checking branch are identical, the event reduces to a binary branching or a
collision, depending on whether the incoming/checking branch emerges from a line inside or
outside the graph. It may also happen that the incoming and the checking branch are distinct,
but one or both of them emanate(s) from a line within the current set of lines. Since interactive
and checking arrow pairs occur at rate γ /N2 per ordered triple of lines, in our ASG of size n,
ternary branchings occur at rate γ n(N − n)(N − n − 1)/N2 = O(1) as N → ∞; all other
kinds of events happen at rates of order O(1/N).

In contrast to the original ASG (that is, without interaction), not all individuals that po-
tentially influence the type of the sample are necessarily potential ancestors. Namely, the
individual on the checking line is, in general, not ancestral; but its type may have an influ-
ence on the type of the sampled individual(s), and on which line is parental. Analogous to the
Moran model, beneficial and deleterious mutations are superimposed on the lines at rate uν0
and uν1, respectively. The resulting object is called the untyped ASG; this refers to the fact
that the initial types have not yet been assigned and the consequences of mutations are still
unresolved.

Once the untyped ASG has been constructed, the true ancestry and the types of the initial
sample are obtained as outlined in Section 2.2; that is, assign types to the lines in the ASG
and propagate them up to the sample while abiding the propagation rules of the Moran model.

Coalescence, collisions, and interactive events that are not ternary branchings vanish as
N → ∞ (as they are O(1/N) per ordered pair of lines). This is why they are absent in the
asymptotic ASG, and why the branching rates are simply s and γ .

4.2. The eASG: Results related to Section 2.4. We now prove the duality relation between
the mutation–selection equation and the eASG process of Theorem 2.10.

Recall the notation of Section 2.4. In particular, ρ(α) denotes the root of α. Moreover,
for α ∈ � and v ∈ V (α), let αv ∈ � be the subtree of α rooted in v. If deg(ρ(α)) = 2 (if
deg(ρ(α)) = 3), we write ὰ and ά (ὰ, α and ά) for the subtree of α rooted in the left and
right (left, middle, and right) child of ρ(α).

The following lemma collects elementary properties of the function H that turn out to be
useful in the subsequent proofs.

LEMMA 4.1 (Properties of H ). Let α ∈ � and set d = deg(ρ(α)).

(1) If d = 0, then H(α,y0) = y0.
(2) If d = 1 and ρ(α) has mark ×, then H(α,y0) = 1.
(3) If d = 1 and ρ(α) has mark ◦, then H(α,y0) = 0.
(4) If d = 2, then H(α,y0) = H(ὰ, y0)H(ά, y0).
(5) If d = 3, then H(α,y0) = H(ὰ, y0)[H(α,y0) + H(ά, y0) − H(α,y0)H(ά, y0)].

In particular, H(α, ·) is a polynomial of degree at most |L(α)|.

REMARK 4.2. In the setup of Mach et al. [33] (which we recalled in Remark 2.2), dele-
terious mutations and ternary branchings are captured by the local maps dth (“deaths”) and
cob (“cooperative branchings”), respectively. H(at , y0) corresponds to the concatenation of
the higher-level maps d̂th and ĉob, respectively. In particular, (2) and (5) of our Lemma 4.1
coincide with their equation (1.84).

PROOF OF LEMMA 4.1. If d = 0, the tree consists only of ρ(α), and hence the probabil-
ity that ρ(α) is unfit equals y0, which proves (1). If d = 1, ρ(α) has a mark, and its type is
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determined by the mutation and independent of y0. If the mutation is deleterious (beneficial),
the type of ρ(α) is 1 (is 0), in agreement with (2) and (3). If d = 2, ρ(α) is unfit if and only
if both its children are unfit. If d = 3, ρ(α) is unfit if and only if its left child is unfit and
either the middle or right child is unfit. In both cases this is because of the type propagation
rule. (4) and (5) then follow because the types of these children are independent due to the
independent assignments of types at the leaves of ὰ and ά (ὰ, α, and ά). That H(α, ·) is a
polynomial of degree at most |L(α)| follows via a straightforward inductive argument. �

The infinitesimal generator of the eASG process of Definition 2.9 is given by G̃f =
G̃ �f + G̃�f + G̃×f + G̃◦f , where

G̃ �f (α) := ∑
∈L(α)

s
[
f

(
α

�



) − f (α)
]
, G̃�f (α) := ∑

∈L(α)

γ
[
f

(
α
�


) − f (α)
]
,

G̃×f (α) := ∑
∈L(α)

uν1
[
f

(
α×



) − f (α)
]
, G̃◦f (α) := ∑

∈L(α)

uν0
[
f

(
α◦



) − f (α)
]
,

for a bounded function f from � to R (� is equipped with the discrete topology). We require
the following lemma to prove the duality relation of Theorem 2.10.

LEMMA 4.3. For α ∈ � and y0 ∈ [0,1], we have

G̃ �H(·, y0)(α) = −sy0(1 − y0)∂2H(α,y0),(4.1)

G̃�H(·, y0)(α) = −γy0(1 − y0)
2∂2H(α,y0),(4.2)

G̃×H(·, y0)(α) = uν1(1 − y0)∂2H(α,y0),(4.3)

G̃◦H(·, y0)(α) = uν0y0∂2H(α,y0),(4.4)

where ∂2H(α,y0) is the partial derivative of H with respect to the second coordinate evalu-
ated at (α, y0).

PROOF. We proceed by induction on the number of vertices in α. Assume first that
|V (α)| = 1. It follows from Lemma 4.1 that H(α,y0) = y0, and hence ∂2H(α,y0) = 1. Iden-
tities (4.1)–(4.4) follow for α from the properties of H stated in Lemma 4.1. Now assume
(4.1)–(4.4) hold for any α ∈ � with |V (α)| = n for some n ∈ N. We now prove that they
also hold for α ∈ � with |V (α)| = n + 1. We distinguish cases according to the outdegree
of ρ := ρ(α). If deg(ρ) = 1, then ρ has a mutation mark and its type is determined by the
mark; see Lemma 4.1 (1) and (2). Therefore, H(α, ·) is constant, and the right-hand side in
(4.1)–(4.4) is 0. The left-hand side in (4.1)–(4.4) is also 0, because H(α�

, y0) = H(α,y0) for
all  ∈ L(α), y0 ∈ [0,1], and � ∈ { �

,
�

,×,◦}. Assume next that deg(ρ) = 2. The root of α

�



is still ρ with outdegree 2. By construction, if  ∈ L(ὰ) (if  ∈ L(ά)), then (α

�

 )ρ̀ = (ὰ)

�

 and
(α

�

 )ρ́ = ά (then (α

�

 )ρ̀ = ὰ and (α

�

 )ρ́ = (ά)

�

 ). As a consequence,

G̃ �H(·, y0)(α)

= H(ά, y0)
∑

∈L(ὰ)

s
[
H

(
(ὰ)

�

 , y0
) − H(ὰ, y0)

]
+ H(ὰ, y0)

∑
∈L(ά)

s
[
H

(
(ά)

�

 , y0
) − H(ά, y0)

]
= H(ά, y0)

[−sy0(1 − y0)∂2H(ὰ, y0)
] + H(ὰ, y0)

[−sy0(1 − y0)∂2H(ά, y0)
]

= −sy0(1 − y0)∂2H(α,y0),
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where we used the induction hypothesis and Lemma 4.1 (4). This proves (4.1). Analogous
arguments lead to (4.2)–(4.4). Assume now that deg(ρ) = 3. If  ∈ L(ὰ) (if  ∈ L(α); or
 ∈ L(ά)), then (α

�

 )ρ̀ = (ὰ)

�

 , (α

�

 )ρ = α, and (α

�

 )ρ́ = ά (then (α

�

 )ρ = (α)

�

 , (α

�

 )ρ̀ = ὰ,

and (α

�

 )ρ́ = ά; or (α

�

 )ρ́ = (ά)

�

 , (α

�

 )ρ = α, and (α

�

 )ρ̀ = ὰ), where ρ is, by construction,

also the root of α �. Using Lemma 4.1 (5) and the induction hypothesis,

G̃ �H(·, y0)(α)

= [
H(α,y0) + H(ά, y0) − H(α,y0)H(ά, y0)

] ∑
∈L(ὰ)

s
[
H

(
(ὰ)

�

 , y0
) − H(ὰ, y0)

]
+ H(ὰ, y0)

(
1 − H(ά, y0)

) ∑
∈L(α)

s
[
H

(
(α)

�

 , y0
) − H(α,y0)

]
+ H(ὰ, y0)

(
1 − H(α,y0)

) ∑
∈L(ά)

s
[
H

(
(ά)

�

 , y0
) − H(ά, y0)

]
= −sy0(1 − y0)

{[
H(α,y0) + H(ά, y0) − H(α,y0)H(ά, y0)

]
∂2H(ὰ, y0)

+ H(ὰ, y0)
(
1 − H(ά, y0)

)
∂2H(α,y0) + H(ὰ, y0)

(
1 − H(α,y0)

)
∂2H(ά, y0)

}
= −sy0(1 − y0)∂2H(α,y0).

Analogous arguments apply to G̃�H(·, y0)(α), G̃×H(·, y0)(α), and G̃◦H(·, y0)(α). �

Lemma 4.3 is essential in the following proof of the duality between the eASG process
and the mutation–selection equation.

PROOF OF THEOREM 2.10 (DUALITY EASG). Consider y := (y(t;y0))t≥0 as a (deter-
ministic) Markov process on [0,1] with generator GF given by

(4.5) GF g(y0) = F(y0)
dg

dy
(y0)

for g ∈ C1([0,1],R) and F of (2.1). Fix α ∈ � and t ≥ 0. Clearly, H(α, ·) ∈ C1([0,1],R)

(H(α, ·) is a polynomial; see Lemma 4.1). Since F is continuously differentiable, it fol-
lows from a classical result of ODE theory ([27], Theorem 8.43) that y(t; ·) ∈ C1([0,1],R).
Hence, also P F

t H(α, ·) = H(α,y(t; ·)) ∈ C1([0,1],R), where (P F
t )t≥0 is the transition semi-

group corresponding to y acting on C([0,1]) (equipped with the uniform norm). The set �

is countable and equipped with the discrete topology. The number of possible transitions of
the eASG process at any given state is finite and each transition occurs at a finite rate. There-
fore, the domain of its generator contains any bounded function from � to R. In particular,
for y0 ∈ [0,1], H(·, y0) and P̃tH(·, y0) lie in the domain of its generator, where (P̃t )t≥0 is
the transition semigroup corresponding to the eASG process acting on the space of bounded,
Borel measurable functions (equipped with the uniform norm). Using Lemma 4.3, we de-
duce that G̃H(·, y0)(α) = GF H(α, ·)(y0) for α ∈ � and y0 ∈ [0,1]. Since H is bounded and
continuous, the result follows from Proposition 1.2 of Jansen and Kurt [26]. �

4.3. The pASG: Results related to Section 2.5. The main goal of this section is to prove
Corollary 2.17. We start with an elementary, but important property of the type propagation.
For this we need to introduce the notion of lopping. We say that α0 ∈ � (resp. ᾱ0 ∈ �

S
)

is a lopping of α ∈ � (resp. ᾱ ∈ �
S
) if α0 is obtained from α (resp. ᾱ) by removing the

descendants of a subset of vertices in V (α) (resp. V (ᾱ)). See Figure 16 for an illustration.
Note that the notion of lopping and admissible pruning are different: for example, a lopping
of α ∈ � is by definition also in �, while an admissible pruning of α is in �

S
.
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FIG. 16. Left: tree in � (black and grey) and a lopping of it (black). Right: tree in �
S
(black and grey) and a

lopping of it (black).

LEMMA 4.4. Let α ∈ � and ᾱ ∈ �
S
, and let α0 ∈ � and ᾱ0 ∈ �

S
be a lopping of α

and ᾱ, respectively.

(a) For any leaf-type configuration c of α, the type of the root of α0 under the leaf-type
configuration (c

�

)∈L(α0)
coincides with the type of the root of α under c.

(b) For any reduced leaf-type configuration ĉ of ᾱ, the type of the root of ᾱ0 under the
reduced leaf-type configuration (ĉ

�

)∈L̂(ᾱ0)
coincides with the type of the root of ᾱ under ĉ.

PROOF. It follows directly from the fact that the type of a vertex is exclusively deter-
mined by the type of its children (see Definitions 2.8 and 2.12). �

If we type a single leaf in a pruned tree, the types of some of its ancestors are already
determined under the type propagation described in Definition 2.12 (see Figure 17 for an
example).

LEMMA 4.5. Let ᾱ ∈ �
S
,  ∈ L̂(ᾱ), v ∈ V (ᾱ), and let ĉ be a reduced leaf-type configu-

ration of ᾱ.

(a) If  is not a firewall, ĉ = 1, and w(ᾱ) ≺ᾱ v ᾱ , then ĉ

�

v = 1.
(b) If ĉ = 0 and ρ(R(ᾱ)) ᾱ v ᾱ , then ĉ

�

v = 0.

PROOF. We first prove (a). By assumption,  is not a firewall. Let

w(ᾱ) =: v0 ᾱ v1 ᾱ · · · ᾱ vn := 

be the vertices in the path connecting w(ᾱ) and  (note that n > 0 by assumption). We have
to show that, for all i ∈ [n], ĉ

�

vi
= 1. We do this via a backward induction in i ∈ [n]. For

i = n, the result is true by assumption. We assume that n > 1 (otherwise the proof is already
complete) and that i ∈ [n − 1] is such that ĉ

�

vi+1
= 1. By definition of w(ᾱ), vi and vi+1

are not firewalls. Thus, deg(vi) = 3, and the left child of vi is not vi+1 but is a leaf and has

FIG. 17. Type propagation in a tree in �
S
. Leaves indicated by ↓ have been assigned the type displayed in the

interior of the leaf. Some ancestors of these leaves inherit the type due to the type propagation rules.
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mark ×. Since ĉ

�

vi+1
= 1, we deduce from the type propagation rules that ĉ

�

vi
= 1. This ends

the proof of (a).
Now we prove (b). Let ρ(R(ᾱ)) =: v1 ᾱ · · · ᾱ vn :=  be the vertices in the directed

path connecting ρ(R(ᾱ)) and . We have to show that for all i ∈ [n], ĉ

�

vi
= 0. We do this via

a backward induction in i ∈ [n]. For i = n, the result is true by assumption. We assume that
n > 1 (otherwise the proof is already complete) and that i ∈ [n − 1] is such that ĉ

�

vi+1
= 0.

Since vi and vi+1 belong to the same region, then deg(vi) = 2, or deg(vi) = 3 and vi+1 is the
left child of vi . It follows from the type propagation rules that ĉ

�

vi
= 0, which ends the proof

of (b). �

The following result shows that for the root type, assigning type 1 (resp. 0) to an unmarked
leaf  of a pruned tree is equivalent to applying the pruning operator π×

 (resp. π◦
 ) to the tree.

LEMMA 4.6. Let ᾱ ∈ �
S
,  ∈ L̂(ᾱ) and let ĉ be a reduced leaf-type configuration of ᾱ.

(a) L̂(π×
 (ᾱ)), L̂(π◦

 (ᾱ)) ⊂ L̂(ᾱ).
(b) If ĉ = 1, the type of the root of ᾱ under ĉ agrees with the type of the root of π×

 (ᾱ)

under (ĉ)∈L̂(π×
 (ᾱ))

.

(c) If ĉ = 0, the type of the root of ᾱ under ĉ agrees with the type of the root of π◦
 (ᾱ)

under (ĉ)∈L̂(π◦
 (ᾱ))

.

PROOF. Fix ᾱ ∈ �
S
,  ∈ L̂(ᾱ) and a reduced leaf-type configuration ĉ of ᾱ. Part (a) is a

direct consequence of the definitions of π×
 and π◦

 .
Let us prove (b). By assumption, ĉ = 1. If  is a firewall, π×

 (ᾱ) is obtained by marking 

with × in ᾱ, and the result follows from the definition of type propagation in �
S
. Assume

now that  is not a firewall. We define

v :=
{

the child of w(ᾱ) that is �ᾱ , if deg
(
w(ᾱ)

) = 2,

the left child of w(ᾱ), if deg
(
w(ᾱ)

) = 3.

Let ᾱ0 be the lopping of ᾱ obtained by removing from ᾱ the descendants of w(ᾱ). By
Lemma 4.4 the type of the root of ᾱ under ĉ equals the type of the root of ᾱ0 under (ĉ

�

l )l∈L̂(ᾱ0)
.

Let now ᾱ1 be the lopping of π×
 (ᾱ) obtained by removing the descendants of v. Thanks to

Lemma 4.4, the type of the root of π×
 (ᾱ) under (ĉ

�

l )l∈L̂(π×
 (ᾱ))

agrees with the type of the

root of ᾱ1 under (ĉ

�

l )l∈L̂(ᾱ1)
. By the definition of π×

 (ᾱ), the trees ᾱ0 and ᾱ1 are equal (after
relabelling w(ᾱ) as v). Therefore, it only remains to show that

(4.6) ĉ

�

v
= ĉ

�

w(ᾱ).

To this end, note first that v is a child of w(ᾱ) and is not an ancestor of . Moreover, the
child of w(ᾱ) that is ᾱ  has, thanks to Lemma 4.5, type 1. Therefore (4.6) follows from
the type propagation rules.

Now, we prove (c). By assumption, ĉ = 0. If ρ(ᾱ) ∈ R(ᾱ), we deduce from Lemma 4.5
that ρ(α) gets type 0 under ĉ. In addition, π◦

 (ᾱ) = , and the result follows in this case.
Assume now that ρ(ᾱ) /∈ R(ᾱ). In ᾱ, let v be the parent of ρ(R(ᾱ)) and v̀ its left child.
Denote by ĉ

� , the vertex-type propagation of (ĉl)l∈L̂(π◦
 (ᾱ))

in π◦
 (ᾱ). Assume (as subcase (i))

that v̀ has no mark. Then, the tree ᾱ0 obtained from ᾱ by removing the descendants of
ρ(R(ᾱ)) is a lopping of both ᾱ and of π◦

 (ᾱ). In addition, we have ĉ

�

l = ĉl = ĉ

� ,
l for l ∈

L̂(ᾱ0) with l �= v. Thus, thanks to Lemma 4.4, it is enough to show that

(4.7) ĉ

�

v
= ĉ

� ,
v

.
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In addition, the children of v in ᾱ that differ from ρ(R(ᾱ)) are the children of ρ(R(ᾱ))

in π◦
 (ᾱ) and they have, by construction, the same type under ĉ

�

and ĉ

� ,. Furthermore,
Lemma 4.5 implies that ĉ

�

ρ(R(ᾱ)) = 0, and hence (4.7) follows by the type propagation rules.
Finally, assume (as subcase (ii)) that v̀ is a leaf and has mark ×. Let ᾱ1 be the tree obtained
by removing in ᾱ the mark of v̀ and extend ĉ to the reduced leaf-type configuration ĉ1 of ᾱ1
by setting ĉ1

v̀
= 1. This way, the roots of ᾱ and ᾱ1 have the same type under ĉ and ĉ1, re-

spectively. Moreover, applying subcase (i) to ᾱ1, we deduce that the roots of ᾱ1 and π◦
 (ᾱ1)

have the same type under ĉ1 and its restriction to L̂(π◦
 (ᾱ1)), respectively. The result then

follows in this case, by noticing that π◦
 (ᾱ) = π×

v̀
(π◦

 (ᾱ1)), and applying part (b) to π◦
 (ᾱ1)

at v̀. This ends the proof. �

The next result is at the core of the proof of Corollary 2.17.

LEMMA 4.7. Let α ∈ � and let ᾱ ∈ �
S
be an admissible pruning of α.

(a) For any  ∈ L(α) \ L̂(ᾱ), ᾱ is an admissible pruning of α

�

 , α
�
 , α×

 , and α◦
 .

(b) For any  ∈ L̂(ᾱ), ᾱ

�

 , ᾱ
�
 , π×

 (ᾱ), and π◦
 (ᾱ) are admissible prunings of α

�

 , α
�
 ,

α×
 , and α◦

 , respectively.

PROOF. Let α ∈ � and let ᾱ ∈ �
S
be an admissible pruning of α.

Proof of (a). Let  ∈ L(α) \ L̂(ᾱ) and � ∈ { �

,
�

,×,◦}. We have to show that ᾱ and α�


satisfy conditions (1), (2), and (3) in Definition 2.13. Since ᾱ is an admissible pruning of α,
we see from the definition of α�

 that

V (ᾱ) ⊂ V (α) ⊂ V
(
α�



)
and L̂(ᾱ) ⊂ L(α) \ {} ⊂ L

(
α�



)
.

Thus, (1) is satisfied. Now, let u, v ∈ V (ᾱ) and assume that u ≺ᾱ v. Since ᾱ is an admissible
pruning of α, we have u ≺α v. Moreover, α is a subtree of α�

 , and hence u ≺
α�


v, which

proves (2). It remains to prove (3). Let c be a leaf-type configuration of α�
 and define the

leaf-type configuration c̃ of α via c̃l = c

�

l , l ∈ L(α). By construction, the type of the root of α�


under c coincides with the type of the root of α under c̃. The latter coincides with the type
of the root of ᾱ under (c̃l)l∈L̂(ᾱ)

, because ᾱ is an admissible pruning of α. Thus, (3) follows
using that (c̃l)l∈L̂(ᾱ)

= (cl)l∈L̂(ᾱ)
.

Proof of (b) for �

and
�

. Fix  ∈ L̂(ᾱ). We will show that, for � ∈ { �

,
�}, ᾱ�

 and α�


satisfy conditions (1), (2), and (3) in Definition 2.13. Note that, setting L
�
 = {̀, , ́} and

L

�

 = {̀, ́}, we have

V
(
ᾱ�



) = V (ᾱ) ∪ L�
 ⊂ V (α) ∪ L�

 = V
(
α�



)
and

L̂
(
ᾱ�



) = (
L̂(ᾱ) \ {}) ∪ L�

 ⊂ (
L(α) \ {}) ∪ L�

 = L
(
α�



)
,

which proves (1). Let u, v ∈ V (ᾱ�
) with u ≺

ᾱ�

v. Assume first that v ∈ V (ᾱ). In this case,

u ∈ V (ᾱ) and since ᾱ is a subtree of ᾱ�
 , we have u ≺ᾱ v. Using that ᾱ is an admissible

pruning of α, we infer that u ≺α v. Since α is a subtree of α�
 , it follows that u ≺

α�

v. Assume

now that v ∈ L�
. Using the previous argument for u and , we infer that u ≺

α�

. Since v is

a child of  in α�
 , it follows that u ≺

α�

v. This completes the proof of (2). Next, we check

that ᾱ�
 and α�

 satisfy (3). Let c be a leaf-type configuration of α�
 . We associate to c the

leaf-type configuration c̃ of α by setting c̃l = c

�

l , l ∈ L(α). Denote by ĉ the reduced leaf-type
configuration of ᾱ�

 given by ĉl = cl , l ∈ L̂(ᾱ�
). By construction, we have: (i) the type of the

root of α�
 under c coincides with the type of the root of α under c̃, and (ii) the type of the root
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of ᾱ�
 under ĉ coincides with the type of the root of ᾱ under (ĉ

�

l )l∈L̂(ᾱ)
. Note that, for l ∈ L̂(ᾱ)

with l �= , we have c̃l = cl = ĉl = ĉ

�

l , and c̃ = c

�

 = ĉ

�

 . Thus, (ĉ

�

l )l∈L̂(ᾱ)
is the restriction of c̃

to L̂(ᾱ). The result follows using that ᾱ is an admissible pruning of α.
Proof of (b) for × and ◦. Fix  ∈ L̂(ᾱ). We will show that π�

 (ᾱ) and α�
 satisfy conditions

(1), (2), and (3) in Definition 2.13. Note that by construction  /∈ L̂(π�
 (ᾱ)). Thus, since ᾱ is

an admissible pruning of α, it follows from the definition of π�
 (ᾱ) and α�

 that

V
(
π�

 (ᾱ)
) ⊂ V (ᾱ) ⊂ V (α) ⊂ V

(
α�



)
and L̂

(
π�

 (ᾱ)
) ⊂ L̂(ᾱ) \ {} ⊂ L(α) \ {} ⊂ L

(
α�



)
,

which proves (1). Next, we prove (2) for � = ×. Let u, v ∈ V (π×
 (ᾱ)) with u ≺

π×
 (ᾱ)

v. We

claim that u ≺ᾱ v. If the claim is true, then u ≺
α×



v, because ᾱ is an admissible pruning of α,

which is a subtree of α×
 . Thus, to prove (2) for � = ×, it suffices to prove the claim. If  is a

firewall, the claim follows, because π×
 (ᾱ) and ᾱ have the same tree structure. Assume now

that  is not a firewall. If w(ᾱ) ⊀ᾱ v or if w(ᾱ) ≺ᾱ u, then the directed path from u to v

in π×
 (ᾱ) is also a directed path in ᾱ, and the claim follows in this case. By construction of

π×
 (ᾱ), the only remaining possibility is that u ≺ᾱ w(ᾱ) and w(ᾱ) ≺ᾱ v, in which case the

claim is also true, which ends the proof of (2) for � = ×. Let us now prove (2) for � = ◦. Let
u, v ∈ V (π◦

 (ᾱ)) with u ≺π◦
 (ᾱ) v and denote by v̀ the left child of the parent of ρ(R(ᾱ)).

If v̀ has no mark, it follows from the definition of π◦
 (ᾱ) that u ≺ᾱ v. Since ᾱ is a subtree

of ᾱ◦
 , we have u ≺ᾱ◦


v. For the remaining case, that is, when v̀ has mark ×, note that

π◦
 (ᾱ) = πv̀

(π◦
 (ᾱ1)), where ᾱ1 is obtained from ᾱ by removing the mark of v̀. Therefore,

the result follows by combining the previous case and the result for � = ×.
Finally, we show that π�

 (ᾱ) and α�
 satisfy (3). Let c be a leaf-type configuration of α�

 .
Thanks to Lemma 4.4, the types of the roots of α�

 and α are equal under c and (c

�

l )l∈L(α),
respectively. This type coincides with the type of the root of ᾱ under (c

�

l )l∈L̂(ᾱ)
, because ᾱ is

an admissible pruning of α. Moreover, c

�

 = 0 if � = ◦, and c

�

 = 1 if � = ×. Therefore, using
Lemma 4.6, we conclude that the type of the root of ᾱ under (c

�

l )l∈L̂(ᾱ)
agrees with the type

of the root of π�
 (ᾱ) under (c

�

l )l∈L̂(π�
 (ᾱ))

, completing the proof. �

PROOF OF COROLLARY 2.17. Let ᾱ ∈ �
S
and construct α ∈ � by adding a child without

a mark to every marked leaf of ᾱ. Next, set a0 = α and ā0 = ᾱ, and construct the eASG and
pASG processes (at )t≥0 and (āt )t≥0, respectively, via the coupling described in Section 2.5
below Definition 2.16. Clearly, ᾱ is an admissible pruning of α. Thus, Lemma 4.7 implies
that, for all t ≥ 0, āt is an admissible pruning of at . Therefore, H(at , y0) = H(āt , y0) for all
t ≥ 0 and y0 ∈ [0,1], and the result follows from Theorem 2.10. �

We close this section with a result that will be useful in the next subsection. It can be
summarised by saying that the type of the root of a region within a pruned tree is unfit if
and only if all the vertices in the region are unfit; and if the vertices outside of the region are
ignored, then the root-type of the region is unfit if and only if all leaves of the region are unfit.
To this end, for ᾱ ∈ �

S
, a reduced leaf-type configuration ĉ of ᾱ, and a region R of ᾱ, define

for v ∈ R, ĉ

�

v(R) as the vertex type of v that arises under the leaf-type configuration ĉ if all
vertices outside of R are ignored; that is, if deg(v) = 1 in R, then ĉ

�

v(R) is determined by the
type of the child of v in R.

LEMMA 4.8. Let ᾱ ∈ �
S
, a reduced leaf-type configuration ĉ of ᾱ, and a region R of ᾱ.

Then,

(4.8) ĉ

�

ρ(R)(R) = ∏
v∈R

ĉ

�

v(R) = ∏
∈L̂(ᾱ)∩R

ĉ.
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PROOF. This follows by iterating Definition 2.12. �

4.4. The sASG: Results related to Section 2.6. In this section we prove the results related
to the stratification.

The following lemma makes precise in what sense the root type of a pruned tree agrees
with the output type of its stratification; this leads to (2.5).

LEMMA 4.9. Let ᾱ ∈ �
S
with ᾱ �= , ĉ = (ĉ)∈L̂(ᾱ)

a reduced leaf-type configuration
of ᾱ, and s(ᾱ) = (τ,m) ∈ ϒ the stratification of ᾱ. Define the primary-vertex configuration
c̃ = (c̃R)R∈V 1(τ ) via

(4.9) c̃R := ∏
∈L̂(ᾱ)∩R

ĉ, for any region R of ᾱ.

Then ĉ

�

ρ(ᾱ) = t(c̃, τ ). In particular, H(ᾱ, y0) =H(s(ᾱ), y0).

PROOF. Let ᾱ ∈ �
S
with ᾱ �= . We prove the lemma via induction on the number k

of ternary branchings in ᾱ. Suppose k = 0 and let ĉ be a reduced leaf-type configuration
of ᾱ. Because k = 0, ᾱ only has one region R (i.e., ᾱ = R), and hence s(ᾱ) = (τ,m) is
the tripod tree consisting only of the root R. By the definition of the output type and (4.9),
t(c̃, τ ) = c̃R = ∏

∈L̂(ᾱ)∩R
ĉ. Since k = 0, ĉ

�

ρ(ᾱ) = ĉ

�

ρ(ᾱ)(R), and the result follows from (4.8).

Next, assume that the result is true for every tree in �
S
with at most n−1 ternary branchings,

and assume that k = n. Let ĉ be a reduced leaf-type configuration of ᾱ, and s(ᾱ) = (τ,m).
Recall that for v ∈ V (ᾱ), Rv(ᾱ) is the region in ᾱ containing v. Let v1, . . . , vn̄ be the vertices
in Rρ(ᾱ)(ᾱ) that have outdegree 3 in ᾱ, and let for i ∈ [n̄], ᾱvi

and ᾱv́i
be the subtrees in ᾱ

rooted in vi and v́i , respectively. By iterating Definition 2.12, and (4.8),

ĉ

�

ρ(ᾱ) = ∏
v∈Rρ(ᾱ)(ᾱ)

ĉ

�

v

(
Rρ(ᾱ)(ᾱ)

) n̄∏
i=1

max{ĉ �

vi
, ĉ

�

v́i
}

= ∏
∈L̂(ᾱ)∩Rρ(ᾱ)(ᾱ)

ĉ

n̄∏
i=1

max{ĉ �

vi
, ĉ

�

v́i
}.

(4.10)

We make the following three observations. 1) For i ∈ [n̄], by the definition of the stratifica-
tion, vi is the child of ρ(τ) in τ , and Rvi

(ᾱ) and Rv́i
(ᾱ) are the children of vi in τ . More-

over, s(ᾱvi
) = (τRvi

(ᾱ),mRvi
(ᾱ)) is the subtree of τ rooted at Rvi

(ᾱ); analogous for ᾱv́i
. 2)

ĉ

�

vi
= ĉ

�

ρ(ᾱvi
); but ᾱvi

∈ �
S
has less than n vertices with outdegree 3 so that by the induction

hypothesis, ĉ

�

ρ(ᾱvi
) = t(c̃, τRvi

(ᾱ)); analogous for ĉ

�

v́i
. 3) Rρ(ᾱ)(ᾱ) = ρ(τ) so that by (4.9),∏

∈L̂(ᾱ)∩Rρ(ᾱ)(ᾱ)
ĉ = c̃ρ(τ ). Hence, continuing (4.10) using observations 2), 3), and 1), we

see that ĉ

�

ρ(ᾱ) equals

∏
∈L̂(ᾱ)∩Rρ(ᾱ)(ᾱ)

ĉ

n̄∏
i=1

max
{
t(c̃, τRvi

(ᾱ)), t(c̃, τRv́i
(ᾱ))

}

= c̃ρ(τ )

n̄∏
i=1

max
{
t(c̃, τRvi

(ᾱ)), t(c̃, τRv́i
(ᾱ))

}
= c̃ρ(τ )

∏
v child of ρ(τ)

max
{
t(c̃, τw) : w is child of v

}
.

This finishes the proof. �
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PROOF OF THEOREM 2.22 (DUALITY SASG). Fix t ≥ 0, y0 ∈ [0,1], and T ∈ ϒ�. It is
straightforward to construct ᾱ ∈ �

S
such that s(ᾱ) = T . Let (ār )r≥0 be a pASG process with

ā0 = ᾱ. By (2.5) (alternatively Lemma 4.9), Theorem 2.17, and the definition of T ,

H
(
T , y(t;y0)

) = H
(
ᾱ, y(t;y0)

) = Eᾱ

[
H(āt , y0)

] = Eᾱ

[
H

(
s(āt ), y0

)] = ET
[
H(Tt , y0)

]
.

In particular, y(t;y0) = E 1 [H(Tt , y0)] follows because H( 1 , y(t;y0)) = y(t;y0) by the
definition of H. �

LEMMA 4.10. Let ᾱ ∈ �
S
. For any  ∈ L̂(ᾱ), we have:

(1) s(ᾱ

�

 ) = (s(ᾱ))

�

R(ᾱ),

(2) s(ᾱ
�
 ) = (s(ᾱ))

�
R(ᾱ),

(3) s(π×
 (ᾱ)) = (s(ᾱ))×R(ᾱ),

(4) s(π◦
 (ᾱ)) = (s(ᾱ))◦R(ᾱ).

PROOF. (1)–(4) can all be proved along the same lines. Here, we only prove (2) and (3),
because they are the more delicate cases for branching and pruning, respectively. Let ᾱ ∈ �

S

and assume L̂(ᾱ) �= ∅. Let  ∈ L̂(ᾱ). First we prove (2). We write ᾱ
�

for ᾱ
�
 to ease

the notation. ᾱ
�

arises from ᾱ by adding leaves ̀, , and ́ (with parent ) to ᾱ. Hence,

R(ᾱ
�
) = R(ᾱ) ∪ {̀}, R


(ᾱ

�
) = {}, and R

́
(ᾱ

�
) = {́}; all other regions are as in ᾱ.

In particular, in comparison with s(ᾱ) = (τ,m), s(ᾱ
�
) = (τ 1,m1) has an additional sec-

ondary vertex , which is the child of R(ᾱ
�
), and two additional primary vertices R


(ᾱ

�
)

and R
́
(ᾱ

�
), which are connected to . The new weights are m1(R(ᾱ

�
)) = m(R


(ᾱ)) + 1,

m1(R

(ᾱ

�
)) = m1(R

́
(ᾱ

�
)) = 1, and all other weights are as in s(ᾱ). But by Definition 2.23–

(2), this is s(ᾱ)
�
 , because s(ᾱ)

�
R(ᾱ) arises from s(ᾱ) by increasing the weight of R(ᾱ) by

one, adding a secondary vertex as a child of R(ᾱ), and adding to that secondary vertex two
children that are primary vertices each with weight 1. In particular, s(ᾱ

�
 ) = (s(ᾱ))

�
R(ᾱ).

Next, we prove (3). Recall Definition 2.15 (firewall), and that for  ∈ L(ᾱ), w(ᾱ) is the
most recent ancestor of  that is a firewall. For the proof we write ᾱ× := π×

 (ᾱ) to ease the no-
tation. To determine ᾱ×, by Definition 2.16, we have to distinguish (i)  is a firewall, (ii)  is
not a firewall and deg(w(ᾱ)) = 2, and (iii)  is not a firewall and deg(w(ᾱ)) = 3. In (i),  is
either the root, or the parent w of v has deg(w) = 3 and ẁ = v. In both cases, ᾱ× is obtained
by marking  with ×. In particular, the tree structure is as in ᾱ, but |R(ᾱ

×)| = |R(ᾱ
×)|− 1.

Hence, s(ᾱ×) = (τ,m1), where m1(R(ᾱ
×)) = m(R(ᾱ)) − 1. Now we check the corre-

sponding operation on the stratification. If  is the root, then R(ᾱ) is the root of τ by def-
inition. Hence, s(ᾱ)×R(ᾱ) = (τ,m2) with m2(R(ᾱ

×)) = m(R(ᾱ)) − 1, by Definition 2.23–

(3). If  has parent w with deg(w) = 3 and v = ẁ, then v has siblings w and ẃ. R(ᾱ),
Rw(ᾱ), and Rẃ(ᾱ) are nonempty. By Definition 2.20, Rw(ᾱ) and Rẃ(ᾱ) are children of
w in τ ; and w is a child of Rv(ᾱ) in τ . In particular, Rv(ᾱ) is not a leaf of τ so that by
Definition 2.23–(3), s(ᾱ)×R(ᾱ) = (τ,m2) with m2(R(ᾱ)) = m(R(ᾱ)) − 1. In both cases,

s(ᾱ×) = s(ᾱ)×R(ᾱ). Next, we consider (ii)  is not a firewall and deg(w(ᾱ)) = 2. Then ei-
ther iia) the parent of  has outdegree 2, or iib) the vertices between  and w(ᾱ) are the
middle or right child in a ternary branching or have outdegree 3 with a marked left child.
In iia),  and w(ᾱ) are in the same region; and Rw(ᾱ)(ᾱ

×) = Rw(ᾱ)(ᾱ) \ {}. In particular,
s(ᾱ×) = (τ,m1), where τ is as before, but m1(Rw(ᾱ)(ᾱ

×)) = m(Rw(ᾱ)(ᾱ)) − 1. Because
Rw(ᾱ)(ᾱ) contains at least two leaves, m(Rw(ᾱ)(ᾱ)) > 0. Hence, s(ᾱ)×R(ᾱ) = (τ,m2) with

m2(Rw(ᾱ)(ᾱ)) = m(Rw(ᾱ)(ᾱ)) − 1. This proves (3) under iia). In iib), for any z such that
w(ᾱ) ≺ᾱ z ≺ᾱ , z is the middle or right child in a ternary branching, deg(z) = 3, and z̀

is marked. In particular, for every such z, Rz(ᾱ) contains only marked leaves. Without loss
of generality we can assume ẁ(ᾱ) is not on the path from w(ᾱ) to  (otherwise replace
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ẁ(ᾱ) by ẃ(ᾱ)). ᾱ× is obtained from ᾱ by replacing the subtree rooted in w(ᾱ) by the
subtree rooted in ẁ(ᾱ). In particular, all regions in ᾱẃ

, the subtree in ᾱ rooted in ẃ, are
not regions of ᾱ×, and all regions in ᾱ \ ᾱẃ

(ᾱ) are as before. In s(ᾱ), we identify Rw(ᾱ)(ᾱ)

with the closest primary-vertex ancestor in τ with positive weight, and w(ᾱ) with the child
of Rw(ᾱ)(ᾱ). Hence, s(ᾱ×) arises from s(ᾱ) by removing in τ the subtree rooted in w(ᾱ).
But the resulting tree is then s(ᾱ)× . To see this, note that for z such that w(ᾱ) ≺ᾱ z ≺ᾱ ,
Rz(ᾱ) ∩ L̂(ᾱ) = ∅; but R(ᾱ) = 1. By Definition 2.23–(3) and because m(R(ᾱ)) − 1 = 0,
we remove the subtree rooted in the closest secondary-vertex ancestor of R(ᾱ) (in τ ) that is a
child of a primary vertex with positive weight. Every Rz(ᾱ) is an ancestor, but m(Rz(ᾱ)) = 0;
the first ancestor with positive weight is Rw(ᾱ)(ᾱ). For case (iii), all vertices between  and
w(ᾱ) are the middle or right child in a ternary branching or have outdegree 3 with a marked
left child. This case can be proved as case iib). �

COROLLARY 4.11. The sASG process (Tt )t≥0 is a continuous-time Markov chain with
values in ϒ� and transition rates

qT

(
T ,T

�

v

) := sm(v), qT

(
T ,T

�
v

) := γm(v),

qT

(
T ,T ×

v

) := uν1m(v), qT

(
T ,T ◦

v

) := uν0m(v),

for T = (τ,m) ∈ ϒ and v ∈ V 1(τ ). The states 0 and � are absorbing.

PROOF. This follows directly from Lemma 4.10. �

5. Long-term type frequency: Proofs and additional results related to Section 2.7.
In this section, we prove results that rely on the connection between the solution of the
mutation–selection equation (2.1) and the sASG process. We begin with proving Proposi-
tion 2.24.

PROOF OF PROPOSITION 2.24. We claim that every T ∈ ϒ with T �= 0 is transient. If
this is true, the result follows, because for each n ∈ N, {T ∈ ϒ : M(T ) ≤ n} is a finite set.
Let T ∈ ϒ with T �= 0 . Denote by TT the first return time to T of T after its first jump.
Note that before absorption the total mass M(T·) decreases at any jump with probability
u/(u + s + γ ) (and recall that we assume u > 0). Hence,

PT (TT = ∞) ≥ PT (Tabs < TT ) ≥
(

u

u + s + γ

)M(T )

> 0,

which proves the claim. �

We will prove that the output type is monotone in the primary vertex-type configuration.

LEMMA 5.1 (Monotone output type). For τ ∈ � , and c and c′ two primary vertex-type
configurations with cv ≤ c′

v for all v ∈ V 1(τ ), we have t(c, τ ) ≤ t(c′, τ ). Moreover, if c ≡ 0
and c′ ≡ 1, t(c, τ ) = 0 and t(c′, τ ) = 0.

PROOF. We prove the lemma by induction on the number of primary vertices. For τ with
|V 1(τ )| = 1, the result is trivially true. For |V 1(τ )| = n+1, assume cv ≤ c′

v for all v ∈ V 1(τ ).
Using the definition of t(c, τ ) and the induction hypothesis,

t(c, τ ) = cρ(τ)

∏
v child of ρ(τ)

max
{
t(c, τw) : w is child of v

}
≤ c′

ρ(τ)

∏
v child of ρ(τ)

max
{
t
(
c′, τw

) : w is child of v
}
.

The second part of the lemma can be proved along the same lines. �
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A direct consequence of Lemma 5.1 and the definition of H is that for T ∈ ϒ with T �= 0 ,

(5.1) ∂2H(T , y0) > 0.

We now deduce the long-term behaviour of H(Tt , y0).

LEMMA 5.2 (Sub-/super-/martingale). Let y0 ∈ [0,1], F as defined in (2.1), and
FT = (FT

r )r≥0 be the natural filtration of T . (H(Tr , y0))r≥0 is a nonnegative, bounded

FT
sub−

super
martingale if F(y0) � 0. Moreover, H∞(y0) := limr→∞H(Tr , y0) ∈ [0,1] exists

almost surely for any y0 ∈ [0,1].

PROOF. Fix r ≥ 0 and y0 ∈ [0,1]. Nonnegativity and boundedness are immediate, be-
cause H(·, y0) ∈ [0,1]. H(Tr , y0) is measurable with respect to the σ -algebra generated by
(Tt )t≤r , and therefore (H(Tr , y0))r≥0 is adapted with respect to FT . Fix h ∈ [0, r] and
T ∈ ϒ�. By the Markov property and Theorem 2.22,

ET
[
H(Tr , y0) | FT

h

] = ETh

[
H(Tr−h, y0)

] = H
(
Th, y(r − h;y0)

)
.

If Th ∈ { 0 ,�}, then the right-hand side is independent of y so that in particular H(Th, y(r −
h;y0)) = H(Th, y0). If Th /∈ { 0 ,�}, H is monotone in the second argument by (5.1). More-
over, if F(y0) > 0 (if F(y0) < 0), then y(t;y0) is nondecreasing (nonincreasing) for all t > 0.
If F(y0) = 0, then y(t;y0) ≡ y0 for all t > 0. Hence,

H
(
Th, y(t − r;y0)

)
�H(Th, y0) if F(y0)� 0.

In particular, (H(Tr , y0))r≥0 is a (FT
r )r≥0

sub−
super

martingale. A straightforward application of

Doob’s martingale convergence theorem yields that H∞(y0) ∈ [0,1] exists almost surely for
any y0 ∈ [0,1]. �

The following lemma will be useful for a more detailed description of H∞(y0).

LEMMA 5.3. Let T (1), T (2), T (3), and T (4) be four independent sASG processes start-
ing in 1 almost surely. For y0 ∈ [0,1] and i ∈ [4], let H(i)∞ (y0) := limr→∞H∞(T (i)

r , y0).
Then, for any G ∈ C([0,1]),

(u + s + γ )E
[
G

(
H(1)∞ (y0)

)] = uν1G(1) + uν0G(0) + sE
[
G

(
H(2)∞ (y0)H(3)∞ (y0)

)]
+ sE

[
G

(
H(2)∞ (y0)

[
H(3)∞ (y0)

(
1 −H(4)∞ (y0)

) +H(4)∞ (y0)
])]

.

PROOF. First note that it follows from the construction of T that for all bounded
G ∈ C([0,1]) and r ≥ 0, one has E 1 [G(H(Tr , y0))] = E [G(H(ar, y0))]. Now let a be
an eASG process started in , and let T be the time of the first transition. Note that by
Lemma 5.2, for any y0 ∈ [0,1], limr→∞ H(ar, y0) = H∞(y0) in distribution. A first-step
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decomposition yields that E[G(H(ar, y0))] equals

P(T ≤ r)E
[
G

(
H(ar, y0)

) | T ≤ r
] + P(T > r)G(y0)

= P(T ≤ r)
{
P

(
aT = ×

ρ

)
G(1) + P

(
aT = ◦

ρ

)
G(0)

+ P
(
aT = �

ρ

)
E

[
G

(
H(ar, y0)

) | aT = �

ρ , T ≤ r
]

+ P
(
aT =

�
ρ

)
E

[
G

(
H(ar, y0)

) | aT =
�
ρ , T ≤ r

]}
+ P(T > r)G(y0)

= P(T ≤ r)

u + s + γ

{
uν1G(1) + uν0G(0)

+ sE
[
G

(
H(àr , y0)H(ár , y0)

) | aT = �

ρ , T ≤ r
]

+ γE
[
G

(
H(àr , y0)

[
H(ar, y0)

(
1 − H(ár , y0)

)
+ H(ár , y0)

]) | aT =
�
ρ , T ≤ r

]}
+ P(T > r)G(y0),

(5.2)

where we used Lemma 4.1. For the binary branching term, we use the tower property and the
independence of àr and ár to obtain

E
[
G

(
H(àr , y0)H(ár , y0)

) | aT = �

ρ , T ≤ r
]

= E
[
Ẽ

[
G

(
H

(
ã

(1)
r−T , y0

)
H

(
ã

(2)
r−T , y0

))] | T ≤ r
]
,

(5.3)

where ã(1) and ã(2) are two independent eASG processes starting in , and Ẽ is the expecta-
tion under their joint law. Analogously, we obtain

E
[
G

(
H(àr , y0)

[
H(ar, y0)

(
1 − H(ár , y0)

) + H(ár , y0)
]) | aT =

�
ρ , T ≤ r

]
= E

[
Ẽ

[
G

(
H

(
ã

(1)
r−T , y0

){
H

(
ã

(2)
r−T , y0

)(
1 − H

(
ã

(3)
r−T , y0

))
+ H

(
ã

(3)
r−T , y0

)})] | T ≤ r
]
,

(5.4)

where ã(1), ã(2), ã(3) are three independent eASG processes started in , and Ẽ is the expec-
tation under their joint law with ã

(1)
0 = ã

(2)
0 = ã

(3)
0 = . Using (5.3) and (5.4) in (5.2), and

then taking r → ∞ yields (5.2). �

In the remaining section, P and E are to be understood as P 1 and E 1 , respectively.

PROPOSITION 5.4. If y0 ∈ [0,1] is not an unstable equilibrium of (2.1) located in (0,1)

and if T0 = 1 , then H∞(y0) has a Bernoulli distribution with parameter y∞(y0).

PROOF. Assume y0 ∈ [0,1] is not an unstable equilibrium of (2.1) located in (0,1) and
T0 = 1 . We now show that H∞(y0) has a Bernoulli distribution. Set E(y0) := E[H∞(y0)]
and V (y0) := E[H∞(y0)

2]. By the duality,

(5.5) E(y0) = y∞(y0),

so that y∞(y0) is then the corresponding parameter. The idea is to use that if X is a random
variable in [0,1], X has Bernoulli distribution if and only if E[X(1 − X)] = 0. In particular,
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H∞(y0) has Bernoulli distribution if and only if E(y0) = V (y0). Consider first y0 ∈ {0,1}.
Then for any n ∈ N, E[H∞(y0)

n] equals

lim
r→∞E

[
H(Tr , y0)

n]
= lim

r→∞
(
E

[
H(Tr , y0)

n1{T
0

<∞}
] +E

[
H(Tr , y0)

n1{T�<∞}
]

+E
[
H(Tr , y0)

n1{Tabs=∞}
])

= P(T 0 < ∞) + y0P(Tabs = ∞)

(5.6)

where we used Lemma 5.1 in the last step. In particular, E(0) = V (0) = P(T 0 < ∞) and
E(1) = V (1) = P(T� = ∞). Hence, H∞(0) and H∞(1) have Bernoulli distribution. For un-
stable y0 ∈ (0,1), we apply Lemma 5.3 with G(x) = x(1 − x). A straightforward calculation
then gives that E(y0) − V (y0) equals

s

u + s + γ

(
E(y0) − V (y0)

)(
E(y0) + V (y0)

)
+ γ

u + s + γ

(
E(y0) − V (y0)

)
× (

V (y0)
2 + V (y0)

(
2 − 3E(y0)

) + E(y0)
(
2 − E(y0)

))
.

(5.7)

Because H∞(y0) ∈ [0,1], we moreover have

0 ≤ V (y0) = E
[
H∞(y0)

2] ≤ E
[
H∞(y0)

] = E(y0).

We want to further narrow down the value of V (y0). To do so, we consider equation (5.7)
with unknown x = V (y0), that is, we rewrite (5.7) as (E(y0) − x)p̂(E(y0), x) = 0, where

p̂
(
E(y0), x

) := s
(
E(y0) + x

)
+ γ

(
x2 + x

(
2 − 3E(y0)

) + E(y0)
(
2 − E(y0)

)) − (u + s + γ ).

Note that p̂(E(y0),0) = s(E(y0) − 1) + γ (E(y0)(2 − E(y0)) − 1) − u ≤ −u and

p̂
(
E(y0),E(y0)

) = F ′(E(y0)
) ≤ 0,

where the last inequality follows from (5.5), together with the fact that y0 ∈ (0,1) is not
an unstable equilibrium so that y∞(y0) is attracting (from at least one side), and therefore,
F ′(y∞(y0)) ≤ 0. In particular, since p̂(E(y0), x) is a quadratic polynomial with positive
quadratic term in x, p̂(E(y0), x) �= 0 for all x ∈ [0,E(y0)). Altogether, this implies V (y0) =
E(y0), and hence H∞(y0) has Bernoulli distribution. �

We now provide the proof for the representation of the equilibria of the mutation–selection
equation in terms of the sASG process.

PROOF OF THEOREM 2.25 (STOCHASTIC REPRESENTATION OF EQUILIBRIA). Lem-
ma 5.2 says that H∞(y0) exists almost surely for any y0 ∈ [0,1]. Proposition 5.4 states that
if y0 is not an unstable equilibrium located in (0,1), then H∞(y0) has Bernoulli distribution
with parameter y∞(y0). The basic idea to prove (2.8) is to take the limit t → ∞ in the duality
relation and then exploit what we already know about H∞(y0). First, decompose H(Tt , y)

according to {T 0 < ∞} and {T 0 = ∞}. More precisely, starting from the duality,

(5.8) y(t;y0) = E
[
H(Tt , y0)1{T

0
<∞}

] +E
[
H(Tt , y0)1{T

0
=∞}

]
.
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Since H( 0 , y0) = 1, the first term on the right-hand side of (5.8) converges to P(T 0 < ∞)

as t → ∞. Because H(�,y0) = 0, using Lemma 5.2, we deduce that the second term on
the right-hand side of (5.8) converges to p(y0) := E[1{Tabs=∞}H∞(y0)] as t → ∞, thus prov-
ing (2.8). Next, we establish the connection between the (non)absorption probability and ymin
(and ymax). By Lemma 5.1 and the definition of H, on {Tabs = ∞}, we have H∞(0) = 0 and
H∞(1) = 1. Hence, we have p(0) = 0 and p(1) = P(Tabs = ∞). In particular, (2.8) with
y0 = 0 (resp. y0 = 1) yields P(T 0 < ∞) = ymin (resp. P(T� = ∞) = ymax). �

We are now ready to prove Corollary 2.26, which provides a more refined picture of
H∞(y0) and its connection to the absorbing states of T .

PROOF OF COROLLARY 2.26. First, recall that for all y0 ∈ [0,1], by the definition of H

(5.9) H∞(y0) = 1 on {T 0 < ∞}; and H∞(y0) = 0 on {T� < ∞}.
If P(Tabs = ∞) = 0, then there is nothing more to prove. Hence, let P(Tabs = ∞) > 0.
Assume y0 ∈ Attr(ymin). Theorem 2.25 then yields E[1{Tabs=∞}H∞(y0)] = 0. In particular,
E[H∞(y0) | Tabs = ∞] = 0; combining this with (5.9) proves the result for y0 ∈ Attr(ymin).
Next, assume y0 ∈ Attr(ymax). Theorem 2.25 gives

P(T� = ∞) = P(T 0 < ∞) +E
[
H∞(y0)1{Tabs=∞}

]
,

which implies 1 = E[H∞(y0) | Tabs = ∞]; combining this with (5.9) yields the result also in
this case. �

Next, we prove Proposition 2.27.

PROOF OF PROPOSITION 2.27. For i ∈ {0,1}, define

Ai := {
y0 ∈ [0,1] : P(

H∞(y0) = i | Tabs = ∞) = 1
}
.

Set zc := supA0 and note that yc = infA1. The definitions of sup and inf together with
the monotonicity of H∞(·) yield (yc,1] ⊆ A1 ⊆ [yc,1] and [0, zc) ⊆ A0 ⊆ [0, zc]. Since
A0 ∩ A1 =∅, we deduce that zc ≤ yc. Assume first that zc < yc. Using Theorem 2.25, we
infer that for any y0 ∈ (zc, yc), ymin < y∞(y0) < ymax so that there are three equilibria and
y∞(y0) is stable. But this contradicts the fact that, if there are three equilibria, the middle
one is unstable, and thus proves that zc = yc. Moreover, note that y∞(y0) = ymax if and only
if y0 ∈ A1. Similarly, y∞(y0) = ymin if and only if y0 ∈ A0. Thus, ymin ≤ yc ≤ ymax. It only
remains to prove that yc is an equilibrium. If yc = ymin or yc = ymax, the result is trivially
true. For ymin < yc < ymax, since y∞(y0) = ymin for any y0 ∈ [ymin, yc) and y∞(y0) = ymax
for any y0 ∈ (yc, ymax], the result follows from the continuity of F . �

6. Ancestral type distribution: Proofs and additional results related to Section 2.8.
This section contains the proofs for the representation(s) of the ancestral type distribution.
Moreover, we relate our results to an alternative forward process. Throughout this section we
assume ν0 = 0.

6.1. Backward approach to the ancestral type distribution. First we prove Proposi-
tion 2.31, which provides a decomposition of H�.

PROOF OF PROPOSITION 2.31. Let α ∈ � without mark ◦. Recall that the immune
line of α is the path connecting the root of α to its leftmost leaf, and that F(α) =
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((αv́i
)
N(α)
i=1 , (αwj

, αẃj
)
M(α)
j=1 ) is the eASG forest of α (with notation adopted from Def. 2.30).

Moreover, recall that if ν0 = 0 and α contains no mark ◦, the ancestral type of the root of α

is 1 if and only if the leftmost leaf of α is the ancestral leaf of the root and it is unfit. Fix
y0 ∈ [0,1] and let C(y0) be a random leaf-type configuration (as defined below Def. 2.8).

Under C(y0), the leftmost leaf is unfit with probability y0. The leaf on the immune line is
the ancestral leaf of the root if all internal vertices on the immune line inherit their ancestral
leaf from a vertex on the immune line. For i ∈ [N(α)], vi inherits its ancestral leaf from
a vertex on the immune line if and only if c

�

v́i
= 1, the probability of which is H(αv́i

, y0).
Similarly, for j ∈ [M(α)], wj inherits its ancestral leaf from a vertex on the immune line if
and only if c

�

wj
+ c

�

ẃj
> 0, the probability of which is

[H(αwj
, y0) + H(αẃj

, y0) − H(αwj
, y0)H(αẃj

, y0)].
The result follows from the independence of the corresponding eASGs emerging from the
immune line. �

We are now ready to prove Theorem 2.32.

PROOF OF THEOREM 2.32 (REPRESENTATION OF THE ANCESTRAL TYPE DISTRIBU-
TION). By Proposition 2.31 the result is clearly true for y0 = 0. Hence let y0 ∈ (0,1]
and recall that gr(y0) = E [H�(ar , y0)]. Let (ar)r≥0 be an eASG process with a0 = .
In this proof, ar,v denotes the subtree of ar rooted in v ∈ V (ar). For r ≥ 0, let F(ar) =
((ar,v́i

)
N(ar )
i=1 , (ar,wj

, ar,ẃj
)
M(ar )
j=1 ) be the eASG forest of ar . It follows from the definition of

(ar)r≥0 that if vi is the ith vertex (counting from the root) with outdegree 2 on the immune
line of ar for some r ≥ 0, then vi is also the ith vertex on the immune line of at for all t ≥ r ;
the same holds true for vertices with outdegree 3 on the immune line. Moreover, (N(ar))r≥0
and (M(ar))r≥0 are independent Poisson processes with rate s and γ , respectively.

Using the definition of gr , Proposition 2.31, and the independence of the eASGs rooted in
(vi)

N(ar )
i=1 and (wj )

M(ar )
j=1 , we obtain that gr(y0)/y0 equals

E

[
N(ar )∏
i=1

H(ar,v́i
, y0)

]

×E

[
M(ar )∏
j=1

[
H(ar,wj

, y0) + H(ar,ẃj
, y0) − H(ar,wj

, y0)H(ar,ẃj
, y0)

]]
.

(6.1)

We begin by dealing with the first expectation in (6.1). For i ∈ N, let T N
i = inf{r ≥ 0 :

N(ar) = i}. We decompose the term according to the values of N(ar). The subtrees rooted in
v́1, . . . , v́N(ar ) are conditionally independent given (T N

i )
N(ar )
i=1 . Hence, using the tower prop-

erty of the conditional expectation yields

E

[
N(ar )∏
i=1

H(ar,v́i
, y0)

]
=

∞∑
n=0

P
(
N(ar) = n

)
En

[
E

[
n∏

i=1

H(ar,v́i
, y0) | (

T N
k

)n
k=1

]]

=
∞∑

n=0

P
(
N(ar) = n

)
En

[
n∏

i=1

Ẽ
[
H(ãr−T N

i
, y0)

]]
,

(6.2)

where En[·] denotes the expectation conditional on N(ar) = n, ã is an independent eASG
processes started in with Ẽ denoting the corresponding expectation. Now, we use the
well-known connection between Poisson processes and the uniform distribution. Condi-
tional on N(ar) = n, the jump times of N(ar) have the same distribution as an ordered
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independent sample of size n from the uniform distribution on [0, r] (Theorem 2.4.6 in
[38]). Let U1, . . . ,Un be independent uniformly distributed random variables in [0, r]. Since∏n

i=1 Ẽ[H(ãr−T N
i

, y0)] is a function that is symmetric in the arrival times of the Poisson
process, we deduce that

(6.3) En

[
n∏

i=1

Ẽ
[
H(ãr−T N

i
, y0)

]] = E

[
n∏

i=1

Ẽ
[
H(ãUi

, y0)
]]

,

since r − Ui is again uniform on [0, r]. Hence,

E

[
n∏

i=1

Ẽ
[
H(ãUi

, y0)
]] = (

E
[
Ẽ

[
H(ãU1

, y0)
]])n

=
(

1

r

∫ r

0
Ẽ

[
H(ãξ , y0)

]
dξ

)n

=
(

1

r

∫ r

0
y(ξ, y0)dξ

)n

,

(6.4)

where we used the duality in Theorem 2.10. Combining (6.3) and (6.4) into (6.2), and using
that N(ar) is Poisson distributed with parameter sr yields

E

[
N(ar )∏
i=1

H(ar,v́i
, y0)

]
=

∞∑
n=0

(sr)n

n! e−sr

(
1

r

∫ r

0
y(ξ, y0)dξ

)n

= exp
(
−s

∫ r

0

(
1 − y(ξ, y0)

)
dξ

)
.

Next, we consider the second expectation in (6.1). For j ∈ N, let T M
j = inf{r ≥ 0 : M(ar) = i}.

Applying the same techniques that led to (6.2) and (6.3), we obtain for m ∈ N,

Em

[
m∏

j=1

[
H(ar,wj

, y0) + H(ar,ẃj
, y0) − H(ar,wj

, y0)H(ar,ẃj
, y0)

]]

= (
E

[
Ẽ

[
H

(
ã1
U1

, y0
) + H

(
ã2
U1

, y0
) − H

(
ã1
U1

, y0
)
H

(
ã2
U1

, y0
)]])m

= (
E

[
2Ẽ

[
H(ãU1, y0)

] − (
Ẽ

[
H(ãU1, y0)

])2])m
= (

E
[
2y(U1;y0) − y(U1;y0)

2])m
,

(6.5)

where Em now is the expectation conditional on M(ar) = m, and in the last step we used
the duality of Theorem 2.10. Decomposing the second nontrivial factor in (6.1) according to
M(ar) and using (6.5), we have

E

[
M(ar )∏
j=1

[
H(ar,wj

, y0) + H(ar,ẃj
, y0) − H(ar,wj

, y0)H(ar,ẃj
, y0)

]]

=
∞∑

m=0

(γ r)m

m! e−γ r

(
1

r

∫ r

0
y(ξ ;y0)

(
2 − y(ξ ;y0)

)
dξ

)m

= exp
(
−γ

∫ r

0

(
1 − y(ξ ;y0)

)2 dξ

)
.

Altogether, we obtain (2.10). �

Having established Theorem 2.32, more explicit expressions for the ancestral type distribu-
tion can be derived. We now provide these additional results. We first consider γ = 0, because
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this extends the representation of the long-term ancestral type distribution of Theorem 23 of
[4] to a finite time horizon.

PROPOSITION 6.1 (Ancestral type distribution without interaction). Assume ν0 = 0 and
γ = 0. Then,

(6.6) gr(y0) = y0 exp
(
−s

∫ r

0

(
1 − y(ξ ;y0)

)
dξ

)
, y0 ∈ [0,1].

In particular,

(6.7) gr(y0) =

⎧⎪⎪⎨⎪⎪⎩
y0

u − sy(r;y0)

u − sy0
, if y0 ∈ [0,1) \

{
u

s

}
,

y0 exp
(−rs(1 − y0)

)
, if y0 ∈

{
u

s
,1

}
.

Furthermore, g∞(y0) = limr→∞ gr(y0) exists and is given as follows:

(i) If s = 0, g∞(y0) = y0 for all y0 ∈ [0,1].
(ii) If u ≤ s, g∞(y0) = 1{1}(y0).

(iii) If u > s, g∞(y0) = y0
u−s

u−sy0
.

PROOF. We just proved that (2.9) holds for γ ≥ 0. If γ = 0, (2.9) reduces to (6.6).
Given (6.6), (6.7) follows by standard integration techniques. To see this, consider y0 < u/s.
Then y(r;y0) is increasing and hence

−s

∫ r

0

(
1 − y(ξ ;y0)

)
dξ =

∫ y(r;y0)

y0

−s

u − sη
dη = log

(
u − sy(r;y0)

u − sy0

)
,

where we substituted y(ξ ;y0) = η and used the differential equation for y. Together
with (6.6), this leads to (6.7) in this case. We can proceed similarly for y0 ∈ (u/s,1). For
y0 ∈ {u/s,1}, one has y(r;y0) ≡ y0 and the result follows from (6.6). (i)–(iii) are a conse-
quence of (6.7) and the form of y∞(y0) from Corollary 2.4 if γ = 0. �

We now state the explicit representation of the ancestral type distribution for γ > 0.

PROPOSITION 6.2 (Ancestral type distribution with interaction). Suppose ν0 = 0.
Let γ > 0, and ȳ−, ȳ+ be given as in (2.2). Set σ := ((γ + s)2 − 4uγ )/γ 2. For
y0 ∈ {ȳ−, ȳ+,1} ∩ [0,1], we have

(6.8) gr(y0) = y0 exp
(−r(1 − y0)

(
s + γ (1 − y0)

))
.

For y0 ∈ [0,1] \ {ȳ−, ȳ+,1} and:

(1) for u < u�,

(6.9) gr(y0) = y0

(
ȳ− − y(r;y0)

ȳ− − y0

) ȳ+√
σ
(

ȳ+ − y0

ȳ+ − y(r;y0)

) ȳ−√
σ ;

(2) for u = u� (recall that then ȳ− = ȳ+),

(6.10) gr(y0) = y0
y(r;y0) − ȳ−

y0 − ȳ−
exp

(
−ȳ−

y(r;y0) − y0

(y(r;y0) − ȳ−)(y0 − ȳ−)

)
;
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(3) for u > u�,

gr(y0) = y0

√
u − y(r;y0)

(
s + γ (1 − y(r;y0))

)
u − y0

(
s + γ (1 − y0)

)
× exp

[
− γ + s

γ
√−σ

(
arctan

(2y(r;y0) − γ+s
γ√−σ

)

− arctan
(2y0 − γ+s

γ√−σ

))]
.

(6.11)

PROOF. Assume γ > 0. Consider first y0 ∈ {1, ȳ−, ȳ+} ∩ [0,1]. Here, y(·;y0) ≡ y0 so
that

−
∫ r

0

(
1 − y(ξ ;y0)

)(
s + γ

(
1 − y(ξ ;y0)

))
dξ = −r(1 − y0)

(
s + γ (1 − y0)

)
.

This leads to (6.8) via Theorem 2.32. For y0 ∈ [0,1] \ {1, ȳ−, ȳ+}, we apply classical integra-
tion techniques to (2.10). Consider (1) and assume first that u < s(≤ u�) so that ȳ− < 1 < ȳ+
(recall Table 1). For y0 < ȳ−, y(r;y0) is increasing. By substituting η = y(ξ, y0), using
(2.1), and partial fraction decomposition (where it is useful to note that ȳ+, ȳ− satisfy
u − y(s + γ (1 − y)) = γ (y − ȳ+)(y − ȳ−)), we obtain

−
∫ r

0

(
1 − y(ξ ;y0)

)(
s + γ

(
1 − y(ξ ;y0)

))
dξ

= −
∫ y(r;y0)

y0

s + γ (1 − η)

u − η
(
s + γ (1 − η)

) dη

= − 1

γ

s + γ (1 − ȳ−)

ȳ+ − ȳ−

∫ y(r;y0)

y0

1

ȳ− − η
dη + 1

γ

s + γ (1 − ȳ+)

ȳ+ − ȳ−

∫ y(r;y0)

y0

1

ȳ+ − η
dη

= 1

γ

s + γ (1 − ȳ−)

ȳ+ − ȳ−
log

(
ȳ− − y(r;y0)

ȳ− − y0

)
− 1

γ

s + γ (1 − ȳ+)

ȳ+ − ȳ−
log

(
ȳ+ − y(r;y0)

ȳ+ − y0

)
.

Note that s/γ + (1 − ȳ−) = ȳ+, s/γ + (1 − ȳ+) = ȳ−, and ȳ+ − ȳ− = √
σ > 0 so that (6.9)

follows from Theorem 2.32 in this case. A similar argument applies if 1 > y0 > ȳ−; but now
y(r;y0) is decreasing. For (1) with u ∈ [s, u�), we can proceed similarly; the only subtlety
lies in the monotonicity of y(r;y0) depending on y0 and the equilibria. Next consider (2),
that is, u = u�. Here, we have ȳ− = ȳ+, σ = 0, and y(r;y0) is increasing for all y0 ∈ [0,1].
Hence,

−
∫ y(r;y0)

y0

s + γ (1 − η)

u − η
(
s + γ (1 − η)

) dη

=
∫ y(r;y0)

y0

(
−s + γ (1 − ȳ−)

γ (η − ȳ−)2 + 1

η − ȳ−

)
dη

= ȳ−
(

1

y(r;y0) − ȳ−
− 1

y0 − ȳ−

)
+ log

(
y(r;y0) − ȳ−

y0 − ȳ−

)
.

This leads to (6.10). Finally, we treat (3), that is, u > u�, where σ < 0. Again, y(r;y0) is
increasing. Here,

−
∫ y(r;y0)

y0

s + γ (1 − η)

u − η(s + γ (1 − η))
dη
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= 1

2

∫ y(r;y0)

y0

−(s + γ ) + 2γ η

u − (s + γ )η + γ η2 dη − 1

2

∫ y(r;y0)

y0

s + γ

u − (s + γ )η + γ η2 dη

= 1

2
log

(
u − y(r;y0)

(
s + γ (1 − y(r;y0))

)
u − y0

(
s + γ (1 − y0)

) )
− 1

2

∫ y(r;y0)

y0

s + γ

u − (s + γ )η + γ η2 dη.

In the last term, we substitute μ = φ(η) := (2η − (1 + s/γ ))/
√−σ and obtain

− 1

2

∫ y(r;y0)

y0

s + γ

u − (s + γ )η + γ η2 dη

= − 1√−σ

(
1 + s

γ

)∫ φ(y(r;y0))

φ(y0)

1

1 + μ2 dμ

= − 1√−σ

(
1 + s

γ

)[
arctan

(
φ

(
y(r;y0)

)) − arctan
(
φ(y0)

)]
.

This gives (6.11) and ends the proof. �

Explicit expressions for the long-term ancestral type distribution can now be obtained from
Proposition 6.2.

COROLLARY 6.3 (Long-term ancestral type distribution). Let ν0 = 0 and γ > 0. Then
for all y0 ∈ [0,1], limr→∞ gr(y0) exists. Moreover, g∞(1) = 1 and for y0 ∈ [0,1) and:

(i) u < u�, we have

(6.12) g∞(y0) = 1{y0>ȳ+}y0

(
1 − ȳ−
y0 − ȳ−

) ȳ+√
σ
(

y0 − ȳ+
1 − ȳ+

) ȳ−√
σ ;

(ii) u = u� (recall that then ȳ− = ȳ+), we have

(6.13) g∞(y0) = 1{y0>ȳ−}y0
1 − ȳ−
y0 − ȳ−

exp
(
−ȳ−

1 − y0

(1 − ȳ−)(y0 − ȳ−)

)
;

(iii) u > u�, we have

g∞(y0) = y0

√
u − s

u − y0
(
s + γ (1 − y0)

)
× exp

(
− γ + s

γ
√−σ

[
arctan

(1 − s
γ√−σ

)
− arctan

(2y0 − γ+s
γ√−σ

)])
.

(6.14)

PROOF. Combining Corollary 2.4 with Proposition 6.2 yields the result. �

Finally, we consider the ancestral type distribution at equilibrium, that is,(
1 − g∞

(
y∞(y0)

)
, g∞

(
y∞(y0)

))
.

PROOF OF COROLLARY 2.33. In the following, we use Corollaries 2.4 and 6.3 through-
out. For y0 = 1, we have y∞(1) = 1 and hence g∞(y∞(1)) = 1 regardless of u. For the
remainder, assume y0 ∈ [0,1). In �1, y∞(y0) = 1 so g∞(y∞(y0)) ≡ 1. In �a

2, we have
y∞(y0) = ȳ−. Moreover in �a

2, u < u� so that g∞(y∞(y0)) = 0. In �b
2 (recall that here,

ȳ− = ȳ+), y∞(y0) = ȳ+ if y0 ≤ ȳ+, and y∞(y0) = 1 if y0 > ȳ+. Moreover in �b
2, u = u�.

Hence, g∞(y∞(y0)) = 1{y0>ȳ+}. In �3, g∞(y0) = ȳ− if y0 < ȳ+, and g∞(y0) = 1 if y0 > ȳ+.
Moreover in �3, u < u� so that g∞(y∞(y0)) = 1{y0>ȳ+}. �
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6.2. A forward approach to the ancestral type distribution. The expression for the an-
cestral type distribution in (2.10) arises also as the ancestral type distribution in an alternative
forward model. We first explain this result and then exhibit the connection to the original
model.

Fix y0 ∈ [0,1] and f0 > 0 (and let, as before, u > 0 and γ, s ≥ 0). Consider the solution
(z0(t), z1(t))t≥0 to the initial value problem given by z0(0) = (1 − y0)f0, z1(0) = y0f0,

(6.15)
dz0

dt
(t) = z0(t)

(
s − u + γ

z0(t)

z0(t) + z1(t)

)
, and

dz1

dt
(t) = uz0(t).

In this model, z0(t) (z1(t)) is the absolute frequency at time t of the fit (the unfit) type in
a population with variable size in which only the fit type reproduces, no one dies (in par-
ticular, reproduction is not coupled to the death of another individual), and there are only
deleterious mutations. It is convenient to think of it as arising under a law of large num-
bers of a two-type branching process with interaction in which only the fit type reproduces.
Let f (t) := z0(t) + z1(t) be the population size at time t . If ỹ(t) := z1(t)/f (t) denotes the
relative frequency of the unfit type, f (t) satisfies

d

dt
f (t) = d

dt

(
z0(t) + z1(t)

) = (
1 − ỹ(t)

)
(s + γ

(
1 − ỹ(t)

)
f (t),

augmented by f (0) = z0(0) + z1(0) = f0. Hence,

(6.16) f (t) = f0 exp
(∫ t

0

(
1 − ỹ(ξ)

)(
s + γ

(
1 − ỹ(ξ)

))
dξ

)
.

For the ancestral type distribution of this model, the key is to think in terms of absolute
frequencies. Since the individuals unfit at time 0 neither reproduce nor mutate, the size of
their descendant population remains constant at y0f0, while the population size grows by a
factor of f (t)/f0. It is therefore clear that the proportion of individuals at time t that have
unfit ancestors at time 0 is y0f0/f (t) = gr(y0), in line with (2.10).

The mutation–selection equation arises from (6.15) as the dynamics of the relative fre-
quency of the unfit type. To see this, check that ỹ(t) indeed satisfies (2.1) with ỹ(0) = y0.
Conversely, starting from the solution of (2.1) with y0 ∈ [0,1], we obtain (6.15) via the trans-
formation

(6.17) z0(t) := (
1 − y(t;y0)

)
f (t) and z1(t) := y(t;y0)f (t),

for f (t) in (6.16) for some f0 > 0. For the noninteractive case, the transformation (6.17)
goes back to Thompson and McBride [40] and is frequently used in deterministic population
genetics; it allows to transform the quadratic system (2.1) into a linear one.
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