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1. Introduction

This paper continues the theme of the author’s earlier surveys [Bin1] on predic-
tion theory for one-dimensional time series, [Bin2] on the finite-dimensional case,
and touching briefly (with Badr Missaoui, [BinM]) on the infinite-dimensional
case. This is our theme here. Our motivation is partly mathematical interest
and completeness, partly the vigorous development of functional data analysis
(FDA; [RamS1], [RamS2], [HorK]) made possible by the explosive growth in
computer power, data storage and data handling.

We begin in §2 with the Cramér Representation (CR) and the Kolmogorov
Isomorphism Theorem (KIT), on which everything rests. In §3 we turn to
Verblunsky coefficients and Schur functions. Szegő’s theorem and the Wold de-
composition follow in §4, and the Szegő alternative and factorization in §5, all
themes familiar from e.g. [Bin1], [Bin2]. Section 6 is on the Beurling-Lax-Halmos
theorem and inner functions. Section 7 is on numerical implementation. Comple-
ments follow in §8, in particular (§8.1) the deterministic case and (§8.2) model
spaces. We close in §9 with some open questions, with which the area abounds.

As with FDA itself, implementation involves discretization (‘calculus is con-
tinuous, calculation is discrete’), and so in principle (subject to a suitable choice
of dimension) reduces the setting to a finite-dimensional one, which can be han-
dled by the finite-dimensional methods of e.g. [Bin2] and the references there
(the extensions to higher dimensions, due to Whittle in 1963 and Wiggins and
Robinson in 1965, of the Levinson-Durbin algorithm for the scalar case). We
prefer to use the infinite-dimensional context suggested by the nature of the
data. See e.g. §7.1 below, [RamS1], [DetKA] for more on this. (Ramsay and
Silverman remark [RamS1, p.11] ‘In general, prediction theory is beyond our
scope, and is only considered here and there’.)
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The mathematics here involves vectorial integration (see e.g. [Rud2, Ch. 12]).

2. The Cramér Representation and the Kolmogorov Isomorphism
Theorem

2.1. The Cramér Representation (CR)

We confine ourselves throughout to stationary processes, that is, those whose
distributions are invariant under time-shifts. One can work in discrete or contin-
uous time, depending on preference, context or the data available. As the term
‘time series’ indicates, the first is the traditional one, and we shall follow it here.
Then the time set is the integers Z, with (Pontryagin-van Kampen) dual [Pon,
Ch. 6] the torus T (equivalently R/2πZ; one can pass between these by θ ↔ eiθ,
and we shall do this at will). In the second case, the time-set is the real line R,
with dual R also. Stationarity is a strong condition, which yields correspond-
ingly strong conclusions; we turn later to how it may be relaxed (§8.4). For a
monograph treatment, see Nikolskii [Nik1], whose sub-title ‘Spectral function
theory’ gives a hint of the mathematics involved (see also [Nik2]).

We write our process (or time series) as x = {xn : n ∈ Z}, where the xn are
in R, Rd, a Hilbert space H or a Banach space B, depending on context (one can
work more generally; see e.g. [BinM, §5.5, §5.6]). While our data consists of func-
tions, as in our title, these functions will always belong to function spaces, which
are at least topological vector spaces, the elements of which we will call vectors
as usual. So vectors here are infinite-dimensional unless otherwise stated. Co-
variances are matrices in the finite-dimensional case (as in multivariate analysis
in statistics, and in [Bin2]). But here, covariances are (linear) operators, hence
the crucial role of operator theory in what follows. We will work in a Hilbert
space H unless otherwise stated.

Write the time-shift n �→ n + 1 as U . Then U is unitary, and generates
a unitary group, U . Being unitary, U is normal, and so the spectral theorem
for the unitary case (Stone’s theorem) applies ([Rud2, Ch. 12]; [Sto, VIII.2],
[RieN, §109], [DunS, X.2]). This involves integration over T with respect to a
resolution of the identity (projection-valued measure, in Mackey’s terminology
[Mac]) E = {E(θ) : θ ∈ T}: E(T) = 1, and

Un =

∫
T

einθdE(θ), n ∈ Z (U)

(as all our integrals will be over the torus T, we omit the T below). Note that
as |einθ| = 1 and E(T) = 1, for x ∈ H (U) gives

‖Ux‖ = ‖
∫

eiθdE(θ)x‖ ≤ ‖x‖ :

U is a contraction.
By above,

xn = Unx0 =

∫
einθdE(θ)x0 =

∫
einθdY (θ), n ∈ Z,
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say, giving the Cramér representation

xn =

∫
einθdY (θ), n ∈ Z. (CR)

The random measure Y here is the Cramér measure [Cra1], [Cra2], [CraL], or
(Cramér’s terminology) the spectral process, of the stationary process x. This is
orthogonally scattered (Masani, [Mas1]): the masses of disjoint sets are orthog-
onal (see also Aue and van Delft [AueD], Prop. 2.1).

The Cramér representation holds also in continuous time; see e.g. [Kak3, §2
Th. 1].

2.2. The Kolmogorov Isomorphism Theorem (KIT)

One has the Kolmogorov Isomorphism Theorem ([Kak3]; [Kak4, p.104]; [ManS];
[DelE]), as in the scalar and matrix cases (see e.g. [Bin1], [Bin2]). Put succinctly
and acronymically,

x(n) ↔ ein. I, n ∈ Z, (KIT )

with I the identity operator (here the time domain is on the left, the frequency
domain on the right). As with (CR), this holds also in continuous time. Formally,
(a convenient source here is [Kak3, §2 Th. 3]):

Theorem (Kolmogorov Isomorphism Theorem). On a probability space (Ω,F ,
P ), write X = L2

0(Ω) for the Hilbert space of complex-valued zero-mean square-
integrable random variables, H(x) for the closed subspace of X spanned by the
set {x(t) : t ∈ R}. For {x(t)} an X-valued stationary process on R with spectral
measure μ, the time domain H(x) and the frequency (spectral) domain L2(μ)
are isomorphic by a unitary operator U : H(x) → L2(μ) given by

Ux(t) = eit., t ∈ R.

We recall Chung’s famous dictum ‘The process is the thing ’. A stochastic
process is an infinite-dimensional object, characterised by its distribution. Both
(KIT ) and (CR) deal with the distribution of the process in full, in different
ways, with the distribution implicit in (KIT ) and explicit in (CR). By contrast,
we shall meet below results that deal only with the second-order aspects of the
process: (mean and) covariance. The key result here is Verblunsky’s theorem, or
the Verblunsky isomorphism (§3), characterising (or parametrising) the covari-
ance structure. This is fully informative about the process when the process is
Gaussian; we discuss Gaussianity in §2.4 below (cf. [Bin4, §4.1] in continuous
time).

2.3. The Gramian

Take H a separable Hilbert space, B(H) the algebra of all bounded linear op-
erators on H, T (H) the trace class operators in B(H) (cf. §4.1 below). The
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Kolmogorov Isomorphism Theorem in the Hilbert case is due to Mandrekar and
Salehi [ManS]; here we follow Kakihara [Kak1], [Kak2], [Kak3], [Kak4]. Write
X := L2

0(Ω,H) for the Hilbert space of all H-valued (strong) random variables
with mean 0 and finite second moment: with (Ω,F ,P) the probability space,
E[x] :=

∫
Ω
x(ω)dP(ω) = 0,

‖x‖2X :=

∫
Ω

‖x(ω)‖2H dP(ω) = E [ ‖x‖2H] < ∞,

and so with inner product on X

(x, y)X :=

∫
Ω

(x(ω), y(ω))H dP(ω) = E[(x, y)H].

The Gramian operator , or Gramian, is the T (H)-valued inner product [., .]X
defined by

([x, y]Xφ, ψ)H =

∫
Ω

(x(ω), φ)H(ψ, y(ω))H dP(ω)

= E[(x, φ)H(ψ, y)H] (x, y ∈ X,φ, ψ ∈ H). (GO)

In the finite-dimensional case, this reduces to a doubly-indexed set of scalars,
which gives a matrix, the Gramian matrix [HorJ, §7.2], which is positive definite;
so too is the Gramian operator likewise. Symbolically,

[x, y]X =

∫
Ω

x(ω)⊗ y(ω)dP(ω) = E[x⊗ y],

where
(φ⊗ ψ)φ′ := (φ′, ψ)Hφ, φ, φ′, ψ ∈ H.

Now X is both

(i) a left B(H)-module under the module action

(a, x) �→ a.x = ax (a ∈ B(H), x ∈ H),

(ii) a Hilbert space with Gramian [., .]X :
X is a normal Hilbert B(H)-module in the sense of [Kak2]. (For back-
ground on Hilbert modules, see Lance [Lan]. Both Hilbert modules and
Gramians go back here at least to Masani’s comments on Wiener’s work
on prediction [Mas2].)

We may now without ambiguity abbreviate [., .]X (whose values are non-
random operators) to [., .]. With it, we can define the spectral measure, or control
measure,

F (.) := [Y (.), Y (.)] (SM)

(operator-valued, indeed Gramian-valued), and the operator covariance func-
tion,

Γ(m,n) := [x(m), x(n)].
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The process x = {x(n)} is called operator stationary (or just stationary) if its
operator covariance function (or just covariance function) is a function of m−n
only, Γ̃(m− n) = Γ(m,n), say. We assume stationarity unless otherwise stated.

As in the matrix case above, the Gramian is positive definite (Gretsky [Gret,
§3]). One has [Kak3] the spectral representation

Γ̃(n) =

∫
einθdF (θ). (SR)

This is the operator version of Herglotz’s theorem (or Bochner’s theorem); cf.
[Bin1], [Bin2] in finite dimensions and van Delft and Eichler [DelE] in this set-
ting.

Below, we shall need the spectral density f , the Radon-Nikodym derivative
of the absolutely continuous component of the spectral measure F with respect
to normalised Lebesgue measure dθ/2π on T, operator-valued, as F is (take f
as 0 if F is singular).

2.4. Gaussianity

In (CR), one has the stationary process x = (xn) in the time domain represented
as a stochastic integral of the orthogonal-increments process Y = (Y (θ)) in the
frequency domain. For Gaussians, orthogonality is the same as independence, so
if Y is Gaussian, it has independent increments. As sums (and so integrals) of
independent Gaussians are Gaussian, x is then Gaussian by (CR). The converse
also holds (see e.g. [Cra3], [Horo]). All this is true regardless of the dimension
d.

This simple and basic fact should thus have been stated (indeed, stressed)
in the d = 1 case in [Bin1] and the case 1 < d < ∞ in [Bin2]. Unfortunately,
Gaussianity is only touched on in [Bin1] (§2, KIT, §4, Rajchman measures, §6.1,
φ-mixing), and not even mentioned in [Bin2].

3. Verblunsky coefficients; Schur functions

3.1. Verblunsky’s theorem

In the scalar case [Bin1], the distribution of a (discrete-time, complex-valued)
stationary sequence, given by the spectral measure μ on the unit torus T, may
be fully described (encoded, parametrised) by a sequence α = (αn)

∞
0 of complex

numbers αn ∈ D, the unit disc of C, the Verblunsky doefficients (there are several
other names; see [Bin1], [Sim3]). This bijection

μ ↔ α (V er)

is:

Theorem (Verblunsky’s Theorem). There is a bijection between the sequences
α = (αn) with each αn ∈ D and the probability measures μ on T.
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The relevant theory here depends heavily on orthogonal polynomials on the
unit circle (OPUC), due originally to Szegő, the theme of Simon’s books [Sim3],
[Sim4] ([Sim4] deals with orthogonal polynomials on the line and the cirle to-
gether; these correspond to continuous and to discrete time).

In the finite-dimensional (�-vector, �× � matrix) case, the relevant theory is
matrix orthogonal polynomials on the unit circle (MOPUC) [Bin2]. The process
also has a Verblunsky parametrisation, but now the αn are (�× �) matrices, of
norm ‖αn‖ < 1. These encode the stationary processes, as before: Verblunsky’s
theorem. See Damanik, Pushnitski and Simon in 2008 [DamPS, (3.10), Th. 3.12].
In the infinite-dimensional case, the measures are vector-valued, the αn are
operators; see below.

3.2. Schur functions

In [DamPS], the authors write: ‘Among the deepest and most elegant methods
in OPUC are those of Khrushchev . . . . We have not been able to extend them to
MOPUC! We regard their extension as an important open question’. The papers
they referred to are [Khr1], [Khr2]; Khrushchev gave a monograph account of
his work in [Khr3].

In addition to the sequence α = (αn) of Verblunsky parameters, there are
two other ways of encoding the spectral measure μ on T that have been useful:
the Carathéodory function F and the Schur function f , given by

F (z) :=

∫ (θ + z

θ − z

)
dμ(θ), f(z) := z−1(F (z)− 1)(F (z) + 1)−1.

Here we use scalar notion, but the formulae extend to the matrix case and
to the operator case by replacing 1 in the formula for f by the identity (and
of course preserving the order of the factors in f as commutativity is lost).
The Schur function f has a continued-fraction expansion in terms of the Schur
parameters γn, where γn < 1 unless f is a finite Blaschke product. That the
Schur parameters are the same as the Verblunsky parameters is Geronimus’s
theorem [Sim3, Part 1 p.3].

Remarkably enough, work on quantum random walks led Grünbaum, Velázquez,
Werner and Werner in 2013 [GruV] and Bourgain, Grünbaum, Velázquez and
Wilkenin in 2014 [BouG] to extend Khrushchev’s work from OPUC to MOPUC,
so answering the question raised in [DamPS] above.

The work on operator-valued Schur functions above extends [DamPS], and
so also Verblunsky’s theorem, to the operator case.

4. Szegő’s theorem; Wold decomposition

4.1. Szegő’s theorem

For stationary processes, the key result underlying prediction is Szegő’s theorem,
which relates to the influence of the remote past . This may be absent, e.g.,
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bathwater forgetting its thermal history as it thermalises; total, e.g. tempered
steel, whose thermal history is locked in; or present with a partial influence, e.g.
the climate-weather interplay, where (on a time-scale, in years, short enough
to neglect climate change) climate is permanent, while weather is (again on a
suitable time-scale, in days) temporary and unpredictable, indeed chaotic.

To re-capitulate from [Bin1, Th. 3]: with σ2 the variance of the least-squares
prediction one step ahead from the whole (infinite) past, Szegő’s theorem in the
scalar case [Bin1, §4 Th. 3] tells us when the influence of the remote past is not
total , i.e. when σ > 0, so each time-step adds genuine new randomness. The
condition for this is Szegő’s condition (Sz) below:

Theorem (Szegö’s Theorem). (i) σ > 0 iff the Szegő condition logw ∈ L1

holds, that is, ∫
− logw(θ)dθ > −∞. (Sz)

(ii) σ > 0 iff α ∈ �2.
(iii)

σ2 =
∏∞

1
(1− |αn|2),

so σ > 0 iff the product converges, i.e. iff
∑

|αn|2 < ∞ : α ∈ �2;

(iv) σ2 is the geometric mean G(μ) of μ: for σ > 0,

σ2 = exp
( 1

2π

∫
logw(θ)dθ

)
=: G(μ) > 0. (K)

Szegő’s theorem is extended to the finite-dimensional setting by Derevyagin,
Holtz, Khrushchev and Tyaglov in 2012 [DerH, Th. 28, Th. 29]: with † for the
adjoint (following their notation here), det and tr for determinant and trace,

det

∞∏
0

(I− αkα
†
k) =

∞∏
0

det(I− αkα
†
k) = exp

∫
tr log f(θ)dθ/2π (KSz)

(the Kolmogorov-Szegő formula; see e.g. [Bin1, §4]), and Szegő’s condition – that
the right here is positive – holds iff

∞∑
0

‖α†
kαk‖ < ∞ (Sz)

(extending early work of Delsarte, Genin and Kamp [DelGK, Th. 18, 19]).
The product theorem for determinants in (KSz) above is simple linear algebra

in finitely many dimensions, and holds quite generally. Neither of these is true in
infinitely many dimensions! The results of [DerH] do extend to infinitely many
dimensions, but as they involve determinants we must restrict to situations
where infinite determinants are defined. Recall from functional analysis (see e.g.
[Con1]):
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(i) the trace class operators and the Hilbert-Schmidt operators, the two most
important classes of operators (they suffice for our purposes here);

(ii) that det(I − A) is defined when the operator A is trace class (nuclear, in
Grothendieck’s terminology), see e.g. [Sim2];

(iii) that this is so when A is a product of two Hilbert-Schmidt operators;
(iv) the multiplication theorem for determinants holds here too [BriC], so one

may interchange det and
∏

in (KSz) as above;
(v) by contrast, for Hilbert-Schmidt operators, the multiplication theorem for

determinants involves extra terms, of the kind arising in Fredholm theory
[BriC] (see §8.15).

The map A �→ det(I−A) is continuous (indeed, Lipschitz), so no convergence

problems arise here [Sim1]. The restriction that the α†
jαj be trace class – that

the αj be Hilbert-Schmidt – is the natural one for Szegő’s theorem to hold. It
is not restrictive in practice; see §7.

Recall also that the condition for A to be trace class is that its eigenvalues
λj (multiplicity counted) should be summable,

∑
|λj | < ∞ (

∑
λj < ∞ here as

the A = αkα
†
k are positive, so λj > 0). No such restriction on the eigenstructure

is needed in the finite-dimensional case (see §8.15 below).

Payen [Pay] makes a thorough study of the Hilbert-valued case. There ([Pay,
II.]; [BinM]) he gives an infinite-dimensional form of Szegő’s theorem in terms
of factorization (§5.2 below).

To summarise: Szegő’s theorem extends to the setting of infinite-dimensional
Hilbert space, but only when, with αk the (operator) Verblunsky coefficients,

the αk are Hilbert-Schmidt, so the αkα
†
k are trace class, so the det(I−αkα

†
k) in

(KSz) are defined.

4.2. The Szegő limit theorems

Strongly related to the work above are the Szegő limit theorems. Szegő’s first
(weak) limit theorem (1915) and much later second (strong) limit theorem
(1952) concern the asymptotics of Toeplitz determinants Tn of order n as n →
∞. The first concerns asymptotics of log detTn, the condition for which is
Szegő’s condition, that the geometric mean of the spectral measure satisfies
G(μ) > 0. The second gives the asymptotics of detTn itself, under a stronger
condition, on E(μ) (in the standard notation). In their modern form, due to
Ibragimov, both have the pleasing features that ‘they hold whenever they make
sense’; see e.g. [Bin1, §6] for details and references.

The proofs of both results were simplified dramatically by Geronimo and Case
(1979) and Borodin and Okounkov (2000). The key result here, known as the
Borodin-Okounkov formula, essentially reduces the limit results to algebra. This
work has been further simplified, and extended to matix and operator versions,
by a number of authors; we refer to the papers of Böttcher [Bot1], [Bot2], [Bot3]
for details and references.
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4.3. Baxter’s Theorem

The Verblunsky doefficients α = (αn) are the partial autocorrelation coefficients
in statistical language. Recall the great advantage of partial autocorrelations
over ordinary correlations: the first give an unrestricted parametrization, as all
values in the unit disk D can arise, while the second are restricted by complicated
nested inequalities.

For convenience, abbreviate (Sz) above to α ∈ �2(N), an L2-condition. The
result for the corresponding L1-condition is Baxter’s theorem:

Theorem (Baxter’s theorem). The following are equivalent:

(i) the Verblunsky coefficients (or PACF) are summable,

α ∈ �1; (Bax)

(ii) the autocorrelations are summable, and μ is absolutely continuous with
continuous positive density:

minθw(θ) > 0.

See [Sim3, Ch. 5], [Bin1, §5] for the scalar case, extended by Kasahara and
Bingham [KasB1, §5]. A thorough study of Baxter’s theorem in the matrix case
was given by Dym and Kimsey [DymK]; cf. [Bin2], [KasB3]. We raise (§9, Q3)
the question of extending Baxter’s theorem to infinitely many dimensions.

4.4. Wold decomposition

The past at time n, the remote past and the remote future of the process x =
(x(n)) are the closed linear subspaces spanned by the random variables below:

H(x, n) :=
∨

(x(k) : k < n), H(x,−∞) :=
⋂

(
∨

(x, n) : n ∈ Z),

H(x,+∞) :=
⋂

(
∨

(x, n) : n ∈ Z).

The process is called deterministic if all three are equal, purely non-deterministic
(pnd) if the second is trivial. The Wold decomposition [Kak2] splits the process
x = (x(n)) into a deterministic and a purely non-deterministic component,

x = xd + xp,

which are Gramian orthogonal:

[xd(m), xp(n)] = 0 (m,n ∈ Z).

The Cramér measure Y of the process also splits, into a sum of absolutely
continuous and singular components, Ya and Ys, and similarly for the spectral
measure:

Y = Ys + Ya, F = Fs + Fa.
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In one dimension, one has Wold-Cramér concordance: regarded as processes in
their own right, the ‘good’ process xp has Cramér and spectral measures Ya,
Fa, while the ‘bad’ one xd has Ys, Fs (see [Bin1] for details and references). In
the matrix case, Wold-Cramér concordance holds in the full-rank case but not
in general ([Bin2]; see e.g. Payen [Pay, Remarque 8, 376-7]). The vector case
is studied in [Kak3], where such concordance is shown to be preserved under
dilation from the stationary case here to the harmonisable case (§ 7.4).

The ‘good’ component xp in the Wold decomposition is a moving average
of the products of the innovations (new randomness) at past times and the
matrices appearing in the Taylor expansion of the Szegő function (‘analytic
square root’ of the spectral density matrix), as we shall see below. Compare
[Bin4, §2.5] in continuous time.

In the Hilbert-valued case, spectral criteria for the process to be purely non-
deterministic are given by Kallianpur and Mandrekar [KalM].

5. Szegő alternative; factorization

5.1. Szegő alternative

In one dimension, one has a clean split, the Szegő alternative, between ‘good’ and
‘bad’ cases. In the first, there is a genuine innovation (input of new randomness)
in each time-step from n to n+1. The size of this new input is measured by the
prediction error variance σ2, the infimum of the variances of all linear predictors
based on the present and (finite sections of) the past of the next future value
xn+1. This ‘good’ case can only happen if there is an absolutely continuous
component Fa to F , that is, if the spectral density f is not a.e. zero. When this
is so, it happens if and only if the Szegő condition (Sz) holds, and then σ2 > 0
is the geometric mean of log f , as in Szegő’s Theorem. Note that the singular
component of F (if present) plays no role here.

In the Wold decomposition, x is the sum of a ‘bad’ part xd (§3), and the
‘good’ part xp, a moving average of the innovations over the past to date; this
contains a factor σ, and so is absent if σ = 0 [Bin1]. In terms of the Verblunsky
coefficients,

σ2 =
∏∞

1
(1− |αn|2),

so (Sz) holds iff σ > 0 iff the product converges. Then (and only then), one can
define the Szegő function h(z):

h(z) := exp
(1
2

∫ (eiθ + z

eiθ − z

)
logw(θ)dθ/2π

)
(z ∈ D). (OF )

This is an outer function, in the Hardy space H2(D) ([Dur]; [Sim3]; [Bin1]). It is
analytic in D, and zero-free there [Sim3, Th. 2.4.1]. As (from Fatou’s theorem:
[GarMR, Th. 1.10], [Rud1, Th. 17.10])

∫ (eiθ + z

eiθ − z

)
logw(θ) dθ/2π → log f(φ) a.e. (z = reiφ, r ↑ 1),
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its square has radial limit f a.e. on T:

lim |h(z)|2 = f(θ) a.e. (z = reiθ, r ↑ 1).

It may thus be regarded as the analytic square root of the spectral density f .
In the matrix case, we refer to [Bin2, §5] for details and references. Szegő’s

theorem (the matrix forms of (Sz), (KSz) above) holds, see [DerH, Th. 28],
extended to the infinite-dimensional (operator) case under the trace-class re-
striction in §4.1.

5.2. Factorization

In the scalar case, existence of the Szegő function (analytic square root of the
spectral density) and the Szegő condition are equivalent. One seeks a matrix
and a vector version of this. So one seeks to factorise a matrix spectral density
into its analytic square root times its adjoint (denoted by ∗ here, to conform to
the sources below),

F = ΦΦ∗.

There is an extensive theory here, due mainly to Wiener and Masani and to
Helson and Lowdenslager. We note that the coefficient matrices Φn in the Taylor
expansion

Φ(z) =

∞∑
0

Φnz
n

appear in the prediction-error matrix (and operator, in the vector case, below).
See e.g. Masani [Mas2, p.278], Whittle [Whi] (for the scalar case, see e.g. [GreSz,
§10.8]).

For factorizations in the operator case, we refer to [RosR, Ch. 6]. We also
mention briefly the approach of Power [Pow]. We make the restrictive assump-
tion that the spectral density f is essentially bounded (i.e. is bounded, after
excluding some null set on the torus T). Then

f = hh∗ + g,

where g is a positive operator and h is analytic and outer. Here g can be taken to
be minimal . A Wold(-Zasuhin) decomposition is obtained. The prediction-error
operator G(f) of f is obtained as

G(f) = G(hh∗) = (QhQ)(QhQ)∗,

where Q is an orthogonal projection; we refer to [Pow] for details.
As Power points out, his method gives g and h as functions of f , while

the methods of Sz.-Nagy and Foiaş ([SzNF, §5] below) do not. But this applies
only to the behaviour encoded in the spectral density , the absolutely continuous
component in the Lebesgue decomposition of the spectral measure. We turn now
to how to address the ‘bad’ behaviour encoded in the other two components.
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6. The Beurling-Lax-Halmos theorem; inner functions

So far as prediction theory is concerned, it is the ‘good’ part of the process (or
its spectral measure) that matters. Nevertheless, the Wold decomposition shows
us that to understand the structure of a stationary process we need to look at
the ‘bad’ part also.

Recall the outer function of (OF ), §4 above. The term is due to Beurling
[Beu], as is the corresponding term inner function. These correspond respec-
tively to the ‘good’ and ‘bad’ parts above. When we pass from the time domain
(Wold decomposition) to the frequency (or spectral) domain by the Kolmogorov
Isomorphism Theorem, we obtain the factorization into outer and inner factors
in Hardy spaces H2(H). For the scalar case (where the Hardy space is written
H2) there are good accounts in Duren [Dur], Garnett [Garn] and Hoffman [Hof]
(see also [Rud1, Ch. 17]). For the vector case, see [SzNF, III, V], [Nik1, I.7,
XI.3], [RosR, Ch. 4-6], [Hof, 114-116].

The remote past (the ‘bad’ part) is invariant under the time-shift. The in-
variant subspaces are exactly those given by multiplication in H2(H) by an
inner function ([SzNF, V, Th. 3.3]; [Nik1, I.7, XI.3]; [RosR, 1.12]). This is the
Beurling-Lax-Halmos theorem, due to Beurling (dimension d = 1), Lax [Lax]
(1 < d < ∞) and Halmos [Halm] (d ≤ ∞) [Con2]. So study of the remote past
reduces to study of inner functions, u say. These have a rich structure; they
factorise into a unimodular constant, a Blaschke product, and an integral factor
as in (OF ) but with a singular rather than an absolutely continuous measure.
See §7.1,2 below.

Halmos’s approach [Halm] uses the concept of a wandering subspace; these
correspond to the innovations (new randomness) in the process. For an isometry
V on a Hilbert space H, call a subspace L of H wandering if for distinct integers
m,n V mL and V nL are orthogonal. Then [SzNF, §1.1] if

M+(L) := ⊕∞
0 V nL,

one has

L = M+(L) VM+(L).

Call an isometry V on H (which will be U of §2 for us) a unilateral shift if
H has a wandering subspace L with M+(L) = H. Then L, called generating
for V , is uniquely determined by V , indeed L = H VH. One has the Wold
decomposition ([SzNF, Th. 1.1], [RosR, §1.3]):H decomposes into the orthogonal
sum H = H0⊕H1 such that the Hi reduce H (each is mapped onto itself by V ),
V |H0 is unitary and V |H1 is a unilateral shift. This decomposition is unique;
indeed,

H0 =

∞⋂
0

V nH, H1 = M+(L), where L = H VH.

Either H0 or H1 may be absent (= {0}).
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7. Implementation

7.1. Theory

As remarked before, calculus is continuous; calculation is discrete. Data is dis-
crete. Our given data on past curves (at times 1, · · · , n say – the distinction
between being given the infinite past or a finite part of it is important the-
oretically but evaporates at the implementation stage) necessarily consists of
finitely many points on each, interpolated or smoothed so as to give a curve
(continuous, say), with whatever degree of smoothness the statistician chooses
(as with density estimation; see e.g. Silverman [Sil]), by whatever means the
statistician chooses – splines, wavelets etc. The prediction process then consists
of the inevitable three steps:

(i) Discretisation of the data (now curves), into d-vectors, for some d < ∞.
For choice of d, see e.g. Li and Hsing [LiH].

(ii) Prediction, using e.g. the multidimensional version of the Levinson-Durbin
algorithm, as in [Bin2]; see below.

(iii) Interpolation or smoothing of this set of predicted values at time n+1 to
give the predicted curve at time n+ 1.

As one will see from the above, the practical problems involved at the imple-
mentation stage are largely numerical . This is a familiar phenomenon; see e.g.
[BinS2] for a different setting (random fields) where the writer (with Symons)
recently encountered such things.

The Levinson-Durbin algorithm

For this classical algorithm for the computation of the best linear predictor based
on the last n data points, see e.g. Brockwell and Davis [BroD, §5.2], [Bin1] in
the scalar case, [Bin2] in the matrix case. It is worth noting that numerical
improvements have been made here (the split Levinson algorithm); see Delsarte
and Genin [DelG].

7.2. Numerics

The three-step procedure above thus amounts substantially to

(i) discretization of the infinite-dimensional process (random curves) in (CR)
to random d-vectors for suitably chosen d;

(ii) prediction by finite-dimensional methods [Bin2] (e.g., the Levinson-Durbin
algorithm);

(iii) smoothing (e.g., spline interpolation with a roughness penalty) to return
to the infinite-dimensional setting.

See also Hyndman and Shang [HynS1], [HynS2].
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One way to implement (i) is to expand the covariance by Mercer’s theorem
and use an orthogonal eigenexpansion, the Karhunen-Loève expansion [Loe2,
II, 37.5], then truncate after a suitable number of terms. See e.g. Hall et al.
[HalPP], Aue et al. [AueNH] for implementation. In the Gaussian case of §1.4
[MarR, §5.3], the terms are independent (and Gaussian). Such methods can be
extremely effective (for background see e.g. [BinS1], [BinS2] and the references
there).

Kernel methods

Kernel methods, commonly used in machine learning, have recently been advo-
cated for functional prediction by Hashimoto et al. [Has1], [Has2].

8. Complements

8.1. The deterministic case

When the Szegő condition (Sz) fails (e.g., when the density is absent – Fa = 0
in the notation of §3), the entire process is ‘bad’, and consists entirely of ‘echoes
of the remote past’. In the scalar case (for simplicity): the variance σ2

n of the
best linear predictor based on the last n readings decreases to σ2 = 0. The
interesting question of how fast was addressed long ago by Rosenblatt [Ros],
and more recently by Babayan, Ginovyan and Taqqu [BabGT].

8.2. Model spaces

Again in the scalar case first for simplicity: the (unilateral, forward) shift S
(time n �→ n+ 1) is represented on the Hardy space H2 by

Sf = zf (f = f(z) ∈ H2).

This has adjoint the backward shift S∗:

S∗f =
f − f(0)

z
.

This follows from the Taylor series for f(z) =
∑∞

0 anz
n in each case. Note

that f ∈ H2 and a = (an) ∈ �2(N) are equivalent, and give the ‘Hardy-Hilbert
space’ (see de Branges [dBra], Martinez-Avendano and Rosenthal [MartR] for
monograph treatments).

By the Beurling(-Lax-Halmos) theorem, the invariant subspaces of S are
uH2 for the inner functions u. Similarly, the invariant subspaces for S∗ are the
orthogonal complements of these, written

Ku := (uH2)⊥.
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These are called model spaces (‘model spaces are the invariant subspaces of the
backward shift’). To explain the terminology, we quote [GarMR, 105] ‘The term
model space originates in the theory of model operators, developed by Sz.-Nagy
and Foiaş, where it is shown that certain types of Hilbert-space contractions
are unitarily equivalent to the compressions of the unilateral shift to a model
space. This underscores the importance of model spaces in developing concrete,
function-theoretic realizations of abstract Hilbert space operators.’ For back-
ground, see the two classic sources [SzNF] and Nikolskii [Nik1] cited in §5, plus
Rosenblum and Rovnyak [RosR] and the two-volume [Nik2], and the two re-
cent treatments by Garcia, Mashreghi and Ross [GarMR] cited above (see also
[GarR]) and Agler, McCarthy and Young [AglMY]. (Note that different authors
use the term compression differently [GarMR, Remark 9.2].) See also [Nik2,
§4.8.8] and [NikV].

8.3. Compressions and dilations

For A,B operators on spaces A ⊂ B, B is a dilation of A if

An = pr Bn for all n ∈ N ,

where pr is projection [SzNF, p.10]. Then A is a compression of B ([GarMR,
Def. 9.1]; [SzNF] does not use the term compression).

The basic result here is the Sz.-Nagy-Foiaş dilation theorem: if H is a Hilbert
space and T a linear contraction on it, there exists a larger Hilbert space H and
a unitary operator U on H with U a dilation of T and

H =
∨

(UnH : n ∈ N)

(such a dilation is called minimal). For the extensive theory here, see e.g. [SzNF,
Ch. I], [Nik1, Introductory Lecture, Lecture III], [GarMR, Ch. 9].

8.4. Harmonizability

This concept, due to Loève [Loe1] in 1948, addresses the need to relax the strong
assumption of stationarity, which one cannot expect to hold exactly in practice.
It has been studied and extended by Karhunen, Cramér and others. As the
covariance function now needs two arguments, s and t say, rather than one, s−t,
the spectral measure now becomes a ‘bimeasure’. For details and references, see
e.g. [Rao1], [Rao2], [Kak1], [Kak2], [Kak3], [Kak4]. To summarise [Rao2, 292]:

strongly harmonisable ⊂ weakly harmonizable ⊂ Karhunen ⊂ Cramér.
Note [Kak3, Th. 2] that a process is weakly harmonizable iff it has a station-

ary dilation. For readers to whom dilation theory is new, we offer the follow-
ing heuristic for this result. For a population in equilibrium (‘zero population
growth’, ZPG), at population level things look stationary even over long time-
scales. At the individual level, things look far from stationary as one progresses
through life.
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Thus weak harmonizability is the broadest context in which we can hope
to bring the powerful tools available in the stationary case to bear. Beyond
that, one is more in the realm of the Kalman filter and its extensions, where
the dynamics dominate, one predicts using only the immediate past and the
present, and what matters is speed and accuracy of reaction (e.g., control of
manned spacecraft, or mortar-locating radar).

8.5. Banach spaces and beyond

Such extensions were addressed briefly in [BinM, §5.5]. We refer there for further
detail, and to e.g. Dette et al. [DetKA], Chobanyan and Weron [ChoW], Weron
[Wer], Miamee and Salehi [MiaS] and Klotz and Riedel [KloR]. For a Banach-
space version of the Wold decomposition, see [FauH].

8.6. Operator-valued processes

For an approach via dilation theory and operator models, see Makagon and
Salehi [MakS, §2] and the references cited there. The vector- and operator-
valued cases are developed together in [RosR, Ch. 4-6].

8.7. The multivariate case

See e.g. [Kak3, §6] for a multivariate vector-valued treatment.

8.8. High- and infinite-dimensional probability and statistics

For high-dimensional treatments, see e.g. [Ver] for probability, [Wai] for statis-
tics. For infinite-dimensional statistics, see e.g. Giné and Nickl [GinN].

8.9. Specifically infinite-dimensional phenomena

We have been concerned here with vector-valued Hardy space theory (inner-
outer function factorization, etc.), in finitely many dimensions [Bin2], or in-
finitely many, our main concern here. There are results in the area which do not
extend to the infinite-dimensional case. For example, see Treil [Tre1], [Tre2] for
the (operator) corona problem.

8.10. Cramér-Karhunen-Loève expansion

The Karhunen-Loève expansion ([MarR, §5.3], [GinN, Th. 2.6.10]) may be com-
bined with the Cramér representation to give a dynamicized form of the expan-
sion, which has been used for modelling functional time series. See e.g. Anto-
niadis and Sapatinas [AntS] (who considered El Niño), [AntPS], Panaretos and
Tavakoli [PanT1], [PanT2].
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8.11. Functional data analysis; prediction; change-points

For some recent developments in these areas, see e.g. Aue, Norinho and Hörmann
[AueNH], Dette, Kokot and Aue [DetKA].

8.12. Smoothness of functions

Our data are functions, drawn from function spaces, often Hilbert spaces H.
These may (and typically do) have some smoothness properties. One of the
most basic is continuity of point evaluation, x �→ f(x) (f ∈ H). By the Riesz
representation theorem, this is the condition for H to be a reproducing-kernel
Hilbert space (RKHS): to have a reproducing kernel k(., .) such that, with
kx(.) := k(., x),

(f, kx) = (f(.), k(., x))H = f(x) (f ∈ H).

Such spaces are common in the Hardy-space setting above. For example, the
Hardy-Hilbert space H2 is a RKHS with kernel

kλ(z) = 1/(1− λz) (λ, z ∈ D)

[GarMR, Prop. 3.3], and so are the model spaces Ku above, with kernel (with
the u here to be understood in the notation)

kλ(z) =
1− u(λ)u(z)

1− λz
(λ, z ∈ D)

[GarMR, §5.5]. For the extensive theory of RKHS, and applications to proba-
bility and statistics, see e.g. Berlinet and Thomas-Agnan [BerTA].

8.13. Hankel operators and Nehari sequences

Toeplitz operators occur frequently in the above; they have many links with
Hankel operators (for which see e.g. Peller [Pel]). The Nehari problem [Pel, Ch.
5] is: given a sequence γ = (γn) (γn ∈ C), find a function φ in the unit ball of
L∞ with

γn =

∫
einθφ(θ)dθ/2π (n = 1, 2, · · · ).

Nehari’s theorem is that such a solution exists iff the Hankel matrix (γm+n) of γ
acts as a contraction on �2. There is more than one solution (the indeterminate
case) iff γ = (γn) is the negatively indexed Fourier coefficients of the phase factor
of some function in H2; in this case γ is called a Nehari sequence (compare the
determinate and indeterminate cases in the moment problem; see e.g. [Bin3] and
the references there).

Nehari sequences also occur in prediction theory, for example in connec-
tion with the condition of complete non-determinacy for time series (see e.g.
[KasB1]). Study of problems of Nehari type has led (among other things) to
extensions of the strong Szegő and Baxter theorems in the scalar case [KasB1,
§5] and to matrix forms of Baxter’s theorem [KasB2, 3].
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8.14. Continuous time

We refer to [Bin4] for the analogous continuous-time case (see §4.4 there for
ways of passing between the two).

8.15. Infinite determinants

Infinite determinants go back to Fredholm’s work on integral equations in 1903
(and so pre-date functional analysis, which they helped to motivate); see Smithies
[Smi], Ruston [Rus]. We recommend Simon’s survey [Sim1]. See also Britz et al.
[BriC] for ‘regularized’ determinants, and Fuglede-Kadison determinants, for
which see e.g. [BleL].

9. Questions

We close with some questions arising from the work surveyed above.

Q1. Is there an infinite-dimensional version of Szegő’s theory of orthogonal
polynomials on the unit circle (OPUC, [Sim3], [Bin1]; MOPUC, [Bin2])?
In this regard, see [GarMR, Example 8.3]. This involves the Szegő (or
Toeplitz ) conjugation, which is familiar from the Szegő recursion of OPUC
and MOPUC.

Q2 . Can one express the trace-class condition of §4.1 in terms of the spectral
measure μ itself?

Q3 . Can Baxter’s theorem (§4.1) be extended to the infinite-dimensional (op-
erator) case, by operator-valued Schur functions or other means?

Q4 . Can the assumption of essentially bounded spectral density in [Pow], §4,
be relaxed (or dropped)?

Q5 . Can the assumption of having a scalar multiple in [SzNF, V.6,7], §4, be
relaxed (or dropped)?
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al.), Birkhäuser, 1989). MR0027954
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211-222. MR0494448

[Nik1] N. K. Nikolskii, Treatise on the shift operator: Spectral function the-
ory . Grundl. Math. Wiss. 273, Springer, 1986. MR0827223

[Nik2] N. K. Nikolskii, Operators, functions and systems: an easy reading.
Volume 1: Hardy, Hankel and Toeplitz; Volume 2: Model operators
and systems. Math. Surveys and Monographs 92, 93, Amer. Math.
Soc., 2002. MR1892647

[NikV] N. K. Nikolskii and V. I. Vasyunin, Notes on two function models.
The Bieberbach conjecture: Proceedings of the Symposium on the
Occasion of the Proof , 113-141. Math. Surv. Monog. 21, Amer. Math.
Soc., 1986. MR0875237

[PanT1] V. Panaretos and S. Tavakoli, Fourier analysis of stationary time series
in function space. Ann. Stat. 41 (2013), 568-603. MR3099114

[PanT2] V. Panaretos and S. Tavakoli, Cramér-Karhunen-Loève representation
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