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1. Introduction

Over the last five decades, Stein’s method has been an important tool for study-
ing approximation problems. Charles Stein [34] first introduced this method for
normal approximation in 1972. Thereafter, Chen [13] developed this method for
Poisson approximation in 1975. Several extensions of this method for various
well-known probability distributions are studied in the literature. For a crisp
overview of Stein’s method related to classical distributions, we refer the reader
to [26, 27] and references therein. The method is also extended to some fami-
lies of distributions, such as the Pearson [32], variance-gamma [16] and discrete
Gibbs measure families [15, 25]. We refer the reader to the web page of Yvik
Swan [sites.google.com/site/steinsmethod/home] for the exhaustive historical
development of Stein’s method.

Let X be a random variable of interest with distribution FX , denoted by
X ∼ FX . Then, the setup of Stein’s method is given in three parts. In the
first part, one identifies a suitable operator A (called Stein operator) such that
E(Af(X)) = 0 for all f ∈ F , where F is a suitable class of functions. In recent
years, several approaches are developed to identify a suitable Stein operator.
See, for example, the density approach [35], the generator approach [7], the
probability generating function approach [37]. In the second part, one chooses
a Stein equation as

Af(x) = h(x) − Eh(X) (1.1)
for h ∈ H (a class of test functions) and derives the solution of Stein equa-
tion. In the last part, one derives regularity estimates for the solution of (1.1)
and “Stein factors”. Further, if Y ∼ GY is another random variable of interest
then the problem of FX -approximation to GY reduces to bounding the quantity
|Eh(Y ) − Eh(X)| = |EAf(Y )| using Stein factors.

Recently, Arras and Houdré developed Stein’s method for infinitely divisi-
ble distributions (IDD) with finite first moment [3], and for multivariate self-
decomposa- ble distributions (with finite first moment (see [4]), and without
finite first moment (see [5])). Note that α-stable distributions is an important
subclass of IDD and self-decomposable distributions. In this direction, Xu [39]
developed Stein’s method for symmetric α-stable distributions with α ∈ (1, 2).
Chen et al. [11] and Jin et al. [21] extended Xu’s idea [39] and developed Stein’s
method for asymmetric α-stable distributions with α ∈ (1, 2). Later, Chen et
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al. [12] developed Stein’s method for multivariate α-stable distributions with
α ∈ (1, 2). More recently, Chen et al. [10] developed Stein’s method for α-stable
distributions with α ∈ (0, 1]. A detailed overview of these articles is given in
Section 2.

It is clear from the existing literature that the techniques for developing
Stein’s method for α-stable distributions depend on range of the tail parameter
α, with the cases α ∈ (0, 1] and α ∈ (1, 2) necessitating different approaches.
This observation raises the following question.

(Question) For α ∈ (0, 2), can one unify the Stein’s method for α-stable
distributions?

In this article, we establish a Stein identity for infinitely divisible random
variables. In particular, we establish a unified Stein identity for α-stable random
variables with α ∈ (0, 2). We solve our Stein equation in a unified way via
the semigroup approach. Using the fine regularity estimates for the solution
of α-stable Stein equation, we derive error bounds for α-stable approximations.
Finally, we apply these results to obtain convergence rates in Wasserstein-δ, δ <
α and Wasserstein-type distances for α ∈ (0, 1) and α ∈ (1, 2) respectively. We
also compare our rates with the existing literature.

The organization of the article is as follows. In Section 2, we discuss some
preliminaries and known results. In Section 3, we state our results concerning
Stein identities for an infinitely divisible random variable, and in particular for
an α-stable random variable. Using regularity estimates for the solution of the α-
stable Stein equation, we compute bounds in appropriate probability metrics for
α ∈ (0, 1] and α ∈ (1, 2) respectively. In Section 4, we discuss two applications
of our results for α-stable approximations and obtain the convergence rates. In
Section 5, we provide the proofs of the results presented in Section 3.

2. Preliminaries and known results

In this section, we review the relationship between IDD and Lévy processes. We
also establish the classification of α-stable distributions based on Lévy processes.
Further, we discuss the results on convergence rates for α-stable approximations.

2.1. Infinite divisibility and Lévy processes

Let us first define the concept of infinite divisibility.
Definition 2.1. [24, p.3] The distribution of a random variable X is said to be
infinitely divisible, if, for every n ∈ N,

X
d= Xn,1 + . . . + Xn,n,

where d= denotes the equality in distribution and Xn,1, . . . , Xn,n are independent
and identically distributed (i.e., Xn,j = Xn, j = 1, 2, . . . n). Xn is called n-th
factor of X.
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In other words, a distribution function FX is infinitely divisible if, for each
n ∈ N, FX is the n-fold convolution of Fn,Xn with itself (i.e., FX = F ∗n

n,Xn
), where

Fn,Xn is the n-th factor of FX . This can also be summarized using a notion of
characteristic exponent as follows: Define η(z) := logφX(z) = logE(eizX), z ∈ R
to be the characteristic exponent of a random variable X. Then, the distribution
of random variable X (FX) is infinitely divisible, if, for each n ∈ N, there exist
a characteristic exponent ηn(·), such that η(z) = nηn(z), z ∈ R.

Next, we use this property of characteristic exponent for some familiar dis-
tributions and show that these are in fact infinitely divisible.

Example 2.2 (Normal distribution [38]). Let X ∼ N (β, σ2), where β ∈ R, and
σ > 0. Then the characteristic exponent of X is given by

η(z) = iβz − σ2z2

2 = n

(
i(β/n)z − (σ2/n)z2

2

)
= nηn(z).

Observe now that, for every n ∈ N, ηn(z) is the characteristic exponent of the
random variable Xn ∼ N (β/n, σ2/n). Hence the distribution of X is infinitely
divisible.

Example 2.3 (Poisson Distribution [14]). Let N ∼ Poisson(λ), where λ > 0.
Then the characteristic exponent of N is given by

η(z) = λ(eiz − 1) = n((λ/n)(eiz − 1) = nηn(z).

Note that, for each n ∈ N, Nn ∼ Poisson(λ/n). Hence the distribution of N is
infinitely divisible.

Next, we recall the stochastic processes associated with these examples,
namely, Brownian motion and Poisson process, and explore their connection
with infinite divisibility.

Definition 2.4 (Brownian Motion [38]). A real-valued stochastic process
{Xt}t≥0 on a probability space (Ω,F ,P) is said to be a Brownian motion, if

(i) X0 = 0 a.s.
(ii) For any fixed ω ∈ Ω, t �→ Xt is continuous a.s.
(iii) For 0 ≤ s ≤ t, Xt −Xs

d= Xt−s.
(iv) For any partition of the interval [0, t], 0 = t0 < t1 < · · · < tn = t, the

increments Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.
(v) For t > 0, Xt ∼ N (0, t).

From (v), it is clear that the process is generated from a standard normal
random variable X ∼ N (0, 1). Also, from (ii), we see that sample paths are
continuous and not monotone.

Definition 2.5 (Poisson Process [14]). A non-negative integer-valued stochastic
process {Nt}t≥0 on a probability space (Ω,F ,P) is said to be a Poisson process,
if

(i) N0 = 0 a.s.
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(ii) For any fixed ω ∈ Ω, t �→ Nt is right continuous with left limits.
(iii) For 0 ≤ s ≤ t, Nt −Ns

d= Nt−s.
(iv) For any partition of the interval [0, t], 0 = t0 < t1 < · · · < tn = t, the

increments Nt1 −N0, Nt2 −Nt1 , . . . , Ntn −Ntn−1 are independent.
(v) For t > 0, Nt ∼ Poisson(λt).

From (v), it is clear that the process is generated from N ∼ Poisson(λ).
Also, from (ii), we can see that the sample paths are right continuous and non-
decreasing.

Observe now that these two processes may appear to be quite different from
each other, but the distributions that generate these processes are infinitely di-
visible. Let us look at the processes closely. We can see that these two processes
have common properties, such as right-continuous sample paths, stationary and
independent increments (from (iii) and (iv)), and generated from infinitely divis-
ible random variables (from (v)). These common properties lead us to introduce
a general class of processes known as Lévy processes.

Definition 2.6 (Lévy Process [24]). A real-valued stochastic process {Xt}t≥0
on a probability space (Ω,F ,P) is said to be a Lévy process, if

(i) X0 = 0 a.s.
(ii) For any fixed ω ∈ Ω, t �→ Xt is right continuous with left limits.
(iii) For 0 ≤ s ≤ t, Xt −Xs

d= Xt−s.
(iv) For any partition of the interval [0, t], 0 = t0 < t1 < · · · < tn = t, the

increments Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.
(v) For ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

In short, a stochastic process can be characterized as Lévy process if its
sample paths satisfy (ii) and have stationary and independent increments (from
(iii) and (iv), respectively).

Next, we focus on the relation between infinite divisibility and Lévy processes.
From the definition of Lévy process, it is clear that the distribution of Xt is
infinitely divisible. To see this, observe that

Xt = (Xt −X(n−1)h) + (X(n−1)h −X(n−2)h) + · · · + (Xh −X0), (2.1)

where h = t/n and n ∈ N, and these increments are independent and identically
distributed with X0 = 0. Hence, from Definition 2.1, the distribution of Xt is
infinitely divisible. We can also use the characteristic exponent to show that Xt

has IDD, for any t > 0. To see this, let ηt(z) = logE(eizXt), z ∈ R. Assume first
that t = m ∈ N then, from (2.1), with h = m/n, ηm(z) = nηm/n(z). Similarly,
for t ∈ Q+, the set of positive rational numbers, say t = m/n, ηt(z) = ηm/n(z) =
(m/n)η1(z) follows by choosing h = n/m and (2.1). Now, for t in positive irra-
tionals, construct a decreasing sequence {tn} of positive rational numbers such
that tn → t as n → ∞, then ηt(z) = limn→∞ ηtn(z) = limn→∞ tnη1(z) = tη1(z).
The last but one equality follows from continuity of sample paths (see, (ii) in
the definition of Lévy process and dominated convergence theorem). Hence, us-
ing the characteristic exponent, we have proved that ηt(z) = tη1(z), z ∈ R and
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t > 0. This shows that, for any t > 0, Xt has IDD with characteristic expo-
nent ηt(·) and can be generated using the distribution of X1 with characteristic
exponent η1(·). The above discussion can now be summarized in the following
theorem.

Theorem 2.7. [14, p.81] Let {Xt}t≥0 be a real-valued Lévy process. Then there
exists an IDD F such that X1 ∼ F .

In literature, the expression of the characteristic exponent for Lévy processes
has a specific representation known as Lévy-Khintchine representation. The fol-
lowing theorem provides this representation of the characteristic exponent.

Theorem 2.8. [24, p.5] Let {Xt}t≥0 be a real-valued Lévy process. Then there
exists a triplet (β, σ2, ν), where β ∈ R, σ ≥ 0 and ν is a measure concentrated
on R \ {0} satisfying

∫
R
(1 ∧ z2)ν(dz) < ∞, such that

E(eizXt) = etη(z), for z ∈ R,

with η(z) = iβz − σ2z2

2 +
∫
R

(
eiuz − 1 − iuz1{|u|≤1}

)
ν(du).

Note that η(·) is the characteristic exponent of F and the measure ν(·) is
called a Lévy measure (need not be a probability measure).

This brings us to the important question. Given an IDD F , can we construct
a Lévy process {Xt}t≥0 such that X1 ∼ F? The following theorem provides
the answer to this question, which ensures the existence of the triplet (β, σ2, ν)
associated with F . Hence, it also assures the existence of Lévy process.

Theorem 2.9. [24, p.3] A distribution F with characteristic exponent η(·) is
infinitely divisible if and only if there exists a triplet (β, σ2, ν), where β ∈ R,
σ ≥ 0 and ν, the Lévy measure on R \ {0} satisfying

∫
R
(1∧ z2)ν(dz) < ∞, with

η(z) = iβz − σ2z2

2 +
∫
R

(eiuz − 1 − iuz1{|u|≤1})ν(du). (2.2)

The proofs of these theorems are quite lengthy and involved, we refer the
interested readers to Sato [29] for more detailed discussion.

We have now established the fact that, for any IDD F with triplet (β, σ2, ν),
there exist a unique Lévy process {Xt}t≥0. Let us understand the concept
through the following examples.

Ex.1. Let X ∼ N (0, 1). Then η(z) = −z2/2. On comparison with (2.2), we
get the triplet (β, σ2, ν) = (0, 1, 0) and the associated Lévy process is a
Brownian motion as defined in Definition 2.4.

Ex.2. Let N ∼ Poisson(λ), λ > 0. Then η(z) = λ(eiz − 1). On comparison
with (2.2), we get the triplet (β, σ2, ν) = (λ, 0, λδ1), where δ1 is the Dirac
measure at {1}, and the associated Lévy process is a Poisson process as
defined in Definition 2.5.

Ex.3. Let X ∼ Gamma(λ, γ), where λ > 0, γ > 0. Then η(z) = −γ log(1−iz/λ).
On comparison with (2.2), we get the triplet (β, σ2, ν) = (γ(1−eλ), 0, ν0),
where ν0(du) = (γe−λu/u)du. For more details on computation of the
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triplet, we refer the readers to [24]. The associated Lévy process is known
as a gamma process.

Ex.4. Let X ∼ Cauchy(x0, c), x0 ∈ R, c > 0. Then η(z) = ix0z − c|z|. On
comparison with (2.2), we get the triplet (β, σ2, ν) = (x0 − 2cΓ/π, 0, ν1)
where Γ =

∫∞
0

(
sinu
u2 − 1{u:|u|≤1}(u)

u

)
du, and ν1(du) = (c/(πu2))du. The

associated Lévy process is known as a 1-stable process.

In the examples discussed above, we see that the IDD and associated Lévy
process are uniquely characterized by the triplet (β, σ2, ν). Also, the behav-
ior of ν is different in each of the examples. For Poisson distribution, ν(R) =∫
R
ν(du) = λ < ∞, for normal and gamma distribution, ν(R) = 0 and ν(R) =

∞, respectively, and for Cauchy distribution,
∫
{u:|u|≤1} uν(du) = ∞. Also, ob-

serve that the behavior σ is important for normal distribution. These two com-
ponents of the triplet need to be further classified. Sato [29, Definition 11.9] has
classified Lévy process {Xt}t≥0 (infinitely divisible distribution (X1)) into three
different classes based on the triplet (β, σ2, ν), as follows.

(Type A) σ = 0 and ν(R) < ∞. (e.g. Poisson process).
(Type B) σ = 0, ν(R) = ∞,

∫
{|u|≤1} uν(du) < ∞. (e.g. gamma process)

(Type C)
∫
{|u|≤1} uν(du) = ∞ or σ > 0. (e.g. 1-stable process or Brownian

motion)

The examples studied here are by no means exhaustive. The class of IDD is
very rich and includes various well-known distribution like Student’s
t-distribution, Pareto distribution, F -distribution among many others.

Next, we focus on an important subclass of IDD, namely, non-Gaussian stable
distributions. This class is characterized by the triplet (β, σ2, ν) = (β, 0, να),
with β ∈ R and the Lévy measure να is given by

να(du) =
(
m1

1
u1+α

1(0,∞)(u) + m2
1

|u|1+α
1(−∞,0)(u)

)
du, (2.3)

where α ∈ (0, 2), m1,m2 ∈ [0,∞] and m1+m2 > 0. (see [2, p.32]). Next, we give
the characteristic exponent representation for non-Gaussian stable distributions.

Definition 2.10. [18, p.168] A real-valued random variable X is said to have
non-Gaussian stable (also called α-stable) distribution, if there exists a triplet
(β, 0, να), such that for all z ∈ R, the characteristic exponent is given by

ηα(z) = logφα(z) = izβ +
∫
R

(
eizu − 1 − izu1{|u|≤1}(u)

)
να(du), (2.4)

where β ∈ R, α ∈ (0, 2), and να is the Lévy measure defined in (2.3), and is
denoted by X ∼ S(α, β,m1,m2).

Note here that β ∈ R is the location parameter and α ∈ (0, 2) is stability
parameter, useful in determining the decay of the tail of distribution of X.

Observe next that, based on the classification of IDD summarized earlier in
this section, we can classify the α-stable distributions as follows:
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(Type B) α ∈ (0, 1) (as να(R) = ∞, but
∫
{|u|≤1} uνα(du) < ∞).

(Type C) α ∈ [1, 2) (as
∫
{|u|≤1} uνα(du) = ∞).

Observe now that, for α-stable distributions of Type B (α ∈ (0, 1)), as∫
{|u|≤1} uνα(du) < ∞, the characteristic exponent given in (2.4) can be

rewritten as

ηα(z) = izβ1 +
∫
R

(
eizu − 1

)
να(du), (2.5)

where β1 = β −
∫
{|u|≤1} uνα(du).

Also, for α-stable distributions of Type C (α ∈ (1, 2), α �= 1), as
∫
{|u|≤1}

uνα(du) = ∞, but
∫
{|u|>1} uνα(du) < ∞, the characteristic exponent given in

(2.4) can be rewritten as

ηα(z) = izβ2 +
∫
R

(
eizu − 1 − izu

)
να(du), (2.6)

where β2 = β +
∫
{|u|>1} uνα(du).

Next, we show the connection between our representation and the various
other representations of characteristic exponents available for α-stable distribu-
tions (α-stable random variables). Based on the well-known four parameter rep-
resentation of α-stable distributions, we observe that the parameters α ∈ (0, 2),
γα ∈ R, dα ≥ 0 and θ ∈ [−1, 1] denote the stability, shift, scale and skewness
parameters, respectively (see, [28]). Note here that, on careful adjustments of
the integrals in (2.4) with respect to να, one can obtain a well-known form of
characteristic exponent (characteristic function) of α-stable random variables
of both types from the Lévy-Khintchine representation (2.4) (see, [28]). The
explicit forms are given below:

(Type B) Let θ = m1−m2
m1+m2

, γα = β − (m1−m2)
(1−α) , and

dα = (m1 + m2) cos π2α
∫ ∞

0

(
1 − e−u

) du

u1+α
.

Then
ηα(z) = izγα − dα|z|α

(
1 − iθ

z

|z| tan π

2α
)
.

(Type C) Here we classify further into two cases α = 1 and α ∈ (1, 2)

(α = 1). Let θ = m1−m2
m1+m2

, γ1 = β + (m1 +m2)
∫∞
0

(
sinu
u2 − 1{|u|≤1}(u)

u

)
du,

and d1 = (m1 + m2)π2 . Then

η1(z) = izγ1 − d1|z|(1 + iθ
z

|z|
2
π

log|z|).

(α ∈ (1, 2)). Let θ = m1−m2
m1+m2

, γα = β − (m1−m2)
(1−α) , and

dα = (m1 + m2) cos π2α
∫ ∞

0

(
1 − e−u

) du

u1+α
.
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Then
ηα(z) = izγα − dα|z|α

(
1 − iθ

z

|z| tan π

2α
)
.

The derivation of these forms of characteristic exponents is given in the Ap-
pendix A. Observe also that, for X ∼ S(α, 0,m,m), characteristic exponent of
a symmetric α-stable random variable is given by

ηsα(z) =
∫
R

(eizu − 1 − izu1{|u|≤1}(u))να(du) = −dα|z|α, z ∈ R,

where dα > 0 is the scale parameter given by

dα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2m cos(π2α)
∫ ∞

0
(1 − e−y) dy

y1+α
, α ∈ (0, 1),

2m cos(π2α)
∫ ∞

0
(1 − y − e−y)dy

yα
, α ∈ (1, 2),

πm, α = 1.

If we choose the scale parameter dα = 1, then the characteristic exponent ηsα
simplifies to

ηsα(z) = −|z|α, z ∈ R.

Next, we discuss differentiability of the characteristic exponent of α-stable
random variables. Indeed, this discussion is related to the derivation of a Stein
identity for α-stable random variables. Note that, |z|α is differentiable for all
z ∈ R, whenever α > 1. This fact ensures that the characteristic exponent of
an α-stable random variable is differentiable for α ∈ (1, 2). Note also that, for
α ∈ (0, 1], |z|α is not differentiable at z = 0. Hence, the characteristic exponent
of an α-stable random variable is not differentiable at z = 0 for α ∈ (0, 1]. To fix
this problem, we consider a tempered α-stable random variable. For a tempered
α-stable random variable Yα,γ its characteristic exponent is given by

ηα,γ(z) = izβ +
∫
R

(eizu − 1 − izu1{|u|≤1}(u))να,γ(du), z ∈ R, (2.7)

where α ∈ (0, 1], tempering parameter γ ∈ (0,∞), and να,γ is the Lévy measure
defined as

να,γ(du) :=
(
m1

e−γu

u1+α
1(0,∞)(u) + m2

e−γ|u|

|u|1+α
1(−∞,0)(u)

)
du.

Cont and Tankov [14, Section 4.5] also show that characteristic exponent
of Yα,γ is differentiable for all z ∈ R. Finally, we prove the limiting result for
α-stable random variables.
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Proposition 2.11. Let α ∈ (0, 1] and suppose that Yα,γ has a tempered α-stable
distribution. Then Yα,γ

d→ Yα, an α-stable random variable as γ ↓ 0.

Proof. By [31, Section 3.3], we write the characteristic exponent of tempered
α-stable random variable as

ηα,γ(z) = izβ +
∫
R

(eizu − 1 − izu1{|u|≤1}(u))qγ(u)να(du), z ∈ R,

where να is the Lévy measure defined in (2.3), and qγ is a tempering function
given by

qγ(u) = e−γu1(0,∞)(u) + e−γ|u|1(−∞,0)(u).

Note that, ηα,γ is continuous on R. Moreover, ηα,γ(0) = 0.
Now, using dominated convergence theorem, we have

|ηα,γ(z) − ηα(z)| =
∣∣∣∣∫

R

(eizu − 1 − izu1{|u|≤1}(u))(qγ(u) − 1)να(du)
∣∣∣∣

≤
∫
R

|(eizu − 1 − izu1{|u|≤1}(u))(qγ(u) − 1)|να(du)

→ 0 as γ ↓ 0.

The desired conclusion follows.

2.2. Probability metrics

Here, we review some probability metrics used in this article.

(M1) Wasserstein-δ distance.

Let Hδ =
{
h : R → (R, dδ)

∣∣∣∣|h(k)(v) − h(k)(x)| ≤ dδ(v, x), k = 0, 1
}

, where

dδ(v, x) := |v− x| ∧ |v− x|δ, h(1) is the first derivative of h, with h(0) = h
and the range of h(k) is endowed with metric dδ. Then, for any two random
variables V and X, the metric is given by

dWδ
(V,X) := sup

h∈Hδ

|E[h(V )] − E[h(X)]|, δ < α ≤ 1.

This metric is useful in studying α-stable approximations of Type B and
Type C, Case 1 (α ∈ (0, 1]). Chen et al. [10] use d∗Wδ

distance with δ ∈
(0, α), for α-stable approximations (Type B, and Type C, Case 1 (α ∈
(0, 1])). The metric is given by

d∗Wδ
(V,X) := sup

h∈H0
δ

|E[h(V )] − E[h(X)]|, δ < α ≤ 1,
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where H0
δ =

{
h : R → (R, dδ)

∣∣∣∣|h(k)(v) − h(k)(x)| ≤ dδ(v, x), k = 0
}

. Note

that, Hδ ⊆ H0
δ . Hence, it can be shown that dWδ

(V,X) ≤ d∗Wδ
(V,X).

(M2) Wasserstein-type distance ([3]). Let

Hr =
{
h : R → R

∣∣∣∣h is r times continuously differentiable and, ‖h(k)‖ ≤ 1
}
,

where h(k), k = 0, 1, . . . , r, is the k-th derivative of h, with h(0) = h and
‖f‖ = supx∈R

|f(x)|. Then, for any two random variables V and X, the
metric is given by

dWr (V,X) := sup
h∈Hr

|E[h(V )] − E[h(X)]|.

This metric is useful in studying α-stable approximations of Type C, Case
2 (α ∈ (1, 2)).

(M3) Mallows r-distance ([22]). For any r > 0, the Mallows r-distance is
given by

dr(V,X) :=
(

inf
(V,X)

E|V −X|r
) 1

r

,

where the infimum is taken over pairs (V,X) whose marginal distribution
functions are FV and FX respectively.

(M4) Wasserstein r-distance ([6]). For any r ≥ 1, the Wasserstein r-distance
is given by

Wr(V,X) :=
(

inf
(V,X)

E|V −X|r
) 1

r

,

where the infimum is taken over pairs (V,X) whose marginal distribu-
tion functions are FV and FX respectively. By a duality argument, the
Wasserstein-1 distance between two random variables can be defined as

W1(V,X) = sup
h∈Lip(1)

|Eh(V ) − Eh(X)| ,

where Lip(1)=
{
h : R → R

∣∣∣∣|h(v) − h(x)| ≤ |v − x|
}

.

Finally, let us discuss the connections of these metrics. From [10, Subsection
1.2], we note that dWδ

(V,X) ≤ d∗Wδ
(V,X) ≤ W1(V,X) ≤ Wp(V,X), p ≥ 1. We

also note that the Mallows r-distance is the Wasserstein r-distance for r ≥ 1
(see, [3, Section 2.3] for more details). Moreover, the metrics defined in (M2)
and (M4) have the following order relationship.

dWr (V,X) ≤ dW1(V,X) ≤ W1(V,X) ≤ Wp(V,X), r, p ≥ 1.
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2.3. Literature review

Here, we review the known results on convergence rates for α-stable approxima-
tions. The generalized CLT states that the sum of i.i.d. random variables when
scaled and centered appropriately, converges to an α-stable distribution. To be
more precise, assume that (an)n≥1 and (bn)n≥1 are two sequences in (0,∞) and
R respectively and let (Yn)n≥1 be a sequence of i.i.d random variables. Then
Sn := an

∑n
i=1 Yi − bn, n ∈ N converges weakly to an α-stable distribution with

stability index α ∈ (0, 2], see [18].
The problem of convergence rates for α-stable approximations is studied by

many authors, see [8, 9, 20, 22, 23] for more details. In [22], the authors consider
the generalized CLT, and derive the convergence rate for α-stable approximation
in the Mallows r-distance dr, for r > 0, using the following framework.

Let (Yn)n≥1 be a sequence of i.i.d. random variables with distribution function
F such that F (y) = c1+b(y)

|y|α for y < 0 and 1 − F (y) = c2+b(y)
|y|α for y > 0, where

c1, c2 > 0 and b(y) = O(|y|−d), d > 0. In [22, Theorem 1.2], it is shown that
the partial sum Sn = n− 1

α

∑n
i=1 Yi converges weakly to an α-stable distribution

with a rate n
1
r− 1

α in the Mallows r-distance dr, where r ∈ (α, 2].
Let us now review the results in the literature related to α-stable distribution

approximation and Stein’s method. Recently, Xu [39] develops Stein’s method
for symmetric α-stable distributions with α ∈ (1, 2). The author derives the
convergence rate for α-stable approximation in the Wasserstein-1 distance W1,
using the following framework.

Let Sn =
∑n

i=1 Zi be a sum of n centered i.i.d random variables. By [39,
Theorem 1.4], a Stein operator for symmetric α-stable random variable is given
by

Af(x) = Δα
2 f(x) − 1

α
xf ′(x),

where Δα
2 is the fractional Laplacian and f ∈ F (a class of functions f with

first and second derivatives bounded by a constant depending on α and that
Δα

2 f is γ-Hölder continuous for any 0 < γ < 1).
It is shown that

E (Snf
′(Sn)) =

n∑
i=1

∫ N

−N

E (Ki(t,N)f ′′(Sn(i) + t)) dt + R, (2.8)

where N > 0 is an arbitrary number, Sn(i) = Sn − Zi,

Ki(t,N) = E
(
Zi1{0≤t≤Zi≤N} − Zi1{−N≤Zi≤t≤0}

)
,

and R is a remainder.
It is also shown that

Δα
2 f(Sn) =

∫ N

−N

Kα(t,N)f ′′(Sn + t)dt + R′, (2.9)
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where Kα(t,N) = mα

α(α−1) (|t|1−α −N1−α) with mα =
(∫

R

1−cos y
|y|1+α dy

)−1
.

Using (2.8) and (2.9), it can be seen that

E (Af(Sn)) =
n∑

i=1

∫ N

−N

E

(
Kα(t,N)

n
− Ki(t,N)

α

)
f ′′(Sn(i) + t)dt + R′′,

(2.10)

where R′′ is an another remainder. Hence,

|EAf(Sn)| ≤
(

n∑
i=1

∫ N

−N

E

∣∣∣∣Kα(t,N)
n

− Ki(t,N)
α

∣∣∣∣ dt
)
‖f ′′‖ + ‖R′′‖,

where ‖f ′′‖ = supx∈R
|f ′′(x)|. Therefore, to obtain a rate of convergence, it

is sufficient to bound ‖f ′′‖ and the remainder ‖R′′‖. In [39, Example 1], the
author derives a convergence rate n− 2−α

α for α-stable approximations in the
Wasserstein-1 distance. Note that, Johnson and Samworth [22] show a conver-
gence rate n( 1

r− 1
α ) for α-stable approximations in the Mallows r-distance for

some r ∈ (α, 2]. Hence, at r = 2, they show that the convergence rate is at most
n

1
2− 1

α . Xu [39] proves that Sn converges to an symmetric α-stable distribution
with the rate n− (2−α)

α in the Wasserstein-1 distance. Xu also mention that the
convergence rate n

1
2− 1

α is not accessible by his Stein’s method setup.
In Section 4, we show that Sn converges to an α-stable distribution with a

rate n− 2−α
α for α ∈ (1, 2) in the dW2 distance, which is faster rate than the

rate obtained in [22], whenever r ∈ (α, 2). We also show that the rate n
1
2− 1

α is
accessible in the dW1 distance using our Stein’s method setup.

Next, Arras and Houdré [3] develop Stein’s method for IDD with finite first
moment. In [3, Theorem 3.1], the authors obtain a Stein characterization for IDD
using covariance representation given in [19, Proposition 2]. In [3, Section 6],
the authors derive a bound for approximation of self-decomposable distribution
in the Wasserstein-type distance dW2 which, in turn, helps to obtain bounds
for α-stable approximations with α ∈ (1, 2). However, there is no discussion on
convergence rates.

Further, Jin et al. [21] and Chen et al. [11] extend Xu’s idea [39], and de-
velop Stein’s method for asymmetric α-stable distributions with α ∈ (1, 2). In
[21], the authors obtain a kernel discrepancy type bound as (2.10), and de-
rive the convergence rate n− 2−α

α for asymmetric α-stable approximations in
the Wasserstein-1 distance. In [11], the authors use the leave-one-out approach
developed by Stein [34], and derive the convergence rate n− 2−α

α for α-stable
approximations in the Wasserstein-1 distance. Later, Chen et al. [12] extend the
leave-one-out approach for multivariate case, and develop Stein’s method for
multivariate α-stable distributions with α ∈ (1, 2).

More recently, Chen et al. [10] develop Stein’s method for α-stable distribu-
tions with α ∈ (0, 1]. Due to lack of finite first moment, the strategy in deriving
rate of convergence for α-stable approximation differs significantly from the case
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α ∈ (1, 2), obtained in [3, 21, 39]. The authors derive the convergence rate for
α-stable approximation in the d∗Wδ

distance, using the following framework.
Let Sn = n−1/α

σα

∑n
i=1 Yi, σα > 0 be a partial sum of i.i.d. random variables

in the domain of normal attraction of an α-stable distribution. We discuss the
domain of normal attraction in Definition 3.15 in more detail. For any α-stable
random variable X, Chen et al. [10] show that

d∗Wδ
(Sn, X) ≤ sup

f∈Fα,θ

∣∣∣∣E (
Lα,θf(Sn)

)
− 1

α
E (Snf

′(Sn))
∣∣∣∣ , (2.11)

where θ ∈ [−1, 1] is a skewness parameter, Lα,θ is a generator of an α-stable
Lévy process, and Fα,θ is a class of smooth functions. In [10, Section 5, Example
1], the authors derive the convergence rate n−1 for α-stable approximations in
the d∗Wδ

distance for α ∈ (0, 1). Note that, there is a limitation of the rate n−1.
This rate is not flexible as it does not depend on α. In Section 4, we show that
our rate is n−( 1

α−1) with α ∈ (0, 1), which is flexible. In comparison with the
rate derived in [10], we see that our rate is faster (α ∈ (0, 0.5)), same (α = 0.5)
and slower (α ∈ (0.5, 1)).

3. Main results

In this section, we discuss the three important components of Stein’s method
for IDD, as mentioned in the Introduction. First, we obtain a Stein identity for
infinitely divisible random variables. Let S(R) be the Schwartz space defined by

S(R) :=
{
f ∈ C∞(R) : lim

|x|→∞
|xm dn

dxn
f(x)| = 0, for all m,n ∈ N

}
,

where C∞(R) is the class of infinitely differentiable functions on R. It is impor-
tant to note that the Fourier transform on S(R) is automorphism. This enables
us to identify the elements of dual space S∗(R) with S(R). In particular, if
f ∈ S(R), and f̂(u) =

∫
R
e−iuxf(x)dx, u ∈ R, then f̂ ∈ S(R). Similarly, if

f̂ ∈ S(R), and f(x) =
∫
R
eiuxf̂(u)du, x ∈ R, then f ∈ S(R), see [33].

Now, we state our first result on Stein identity for infinitely divisible random
variables.

Theorem 3.1. Let X∼IDD(β, σ2, ν) with characteristic exponent given in (2.2)
which we assume to be differentiable. Then,

E

(
(X−β)g(X)−σ2g′(X)−

∫
R

u(g(X + u)−g(X)1{|u|≤1}(u))ν(du)
)

=0, g ∈ S(R).

(3.1)

Remark 3.2. (i) Note that existence of finite first moment implies differen-
tiable characteristic function. But, the converse is not always true, see [30,
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p.75]. To understand this fact, let us consider a symmetric-Pareto random
variable X with density given by

fX(x) =
{

c
x2 , |x| ≥ a

0, |x| < a,

where a > 0, and c is a normalizing constant. The integral
∫
|x|≥a

1
xdx is di-

vergent. Hence, the first moment of the symmetric-Pareto random variable
is not finite. But, the characteristic function of symmetric-Pareto random
variable is differentiable. We refer the reader to Appendix A for the de-
tailed discussion of this fact. In [36], the author also shows that the Pareto
distribution is infinitely divisible and hence the Lévy-Khintchine repre-
sentation of the characteristic function for the symmetric-Pareto random
variable can be derived. Consequently, a Stein identity for this random
variable follows from Theorem 3.1.

(ii) Observe that the differentiability of the characteristic function plays a
crucial role in deriving the Stein identity. Indeed, for a non-differentiable
characteristic function, our approach for infinitely divisible random vari-
ables does not follow easily. For example, the characteristic function of a
Cauchy random variable is not differentiable (see, Section 2, Ex.4.). We
need to modify our approach to handle this problem (see, Theorem 3.3).

(iii) Arras and Houdré [3, Theorem 3.1] provide a Stein identity for infinitely
divisible random variables using covariance representation. They assume
finite first moment and the function space as bounded Lipschitz. It is
important to note that the assumption of the finite first moment is an
artefact of the technique of covariance representation. Our proof of Theo-
rem 3.1 in Section 5 is without any assumption on the first moment, and
we consider the Schwartz space S(R) as a suitable function space. Observe
that, for f ∈ S(R), f is bounded Lipschitz and the Stein identity given in
[3, Theorem 3.1] follows from the proof of Theorem 3.1 in Section 5.

(iv) Observe also that several random variables such as Poisson, negative bi-
nomial, normal, Laplace, and gamma can be viewed as infinitely divisible
by choosing appropriate triplet (β, σ2, ν). Also, these random variables
have differentiable characteristic function. Consequently, Stein identities
for these random variables can be easily derived using Theorem 3.1. In
particular, α-stable random variables are also infinitely divisible, but the
derivation of Stein identity is not straightforward (see, Chen et al. [10, 11]).
As noted in Section 2, the characteristic function of α-stable variable is
differentiable for α ∈ (1, 2), but the differentiability of the characteristic
function fails at α ∈ (0, 1]. Therefore, we modify our approach in deriv-
ing the Stein identity for α-stable random variables with α ∈ (0, 1] (see
Section 5).

Next, we establish a Stein identity for α-stable random variables.

Theorem 3.3. Let X ∼ S(α, β,m1,m2) with characteristic exponent given
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in (2.4). Then,

E

(
(X − β)g(X) −

∫
R

(g(X + u) − g(X)1{|u|≤1}(u))uνα(du)
)

= 0, g ∈ S(R).

(3.2)

Note here that σ = 0, as X has a non-Gaussian stable distribution. The
following corollary immediately follows for symmetric α-stable random variables
by setting m1 = m2 = m, β = 0 and adjusting να.

Corollary 3.4. Let X ∼ S(α, 0,m,m), for α ∈ (0, 2). Then a Stein identity
for X is given by

E

(
Xg(X) −m

∫ ∞

0

g(X + u) − g(X − u)
uα

du

)
= 0, g ∈ S(R). (3.3)

In the following remark, we discuss and review the Stein identities available
in the literature and in (ii), we compare them with our Stein identities ((3.2)
and (3.3)).

Remark 3.5. (i) For α ∈ (0, 1), the following literature is available.
• Chen et al. [10, Proposition 2.4] provide a Stein identity for α-stable

random variables with α ∈ (0, 1), using Barbour’s generator approach
[7]. We note that the authors choose the scale and the location pa-
rameters to be 1 and 0 respectively.

• Arras and Houdré [5, Theorem 3.1] also provide a Stein identity for α-
stable random variables with α ∈ (0, 1), using a truncation technique.

For α = 1, the following literature is available.
• Chen et al. [10, Proposition 2.4] provide a Stein identity for a 1-

stable random variable, using Barbour’s generator approach [7]. We
note that the authors choose the scale and the location parameters
to be 1 and 0 respectively. We also note that the authors set the
skewness parameter to zero.

• Arras and Houdré [5, Theorem 3.2] also provide a Stein identity for
a 1-stable random variable, using a truncation technique.

For α ∈ (1, 2), the following literature is available.
• Chen et al. [11, Theorem 1.2] provide a Stein identity for α-stable ran-

dom variables with α ∈ (1, 2), using Barbour’s generator approach
[7]. We note that the authors choose the scale and the location pa-
rameters to be 1 and 0 respectively.

For the symmetric case, the following literature is available.
• Xu [39, Theorem 4.1] provides a Stein identity for symmetric α-stable

random variables with α ∈ (0, 2), using invariant measure property
of Lévy-type operators [1].
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• Arras and Houdré [3, Examples 3.3, (viii)] also provide a Stein iden-
tity for symmetric α-stable random variables with α ∈ (1, 2), using
covariance representation of functions of infinitely divisible random
variables [19].

We see from the existing literature that the techniques for deriving Stein
identity for α-stable random variables depend on ranges of α (α ∈ (0, 1]
and α ∈ (1, 2)) and are different.

(ii) Our Stein identity given in Theorem 3.3 is derived using the
Lévy-Khintchine representation of the characteristic exponent given in (2.4)
without any assumption on the scale, location and skewness parameter.
To the best of our knowledge, the Stein identity given in Theorem 3.3
provides a unified perspective to all Stein identities available in the liter-
ature. Observe that, under the assumptions of Chen et al. [10, 11], their
Proposition 2.4 and Theorem 1.2 can be retrieved from Theorem 3.3. Using
Proposition A.4, we see that Stein identities given in [5, Theorem 3.1 and
Theorem 3.2] exactly match with our Stein identities. For the symmetric
case, our Stein identity given in Corollary 3.4 is comparable (g replaced
with g′) to the Stein identities given in [3, Example 3.3, (viii) and Remark
5.3, (iv)] and [39, Theorem 4.1].

As noted in Section 1, the linchpin of Stein’s method is the Stein operator
A, and the properties of A play a crucial role in the success of this method. In
this context, we adopt the following definition of Stein operator from [17].

Definition 3.6. [17, p.1] For a given target random variable X ∼ FX (where
X ∼ FX means that the random variable X has distribution FX), a suitable
operator AX is said to be a Stein operator, if AX acts on a class of functions F
such that E(AXg(X)) = 0 for all g ∈ F .

Remark 3.7. It is now clear from Theorem 3.1 that, for an infinitely divisi-
ble random variable X, AXg(x) := (−x + β)g(x) + σ2g′(x) +

∫
R
u(g(x + u) −

g(x)1{|u|≤1}(u))ν(du) is an operator acting on S(R) such that E (AXg(X)) = 0
for all g ∈ S(R). Then, by the above definition, AX is a Stein operator for
an infinitely divisible random variable X. Also, for any g ∈ S(R), Aα

Xg(x) :=
(−x+β)g(x)+

∫
R
u(g(x+u)−g(x)1{|u|≤1}(u))να(du) is a Stein operator for an

α-stable random variable. Observe also that Aα
X is an integral operator, where

domain of the operator is F = S(R), the closure of S(R) (see, [39] and references
therein [33] for more details).

The existing literature on Stein’s method for α-stable distributions (see,
[3, 10, 11, 12, 21, 39]) suggests a variety of techniques for deriving a Stein
operator depending on the stability parameter α ∈ (0, 1] or (1, 2). As mentioned
in Section 1, the purpose of this article is to unify Stein’s method for α-stable
distributions. To achieve this, let us use the Stein operator Aα

X to set up Stein
equation. For any h ∈ HX (a class of smooth functions), Stein equation of an
α-stable random variable X is

Aα
Xg(x) = h(x) − E(h(X)). (3.4)
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To solve (3.4), we use well-known semigroup approach (see, [7]), and this can
be motivated as follows. Recall first that, for X ∼ S(α, 0,m,m) with dα = 1,
characteristic function simplifies to

φs
α(z) = exp (−|z|α) , z ∈ R.

Also, observe that, for any z ∈ R, φs
α(z) = φs

α(e−tz)φs
α((1 − e−t)z), t ≥ 0,

where φs
α(e−tz) and φs

α((1− e−t)z) denote the characteristic functions of e−tX
and (1 − e−t)X respectively. Note that e−tX and (1 − e−t)X are symmetric
α-stable random variables. Let us now generalize this idea for non-symmetric
case. One can define a characteristic function, for all z ∈ R, and t ≥ 0, by

φt(z) := φα(z)
φα(e−tz) =

∫
R

eizuFX(t)(du), (3.5)

where FX(t) is the distribution function of X(t) and φα is the characteristic
function of α-stable random variables given in (2.4). The property given in (3.5)
is also known as self-decomposability (see, [29]).

Henceforth throughout the article, let F = S(R), the closure of S(R). Fol-
lowing Barbour’s approach [7] and using (3.5), we choose a family of operators
(Pα

t )t≥0, for all x ∈ R, as

Pα
t (g)(x) := 1

2π

∫
R

ĝ(z)eizxe
−t

φt(z)dz, g ∈ F . (3.6)

Using (3.5), we get

Pα
t (g)(x) = 1

2π

∫
R

∫
R

ĝ(z)eizxe
−t

eizuFX(t)(du)dz

= 1
2π

∫
R

∫
R

ĝ(z)eiz(u+xe−t)FX(t)(du)dz

=
∫
R

g(u + xe−t)FX(t)(du), (3.7)

where the last step follows by applying inverse Fourier transform.

Proposition 3.8. The family of operators (Pα
t )t≥0 given in (3.6) is a C0-

semigroup on F .

Proof. For each g ∈ F , it is easy to show that Pα
0 g(x) = g(x) and

limt→∞ Pα
t (g)(x) = Eg(X). Now, for any s, t ≥ 0, we have

φt+s(z) = φα(z)
φα(e−(t+s)z)

= φα(z)
φα(e−sz)

φα(e−sz)
φα(e−(t+s)z)

= φs(z)φt(e−sz) (3.8)

We need to show that Pα
t+s(g)(x) = Pα

t (Pα
s g)(x) for all g ∈ F .

Using (3.8), we have

LHS = Pα
t+s(g)(x) = 1

2π

∫
R

ĝ(z)eizxe
−(t+s)

φt+s(z)dz
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= 1
2π

∫
R

ĝ(z)eizxe
−(t+s)

φs(z)φt(e−sz)dz. (3.9)

RHS = Pα
t (Pα

s (g))(x)

= 1
2π

∫
R

P̂α
s (g)(z)eizxe

−t

φt(z)dz

= 1
2π

∫
R

(∫
R

e−ivzPα
s (g)(v)dv

)
eizxe

−t

φt(z)dz

= 1
(2π)2

∫
R

(∫
R

e−ivz

(∫
R

ĝ(w)eiwe−svφs(w)dw
)
dv

)
eizxe

−t

φt(z)dz

= 1
(2π)2

∫
R

ĝ(w)φs(w)
∫
R

eizxe
−t

φt(z)
(∫

R

eiv(e−sw−z)dv

)
dzdw

= 1
(2π)2

∫
R

ĝ(w)φs(w)
∫
R

eizxe
−t

φt(z)2πδ(e−sw − z)dzdw

(where δ is the Dirac-δ measure )

= 1
2π

∫
R

ĝ(w)φs(w)eie
−swxe−t

φt(e−sw)dw

= 1
2π

∫
R

ĝ(z)eizxe
−(t+s)

φs(z)φt(e−sz)dz

= Pα
t+s(g)(x) = LHS (from (3.9)),

and the desired conclusion follows.

Next, we find the generator of the semigroup defined in (3.6).

Lemma 3.9. Let (Pα
t )t≥0 be a C0-semigroup as defined in (3.6). Then, its

generator Tα is given by

Tαg(x) = (−x+β)g′(x)+
∫
R

(
g′(x + u) − g′(x)1{|u|≤1}(u)

)
uνα(du), g ∈ S(R),

where α ∈ (0, 1) ∪ (1, 2).

Proof. The proof of this lemma is split into two parts.
(i) α ∈ (0,1): For all g ∈ S(R),

Tαg(x) = lim
t→0+

1
t

(Pα
t (g)(x) − g(x))

= 1
2π lim

t→0+

∫
R

ĝ(z)eizx 1
t

(
eizx(e−t−1)φt(z) − 1

)
dz

= 1
2π

∫
R

ĝ(z)eizx
(
−x + β −

∫
{|u|≤1}

uνα(du) +
∫
R

eizuuν(du)
)

(iz)dz

(using Prop. A.2 )
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= 1
2π

∫
R

ĝ(z)eizx
(
−x + β1 +

∫
R

eizuuν(du)
)

(iz)dz

(where β1 = β −
∫
{|u|≤1}

uνα(du))

= (−x + β1)g′(x) +
∫
R

g′(x + u)uνα(du)

= (−x + β)g′(x) +
∫
R

(g′(x + u) − g′(x)1{|u|≤1}(u))uνα(du),

where the last equality follows by splitting β1 (see, (2.5)).
(ii) α ∈ (1,2): For all g ∈ S(R),

Tαg(x) = lim
t→0+

1
t

(Pα
t (g)(x) − g(x))

= 1
2π lim

t→0+

∫
R

ĝ(z)eizx 1
t

(
eizx(e−t−1)φt(z) − 1

)
dz

= 1
2π

∫
R

ĝ(z)eizx
(
−x + β+

∫
{|u|>1}

uνα(du)+
∫
R

(eizu−1)uν(du)
)

(iz)dz

(using Prop. A.3)

= 1
2π

∫
R

ĝ(z)eizx
(
−x + β2 +

∫
R

(eizu − 1)uν(du)
)

(iz)dz

(where β2 = β +
∫
{|u|>1}

uνα(du))

= (−x + β2)g′(x) +
∫
R

(g′(x + u) − g′(x))uνα(du)

= (−x + β)g′(x) +
∫
R

(g′(x + u) − g′(x)1{|u|≤1}(u))uνα(du),

where the last equality follows by splitting β2 (see, (2.6)).
This completes the proof.

Next we handle the case α = 1, using tempered 1-stable random variable Y1,γ .
Recall that the characteristic exponent of Y1,γ is given in (2.7). Let φ1,γ(z) :=
eη1,γ(z), z ∈ R be the characteristic function of Y1,γ . Then, for all z ∈ R, we
define

φ1,t,γ(z) := φ1,γ(z)
φ1,γ(e−tz) , t ≥ 0. (3.10)

Using [29, Corollary 15.11], it can be easily shown that φ1,t,γ is a well-defined
characteristic function.

Now, using (3.10), define a family of operators (P 1,γ
t )t≥0, for all x ∈ R, by

P 1,γ
t (f)(x) := 1

2π

∫
R

ĝ(z)eizxe
−t

φ1,t,γ(z)dz =
∫
R

g(u + xe−t)FY(γ,t)(du), g ∈ F .

(3.11)
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Following similar steps as Proposition 3.8, one can show that (P 1,γ
t )t≥0, is a

C0-semigroup on F .
Next, we obtain a generator for the semigroup defined in (3.11).

Lemma 3.10. Let (P 1,γ
t )t≥0 be a C0-semigroup as defined in (3.11). Then, its

generator T1,γ is given by

T1,γg(x)=(−x+β)g′(x)+
∫
R

(
g′(x + u) − g′(x)1{|u|≤1}(u)

)
uν1,γ(du), g ∈ S(R).

Proof. For all g ∈ S(R), we get

T1,γ(g)(x) = lim
t→0+

1
t

(
P 1,γ
t (g)(x) − g(x)

)
.

T1,γ(g)(x) = 1
2π lim

t→0+

∫
R

ĝ(z)eizx 1
t

(
eizx(e−t−1) φ1,γ(z)

φ1,γ(e−tz) − 1
)
dz

= 1
2π

∫
R

ĝ(z)eizx
(
−x + β +

∫
R

(eiξu − 1{|u|≤1})uν1,γ(du)
)

(iz)dz

= (−x + β)g′(x) +
∫
R

(g′(x + u) − g′(x)1{|u|≤1})uν1,γ(du),

where the last but one equality follows by doing computations similar to Propo-
sition A.3.

This completes the proof.

Now, observe that, limγ→0+ P 1,γ
t g(x) = P 1

t g(x), g ∈ F , as defined in (3.6).
Hence limγ→0+ T1,γ = T1, where T1 is given by

T1g(x) = (−x + β)g′(x) +
∫
R

(g′(x + u) − g′(x)1{|u|≤1})uν1(du), g ∈ S(R).

Remark 3.11. Observe that the Stein equation given in (3.4) has an integral
form and the Stein equations studied in literature have integro-differential form
(see for example [3, Lemma 5.8]). Indeed, on careful adjustments of the integrals
with respect to να for α ∈ (0, 2), we see that the operator Tα is also a Stein
operator for an α-stable random variable, see [10, 11, 21, 39]. In these articles,
the authors use Tα to set up their Stein equations. However, we consider Aα

X to
set up our Stein equation. Hence, the properties for the solution of this equation
are different, which help us to obtain optimal convergence rates.

Next, we provide the solution of the α-stable Stein equation (3.4).

Theorem 3.12. (i) For α ∈ (0, 1], let X ∼ S(α, β,m1,m2) and h ∈ Hδ,
δ ∈ (0, α). Then, the Stein equation for X is given by

Aα
Xg(x) = h(x) − Eh(X), (3.12)
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and
gαh (x) = −

∫ ∞

0
e−t

∫
R

h′(u + xe−t)FX(t)(du)dt (3.13)

solves the α-stable Stein equation (3.12).
(ii) For α ∈ (1, 2), let X ∼ S(α, β,m1,m2) and h ∈ H2. Then, the Stein

equation for X is given by

Aα
Xg(x) = h(x) − Eh(X), (3.14)

and
gαh (x) = −

∫ ∞

0
e−t

∫
R

h′(u + xe−t)FX(t)(du)dt (3.15)

solves the α-stable Stein equation (3.14).

In the following remark, we review the techniques used by several authors to
solve Stein equations under various constraints and justify our claim of unifica-
tion.

Remark 3.13. (i) Chen et al. [10, 11] derive the solution of a Stein equation
for α-stable random variables with α ∈ (0, 1] and α ∈ (1, 2) respectively
using Barbour’s generator approach [7], and the transition density function
of α-stable processes. Xu [39] also uses Barbour’s generator approach to
solve the Stein equation for a symmetric α-stable random variable with α ∈
(1, 2). Arras and Houdré [3] provide the semigroup approach to solve the
Stein equation for an infinitely divisible random variable with finite first
moment. Recently, Arras and Houdré [5, Remark 4.3] show that semigroup
approach for deriving the solution of the Stein equation is also applicable
for multivariate α-stable random vectors with α ∈ (0, 1), and they also
mention that the semigroup approach is also applicable for α = 1, but
requires different estimates.

(ii) Note that, for both parts of Theorem 3.12, we use only the semigroup
approach to solve the Stein equation for an α-stable random variable with
α ∈ (0, 2), and this unifies the method of solving the Stein equation for
α-stable random variables.

3.1. Properties for the solution of the Stein equation

Let us now study regularity estimates for the solution of our Stein equation.
Recall that the Lévy measure να for α-stable distributions is given by να(du) =(
m1

1
|u|1+α 1(0,∞)(u) + m2

1
|u|1+α 1(−∞,0)(u)

)
du, where m1,m2 ∈ [0,∞), m1 +

m2 > 0 and α ∈ (0, 2). In the following theorem, we establish estimates of gαh ,
which play a crucial role in the α-stable approximation problem.

Theorem 3.14. (i) Let α ∈ (0, 1). For h ∈ Hδ, 0 < δ < α, let gαh be defined
in (3.13). Then, for any x, y ∈ R

‖gαh‖ ≤ ‖h′‖ , (3.16)
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|gαh (x) − gαh (y)| ≤ 1
δ + 1 |x− y|δ. (3.17)

Define A0g
α
h (x) :=

∫
R
ugαh (x + u)να(du). Then

‖A0g
α
h‖ ≤ Cα,δ,m1,m2 := α(m1 + m2)

δ(α− δ) + α(m1 −m2)
1 − α

. (3.18)

(ii) Let α = 1. For h ∈ Hδ, 0 < δ < 1, let g1
h be defined in (3.13). Then, for

any x, y ∈ R

∥∥g1
h

∥∥ ≤ ‖h′‖ , (3.19)∣∣g1
h(x) − g1

h(y)
∣∣ ≤ 1

δ + 1 |x− y|δ. (3.20)

Define A1g
1
h(x) :=

∫
R
u(g1

h(x + u) − ug1
h1{|u|≤1})ν1(du). Then

∥∥A1g
1
h

∥∥ ≤ C1,δ,m1,m2 := 2(m1 + m2)
δ(1 − δ2) . (3.21)

(iii) Let α ∈ (1, 2). For h ∈ H2, let gαh be defined in (3.15). Then, gαh is
differentiable on R,

‖gαh‖ ≤ ‖h′‖ and ‖(gαh )′‖ ≤ 1
2 ‖h′′‖ . (3.22)

Let m1 = m2 = m. Define A2g
α
h (x) :=

∫
R
(gαh (x + u) − gαh (x))uνα(du). For any

x, y ∈ R

|A2g
α
h (x) −A2g

α
h (y)| ≤ Cα,m‖h′′‖|x− y|2−α, (3.23)

where Cα,m := 2m
(

1
2−α + 1

α−1

)
is a positive constant.

Next, we provide Wasserstein-δ distance error bounds for α-stable approxi-
mations with α ∈ (0, 1]. Before stating our result, let us first define the domain
of normal attraction of an α-stable distribution.

Definition 3.15. [10, p.6] A real-valued random variable Y is said to be in
the domain of normal attraction of an α-stable distribution with α ∈ (0, 1] if its
CDF, FY satisfies

1 − FY (y) = A + e(y)
|y|α (1 + θ) and FY (−y) = A + e(−y)

|y|α (1 − θ), (3.24)

where y > 1, α ∈ (0, 1], θ = m1−m2
m1+m2

∈ [−1, 1], A(> 0) a constant and e : R → R
is a bounded differentiable function vanishing at ±∞. Since e is bounded, we
denote K := supy∈R

|e(y)|.
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We denote Y ∈ Dα, if Y is in the domain of normal attraction of an α-stable
distribution, and for a positive constant L, the function e defined in (3.24) is
C2 with the domain {|y| > L}, and it satisfies ye′(y) → 0 and y2e′′(y) → 0 as
|y| → ∞.

Theorem 3.16. Let Y1, Y2, . . . , Yn be a sequence of i.i.d random variables such
that Yi ∈ Dα and X ∼ S(α, β,m1,m2) with α ∈ (0, 1]. Define Sn := n−1/α(Y1 +
Y2 + · · · + Yn). Then,

(a) for α ∈ (0, 1)

dWδ
(Sn, X) ≤ CA,K

α,δ,m1,m2
n−1 + C1,δ,Ln

1− (1+δ)
α

+ C2,δn
1− (1+δ)

α sup
L<|y|<n

1
α

(α|e(y)| + |ye′(y)|)
∫
L<|y|<n

1
α

|y|δ−αdy

+ Cα,δ,m1,m2n
− (1−α)

α + n− (1−α)
α

∫
|y|<n

1
α

|y|dFY (y) + Rα,n, (3.25)

where CA,K
α,δ,m1,m2

, C1,δ,L, C2,δ, Cα,δ,m1,m2 are positive constants, and

Rα,n = β1 + 2 sup
|y|>n

1
α

(α|e(y)| + |ye′(y)|)
∫
|y|>1

ηα,β,δ,m1,m2(y)|y|−1−αdy.

(b) For α = 1

dWδ
(Sn, X) ≤ CA,K

1,δ,m1,m2
n−1 + 1

δ + 1n
−δ

(
L2 + m1 + m2

)
+ n−δ

1 + δ

∫
L<|u|< 1

a

|e(u) − ue′(u)|
|u|1−δ

du

+ n−1
∫
|u|>1

|e(nu) − nue′(nu)|
|u| du + R1,n, (3.26)

where CA,K
1,δ,m1,m2

, C1,δ,m1,m2 are positive constants, and

R1,n = β + 2K + 2C1,δ,m1,m2

∫ n

0
dF|Y |(y) +

∣∣∣∣∫ n

0

e(y) − e(−y)
y

dy

∣∣∣∣ .
Remark 3.17. Note that, in view of Theorem 3.16, we consider only real-valued
random variables Yi ∈ Dα. Indeed, integer-valued random variables in general
do not belong to Dα, see [10]. The problem for developing an approach that
allow to handle integer-valued sums is still open. Recently, Chen et al. [10] also
provide bounds in the d∗Wδ

distance for α-stable approximations of a partial sum
of a sequence of i.i.d random variables, belong to Dα. Our bounds given in (3.25)
and (3.26) are similar to the bounds given in [10, Theorem 4]. Note also that, our
bounds include non-zero location parameter on α-stable approximations with
α ∈ (0, 1]. Chen et al. [10], Chen and Xu [9] give error bounds for α-stable
approximations with α ∈ (0, 1] by choosing the location parameter to be 0.
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Now, we present Wasserstein-type distance error bound for α-stable approxi-
mations of a partial sum of a sequence of i.i.d random variables with α ∈ (1, 2).
To derive this bound, we apply kernel decomposition method introduced by
Xu [39] for symmetric α-stable approximations. Later, Arras and Houdré [3]
generalized it for IDD with finite first moment. Before stating our result, define

Kνα(t,N) = 1[0,N ](t)
∫ N

t

uνα(du) + 1[−N,0](t)
∫ t

−N

(−u)να(du), and

Ki(t,N) = E
(
Zi1{0≤t≤Zi≤N} − Zi1{−N≤Zi≤t≤0}

)
,

where N > 0 is an arbitrary number. Our theorem is as follows.

Theorem 3.18. Let Y1, Y2, . . . , Yn be a sequence of i.i.d random variables with
EYi = 0 and E|Yi| < ∞. Let X ∼ S(α, 0,m,m) with α ∈ (1, 2). Define Zi =
n− 1

αYi and Sn = Z1 + Z2 + . . . + Zn. Then,

dW2(Sn, X) ≤ 1
2

n∑
i=1

∫ N

−N

∣∣∣∣Kνα(t,N)
n

−Ki(t,N)
∣∣∣∣ dt + Rn,N , N > 0, (3.27)

where Rn,N =2
(∫

|u|>N
|u|να(du)+

∑n
i=1 E

[
|Zi|1{|Zi|>N}

])
+Cα,m

n

∑n
i=1 E|Zi|2−α.

Remark 3.19. In the existing literature, several authors use this kernel dis-
crepancy type bound for α-stable approximations with α ∈ (1, 2), see [3, 21, 39].
In these articles, we note that the derivation of this bound heavily depends on
the upper bound of the second derivative for the solution of α-stable Stein equa-
tion. However, our kernel discrepancy bound given in (3.27) mainly depends on
upper bound of the first derivative for the solution of α-stable Stein equation,
as our Stein equation given in (3.4) is an integral equation, and our bound given
in (3.27) is comparable to the bounds given in [3, 21, 39].

4. Applications

In this section, we discuss the convergence rates for α-stable approximations
using two examples and we compare them with existing literature.

Example 4.1 (Pareto distribution with α ∈ (0, 1) [10, 23]). Assume that
Y1, Y2, . . . , Yn be i.i.d random variables having a Pareto distribution with α ∈
(0, 1), i.e.,

P (Y1 > y) = 1
2|y|α , y ≥ 1, P (Y1 ≤ y) = 1

2|y|α , y ≤ −1.

From the Definition 3.15, we observe that Yi ∈ Dα with L = 1, and (3.24)
holds for θ = 0, A = 1

2 , e(y) = |y|α−1
2 1(−1,1)(y) and 0 for |y| > 1, and K = 1

2 .
Let X ∼ S(α, β,m1,m2) with α ∈ (0, 1), and Sn = n−1/α(Y1 + Y2 + · · · + Yn).
Then, by Theorem 3.16, Case 1, one can verify that

dWδ
(Sn, X) ≤ Cn−( 1

α−1),
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where C is some positive constant. Moreover, dWδ
(Sn, X) = O(n−( 1

α−1)).

In the following remark, we recall the convergence rates available in the lit-
erature and in (iii), we compare them with our convergence rate.

Remark 4.2. (i) The reference [23] shows a convergence rate dKol(Sn, X) ≤
Cαn

−1, for α ∈ (0, 1], where an exact value of Cα was not given.
(ii) Chen et al. [10] prove that the rate n−1 is valid for the d∗Wδ

distance,
whenever α ∈ (0, 1).

(iii) For α ∈ (0, 1), our rate is dWδ
(Sn, X) ≤ Cn−( 1

α−1), which is flexible with
respect to α. In comparison to the rates derived in [10, 23], we see that
our rate is faster (α ∈ (0, 0.5)), same (α = 0.5) and slower (α ∈ (0.5, 1)).

Example 4.3 (Pareto distribution with α ∈ (1, 2) [22, 39]). Assume that Y1, Y2,
. . . , Yn be i.i.d random variables having a Pareto distribution with α ∈ (1, 2),
i.e.,

P (Y1 > y) = 1
2|y|α , y ≥ 1, P (Y1 ≤ y) = 1

2|y|α , y ≤ −1.

Assume also that β = 0 and m1 = m2 = m. Let X ∼ S(α, 0,m,m) with α ∈
(1, 2), and Zi = n− 1

αYi and Sn = Z1 +Z2 + . . .+Zn. Now, using Theorem 3.18,
we show dW2(Sn, X) = O(n−( 2−α

α )).
Let us first compute the terms in Remainder RN,n. Observe that the first

term is zero, and the second term of RN,n is given by

2
n∑

i=1
E
(
|Zi|1|Zi|>N

)
= 2n− 1

α

⎛⎝∫ ∞

n
1
α N

xp(x)dx +
∫ n

1
α N

−∞
xp(x)dx

⎞⎠
= 4

α− 1N
1−α = D0N

1−α.

The last term is given by

Cα,m

n

n∑
i=1

E|Zi|2−α = Cα,m

n

n∑
i=1

∫
|x|>1

(n− 1
α |x|)2−αp(x)dx

= Cα,m

α− 1n
− 2−α

α = D1n
− 2−α

α .

Hence,
RN,n = D0N

1−α + D1n
− 2−α

α .

For any N > 0, we have

Kνα(t,N) = 1[0,N ](t)
∫ N

t

uνα(du) + 1[−N,0](t)
∫ t

−N

(−u)να(du)

= m

1 − α

(
N1−α − t1−α

)
+ m

1 − α

(
N1−α − (−t)1−α

)
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= m

α− 1
(
|t|1−α −N1−α

)
.

Using symmetry of Pareto distribution, we have

Ki(t,N) = α

2n(α− 1)

(
(|t| ∧ n− 1

α )1−α −N1−α
)
.

Then, from Theorem 3.18, we obtain

dW2(Sn, X) ≤ D0N
1−α + D1n

−( 2−α
α ) + D2n

−( 2−α
α ),

where D0, D1 and D2 are positive constants. Since N is arbitrary, let N → ∞.
Hence, dW2(Sn, X) = O(n−( 2−α

α )). By [3, Lemma A.4], we have

dW1(Sn, X) ≤ D3

√
n−( 2−α

α ) = D3n
1
2− 1

α , (4.1)

where D3 is an another positive constant. Moreover, dW1(Sn, X) = O(n 1
2− 1

α ).

In the following remark, we recall the convergence rates available in the lit-
erature and in (iii), we compare them with our convergence rates.

Remark 4.4. (i) Johnson and Samworth [22] show that Sn = n− 1
α

∑n
i=1 Yi

converges to an α-stable distribution with a rate n( 1
r− 1

α ) in the Mallows
r-distance for some r ∈ (α, 2]. Hence, at r = 2, they show that the con-
vergence rate is at most n

1
2− 1

α .
(ii) Xu [39] proves that Sn converges to an symmetric α-stable distribution

with a rate n− (2−α)
α in the Wasserstein-1 distance. From [39, Example 1],

it is clear that the convergence rate n
1
2− 1

α is not accessible.
(iii) Note that, we obtain a rate n− 2−α

α with α ∈ (1, 2) in the dW2 distance,
which is faster rate than the rate obtained in [22], whenever r ∈ (α, 2).
Observe also that, at r = 2, the rate obtained in [22, Theorem 1.2] becomes
n

1
2− 1

α . From (4.1), it immediately follows that the rate n
1
2− 1

α is accessible
in the dW1 distance using our estimates.

5. Proofs

5.1. Proof of Theorem 3.1

Recall first that for X ∼ IDD(β, σ2, ν), the characteristic exponent η is given
by

η(z) = logφX(z) = izβ − σ2z2

2 +
∫
R

(eizu − 1 − izu1{|u|≤1}(u))ν(du), z ∈ R.

(5.1)
Differentiating (5.1) with respect to z, we have

φ′
X(z) =

(
iβ − σ2z + i

∫
R

u(eizu − 1{|u|≤1}(u))ν(du)
)
φX(z). (5.2)
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Recall from Section 2, FX is the distribution function (cumulative distribu-
tion function) of X and if φ′

X exists on R, then,

φX(z) =
∫
R

eizxFX(dx) and φ′
X(z) = i

∫
R

xeizxFX(dx), z ∈ R. (5.3)

Using (5.3) in (5.2) and rearranging the integrals, we have

0 = i

∫
R

xeizxFX(dx)

−
(
i

(
β +

∫
R

u(eizu − 1{|u|≤1}(u))ν(du)
)
φX(z) − σ2zφX(z)

)
= i

(∫
R

(x− β)eizxFX(dx) −
(∫

R

ueizuν(du)
)
φX(z)

+
(∫

R

u1{|u|≤1}(u)ν(du)
)
φX(z) − iσ2zφX(z)

)
=

∫
R

(x− β)eizxFX(dx) −
(∫

R

ueizuν(du)
)
φX(z)

+
(∫

R

u1{|u|≤1}(u)ν(du)
)
φX(z) − izσ2φX(z). (5.4)

The second integral of (5.4) can be written as(∫
R

ueizuν(du)
)
φX(z) =

∫
R

∫
R

ueizueizxFX(dx)ν(du)

=
∫
R

∫
R

ueiz(u+x)ν(du)FX(dx)

=
∫
R

∫
R

ueizyν(du)FX(d(y − u))

=
∫
R

∫
R

ueizxν(du)FX(d(x− u))

=
∫
R

eizx
∫
R

uFX(d(x− u))ν(du). (5.5)

Substituting (5.5) in (5.4), we have

0 =
∫
R

(x− β)eizxFX(dx) −
∫
R

eizx
∫
R

uFX(d(x− u))ν(du)

+
(∫

R

u1{|u|≤1}(u)ν(du)
)
φX(z) − izσ2φX(z)

=
∫
R

eizx
(

(x− β)FX(dx) −
∫
R

uFX(d(x− u))ν(du)

+
(∫

R

u1{|u|≤1}(u)ν(du)
)
FX(dx) − izσ2FX(dx)

)
. (5.6)
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On applying Fourier transform to (5.6), multiplying with g ∈ S(R), and
integrating over R, we get∫

R

g(x)
(

(x− β) +
∫
R

u1{|u|≤1}(u)ν(du)
)
FX(dx)

−
∫
R

ug(x)FX(d(x− u))ν(du) − σ2
∫
R

g′(x)FX(dx) = 0. (5.7)

The third integral of (5.7) can be seen as∫
R

∫
R

ug(x)FX(d(x− u))ν(du) =
∫
R

∫
R

ug(y + u)FX(dy)ν(du)

=
∫
R

∫
R

ug(x + u)FX(dx)ν(du)

= E

(∫
R

ug(X + u)ν(du)
)
. (5.8)

Substituting (5.8) in (5.7) and rearranging the integrals, we have

E

(
(X − β)g(X) −

∫
R

u(g(X + u) − g(X)1{|u|≤1}(u))ν(du) − σ2g′(X)
)

= 0.

This proves the theorem.

5.2. Proof of Theorem 3.3

Recall first that, for X ∼ S(α, β,m1,m2), characteristic exponent ηα is given
by

ηα(z) = logφα(z) = izβ +
∫
R

(eizu − 1 − izu1{|u|≤1}(u))να(du), z ∈ R.

Following similar steps to the proof of Theorem 3.1, we get the result for
α ∈ (1, 2).

For α ∈ (0, 1], as the characteristic exponent ηα is not differentiable on R. Let
us consider tempered α-stable random variable Yα,γ with characteristic exponent
(see, Section 2) given by

ηα,γ(z) = izβ +
∫
R

(eizu − 1 − izu1{|u|≤1}(u))να,γ(du), z ∈ R,

where α ∈ (0, 1], γ ∈ (0,∞), and να,γ is the Lévy measure defined as

να,γ(du) :=
(
m1

e−γu

u1+α
1(0,∞)(u) + m2

e−γ|u|

|u|21+α
1(−∞,0)(u)

)
du.

Observe that Yα,γ is infinitely divisible and its characteristic exponent ηα,γ
is differentiable on R. Also, by Proposition 2.11 ηα,γ → ηα, whenever γ ↓ 0.
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Now, applying Theorem 3.1, we get the Stein identity for Yα,γ as follows.

E

[
(Yα,γ − β) g(Yα,γ) −

∫
R

(
g(Yα,γ + u) − g(Yα,γ)1{|u|≤1}(u)

)
uνα,γ(du)

]
= 0,

(5.9)
where g ∈ S(R). Now, taking limit as γ ↓ 0, (5.9) reduces to

E

[
(X − β) g(X) −

∫
R

(
g(X + u) − g(X)1{|u|≤1}(u)

)
uνα(du)

]
= 0, g ∈ S(R).

This proves the theorem.

5.3. Proof of Theorem 3.12

For the proof of this theorem, we use the connection between the operators Aα
X

and Tα.
Proof of (i). The proof of this part is split into two parts.
(a) α ∈ (0, 1): We have

Aα
Xgαh (x) = (−x + β)gαh (x) +

∫
R

(
gαh (x + u) − gαh (x)1{|u|≤1}(u)

)
uνα(du)

= Tα(g̃αh )(x), (where g̃αh (x) = −
∫ ∞

0
(Pα

t (h)(x) − Eh(X)) dt, h ∈ Hδ)

= −
∫ ∞

0
TαPα

t (h)(x)dt

= −
∫ ∞

0

d

dt
Pα
t (h)(x)dt

= P0h(x) − P∞h(x)
= h(x) − Eh(X) (by Proposition 3.8).

Hence, for α ∈ (0, 1), gαh is the solution of (3.12). Now, it remains to show that,
gαh is well-defined. Let us first consider g̃αh : R → R be defined as

g̃αh (x) = −
∫ ∞

0
(Pα

t (h)(x) − Eh(X)) dt, h ∈ Hδ, δ ∈ (0, α),

where Pα
t is the semigroup as defined in (3.6). We show that, for any h ∈ Hδ,

0 < δ < α, g̃αh is well-defined.
Using (3.7), we have

|Pα
t (h)(x) − Eh(X)| =

∣∣∣∣∫
R

h(r + e−tx)FX(t)(dr) −
∫
R

h(r)FX(dr)
∣∣∣∣

=
∣∣∣∣∫

R

(h(r + e−tx) − h(r))FX(t)(dr)
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+
∫
R

h(r)FX(t)(dr) −
∫
R

h(r)FX(dr)
∣∣∣∣

≤ min
{
e−t|x|, (e−t|x|)δ

}
+
∣∣∣∣∫

R

ĥ(z) (φt(z) − φα(z)) dz
∣∣∣∣

≤ min
{
e−t|x|, (e−t|x|)δ

}
+
∫
R

|ĥ(z)||φt(z) − φα(z)|dz.

(5.10)

Now, let us calculate an upper bound between the difference of two characteristic
functions φt and φα. For all t > 0 and z ∈ R,

|φt(z) − φα(z)| =
∣∣∣∣ φα(z)
φα(e−tz) − φα(z)

∣∣∣∣ ≤ ∣∣φα(e−tz) − 1
∣∣ = |eωt(z) − 1|,

where ωt(z) = izβ1e
−t+e−tα

∫
R
(eizu−1)να(du), and β1 = β−

∫
{|u|≤1} uνα(du).

Now, from [29, Lemma 7.9], the function z → esωt(z) is a characteristic function
for all s ∈ (0,∞), thus, for all z ∈ R and t > 0

|φt(z) − φα(z)|

≤
∣∣∣∣∫ 1

0

d

ds
(exp(sωt(z)))ds

∣∣∣∣
≤ |ωt(z)|

≤ |z||β1|e−t + e−tα

∣∣∣∣∫
R

(eizu − 1)να(du)
∣∣∣∣

= |z||β1|e−t

+ e−tα

∣∣∣∣∣
∫
{|u|>1}

(eizu − 1)να(du) +
∫
{|u|≤1}

(eizu − 1)να(du)

∣∣∣∣∣
≤ |z||β1|e−t + 2e−tα

∣∣∣∣∣
∫
{|u|>1}

να(du)

∣∣∣∣∣
+ e−tα

(∣∣∣∣∣
∫
{|u|≤1}

(cos(zu) − 1)να(du)

∣∣∣∣∣ +

∣∣∣∣∣
∫
{|u|≤1}

sin(zu)να(du)

∣∣∣∣∣
)

= |z||β1|e−t + 2m1 + m2

α
e−tα + |z|α (M1 + M2) e−tα, (5.11)

where M1 =
∣∣∣∫{|u|≤z}(cos v − 1)να(dv)

∣∣∣ and M2 =
∣∣∣∫{|u|≤z} sin vνα(dv)

∣∣∣.
Using (5.11) in (5.10), one can easily show that

∫∞
0 |Pα

t (h)(x)−Eh(X)|dt <
∞. Hence, g̃αh is well-defined.

By dominated convergence theorem, we see that g̃αh is differentiable and

(g̃αh )′(x) = − lim
ζ→∞

d

dx

∫ ζ

0
(Pα

t (h)(x) − Eh(X))dt



564 N. S Upadhye and K. Barman

= − lim
ζ→∞

∫ ζ

0

d

dx

(∫
R

h(xe−t + u)FX(t)(du)
)
dt

= −
∫ ∞

0
e−t

∫
R

h′(u + xe−t)FX(t)(du)dt = gαh (x),

the desired conclusion follows.
(b) α = 1: To solve (3.12) for α = 1, consider a Stein equation (see, (5.9))

for tempered 1-stable random variable Y1,γ is given by

(−x + β) g(x) +
∫
R

(
g(x + u) − g(x)1{|u|≤1}(u)

)
uν1,γ(du) = h(x) − Eh(Y1,γ),

(5.12)

where h ∈ Hδ. Following similar steps to proof as the Case 1 of (i), and us-
ing (3.11), we see that the function g1,γ

h (x)=−
∫∞
0 e−t

∫
R
h′(u+xe−t)FY(γ,t)(du)dt

solves (5.12) i.e.,

(−x + β) g1,γ
h (x) +

∫
R

(
g1,γ
h (x + u) − g1,γ

h (x)1{|u|≤1}(u)
)
uν1,γ(du)

= h(x) − Eh(Yγ). (5.13)

Observe that,

lim
γ→0+

g1,γ
h (x) = − lim

γ→0+

∫ ∞

0
e−t

∫
R

h′(u + xe−t)FY(γ,t)(du)dt

= −
∫ ∞

0
e−t

∫
R

h′(u + xe−t)FX(t)(du)dt

= g1
h(x).

Also,

lim
γ→0+

Eh(Yγ) = Eh(X), (since Yγ
d→ X).

Hence taking limit as γ → 0+ on (5.13), we get

(−x + β) g1
h(x) +

∫
R

(
g1
h(x + u) − g1

h(x)1{|u|≤1}(u)
)
uν1(du) = h(x) − Eh(X).

Hence, for α = 1, g1
h is the solution of (3.12). Note here that, on careful

adjustments of the integrals and suitably adjustments of parameters as pre-
vious case, we see that the function g̃1

h(x) = −
∫∞
0

(
P 1
t (h)(x) − Eh(X)

)
dt,

h ∈ Hδ, δ ∈ (0, 1) is well-defined and (g̃1
h)′(x) = g1

h(x) for all x ∈ R.
Proof of (ii). Following similar steps to proof of Case 1 of (i), it immediately

shows that gαh (where α ∈ (1, 2) and h ∈ H2) is the solution of (3.14). So, it
remains to show that gαh is well-defined. Let us consider a function g̃αh : R → R
defined as

g̃αh (x) = −
∫ ∞

0
(Pα

t (h)(x) − Eh(X)) dt, h ∈ H2,



Stable approximations 565

where Pα
t is the semigroup as defined in (3.6). Now, we show that for any h ∈ H2

and α ∈ (1, 2), g̃αh is well-defined and (g̃αh )′(x) = gαh (x) for all x ∈ R.
Using (3.7), we have

|Pα
t (h)(x) − Eh(X)| =

∣∣∣∣∫
R

h(r + e−tx)FX(t)(dr) −
∫
R

h(r)FX(dr)
∣∣∣∣

=
∣∣∣∣∫

R

(h(r + e−tx) − h(r))FX(t)(dr)

+
∫
R

h(r)FX(t)(dr) −
∫
R

h(r)FX(dr)
∣∣∣∣

≤ e−t|x||h′| +
∣∣∣∣∫

R

ĥ(z) (φt(z) − φα(z)) dz
∣∣∣∣

≤ e−t|x||h′| +
∫
R

|ĥ(z)||φt(z) − φα(z)|dz (5.14)

Now, let us calculate an upper bound between the difference of two characteristic
functions φt and φα. For all t > 0 and z ∈ R,

|φt(z) − φα(z)| =
∣∣∣∣ φα(z)
φα(e−tz) − φ1(z)

∣∣∣∣ ≤ ∣∣φα(e−tz) − 1
∣∣ = |eωt(z) − 1|,

where ωt(z) = e−tα(izβ̃ +
∫
R
(eizu − 1 − izu1{|u|≤1})να(du)), β̃ = βe(α−1)t +∫

R
(u1{|u|≤1} −u1{|u|≤e−t})να(du). Note that the function z → esωt(z) is a char-

acteristic function for all s ∈ (0,∞). Indeed, esωt(z) is a characteristic function
of an α-stable random variable with different parameters.

Thus, for all z ∈ R and t > 0,

|φt(z) − φα(z)| ≤
∣∣∣∣∫ 1

0

d

ds
(exp(sωt(z)))ds

∣∣∣∣
≤ |ωt(z)|

≤ e−tα

∣∣∣∣izβ̃ +
∫
R

(eizu − 1 − izu1{|u|≤1})να(du)
∣∣∣∣

≤ Cαe
−tα(1 + |z|2), Cα > 0, (5.15)

where the last inequality is followed by [2, p.30, Ex. 1.2.16]. Using (5.15) in (5.14),
one can easily show that

∫∞
0 |Pα

t (h)(x) − Eh(X)|dt < ∞. Hence, g̃αh (x) is well-
defined. The rest of this part follows from similar computations as Case 1 of
(i).

5.4. Proof of Theorem 3.14

Recall the definition of (Pα
t )t≥0,

Pα
t (g)(x) =

∫
R

g(r + e−tx)FX(t)(dr), g ∈ F ,

where α ∈ (0, 2) and FX(t) is the distribution function of X(t) (see, (3.5)).
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Proof of (i). Suppose α ∈ (0, 1) and h ∈ Hδ, δ ∈ (0, α).
Let

gαh (x) = −
∫ ∞

0
e−t

∫
R

h′(xe−t + u)FX(t)(du)dt.

It is clear that

‖gαh‖ ≤
∣∣∣∣∫ ∞

0
e−tdt||

∫
R

‖h′‖FX(t)(du)
∣∣∣∣

= ‖h′‖,

the desired conclusion follows.
Now observe that, for any x, y ∈ R and h ∈ Hδ,

|gαh (x) − gαh (y)| ≤
∫ ∞

0
e−t

∫
R

∣∣h′(xe−t + z) − h′(ye−t + z)
∣∣FX(t)(dz)dt

≤
∫ ∞

0
e−t

∫
R

|x− y|δ e−tδFX(t)(dz)dt

= |x− y|δ
∫ ∞

0
e−t(1+δ)dt

|gαh (x) − gαh (y)| ≤ 1
1 + δ

|x− y|δ ,

the desired conclusion follows.
For α ∈ (0, 1), we have

∣∣∣∣∫
R

ugαh (x + u)να(du)
∣∣∣∣ = α

∣∣∣∣∫
R

∫ ∞

0
(Pα

t h(x + u) − Pα
t h(x))dtνα(du)

∣∣∣∣
(using Proposition A.4)

≤ α

∣∣∣∣∣
∫
|u|>1

∫ ∞

0
(Pα

t h(x + u) − Pα
t h(x))dtνα(du)

∣∣∣∣∣
+ α

∣∣∣∣∣
∫
|u|≤1

∫ ∞

0
(Pα

t h(x + u) − Pα
t h(x))dtνα(du)

∣∣∣∣∣
:= I+II.

Now observe that

I = α

∣∣∣∣∣
∫
|u|>1

∫ ∞

0
(Pα

t h(x + u) − Pα
t h(x))dtνα(du)

∣∣∣∣∣
= α

∣∣∣∣∣
∫
|u|>1

∫ ∞

0

∫
R

(
h((x + u)e−t + y) − h(xe−t + y)

)
FX(t)(dy)dtνα(du)

∣∣∣∣∣
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≤ α

∫
|u|>1

|u|δ
∫ ∞

0
e−tδdtνα(du)

= α(m1 + m2)
δ(α− δ) . (5.16)

Consider,

II =α

∣∣∣∣∣
∫
|u|≤1

∫ ∞

0
(Pα

t h(x + u) − Pα
t h(x))dtνα(du)

∣∣∣∣∣
= α

∣∣∣∣∣
∫
|u|≤1

∫ ∞

0

∫
R

(
h((x + u)e−t + y) − h(xe−t + y)

)
FX(t)(dy)dtνα(du)

∣∣∣∣∣
≤ α

∫
|u|≤1

|u|
∫ ∞

0
e−tdtνα(du)

≤ α(m1 −m2)
1 − α

. (5.17)

Hence, by (5.16) and (5.17), we get

|A0g
α
h (x)| ≤ α(m1 + m2)

δ(α− δ) + α(m1 −m2)
1 − α

:= Cα,δ,m1,m2 ,

the desired conclusion follows.

Proof of (ii). The proofs of first two properties are similar to previous case.
To prove the third property, we split g1

h in terms of the semigroup P 1
t defined

in (3.6). We write

A1g
1
h :=

∫
R

u
(
g1
h(x + u) − g1

h(x)1{|u|≤1}
)
ν1(du)

=
∫
{|u|≤1}

u
(
g1
h(x + u) − g1

h(x)
)
ν1(du) +

∫
{|u|>1}

ug1
h(x + u)ν1(du)

=
∫
{|u|≤1}

u

∫ ∞

0

(
e−t

(∫
R

h′((x+u)e−t+y)−h′(xe−t+y)
)
FX(t)(dy)

)
dtν1(du)

+
∫
{|u|>1}

∫ ∞

0
(P 1

t h(x + u) − P 1
t h(x))dtν1(du) (using Fubini’s theorem)

:= I+II.

By similar computation as Case 1 of (i), it is easy to show that

I =
∫
{|u|≤1}

u

∫ ∞

0

(
e−t

(∫
R

h′((x+u)e−t+y)−h′(xe−t+y)
)
FX(t)(dy)

)
dtν1(du)

≤ 1
1 + δ

∫
{|u|≤1}

|u|1+δν1(du) = m1 + m2

δ(1 + δ) . (5.18)
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Consider,

II =
∫
{|u|>1}

∫ ∞

0
(P 1

t h(x + u) − P 1
t h(x))dtν1(du)

≤ 1
δ

∫
{|u|>1}

|u|δν1(du) = m1 + m2

δ(1 − δ) (5.19)

Hence, by (5.18) and (5.19), we get

‖A1g
1
h‖ ≤ 2(m1 + m2)

δ(1 − δ2) := C1,δ,m1,m2 ,

the desired conclusion follows.

Proof of (iii). Suppose α ∈ (1, 2) and h ∈ H2.
Let

gαh (x) = −
∫ ∞

0
e−t

∫
R

h′(xe−t + u)FX(t)(du)dt.

Then,

(gαh )′(x) = −
∫ ∞

0
e−2t

∫
R

h′(xe−t + u)FX(t)(du)dt.

It is also easy to show that

‖(gαh )‖ ≤ ‖h′‖, and ‖(gαh )′‖ ≤ 1
2‖h

′′‖.

Let m1 = m2 = m. Let A2g
α
h (x) =

∫
R
(gαh (x + u) − gαh (x))uνα(du). Then, for

any x, y ∈ R

|A2g
α
h (x) −A2g

α
h (y)| ≤

∫
R

|(gαh (x + u) − gαh (y + u)) − (gαh (x) − gαh (y))| |u|να(du)

= m

(∫
|u|>|x−y|

+
∫ |x+y|

−|x−y|

)
|(gαh (x + u) − gαh (y + u))

−(gαh (x) − gαh (y))| du

|u|α
=: I+II

Now observe that

I = m

∫
|u|>|x−y|

|(gαh (x + u) − gαh (y + u)) − (gαh (x) − gαh (y))| du

|u|α

≤ m

∫
|u|>|x−y|

(|gαh (x + u) − gαh (y + u)| + |(gαh (x) − gαh (y))|) du

|u|α
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≤ 4m‖(gαh )′‖|x− y|
∫ ∞

|x−y|
u−αdu

≤ 2m‖h′′‖ |x− y|2−α

α− 1 . (5.20)

Consider,

II = m

∫ |x+y|

−|x−y|
|(gαh (x + u) − gαh (y + u)) − (gαh (x) − gαh (y))| du

|u|α

≤ m

∫ |x−y|

−|x−y|
(|gαh (x + u) − gαh (x)| + |(gαh (y + u) − gαh (y))|) du

|u|α

≤ 4m‖(gαh )′‖
∫ |x−y|

0
u1−αdu

≤ 2m‖h′′‖ |x− y|2−α

2 − α
. (5.21)

Hence, by (5.20) and (5.21), we get

‖A2g
α
h (x) −A2g

α
h (y)‖ ≤ Cα,m‖h′′‖|x− y|2−α,

where Cα,m = 2m
(

1
2 − α

+ 1
α− 1

)
.

5.5. Proof of Theorem 3.16

Recall that (Yn)n≥1 is a sequence of i.i.d. random variables such that Y1 ∈ Dα

(see, Definition 3.15). Denote

Sn = n− 1
α (Y1 + Y2 + . . . + Yn), and

Sn,i = Sn − n− 1
αYi.

Note that, Sn,i and Yi are independent. To prove this theorem, we first derive
some lemmas. With the help of these lemmas, we obtain Wasserstein-δ distance
error bounds for α-stable approximations with α ∈ (0, 1].

5.5.1. Proof of (a)

To prove this part of Theorem 3.16, we use the following lemmas. Recall the
Lévy measure να for α-stable distributions is given by

να(du) =
(
m1

1
|u|1+α

1(0,∞)(u) + m2
1

|u|1+α
1(−∞,0)(u)

)
du,

where m1,m2 ∈ [0,∞), m1 + m2 > 0 and α ∈ (0, 2).
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Lemma 5.1. Let α ∈ (0, 1). Let gαh be a function defined in (3.13). Then, for
any a > 0, ∫

R

ugαh (x + u)να(du) = a1−α

∫
R

ugαh (x + au)να(du)

Proof. We write∫
R

ugαh (x + u)να(du) =
∫
R

ugαh (x + u)
(m11(0,∞)(u) + m21(−∞,0)(u))

|u|α+1 du

= a1−α

∫
R

ugαh (x + au)
(m11(0,∞)(u) + m21(−∞,0)(u))

|u|α+1 du

= a1−α

∫
R

ugαh (x + au)να(du),

the desired conclusion follows.

Lemma 5.2. Let α ∈ (0, 1). Let Y ∈ Dα and gαh be a function defined in (3.13).
Then, for 0 < a < 1 and z ∈ R,

E

(∣∣∣∣∫
R

u (gαh (z + aY + u) − gαh (z + u)) να(du)
∣∣∣∣) ≤ CA,K

α,δ,m1,m2
aα

Proof. We write

E

(∣∣∣∣∫
R

u (gαh (z + aY + u) − gαh (z + u)) να(du)
∣∣∣∣) := I+II,

where

I: = E

(∣∣∣∣∫
R

u (gαh (z + aY + u) − gαh (z + u)) να(du)
∣∣∣∣1|Y |>a−1

)
,

II: = E

(∣∣∣∣∫
R

u (gαh (z + aY + u) − gαh (z + u)) να(du)
∣∣∣∣1|Y |≤a−1

)
.

For α ∈ (0, 1), one can write by (3.18) and (3.24),

I ≤ 2Cα,δ,m1,m2P (|Y | ≥ a−1)

≤ 4Cα,δ,m1,m2

(
A + sup|y|≥a−1 |e(y)|

)
aα

≤ 4Cα,δ,m1,m2(A + K)aα. (5.22)

It is also easy to show that

II ≤ Cαa
α. (5.23)

Hence, by (5.22) and (5.23), we have

E

(∣∣∣∣∫
R

u (gαh (z + aY + u) − gαh (z + u)) να(du)
∣∣∣∣) ≤ (4Cα,δ,m1,m2 + Cα) aα

≤ CA,K
α,δ,m1,m2

aα,

the desired conclusion follows.
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Recall the definition of Dα in Definition 3.15. We see that the function e
satisfies certain conditions with the domain {|y| > L}. These conditions play an
important role for proving the following lemma.

Lemma 5.3. Let α ∈ (0, 1). Let Y ∈ Dα and X be a random variable with finite
δ-th moment, which is independent of Y . For any 0 < a < 1

L and gαh defined
in (3.13), define

J1 :=
∣∣E (Y gαh (X + aY )) − E

(
Y 1(−1,1)(aY )

)
E (gαh (X))

∣∣ ,
Then,

J1 ≤ C1,δ,La
δ + C2,δa

δ sup
L<|y|< 1

a

(α|e(y)| + |ye′(y)|)
∫
L<|y|< 1

a

|y|δ−αdy

+ 2aα−1 sup
|y|>a−1

(α|e(y)| + |ye′(y)|)
∫
|y|>1

ηα,β,δ,m1,m2(y)|y|−1−αdy,

where C1,δ,L = 2
1+δL

1+δ and C2,δ = 2
1+δ .

Proof. We have by (3.24),

J1 =
∣∣∣∣E(∫

R

(ygαh (X + ay) − y1(−1,1)(ay)gαh (X))dFY (y)
)∣∣∣∣ .

Since e is in C2, for any |y| > L,

dFY (y) = Aα + αe(y) − ye′(y)
|y|1+α

κθ(y)dy,

where κθ(y) = (1 + θ)1(0,∞)(y) + (1 − θ)1(−∞,0)(y).
Thus, we have

J1 ≤ E

∫
|y|<L

|y| |gαh (X + ay) − gαh (X)| dFY (y)

+ E

∫
L<|y|< 1

a

|y| |gαh (X + ay) − gαh (X)| dFY (y)

+ E

∫
|y|> 1

a

|ygαh (X + ay)|dFY (y)

:= I+II+III.

It is easy to verify by (3.17),

I ≤ 1
1 + δ

aδ
∫
|y|<L

|y|1+δdFY (y)

≤ 2
1 + δ

L1+δaδ,
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and

II ≤ 2aδ

1 + δ

∫
L<|y|< 1

a

|αe(y) − ye′(y)|
|y|α−δ

dy

≤ 2aδ

1 + δ

∫
L<|y|< 1

a

|y|δ−α (α|e(y)| + |ye′(y)|) dy

≤ 2aδ

1 + δ
sup

L<|y|< 1
a

(α|e(y)| + |ye′(y)|)
∫
L<|y|< 1

a

|y|δ−αdy.

For the third term, we have,

III ≤ 2
∫
|y|> 1

a

|αe(y) − ye′(y)||ygαh (X + ay)|
|y|α+1 dy

≤ 2 sup
|y|>a−1

(α|e(y)| + |ye′(y)|)
∫
|y|> 1

a

|ygαh (X + ay)|
|y|α+1 dy

≤ 2aα−1 sup
|y|>a−1

(α|e(y)| + |ye′(y)|)
∫
|y|>1

ηα,β,δ,m1,m2(y)|y|−1−αdy,

where the last inequality follows by Lemma 5.1 and Proposition A.5. Combining
the estimates obtained in I, II and III, the desired conclusion follows.

Proof of (a). With the help of above lemmas, we now derive bound in the dWδ

distance for α-stable approximation with α ∈ (0, 1).
By (3.4), we have

|E[h(Sn) − h(X)]| =
∣∣∣∣E [

−Sng
α
h (Sn) + β1g

α
h (Sn) +

∫
R

gαh (Sn + u)uνα(du)
]∣∣∣∣

≤ I+II+III,

where,

I := 1
n

n∑
i=1

E

∣∣∣∣∫
R

u
(
gαh (Sn,i + n− 1

αYi + u) − gαh (Sn,i + u)
)
να(du)

∣∣∣∣
II := n− 1

α

n∑
i=1

E
∣∣∣−Yig

α
h (Sn) + Yi1(−1,1)(|n− 1

αYi|)Egαh (Sn,i)
∣∣∣

III := 1
n

n∑
i=1

E

∣∣∣∣∫
R

ugαh (Sn,i + u)να(du) + β1g
α
h (Sn)

−n1− 1
αYi1(−1,1)(|n− 1

αYi|)Egαh (Sn,i)
∣∣∣ .

For α ∈ (0, 1), we have by Lemma 5.2 with a = n− 1
α ,

I ≤
CA,K

α,δ,m1,m2

n
.
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By Lemma 5.3 with a = n− 1
α , we have

II≤C1,δ,Ln
1−(1+δ)

α +C2,δn
1− (1+δ)

α sup
L<|y|<n

1
α

(α|e(y)|+|ye′(y)|)
∫
L<|y|<n

1
α

|y|δ−αdy

+ 2 sup
|y|>n

1
α

(α|e(y)| + |ye′(y)|)
∫
|y|>1

ηα,β,δ,m1,m2(y)|y|−1−αdy.

Using Lemma 5.1 with a = n− 1
α , we have

III ≤ Cα,δ,m1,m2n
− (1−α)

α + β1 + n− (1−α)
α

∫
|y|<n

1
α

|y|dFY (y).

Combining the estimates obtained in I, II and III, the desired conclusion
follows.

5.5.2. Proof of (b)

The following two lemmas play an important role for deriving bound in the dWδ

distance for 1-stable approximation. Recall that A1g
1
h(x) :=

∫
R
u(g1

h(x + u) −
ug1

h1{|u|≤1})ν1(du), where g1
h is defined in (3.13) and ν1 is the Lévy measure

(see (2.3)).

Lemma 5.4. Let α = 1. Let Y ∈ Dα and g1
h be defined in (3.13). Then, for

any 0 < a < 1 and z ∈ R,

E
(∣∣A1g

1
h(z) −A1g

1
h(z + aY )

∣∣) ≤ CA,K
1,δ,m1,m2

a + 2C1,δ,m1,m2

∫ 1
a

0
dF|Y |(y),

where CA,K
1,δ,m1,m2

and C1,δ,m1,m2 are constants.

Proof. We write

E
(∣∣A1g

1
h(z) −A1g

1
h(z + aY )

∣∣) := I+II,

where

I := E
(∣∣A1g

1
h(z) −A1g

1
h(z + aY )

∣∣1|y|> 1
a

)
,

II := E
(∣∣A1g

1
h(z) −A1g

1
h(z + aY )

∣∣1|y|≤ 1
a

)
When α = 1, one can write by (3.21) and (3.24),

I ≤ 2C1,δ,m1,m2P (|Y | ≥ a−1)
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≤ 4C1,δ,m1,m2

(
A + sup|y|≥a−1 |e(y)|

)
a

≤ 4C1,δ,m1,m2(A + K)a,

and

II ≤ 2C1,δ,m1,m2P (|Y | < 1
a
)

= C1,δ,m1,m2

∫ 1
a

0
dF|Y |(y),

Combining the estimates obtained in I and II, the desired conclusion follows.

Lemma 5.5. Let α = 1. Let Y ∈ Dα and X be a random variable with δ-th
finite moment such that X and Y are independent. For any 0 < a < 1

L , define

J2 :=
∣∣E (

Y g1
h(X + aY )

)
− E

(
Y 1(−1,1)(aY )

)
E
(
g1
h(X)

)
− E

(
A0g

1
h(X)

)∣∣ .
Then,

J2 ≤ 1
δ + 1a

δ
(
L2 + m1 + m2

)
+ aδ

1 + δ

∫
L<|u|< 1

a

|e(u) − ue′(u)|
|u|1−δ

du

+ a

∫
|u|>1

|e(u/a) − u/ae′(u/a)|
|u| du.

Proof. We have

EA1g
1
h(X) = E

∫
R

u
(
g1
h(X + u) − g1

h(X)1{|u|≤1}(u)
)
ν1(du)

= E

∫
R

u
(
g1
h(X + aY ) − g1

h(X)1{|aY |≤1}(aY )
)
ν1(du)

and

E
(
Y g1

h(X + aY )
)
− E

(
Y 1(−1,1)(aY )

)
E
(
g1
h(X)

)
=E

(∫
R

(
ug1

h(X + au) − u1(−1,1)(au)g1
h(X)

)
dFY (u)

)
.

Since e is C2, for any |y| > L

dFY (y) = Aα + e(y) − ye′(y)
|y|2 κθ(y)dy,

where κθ(y) = (1 + θ)1(0,∞)(y) + (1 − θ)1(−∞,0)(y).
Thus we have,

J2 ≤ E

∫
|u|<L

∣∣ug1
h(X + au) − ug1

h(X)
∣∣ (dFy(u) + ν1(du))



Stable approximations 575

+ E

∫
L<|u|< 1

a

∣∣ug1
h(X + au) − ug1

h(X)
∣∣ |αe(u) − ue′(u)|

|u|2 du

+ E

∫
|u|> 1

a

∣∣ug1
h(X + au)

∣∣ |αe(u) − ue′(u)|
|u|2 du

:= I+II+III

Moreover, by (3.20), it is easy to verify

I ≤ 1
δ + 1a

δ

∫
|u|<L

u1+δ(dFY (u) + ν1(du))

≤ 1
δ + 1a

δ
(
L2 + m1 + m2

)
.

Using (3.20), we also have

II ≤ aδ

1 + δ

∫
L<|u|< 1

a

|e(u) − ue′(u)|
|u|1−δ

du.

For the third term, using (3.19), it can be immediately shown that

III ≤ a

∫
|u|>1

|e(u/a) − u/ae′(u/a)|
|u| du.

Combining the estimates obtained in I, II and III, the desired conclusion
follows.

Proof of (b) With the help of above lemmas, we now find bound in the dWδ

distance for 1-stable approximation. By (3.4), we have

|E[h(Sn) − h(X)]| =
∣∣E[(−Sn + β)g1

h(Sn)

+
∫
R

(g1
h(Sn + u) − g1

h(Sn)1{|u|≤1}(u))uν1(du)]
∣∣∣∣

≤ I+II+III,

where

I := 1
n

n∑
i=1

∣∣EA1g
1
h(Sn,i) − EA1g

1
h(Sn)

∣∣
II := 1

n

n∑
i=1

∣∣∣∣E(
Yig

1
h(Sn,i + 1

n
Yi)

)
− E

(
Yi1(−1,1)(|

1
n
Yi|)g1

h(Sn,i)
)

−E
(
A1g

1
h(Sn,i)

)∣∣
III := 1

n

n∑
i=1

∣∣∣∣E(
Yi1(−1,1)(|

1
n
Yi|)g1

h(Sn,i)
)
− βEg1

h(Sn)
∣∣∣∣
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For α = 1, we have by Lemma 5.4 with a = 1
n ,

I ≤ CA,K
1,δ,m1,m2

1
n

+ 2C1,δ,m1,m2

∫ n

0
dF|Y |(y)

By Lemma 5.5 with a = 1
n , we have

II ≤ 1
δ + 1n

−δ
(
L2 + m1 + m2

)
+ n−δ

1 + δ

∫
L<|u|< 1

a

|e(u) − ue′(u)|
|u|1−δ

du

+ 1
n

∫
|u|>1

|e(nu) − nue′(nu)|
|u| du.

Using (3.24) and (3.19), we have

III ≤
∣∣∣∣∫ n

0

e(y) − e(−y)
y

dy

∣∣∣∣ + 2K + β.

Combining the estimates obtained in I, II and III, the desired conclusion
follows.

5.6. Proof of Theorem 3.18

Recall that (Yn)n≥1 is a sequence of i.i.d. random variables with EYi = 0 and
E|Yi| < ∞ for 1 ≤ i ≤ n. Let Zi = n− 1

αYi and define,

Sn = Z1 + Z2 + . . . + Zn and
Sn(i) = Sn − Zi.

Note that Sn(i) and Sn are independent. To prove this theorem, we use the
following lemmas.

Lemma 5.6. Let να be a Lévy measure for α-stable distributions with α ∈ (1, 2).
Let gαh be a function defined in (3.15). Then for any N > 0,∫

R

(
gαh (Sn + u) − gαh (Sn)

)
uνα(du) =

∫ N

−N

Kνα(t,N)(gαh )′(Sn + t)dt + RN (Sn),

where

Kνα(t,N) = 1[0,N ](t)
∫ N

t

uνα(du) + 1[−N,0](t)
∫ t

−N

(−u)να(du), and

RN (Sn) =
∫
|u|>N

(
gα(Sn + u) − gα(Sn)

)
uνα(du).
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The proof of this lemma follows by similar computations [3, Lemma 5.3].
Lemma 5.7. Let gαh be a function defined in (3.15). Then for any N > 0, we
have,

E
[
Sng

α(Sn)
]

=
n∑

i=1

∫ N

−N

E
[
Ki(t,N)(gαh )′(Sn(i) + t)

]
dt + R1,

where

Ki(t,N) = E
[
Zi1{0≤t≤Zi≤N} − Zi1{−N≤Zi≤t≤0}

]
, and

R1 =
n∑

i=1
E
[
ξi{gαh (Sn) − gα(Sn(i)))}

]
1{|ξi|≥N}.

The proof of this lemma follows by similar computations [39, Lemma 4.5].
Next, we derive a result using the above two lemmas which is as follows.

Lemma 5.8. Let gαh be a function defined in (3.15). Then,

E

[∫
R

(gαh (Sn + u) − gαh (Sn))uνα(du) − Sng
α
h (Sn)

]
=

n∑
i=1

∫ N

−N

E
(Kνα(t,N)

n
−Ki(t,N)

)
(gαh )′(Sn(i) + t)dt

+ 1
n

n∑
i=1

E(RN (Sn(i))) + R1 + R2,

where RN (x) and R1 are defined in Lemmas 5.6 and 5.7 respectively,

R2 = 1
n

n∑
i=1

E

[∫
R

(gαh (Sn + u) − gαh (Sn))uνα(du)

−
∫
R

(gαh (Sn(i) + u) − gαh (Sn(i)))uνα(du)
]
.

Proof. We have,

E

[∫
R

(gαh (Sn + u) − gαh (Sn))uνα(du) − Sng
α
h (Sn)

]
= 1

n

n∑
i=1

E
[ ∫

R

(gαh (Sn(i) + u) − gαh (Sn(i)))uνα(du)

− Sng
α
h (Sn)

]
+ R1 + R2 + 1

n

n∑
i=1

E
[
RN (Sn(i))

]
=

n∑
i=1

∫ N

−N

E
(Kνα(t,N)

n
−Ki(t,N)

)
(gαh )′(Sn(i) + t)dt

+ 1
n

n∑
i=1

E(RN (Sn(i))) + R1 + R2,



578 N. S Upadhye and K. Barman

the desired conclusion follows.

Proof of Theorem 3.18 With the help of above three lemmas, we now find
bound in the dW2 distance for α-stable approximation with α ∈ (1, 2). By (3.4),
we have

E[h(Sn) − h(X)] = E

(
−Sng

α
h (Sn) +

∫
R

(gαh (Sn + u) − gαh (Sn))uνα(du)
)

+ E

(
β +

∫
|u|>1

uνα(du)
)
gαh (Sn).

To get a bound on E[h(Sn) − h(X)], it is sufficient to bound the right hand
side of the above equality relation. By Lemma 5.8 and (3.22), we have

∣∣∣∣∣
n∑

i=1

∫ N

−N

E
(Kνα(t,N)

n
−Ki(t,N)

)
(gαh )′(Sn(i) + t)dt

∣∣∣∣∣
≤ 1

2 ||h
′′||

n∑
i=1

∫ N

−N

∣∣∣∣Kνα(t,N)
n

−Ki(t,N)
∣∣∣∣ .

Note that,∣∣∣∣∣ 1n
n∑

i=1
E(RN (Sn(i)))

∣∣∣∣∣ ≤ 1
n

n∑
i=1

E

∫
|u|>N

|f ′(Sn(i) + u) − f ′(Sn(i))|uνα(du)

≤ 2||h′||
∫
|u|>N

|u|να(du), and

|R1| =

∣∣∣∣∣
n∑

i=1
E
[
Zi{f ′(Sn) − f ′(Sn(i)))}

]
1{|Zi|≥N}

∣∣∣∣∣
≤ 2||h′||

n∑
i=1

E
[
|Zi|1{|Zi|>N}

]
.

Using (3.23), we have

|R2| ≤
1
n

n∑
i=1

∣∣∣∣E[
∫
R

(gαh (Sn + u) − gαh (Sn))uνα(du)

−
∫
R

(gαh (Sn(i) + u) − gαh (Sn(i)))uνα(du)]
∣∣∣∣

≤ 1
n

n∑
i=1

E

∣∣∣∣∫
R

[(gαh (Sn + u) − gαh (Sn(i) + u))

−(gαh (Sn) − gαh (Sn(i)))]uνα(du)|
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≤ Cα,m
1
n

n∑
i=1

E|Zi|2−α.

Also, for m1 = m2 = m and β = 0, we have∣∣∣∣∣E
(
β +

∫
{|u|>1}

uνα(du)
)
gαh (Sn)

∣∣∣∣∣ =

∣∣∣∣∣
(
β +

∫
{|u|>1}

uνα(du)
)
Egαh (Sn

∣∣∣∣∣
= 0,

where the last equality holds as the integral
∫
{|u|>1} uνα(du) = 0. Combining

all the estimates above, we get the inequality of the theorem, as desired.

Appendix A: Appendix

In this section, we prove some technical results used in the previous sections.

Proposition A.1. Let X ∼ S(α, β,m1,m2). Then, its characteristic exponent
ηα given in (2.4) can be written in the following form.

ηα(z) =
{
izγα − dα|z|α

(
1 − iθ z

|z| tan π
2α

)
, α ∈ (0, 2) \ {1},

izγ1 − d1|z|(1 + iθ z
|z|

2
π log |z|), α = 1,

where α ∈ (0, 2), γα ∈ R, dα ≥ 0 and θ ∈ [−1, 1].

Proof. Recall that for X ∼ S(α, β,m1,m2), the characteristic exponent is given
by

ηα(z) = izβ +
∫
R

(eizu − 1 − izu1{|u|≤1}(u))να(du), z ∈ R,

where να is the Lévy measure given by

να(du) =
(
m1

1
u1+α

1(0,∞)(u) + m2
1

|u|1+α
1(−∞,0)(u)

)
du.

Now, we have to consider three different cases to proceed to the derivations
of these expressions.

(i) α ∈ (0, 1)
As noted in Section 2, for α ∈ (0, 1), the integral

∫
{|u|≤1} uνα(du) < ∞.

Indeed
∫
{|u|≤1} uνα(du) = m1−m2

1−α Denote β1 = β − m1−m2
1−α . So, one can write

ηα as

ηα(z) = izβ1 +
∫
R

(eizu − 1)να(du), z ∈ R (A.1)

Suppose z > 0, then from (A.1)

ηα(z) = izβ1 +
∫ ∞

0
(eizu − 1)να(du) +

∫ 0

−∞
(eizu − 1)να(du)
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= izβ1 + m1

∫ ∞

0
(eizu − 1) du

u1+α
+ m2

∫ 0

−∞
(eizu − 1) du

|u|1+α

= izβ1 + zα
(
m1

∫ ∞

0
(eiv − 1) du

v1+α
+ m2

∫ ∞

0
(e−iv − 1) dv

v1+α

)
(A.2)

Applying Cauchy’s Theorem of contour integration on (A.2), we have

ηα(z) = izβ1 + zα
(
m1e

−iπ
2 αL(α) + m2e

iπ
2 αL(α)

)
,

where L(α) =
∫∞
0 (e−y − 1) dy

y1+α < 0, see [18, p.164].
Thus,

ηα(z) = izβ1 + zαL(α)
(
(m1 + m2) cos(π2α) + i(m2 −m1) sin(π2α)

)
= izβ1 + zαL(α)(m1 + m2) cos(π2α)

(
1 + i

m2 −m1

m1 + m2
tan(π2α)

)
For z < 0,

ηα(z) = ηα(−z)

= izβ1 + (−z)αL(α)(m1 + m2) cos(π2α)
(

1 + i
m2 −m1

m1 + m2

z

|z| tan(π2α)
)
.

Therefore, for any z ∈ R

ηα(z) = izβ1 + |z|αL(α)(m1 + m2) cos(π2α)
(

1 + i
m2 −m1

m1 + m2

z

|z| tan(π2α)
)

= izγα − dα|z|α
(

1 − iθ
z

|z| tan(π2α)
)
,

where γα = β1 = β − m1−m2
1−α , dα = (m1 + m2) cos(π2α)

∫∞
0 (1 − e−y) dy

y1+α and
θ = m1−m2

m1+m2
.

(ii) α ∈ (1, 2)
As noted in Section 2, for α ∈ (1, 2), the integral

∫
{|u|>1} uνα(du) < ∞.

Indeed
∫
{|u|>1} uνα(du) = m1−m2

1−α Denote β2 = β − m1−m2
1−α . So, one can write

ηα as

ηα(z) = izβ2 +
∫
R

(eizu − 1 − izu)να(du), z ∈ R (A.3)

Suppose z > 0, then from (A.3)

ηα(z) = izβ2 +
∫ ∞

0
(eizu − 1 − izu)να(du) +

∫ 0

−∞
(eizu − 1 − izu)να(du)

= izβ2 + m1

∫ ∞

0
(eizu − 1 − izu) du

u1+α
+ m2

∫ 0

−∞
(eizu − 1 − izu) du

|u|1+α
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= izβ2 + zα
(
m1

∫ ∞

0
(eiv − 1 − iv) du

v1+α
+ m2

∫ ∞

0
(e−iv − 1 + iv) dv

v1+α

)
(A.4)

Applying Cauchy’s Theorem of contour integration on (A.4), we have

ηα(z) = izβ2 + zα
(
m1e

−iπ
2 αM(α) + m2e

iπ
2 αM(α)

)
,

where M(α) =
∫∞
0 (e−y − 1 + y) dy

y1+α > 0, see [18, p.164].
Thus, for any z > 0

ηα(z) = izβ2 + zαM(α)
(
(m1 + m2) cos(π2α) + i(m2 −m1) sin(π2α)

)
= izβ2 + zαM(α)(m1 + m2) cos(π2α)

(
1 + i

m2 −m1

m1 + m2
tan(π2α)

)
For z < 0,

ηα(z) = ηα(−z)

= izβ2 + (−z)αM(α)(m1 + m2) cos(π2α)
(

1 + i
m2 −m1

m1 + m2

z

|z| tan(π2α)
)
.

Therefore, for any z ∈ R

ηα(z) = izβ2 + |z|αM(α)(m1 + m2) cos(π2α)
(

1 + i
m2 −m1

m1 + m2

z

|z| tan(π2α)
)

= izγα − dα|z|α
(

1 − iθ
z

|z| tan(π2α)
)
,

where γα = β1 = β − m1−m2
1−α , dα = (m1 + m2) cos(π2α)

∫∞
0 (1 − e−y − y) dy

y1+α

and θ = m1−m2
m1+m2

.
(iii) α = 1
For z ∈ R, it is easy to show that

∫ ∞

0

cos zu− 1
u2 du = −π

2 z

Now, suppose z > 0, then

η1(z) = izβ +
∫ ∞

0
(eizu − 1 − izu1{|u|≤1})ν1(du)

+
∫ 0

−∞
(eizu − 1 − izu1{|u|≤1})ν1(du) (A.5)

Let us consider second integral of (A.5). Then, we have∫ ∞

0
(eizu − 1 − izu1{|u|≤1})ν1(du)
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= m1

(∫ ∞

0

cos zu− 1
u2 du + i

∫ ∞

0
(sin zu− zu1{|u|≤1})

du

u2

)
= m1

(
−π

2 z + i lim
ε→0+

∫ ∞

ε

(
sin zu

u2 − z
u1{|u|≤1}

u2

)
du

)
(A.6)

Using the transformation zu = v and changing suitably the limit of integration
on (A.6), we have

∫ ∞

0
(eizu − 1 − izu1{|u|≤1})ν1(du)

= m1

(
−π

2 z + lim
ε→0+

(
−z

∫ εz

ε

sin v

v2 dv + z

∫ ∞

ε

(
sin v

v2 −
1{|v|≤1}

v

)
dv

))
= m1

(
−π

2 z − iz log z + iz

∫ ∞

0

(
sin v

v2 −
1{|v|≤1}

v

)
dv

)
(A.7)

The last equality of (A.7) follows, since limε→0+
∫ εz

ε
sin v
v2 dv = limε→0+

∫ εz

ε
1
vdv =

log z. If we set Γ =
∫∞
0

(
sin v
v2 − 1{|v|≤1}

v

)
dv, then (A.7) simplifies to

∫ ∞

0
(eizu − 1 − izu1{|u|≤1})ν1(du) = m1

(
−π

2 z − iz log z + izΓ
)

Similarly, the last integral of (A.5) leads to∫ 0

−∞
(eizu − 1 − izu1{|u|≤1})ν1(du) = m2

(
−π

2 z + iz log(−z) − izΓ
)

Thus, for any z > 0

η1(z) = izβ − (m1 + m2)
π

2 z + i(m2 −m1)z log z + iz(m1 −m2)Γ

= iz(β + (m1 −m2)Γ) − (m1 + m2)
π

2 z
(

1 − i
(m2 −m1)
m1 + m2

2
π

log z
)

For any z < 0,

η1(z) = η1(−z)

= iz(β+(m1 −m2)Γ)−(m1+m2)
π

2 (−z)
(

1 − i
(m2−m1)
m1+m2

z

|z|
2
π

log(−z)
)
.

Therefore, for any z ∈ R

η1(z) = iz(β + (m1 −m2)Γ) − (m1 + m2)
π

2 |z|
(

1 − i
(m2 −m1)
m1 + m2

z

|z|
2
π

log |z|
)
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= izγ1 − d1|z|
(

1 + iθ
z

|z|
2
π

log |z|
)
,

where γ1 = β + (m1 −m2)Γ, d1 = (m1 + m2)π2 and θ = (m1−m2)
m1+m2

.
This completes the proof.

Proposition A.2. Let x, z ∈ R and α ∈ (0, 1). Then, for all t ≥ 0,

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
=

(
−x + β1 +

∫
R

ueizuνα(du)
)

(iz), (A.8)

where β1 = β −
∫
{|u|≤1} uνα(du), and να is the Lévy measure given in (2.3).

Proof. Recall from Section 2, if X be a α-stable random variable with α ∈ (0, 1)
one can write

φt(z) = φα(z)
φα(e−tz) = exp

(
izβ1(1 − e−t) +

∫
R

(eizu − eiue
−tz)να(du)

)
, t ≥ 0,

where β1 = β −
∫
{|u|≤1} uνα(du) (see (2.5)).

Now, let us consider LHS of (A.8),

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
= lim

t→0+

1
t

(
exp

(
izx(e−t − 1) + izβ1(1 − e−t) +

∫
R

(eizu − eiue
−tz)να(du)

)
− 1

)
= lim

t→0+

1
t

(exp (A + iB) − 1) , (A.9)

where

A =
∫
R

(cos(zu) − cos(zue−t))να(du) and

B =
(
zx(e−t − 1) + zβ1(1 − e−t) +

∫
R

(sin(zu) − sin(zue−t))να(du)
)
.

Applying Euler’s formula for complex exponential to (A.9), and rearranging
the limits, we have

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
= lim

t→0+

eA cos(B) − 1
t

+ i lim
t→0+

eA sin(B)
t

.

(A.10)

It is easy to show that at t = 0, eA cos(B) − 1 = 0 and eA sin(B) = 0. Thus,
on applying L’Hospital rule on (A.10), taking limit as t tend to 0+, and using
dominated convergence theorem, we have

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
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=
(∫

R

iu sin(zu)να(du) − x + β1 +
∫
R

u cos(zu)να(du)
)

(iz)

=
(
−x + β1 +

∫
R

u(cos(zu) + i sin(zu))να(du)
)

(iz)

=
(
−x + β1 +

∫
R

ueizuνα(du)
)

(iz),

the desired conclusion follows.

Proposition A.3. Let x, z ∈ R and α ∈ (1, 2). Then, for all t ≥ 0,

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
=

(
−x + β2 +

∫
R

u(eizu − 1)να(du)
)

(iz),

where β2 = β +
∫
{|u|>1} uνα(du), and να is the Lévy measure given in (2.3).

Proof. Recall from Section 2, if X be a α-stable random variable with α ∈ (1, 2),
one can write

φt(z) = φα(z)
φα(e−tz)

= exp
(
izβ2(1 − e−t) +

∫
R

(eizu − eiue
−tz − iuz(1 − e−t))να(du)

)
, t ≥ 0,

(A.11)

where β2 = β +
∫
{|u|>1} uνα(du).

Now, let us consider LHS of (A.11),

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
= lim

t→0+

1
t

(exp (C + iD) − 1) , (A.12)

where

C =
∫
R

(cos(zu) − cos(zue−t))να(du) and

D =
(
zx(e−t−1)+zβ2(1−e−t)+

∫
R

(sin(zu)−sin(zue−t) − zu(1 − e−t))να(du)
)
.

Applying Euler’s formula for complex exponential to (A.12), and rearranging
the limits, we have

lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
= lim

t→0+

eC cos(D) − 1
t

+ i lim
t→0+

eC sin(D)
t

.

(A.13)

It is easy to show that at t = 0, eC cos(D) − 1 = 0 and eC sin(D) = 0. Thus,
on applying L’Hospital rule on (A.13), taking limit as t tend to 0+, and using
dominated convergence theorem, we have
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lim
t→0+

1
t

(
eizx(e−t−1)φt(z) − 1

)
=
(∫

R

iu sin(zu)να(du) − x + β2 +
∫
R

u(cos(zu) − 1)να(du)
)

(iz)

=
(
−x + β2 +

∫
R

u(cos(zu) + i sin(zu) − 1)να(du)
)

(iz)

=
(
−x + β2 +

∫
R

u(eizu − 1)να(du)
)

(iz),

the desired conclusion follows.

Proposition A.4. Let α ∈ (0, 2). Then,

1
α

∫
R

ug′(x + u)να(du) =
∫
R

(g(x + u) − g(x)) να(du), g ∈ S(R),

where να is the Lévy measure given in (2.3).

Proof. We use Fubini’s theorem and change in the order of integration in the
following proof.

For α ∈ (0, 2), we have

∫
R

ug′(x + u)να(du) = m1

∫ ∞

0

ug′(x + u)
u1+α

du + m2

∫ 0

−∞

ug′(x + u)
(−u)1+α

du

= m1

∫ ∞

0

g′(x + u)
uα

du−m2

∫ 0

−∞

g′(x + u)
(−u)α du

= αm1

∫ ∞

0
g′(x + u)

∫ ∞

u

1
z1+α

dzdu

− αm2

∫ 0

−∞
g′(x + u)

∫ u

−∞

1
(−z)1+α

dzdu

= αm1

∫ ∞

0

1
z1+α

∫ z

0
g′(x + u)dudz

− αm2

∫ 0

−∞

1
(−z)1+α

∫ 0

z

g′(x + u)dudz

= α

∫ ∞

0
(g(x + z) − g(x)) m1

z1+α

+ α

∫ 0

−∞
(g(x + z) − g(x)) m2

(−z)1+α

= α

∫
R

(g(x + u) − g(x)) να(du),

the desired conclusion follows.
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Proposition A.5. Let α ∈ (0, 1) and h ∈ Hδ with δ ∈ (0, α). Then,

|xgαh (x)| ≤ ηα,β,δ,m1,m2(x) := |β1|‖h′‖ + Cα,δ,m1,m2 + |x| ∧ |x|δ + E|X|δ.

Proof. For α ∈ (0, 1), we have by (3.4),

|xgαh (x)|=
∣∣∣∣−β1g

α
h (x)−

∫
R

ugαh (x+u)να(du)+(h(x) − h(0))−(Eh(X)−Eh(0))
∣∣∣∣

Thus, by (3.16) and (3.18), we have

|xgαh (x)| ≤ |β1|‖h′‖ + Cα,δ,m1,m2 + |x| ∧ |x|δ + E|X|δ := ηα,β,δ,m1,m2(x),

the desired conclusion follows.

A.1. A continuous distribution without finite first moment and
differentiable characteristic function

In this appendix, we present that the characteristic function of symmetric-Pareto
distribution is differentiable. For more examples on probability distributions
having no finite first moment and yet a differentiable characteristic function, we
refer the reader to [30].

Let X be a symmetric-Pareto random variable with density

fX(x) =
{

c
x2 , |x| ≥ a

0, |x| < a,

where a > 0, and c > 0 is a normalizing constant. Then its characteristic
function is given by

φ(t) =
∫
R

eitx
c

x2 dx = 2c
∫ ∞

a

cos tx
x2 dx

Observe that, φ(t) is even. We can write the difference 1−φ(t)
2c for t > 0 as

follows.

1 − φ(t)
2c =

∫ ∞

a

1 − cos tx
x2 dx =

∫ 1/t

a

1 − cos tx
x2 dx +

∫ ∞

1/t

1 − cos tx
x2 dx

Observe also that 1− φ(t) is a real-valued and non-negative function. For an
arbitrary u ∈ R, we have 0 ≤ 1 − cosu ≤ min{2, u2}. This fact implies that
1−φ(t) is not greater than some constant multiplied by the function h(t) where
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h(t) = t2
∫ 1/t

a

dx + 2
∫ ∞

1/t

1
x2 dx.

However, since h(t) = o(t) as t → 0, we find that

φ(t) = 1 + o(t) as t → 0.

Therefore the characteristic function φ(t) is differentiable at t = 0.
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