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Abstract: We present results on parameter estimation of the linear par-
tially observed Gaussian system of stochastic differential equations. We pro-
pose new one-step estimators which have the same asymptotic properties as
the MLE, but much more simple to calculate, the estimators are so-called
“estimator-processes”. The construction of the estimators is based on the
equations of Kalman-Bucy filtration and the asymptotic corresponds to the
small noises in the observations and state (hidden process) equations. We
give conditions which provide the consistency, asymptotic normality and
asymptotic efficiency of the proposed estimators.
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1. Introduction

Let us consider the problem of parameter estimation for partially observed linear
system. The observed process is:

dX, = f(0,0)Y, dt +eo (£) dW,, Xo =0, (1.1)
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where the hidden process Y; is solution of the equation
dY; = a(9,t)Yedt +eb (t) dV;, Yo =yo #0. (1.2)

Here {W;,0 <t < T} and {V;,0 <t < T} are independent Wiener processes
and the functions f (-),0 (-),a(-),b(:) are known. The unknown parameter ¢ €
O = (o, 8), for |a| + |8| < co. Therefore we have to estimate ¥ by observations
XT=(X;,,0<t<T).

The problem of the construction of adaptive Kalman filter was treated by
many authors in engineering literature, where the models of observations are
mainly of discrete time form (see, e.g., [9], [10], [11], [24] and references therein).
The identification of continuous time partially observed systems were studied as
well by some authors (see, e.g., [1], [2], [4], [5], [15], [17], [19], [20] and references
therein). Similar problems for continuous time hidden telegraph process were
studied in [3], [14].

In this paper we discuss the asymptotic properties of the estimators in “small
noises” case, that is for ¢ — 0. In [15], the well known maximum likelihood
estimator (MLE) . and Bayes estimator (BE) V. are introduced. Denote the
true value of the unknown parameter as ¥, € ©. The construction of these
estimators is based on the likelihood ratio function

(19 XT) qug

{/ 0 L0000 0x, [y (g’w?dﬁ},

Here m (9,t) = Ey (Y| X;,0 < s <) is the conditional expectation, satisfying
the Kalman-Bucy filtration equations

(XT)

m (9,t) = a (3, t)m (9,t)dt

A CAOFACH)) [AX; — f (9, t)m (¥,t)dt],  (1.3)

£20 (t)?
57((91;70 =2a (9,t)y (9,t) — RN (19:2)0 ‘(i)(g’t) +e2b (1), (1.4)

with initial values m (9,0) = yo and v (¢,0) = 0. The Kalman-Bucy filter en-
ables us to have online estimating or track unobservable signals. Thus the equa-
tion is linear and the Gaussianity of the observable perturbed SDE yields the
asymptotical properties of the estimators. For example, the MLE and BE are
given by the following relations

o)L (9,XT) dv

3 Ty T
L(ﬁg,X )_ZggL(ﬁ,X ). g, = LW XT 0

(1.5)

with p(d) some known prior density function. Denoting I(9y) (details on Sec-
tion 3) the Fisher information, it is shown in [15] that under regularity condi-
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tions, the two estimators are consistent, asymptotically normal

-

0 N (0,1(190)‘1) , Je —do

- — N (0.100)7")  (16)
and asymptotically efficient. We take here and after “=" for “convergence in
distribution”.

It is evident that the construction of the MLE and BE according to the
relations (1.5) is hard to compute, because we need solutions of the system (1.3)-
(1.4) for all 9 € ©. Therefore numerical realization of these Constructions is
difficult.

In the present work our goal is to propose other estimators, which can
be much more easily calculated, and have the same asymptotic properties as
mentioned in (1.6). Moreover, we construct estimator-processes, i.e., estimators
which evolve in time. The One-step estimator in general is well known. Such one-
step procedure was firstly proposed by Fisher [6]. Then it was used by many
authors, see, e.g., [8], [14], [12], [21], [18].

The construction is done in two steps. In Section 2, we construct a preliminary
consistent estimator 5TE by the observation X™ = (X;, 0 < t < 7.), where
7. = &% with § € (0,1). Note that 7. — 0 when ¢ — 0. This means that
the preliminary estimator depends only on a small part of initial observations,
of which the length converges to zero, but slower than e. In Section 3 and
Section 4, we propose the One-step MLE and then the estimator process, in
using the preliminary estimator and the score function:

R
. =0, + 1. (9,.)" / % [dX, — f(Or., 8)m(D., s)ds]
Te oS

where dot means the derivation w.r.t. ¢, m(t,d) is the conditional expectation
of V; wrt. {X;,0<s <t} and M (¢,s) = f(9,8)y (¥, s), with y (9, s) defined
in Section 3. In Section 5, we propose an efficient estimator for conditional
expectation m(6y, t), which is used in the definition of estimator, but the solution
could be disturbing. In Section 6, two examples are given and so does a numerical
realization.

2. Preliminary estimator

We say that h(9,t) € Cp if the function h (9,t),9 € O,t € [0,T] is bounded,;
h(9,t) € Cél) orh(V,t) € Ct(l) if the function A (-, -) is continuously differentiable
on ¥ or t respectively. We denote the derivatives w.r.t. ¥ as h (¢,t) and the
derivatives w.r.t. t as h' (¢,¢).

Let us introduce the Conditions Z:

Ry. The functions f (9,t),0 (t),a(9,t),b(t) € Cyp.
K. The functions f(9,t),a(9,t) € Cq(gl), The function f(ﬁ,t) € Ct(l),
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Rs. The function f(9,0) and its derivative f(9,0) are separated from zero:
inf |f (9 inf |7 (9,0)|
Inf |f(9,0)[ >0,  if|f(J,0)]>0

Ry. The initial value yg # 0.

Recall that %, is a necessary condition for existence of consistent estimator
for the model of observations (1.1)-(1.2). If yo = 0, then we can denote X; =
71Xy, YV, = e71Y; and rewrite the system (1.1)-(1.2) as follows

dX, = f(9, )Y, dt + o (t) dW,, X, =0,
dY; = a(9,t)Y; dt +b(t)dV;, Yo =0.

Hence this system does not depend on ¢ and there is no consistent estimation
(see Khasminskii [13]). The condition which makes main sense here is %3, which
propose the identification of the unknown parameter. In proposition 2.1 we
consider how to construct the preliminary estimator if this condition is replaced
by another one. Without loss of generality we suppose that

Yo >0, f(9,0) > 0 and f (9,0) > 0. (2.1)

Let us denote z4() and y, () the solutions of the equations (1.1), (1.2) for
e=0:

220 fo,0m(@), w0 ) =0,
WD) — a0, ), wl) = o

Hence

xe(9) =yo | f(9,8)A(I,s)ds,

ye(¥) =yo A(W,t), AW,t)= exp{/ota(ﬁﬂ")dr}.

The following equalities are easy to calculate:

i) =< [ 89 G5B av.

t
X — xy (Vo) —8/ f (Yo, s /b jggz’;;dV ds+5/ o (s) dW,
9 0
A(ﬁo,s) /t
(99,8) ————~ds dV, +¢ s) dW,
/ /f ") A (0o, @ Ve te J, 7

Hence we can write

Y —y (Do) = €&, Xt —xy (Vo) = eny, 0<t<T,
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where & and n; are Gaussian processes with Ey & = 0, Ey,n: = 0 and for any
p>0

Ey, |&]7 < C1tP/2, Ey, || < Cat?/2. (2.2)

The constants Cq > 0,C2 > 0 do not depend on ¥y and t € [0, 7] (see [23]).
In the vicinity of the point ¢t = 0 the function z; () is monotonically increas-
ing on ¥ according to (2.1), and we have

e (@) = i%f ¢ (9), z¢ (B) = sgp x¢ (0) .

Further, following [14] and [20] we put 7. = £%,6 > 0, and introduce three sets

Be = {2+, (o) < Xr. <27 (B)},
B. ={X.. <z ()}, IB;' ={X.. >z, (B)},

we define the estimator

Ur. = alygoy + pelipy + Bligry, (2.3)

where g, is the solution of the equation z,_(u.) = X,_.

This is what we called preliminary estimator, which will be used in the next
section for construction of asymptotically efficient estimator. The definition of
this preliminary depends on the solution of the equation =, (1:) = X,_, but
only for fixed time 7., which is of small value. This would not bring difficulties
in numerical realization, as what we will do in Section 6.

Theorem 2.1. Suppose that the conditions % be fulfilled and § € (0,2), then
the estimator U, is uniformly consistent on compacts K € ©, i.e., for anyv > 0
and any compact K

sup Py, (|-, — 190’ >v) —0, ase—0. (2.4)
VoK

Moreover, for any p > 0,

p
- €

sup Ey |9, — %P < C — 0. 2.5

190€IH)< 190| e 0‘ ( /7> ( )

Proof. We have

Py, (|1§TE - 190| > 1/) =Py, (|1§T€ —190| > V,]B;) + Py, (|pte — Vo] > v, B,)
+ Py, (|1§T€ —190| > v,BY)
<Py, (BD) + Py, (|ue — Vol > v,B.) + Py, (BY) .

Let [ak, Bk] C © be such that K C [ak, Sk]. We can write

&0 (9) :yo/ot [f(ﬂ,s)+f(19,s)/08d(19,r)dr} A0, ) ds.
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By conditions %> and %3, there exists k., > 0 such that for sufficiently small ¢
we have the estimate

inf 4 > Kyt
1516161:15(19)_/125

With the help of (2.2), we have

sup Py, (BZ) = sup Py, (X, — x5, (Vo) < 27, () — 1, ()

Fo€K Yo €K
< sup Py, (|X7. — 2. (0)| 2 2+, (o) — 2r. ()
o€k
< sup Py, (|X7. — 2. (Y0)| = 27, (oK) — 2+, (@)
o€k
< sup Po, (|Xr, — 27, (90)] = . (a — ) )
YoeK
Ey, | X, — 2. (90)|" eP
< sup Opl p( p)| S /2"
dock Ky (ag —a)’ 78 7P

Similar estimate could be obtained for the probability Py, (BT ). Further

€

X,. — 27, (90)
i‘Ts ([’lf)

eb

Py, (|/$5_190| >V)E€):P190 < >V,BE> <C

2 )
VPTEP/

with fi. certain value between p. and 9y according to the mean value theorem.
For the moments,

E190 ’197'5 - 190‘? < (190 - a)p P190 (Bs_) + (5 - 190);0 Pﬁo (Bj)
€p

+ Ey, |pe — 90" 1py < CW = Cel=29p,
€

Thus we obtain the convergence of the moments for ¢ € (0, 2).

Case f (9,t) = [ (¢).
The condition %5 is not fulfilled in this case. We introduce new conditions
as follows:

%Y The function a (9,t) € Cél) and a (V,t) € Ct(l).

Ry The function a (9,t) and its derivative a (9,t) are separated from zero

inf a (4,0) > 0, inf a (9,0) > 0.
€0 €0

Proposition 2.1. Let the conditions %1, %5, %3, X4 be fulfilled and 7. = el
with 6 € (0,2/3). Then the estimator ¥ is uniformly consistent on compacts
K C © and

Ey, |0, — 00| < Ce>%. (2.6)
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Proof. The proof of Theorem 2.1 can be applied here with the only difference
in the estimation of &, (). We have

t s
¢ (9) = yo/ f (8)/ a(0,7r)drA(9,s)ds > x*t2.
0 0
Hence follow the proof of Theorem 2.1 we obtain the estimate

~ 2
By, [T, — do|” < 0.
€

3. One-step MLE

Let us re-write the equation (1.3)-(1.4) as follows
dm (9,) = [a (9,1) = D (9,1) £ (9, )] m (9, 1) dt + D (9,£) dXy,

8’7* (197 t) Y+ (197 t)2 f (19’ t)2
ot B o (t)?

=2a (0,) yx (9, 1) +b(t)?, 7. (9,0) =0,

where v, (9,1) = v (0,t) /e2 and D (9,t) = v, (9,t) f (0,1) [o (t)*.
We introduce the condition

K. The functions f (%,9),a(0,) € (31(92). The function f(-,t) € Ct(l).

It can be shown that the random process m (¢,t),0 <t < T is continuously
differentiable w.r.t. ¢ with probability 1 (see, e.g., [16]). The derivative (9, ¢)
satisfies the equation

din (0,1) = [a (9,) — D (8,1) f (9,8)] 1 (9,1) dt + D (0, 1) dX,
+ [a (0,8) — D (0,8) f (9,8) — D (0,1) f (0, t)] m(9,t)dt.  (3.1)

Therefore for ¥ = ¥y and ¢ = 0, we obtain deterministic function ¢ (Jo,t) =
m (Yo,1)|._,, which can be written as follows

J (o, t) = /0 P00 [ (9, 8) — D (,5) f (0, 9)] v (9o)ds, (32)
where
B (0,1, 5) =/ la (90,7) — D (0,7 f (B0, 7)] dr.

Note that y (¢,t) # y: () except at point ¥, and that ¢ (9o, t) # y: (o).
We define the Fisher information as follows

w)/T lfw,wytw)+f<z97t>y<z97t>] & 1) =1 0)

o (t)
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which is obtained as the following limit
[(¥) = — lim €202 In L(9; X 7T).
e—0
The family of measures of this statistical experiment is locally asymptotically

normal, therefore we have the Hajek-Le Cam’s lower bound on the mean square
risks of all estimators ¥, (see, e.g., [16])

lim lim  sup e 2Ey (9. —9)° >1(9) ".

V=050 [9—do|<v
We call the estimator 97 asymptotically efficient if for all ¥9 € © we have

lim lim  sup e 2By (9" —0)> =1(0) . (3.3)

v—0e—0 ‘197’(90‘<l/

Let us introduce the estimator

N
Ve =n (1575)/7 Ma(%ﬁt) [dXe = f (I ) m (I t) dt] . (34)

where we denoted M (9,t) = f (0,t) ye (9) + f (9,1) 9 (9, 1).

Theorem 3.1. Suppose that the conditions By, o, R, Ry are fulfilled and
6 € (0,1), then the One-step MLE 9% has following properties:

1. It is uniformly consistent on compacts K € ©: for any v > 0

sup Py, {|9% — Jo| > v} — 0.
YoeK

2. It is uniformly asymptotically normal
e (W5 — ) = (~ N (o, I (790)—1) :
3. The moments converge: for any p > 0
e PEy, |95 — 9o|" — Ey, [C|”.

4. It is asymptotically efficient satisfying (3.3).
Proof. We have

x_ 9, — _ T M (0,.,t) -
196 7-90 — 197'5 7-90 + IT ("97— )71 / ( = ) th
€ € e . o(t)

1 (TN (0n) ] )
f g ) g e m D - SO omi, ]

Here we used the innovation representation [23]

dX; = f (9o, t) m (9o, t) dt +eo (t) dW,;, Xo =0,
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the Wiener process W; is defined by this equality as [23]. Note that 9, — 9o
and 7. — 0, there is the convergence uniformly on compacts:

/TM( 7'57 / M 1907 1(190)
Te 0'

and by the central limit theorem we have

_ 1 TM (9,.,t) - »
Aa‘lnwa/rs o) W= N (010907

Recall that m(9,t) = ¢(9,t)+ O (g), and that m(9,t) = y.(9)+ O (¢) = y(I,t) +
O (¢). We have

F(@Wo, tym(do,t) — f(Or,, tym(J, , t)

= [f(d0,t) - f(z%g,t)] m(o,t) = f(Ir.,t) [m(Dr,, t) = m(Do, 1)]

= (Vo — Vr.) f(Or, t)m (0, ) — (9r. — Do) (-, ) f (D, 1)
= (90 = 92.) [F@r. tym(0r. 1) + F(@r, (0, 1) + Re
— (9o — 0

9o =52 [0 00T t) + T 00 + Re).

where 1§TE is certain V~alue between 1975 and vy, according to Taylor’s formula.
Here we denoted R., R., the random variables satisfying the estimates

P
€
sup Ey, |R. <C’supE19 Oy — ﬁopSC’(—).
Do €K o [Fel” do€ o[- | Ve
Therefore we obtained the representation

_ - 2
95 — 9 3. — 1 /T M (3,.,1)
£ =A H 1-— — £ dt *

€ et £ L. (9:) J. o(t 2 + K

.. — Vo) R
:A5+( = 60)R67

with corresponding R}. We can write

9 p 3 2P
9. — 0 * 9, — 0
sup Ey, (0. —9o) B2 < C sup Ey, Wr. =%0)" < CeP1-0) .
YoEK € YoEK £
Hence
9 — 9 B
S :As+o(1):>N(O,I(190) 1).

We obtain thus the uniform convergence of moments on compacts:

e 2By, (0 —90)> — L(¥9) "
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This uniform convergence gives us the asymptotical efficiency:
sup e 2By (97 —9)° = sup 1(9)"" 207 (9o) "
[9—F0|<v [9—D0|<v

Case f (0,t) = f (1)
The estimator 1, is defined by the same equation (2.3). The Fisher infor-
mation is

T 2 . 2
Lo- [ Wdu 1) =1, (9).

We define the estimator just as (3.4), in putting f (9._,t) = 0:

.7 1 Ty (0.t B 5
9=+ s / RS X S O () 4]

Let us introduce
Rs. The function a(9,-) € Cff). The function a (9,t) € Ct(l).

Proposition 3.1. Suppose that the conditions %1, %5, X%, RZy be fulfilled and
0 € (0,1/3), then the One-step MLE 9% has the properties

1. It is uniformly on compacts consistent: for any v > 0

sup Py, {|9F — Y| > v} — 0.
VoK

2. It is uniformly asymptotically normal
e (02— o) = N (0,1(00) ),

3. It is asymptotically efficient.

Proof. The proof of this proposition is similar as the one given in Theorem 3.1.
The only difference is in the estimate:

| (97, — 9o) Re|

Eoo < Ce™'Ey, (r. — o )2 < Cem M0 = 0T .

e

4. One-step MLE-process

Let us consider the problem slightly different. We have the model of observa-
tions (1.1)-(1.2) with unknown parameter ¥ € © and we are interested in the
construction of the adaptive Kalman-Bucy filter to approximate m (dg,t) =
Ey, (Y| X5,0 < s <t). We can not use m (9%,t) because the estimator 9% de-
pends on the observations X7 = (X,,0<s <T), where (X,,t <s<T) are
the future. Therefore we need an estimator-process {U7 .,0 < t < T'}, where the
estimator ;. has the following properties
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e it is adaptive and depends on (X, 0 < s <t);
e it can be easily calculated;
e it is asymptotically efficient.

We prefer not to use the MLE ﬁt,s obtained as solution of the equation

L., XY = sup L(9,X")
€

because its calculation for all ¢ € (0,T") requires the solutions of the filtration
equations (1.3)-(1.4). The numerical realization of such procedure would be too
complicated.

We propose the One-step MLE ﬁm, T <t <T,called One-step MLE-process,
defined as follows

N R /tM(fT)’j) (X, — F (Fy8)m (,,8)ds], (L)

g\s

L= [ %d I (9) = 15 (9)

Here 7 is fixed which means we construct the preliminary estimator on obser-
vation {X;, 0 <s <7}

Proposition 4.1. Let the conditions %1, %z, Xy, %4 be fulfilled and ¢ € (0,1).
Then the One-step MLE-process V¢ ., 7 <t < T is uniformly consistent, asymp-
totically normal

Dye — 0 -
L V(0 W0) ).
and the random process n. (t) = e+ (@t’e — 190> , 7 <t<T forany 7 € (0,T),
converges in distribution to the random process 1 (t):

,5)

n =00 =) [ %

where {ws,0 < s < T} is some Wiener process.

dws, T<t<T

)

Proof. For any t € (7,T], the consistency and asymptotical normality follow
from Theorem 3.1. We consider the vector (ne (t1),...,n: (tx)). The represen-
tation obtained in the proof of Theorem 3.1:

_197—190 P _1/tM(1§T,5) -
Te (t)_ c +I7‘(?97') . O'(S) dWS

LN (Fs)
T ), o Yt ) = S0 @, o]




222 Y. A. Kutoyants and L. Zhou
allows us to verify the estimate
Ey, [n. (t1) = n- (t2)| < Ot — 1), (4.2)

where the constant C' > 0 does not depend on e. The calculations are direct
but cumbersome. The convergence of finite-dimensional distributions and es-
timate (4.2) provide us that the measures induced in the space of continuous
functions C [, T] by the processes 7. (-) converge weakly to the measure of the
process 7 (-) (see details of the proof in the similar situation in [18], [25]).

This weak convergence provides us the relation: for any 7 € (0,7) and any

v>0
S Y P,
P,, ( sup IL(d,) | 2e =0 >v>
T<t<T €
E (9
— Py, | sup /des > v
r<t<r [Jo 0 (8)

=Py, ( sup (W (V)| > V) .
A, <A<Ar

Here W (-) is a Wiener process and
L 2 T 2 T ar 2
/\:/L’;)ds, AT:/ L’;)d& AT:/ L’;)ds.
o o(s) o o(s) 0 o (s)

Thus we have the One-step MLE-process is uniformly consistent: for any 7 €
(0,T) and any v > 0 we have

Py, ( sup |97 . —190‘ > V) — 0.

T<t<T

We remind that the initial time 7 could be fixed or depend on ¢ as 7. =
€% — 0, this means that the length of preliminary observation converges to zero
as € — 0, but slower. We define a modified One-step MLE 97 _,7. <t < T as
follows

* Q 1 tM ’g‘l’s? Q q
9=ty | : @zs) [0, f (Fre, ) m (3r,5) ds] . (43

Proposition 4.2. Let the conditions %1, %y, Ry, X4 be fulfilled. Then the modi-
fied One-step MLE-process U ., 7e <t < T is consistent, asymptotically normal,

Yie =% _ <O,It (190)‘1)

3

and efficient.
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Proof. As 7. — 0 we have 7. < 7 for any 7 > 0. The result follows from the
Theorem 3.1.
The adaptive equations of filtration can be written as follows

dme (t) = a (95 ,t) m. (t)dt

t,er

I Ve (t) f (;9;,57 t) [

o (t)
2 * 2
Oee ) ::za(ﬂ:@7t)v*ﬁ(t)—-W*ﬁ(t) f(f“s’ﬂ

ot 40

dX, — f (05, t)me (t)dt],  (4.4)

t,er

+b(t)?, (4.5)

with initial values m. (7.) = m. (@TE’E, TE) and s (72) =7 (57575, TE).

The equations (4.3)-(4.5) give us closed system, which allows us to calculate
the estimator and the approximation of the conditional expectation in recurrent
form.

5. On efficient estimation of m (9, 1)

Recall that m (Yo, t) is the mean squared optimal estimator of Y;. The random
process me (t), 7= < t < T can be considered as an estimator of the random
function m (do,t),7. < t < T. It is interesting to study the asymptotically
efficient estimators in this problem. For any estimator m. (t) of the random
function m (9, t), we have the following lower bound on the mean square error.

Theorem 5.1. Let the conditions %y, %o, Rs, Ry be fulfilled, then for any Vo €
©, any t € (0,T] and any estimator m. (t) we have

o ) i 1 (0, t)2
lim lim sup & 2Ey|me. (t) —m (9t 2> y(i’ 5.1
Hom)m_ﬂf\)@ o e (2 @oF > (o) 51)

Proof. The proof of this inequality follows the main steps of the proof of van
Trees inequality in [7] and in [22]. Let us remind the main steps of the proof.
For given density function p (¢),%y — v < ¥ < ¥¢ + v such that p (Y £ v) =0,
we introduce the Fisher information

Po+v - 2
P ()
I, = —— dv < .
P /190_y p(0)

Then we can write

Yo+v
Byl () - m @02 [ Byl ()~ m 0,0 p0)
9

‘19—190‘<l/ 0o—V

= E|me (t) —m (9,1))°
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Note that E is the double mathematical expectation defined by the last equality.
Let us denote

L (9,90, X") = %(Xt)
_ tf(ﬂ,s)m(ﬁ,s)—f(ﬁo,s)m(ﬂo,s)
= exp {/0 2y (8)2 dX,
_/tf(ﬁ,s)zm(ﬁ7s)2—f(ﬁo,s)zm(ﬁo,s)z s
0 220 (s)° '
We have

Po+v - (9 .
/190—u (1) — m (9,)) 5 L (9,90, X*) p (9)] 40

= (me (1) = m (9.5)) L (9.9, X p )]

Yo+v
+/ i (9, 5) L (0,00, X*) p (9) dD
9

o—Vv

Yo+v
:/ i (0,5) L (9, 99, X*) p (9) do.
9

o—V

Therefore

Vo+v
:/9 By 1 (9, ) p (9) 0, (5.2)

where we changed the measure Ey, L (9,79, X*) = Ey. Recall that

0 t
%IHL(1971905X) .
:/ f(ﬁ,s)m(ﬁ,i)+f2(197$)m(1978) [AX, — f(0,s)m(9,s)ds].
0 20 (s)
Hence

Bo+v 2
(E% | (1) —m (9, 0)] 2 [ (9, 90, X') p ()] dﬁ)
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(L (19,1;(; XOPON L (9,95, x7) p (9) dﬁ)

Yo+v
< By, /19 (e () — m (0, D)2 L (8,90, X*) p(9) do

o—Vv

Yo+v n t 2
xEﬁo/ﬂ {81 [ng(gX)pw)]} L (9,90, X") p (9) d0

o—V

Yo+v
- /19 Ey [ (t) = m (9,8)]>p (9) dv

o—Vv

Yotv oL (0,90, X117
x (/19 Ey [TO] p(9) d19+1p>. (5.3)

o—V
Here we used Cauchy-Shwarz inequality and the property of stochastic integral

alnL(ﬁ ﬁo,Xf)

_Eﬁ/ f (9, s) 19;)4252(19 ,8) 1 (9, 5) [dX, — f(9,8)m (9, s)ds] = 0.

Ey

Thus

[alan 790,Xt)]2
, | dmeW,vo, A )

B f @, 8)m¥,s)+ f(09,8)m(9,s) . -

=Fo </ eo (s) dW)

_ ! Jé(ﬂ,s) (0, 8) + f(¢,8)m(9,s)

fEﬂ/O < 2o () )

:i ¢ f(ﬁ,s)y(ﬁ,s)—&—f(ﬁ $)y (9, 8) 2ds(1—|—0(5))

2 Jo o (s)

. 2
_Eiz ; (M;g;)) ds(1+0(s))=€i21t (9) (140 (e)). (5.4)

Using (5.2)-(5.4) we obtain the relation

o+v 2
(/19 ) Eﬁm(ﬁ,s)p(ﬁ)dﬁ>

Jo+v Tt
< Eme (t) — m (9,1) ([9 L) <1+0<s>>p<ﬂ>dﬁ+1p>,

o-v €
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which can be written as follows

(i@ pm ) 1oE)
>

e °E |’r7lE (t) - m(ﬂ,t” Fo+v It (19)]7(’!9) dv (1 +0 (8)) +521p

19071/
Yo+v . 2
o (I @) p @ a0) 02
- ot — 9y
Syt 1t () p (9) dv (Yo

Therefore we obtained the van Trees inequality (5.1).
The asymptotically efficient estimator of the conditional expectation m (g, t)
is defined as estimator m. (t) which satisfies

. o . 2 (Y, t)°
lim lim  sup e “Ey|m. (t) —m ¥, t)]" = ==

5.5
v—0e—0 [9—0|<v It (190) ( )

for all ¥y € ©.

To construct an asymptotically efficient estimator we have to modify slightly
the estimator m. (t). The solutions of the equations (1.3) and (4.4) can be
written as follows

m(ﬂo,t) = yoN(’ﬂ(),t) +N(’L90,t)/ m dXs, (56)
t *
me (t) = yo Ne (9%, 1) + N, (ﬁ*,t)/ % dXs,

where

N (do,1) = exp { / [ (0,8) = 7. (Do, 5) f (Do, 5)°0 ()% ds} ,

N. (9%,1) = exp {/: [a (020 8) = Yue () f (0508) 0 (s)—ﬂ ds} ,

Q (7907 t) = V=« (1907 t) f (190, t)U (t)727 Qs (19*7 t) = Vx,e (t) f (19;57 t)U (t)72‘

We can not put ¥; . in m (Jo,t) because the stochastic integral

t
/ F(9;..5) dX,

is not well defined for F (d,t) = Q (9, s)N (9,5)". We will use the so-called
robust version of the integral. It is given by the formula

¢ ¢
/ F(,s) dXs =F (9,t) Xy — F (9, 7.) X,. —/ F' (9,5) X ds, (5.7)

where
F,(ﬁ’s):Q’(ﬂ,s)N(ﬂ,s)—QQ(l?,s)N’(ﬂ,s), (5.8)
N (0, s)
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N’ (9,8) = N (9, s) [a (9, 5) — vs (Do, 8) f (Do, 8)° & (s)_z} .

Let us denote the right side of equality (5.7) as G (9, X*,t) and introduce the
estimator

ml(t) =yo N (V5. t) + N (9;.,t) G (95, X") (5.9)
which we compare with
m('ﬂo,t) :yoN(ﬂo,t)+N(190,t)G(’l90,Xt) . (510)

Remind that we comprehend F’ (97, s) as that is written in (5.8), therefore
the equality (5.7) will no more be valid if ¥ is replaced by ;.. This means that
the estimator in (5.9) is not exactly m (9 ., ).

Recall that

m(ﬁo,t)|E:0 = y()N(’lg(),t) + N (190,15) G (190,{,13t) = Yt (19()) .

It is interesting to see if the proposed estimator m} (¢) is optimal in some
sense.

Proposition 5.1. Let the conditions %1,@2,%{3,%4 be fulfilled, then the esti-
mator m% (t) is asymptotically efficient, i.e., for any t € (0,T] and any Yy € ©
we have

b m sup e 2By [t () — m (9, 0) = 900t
1 1 u m —m = -]
v—0e—0 ‘19 ,’90F|)<V v € ’ It (190)

Proof. Let us consider the difference between (5.9) and (5.10). Applying Taylor’s
expansions,

mZ (t) —m (9,t) = yo [N (9., t) — N (9,1)]
+ [N (95 t) = N(,0)] G (05, X")
LN (9.0) [G (97, X") — G (9, X7)]
= (19:5 _19) [yo_‘_G(ﬁ:e’ )} (19;57 )
+ (07 = 0) N (9.) G ., X")
) [(yo +G (9, X)) N(@,t) + N (9, 1) G(v,xt)} (1+7.)
)
)y (0

— (9. =) | (o + G (9,2)) '(ﬁ,t)+N(ﬂ,t)G(ﬂ,xt)} (1+RE)

(14 R

The conditions %, allow us to verify that the derivatives N (¢,t), N(0,t) are
bounded. The derivatives of G (9, X*) are

= .-

i
G(9,X") =X F(9,t) - X F(0,1) —/ F' (0, 5) Xods,
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t
G(9,X" =X, F(9,t) — X F(0,7.) —/ F' (9, 5) Xds.

Te
Therefore we have for any p > 0

P eso

sup Eg‘Rs — 0.

‘197190‘<l/

We can write formally

mi (t) —m (9,t) = m (9], t) —m (9,t) + 0 (1) = (9], — ) m(9,t) + o (1)

£ t,er

=05, =)y, t)+0(1)

and
. 2
sup e By |m? (1) —m (0,02 = sup LDy,
[9—0|<v [9—dol<v 1t (V)
§(0,6)% vso § (00, 1)
sup — .
j9—vo|<v 1 (V) It (9o)

6. Two examples

We show the construction of preliminary estimators, which are simpler and could
be easily realized by numerical method.

Example 1. In this example we have the following system:

dXt :ﬂfthdthsatth, X():O, OStST,
dY; = a;Ye dt +eb, dVi, Yo =yo #0.

For simplicity of exposition, we suppose that functions fy,a, o4, bs,t € [0,T]
are positive and bounded. The function f; € Ct(l). The observations are X7 =
(Xt,0 <t <T) and the process {Y;,0 < ¢t < T} is hidden. The unknown pa-
rameter ¥ € © = (a, 8), a > 0.

The limit (¢ = 0) system is

xr (9) = 19/0 fsys ds.

We put 7. = ¢ and define the preliminary estimator by the relation

b, = :x5£60)+6775:190+ _E
0 fsys ds fO fsys ds 0 fsys ds

Hence

Te -2 2
By, (7, — 00)” = <2 ( / fsysds) Boi, <C°
0

€
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Example 2. In the second example the partially observed system is

dXt:ft}/tdt-i-é‘O'tth, )(0:07 OSLLST,
dY; = Ya;Y; dt + by dVi,  yo # O.

We have Y; = y; (90) + €& and the limit equation is

t

e (Vo) = yo + 190/ asys (Vo) ds.
0

Therefore we can write
t t
X :/ ststJre?/ os dW,
0 0
t t t
= / fsys (%) ds + 5/ fs€sds + 5/ os dW,
0 0 0

t t s t t
=10 fsds + g / fs / aryr (9o) drds + 5/ fs&sds + E/ o, dWs.
0 0 0 0 0

For small values of 7 we have

2

X‘r_yO/ fsds:ﬁ0f0a0y0%+O(T3>+E/ fsgst-i-E/ ades-
0 0 0

The preliminary estimator can be defined as follows

_ 9 Te
9y =—(x, - / sds). 6.1
: foaoy073< - 0 f (6.1

The error of estimation is

2
Ey, (1§TE - 190)2 <Cr2+ C’% —-C (526 Jr52735) '

g

Hence if 6 € (0,2/3), then this estimator is consistent. The optimal choice,
which minimizes the right hand side of this inequality is § = 2/5.

In the simulation, we take firstly constant coefficient functions. We put f; =
f, as =a, oy =0, by =b for constants f, a, ¢ and b. Thus we have

9t JYo vt

and  x4(9) = xo + s

Yyt (9) = yoe"
With fixed constants and ¢, true value Jg = 1, we simulate processes X; and
Y:, and then calculate the preliminary estimator i,. according to (6.1), with
7. = /6. Thus we have the estimator-process

t _
_ _ 3, _ ~

7‘9;6 = 7.97—5 + I7t'5 (197—5)71 / (( 325) [dXs - f(ﬁTE’S)m(ﬂTE7S)dS] .

Te o (s
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Estimators

One-step MLE Process

We show in the first graphic Figure 1, the consistency of the preliminary esti-
mator ¥,, and the One-step estimator Up . wr.t. e. Note that the estimators
converge to the true value when € goes to zero. In the second graphic Figure 2, we
show the consistency of the One-step MLE process ¥; . w.r.t. ¢, for fixed e = 0.2.
The process begins with a preliminary estimator and converges to the true value
after some fluctuation. The fluctuation after the preliminary estimator is caused
by the small value of the initial Fisher information. In the third graphic Figure 3,

1.5
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1.00
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0.90

Y. A. Kutoyants and L. Zhou
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' :' ! ",’ v

- T T T T T T
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Fic 1. Consistency w.r.t. € for constant coefficients, Yo = 1.
—— One-Step MLE process
B ----  Preliminary estimator

—— Real value

\ T T T T

0.0 0.5 1.0 1.5 2.0 2.5

t

Fic 2. Consistency w.r.t. t for constant coefficients, 99 = 1, € = 0.2.

we present the normal approximation of ¢! (79?,5 — 190) for fixed e.
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Fic 3. Asymptotical normality for constant coefficients.
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Fic 4. Consistency w.r.t. t for linear coefficients, 99 = 0.5, € = 0.05.

Similar work was done for linear coefficients. The convergence of the estimator
is shown in Figure 4 and 5 w.r.t. t and ¢ respectivelly.

7. Discussion

1. The main conditions in the construction of One-step MLE 9% and One-step
MLE-process ¥; ., 7. < t < T are ‘f(l?,())’ > 0 or |a(¥,0)] > 0. Consider

t,er

the situation where both conditions are not fulfilled. Suppose that there exists
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- True value
— One-Step Estimator

0.8
|

One-step MLE
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0.0

epsilon

Fic 5. Consistency w.r.t. € for linear coefficients, 99 = 0.5.

70 € (0,T) such that

F(9,t) = f(t) Ljo<taryy + 99 (1) Liry<i<ty,

and a (¢,t) = a(t),0 < ¢ < T. Then the construction of these estimators can
be done as follows. First we solve the filtration equations on the interval [0, 7o)

t) f
am(0) = a@moars =OL 0~ Om@a, mo)=w
o

2
¥ ()7 f (1)’
o (t)°
Then we take m (79),7x (79) as initial values for the filtration equations on
the interval |79, T] and the preliminary estimator ¥,,,. can be constructed by
observations X7e = (X, 70 <t < 79 + 72).

2. Another question concerns the length of the “learning interval” [0, 7],
where 7. = % and ¢ € (0, 1). If we need the approximation of m (g, t) for the
values t smaller than the given 7., then we can use the construction of T'wo-step
MLE-process described in the work [18].

3. In the case of multidimensional ¥ € © C R? the main problem is in
the construction of the preliminary estimators. One way is to suppose that

the observed process is as well multidimensional X7 = (X r... ,Xg), where
X] =(X;4,0<t<T)and k > d. For example, suppose that

D7 (1)

= =20 (1) () - +b(H)?, % (0) =0.

dX;. = f; (9, t)Yedt +eoj (t) AW;y, Xjo=0, j=1,...,k,
dY; = a (0,t) Y, dt +eb(t) dVy, Yy =yo #0.
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Here Wi 4,..., Wi, V2,0 <t < T are independent Wiener processes. Then the
limit deterministic system is

t
dxj("iitt(ﬁ) =f; (ﬁ,t)yoexp{/ a(19,s)d5}7 zjo(W)=0, j=1,... k.
0

The version of the condition %5 in this case is based on the asymptotic (small
t) representation of ;¢ (¢). The purpose of this condition is to provide the
consistency of preliminary estimator. The choice of 7. has to yield the good rate
of convergence of this preliminary estimator.

Another possibility is to fix the learning interval [0, 7]. Then even for the
model of observations (1.1)-(1.2) with ¥ € © C R? we can use the minimum
distance estimator (MDE) 9. defined by the equation

. = axg nf /O X, — a0 ()] dt.
In this case the condition %5 is replaced by identifiability condition: for any
Yo € © and any v > 0 we have

inf 2y (0) — a2 (0)]% dt > 0.
St [ ) = 00)

It can be shown that the estimator 9, is consistent and ! (195 — 190) is asymp-
totically normal (see details in [16]). Then One-step MLE-process can be intro-
duced and studied following the same steps as it was done above.
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