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Abstract: Graphical models represent a powerful framework to incor-
porate conditional independence structure for the statistical analysis of
high-dimensional data. In this paper we focus on Directed Acyclic Graphs
(DAGs). In the Gaussian setting, a prior recently introduced for the param-
eters associated to the (modified) Cholesky decomposition of the precision
matrix is the DAG-Wishart. The flexibility introduced through a rich choice
of shape hyperparameters coupled with conjugacy are two desirable assets
of this prior which are especially welcome for estimation and prediction.
In this paper we look at the DAG-Wishart prior from the perspective of
model selection, with special reference to its consistency properties in high
dimensional settings. We show that Bayes factor consistency only holds
when comparing two DAGs which do not belong to the same Markov equiv-
alence class, equivalently they encode distinct conditional independencies;
a similar result holds for posterior ratio consistency. We also prove that
DAG-Wishart distributions with arbitrarily chosen hyperparameters will
lead to incompatible priors for model selection, because they assign dif-
ferent marginal likelihoods to Markov equivalent graphs. To overcome this
difficulty, we propose a constructive method to specify DAG-Wishart priors
whose suitably constrained shape hyperparameters ensure compatibility for
DAG model selection.
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1. Introduction

The analysis of multivariate data often aims at understanding the dependence
structures among variables, as in networks of protein-protein interactions. In
this context, graphical models represents a powerful modeling tool (Lauritzen,
1996). In particular graphs based on Directed Acyclic Graphs (DAGs) are suit-
able to study complex dependencies in a variety of scientific domains; see for
instance Friedman (2004), Sachs et al. (2003), Shojaie and Michailidis (2009),
Nagarajan and Scutari (2013). A joint distribution that embodies the condi-
tional independence structure represented by a DAG D is said to be Markov
with respect to D. Additionally, if the distribution is Gaussian, its covariance
matrix Σ, as well as its precision matrix Ω = Σ−1, will live in a subspace of
the set of symmetric and positive definite matrices because of the constraints
imposed by D.

Typically, the DAG which supposedly underlies the generating mechanism of
the observations is unknown, and the process of inferring it is named structural
learning. In the Bayesian framework this is cast as a model selection problem: a
prior distribution is assigned to the parameter space of each DAG (parameter
prior) producing a marginal likelihood which, coupled with a prior distribu-
tion on the space of all DAGs, leads to the posterior distribution on model
space. In view of model selection, Geiger and Heckerman (2002) proposed a
set of assumptions to assign priors on the parameter space of DAGs. Their
method is constructive and enjoys desirable properties in terms of the ensu-
ing marginal likelihood; furthermore it reduces to a hyper-Markov law (Dawid
and Lauritzen, 1993) when the graph is undirected and decomposable. Letac
and Massam (2007) deal with Gaussian decomposable graphs, and generalize
the hyper-inverse Wishart distribution on the covariance matrix to a richer
family using a representation of the graph in terms of a perfect DAG. Their
work is extended to arbitrary DAGs in Ben-David et al. (2015) leading to the
DAG-Wishart prior which exhibits the strong directed Markov property when
expressed as a prior on the modified Cholesky decomposition parameters of the
precision matrix. Theoretical properties of DAG-Wishart priors with regard to
DAG selection consistency have been investigated in Cao et al. (2019), also in
a high-dimensional setting where the number of nodes is allowed to grow with
the sample size.

In this paper we focus on priors for parameters when the goal is model selec-
tion. This task presents specific challenges, the main one being compatibility of
priors across models (Consonni and Veronese, 2008); for a review see Consonni
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et al. (2018). An additional complication arises when dealing with DAG models
because different DAGs may encode the same set of conditional independen-
cies (Markov equivalent DAGs). Markov equivalence induces a partition on the
space of DAGs into Markov equivalence classes (Andersson, Madigan and Perl-
man, 1997). If no causal interpretation is attributed to DAGs (Lauritzen, 2001;
Dawid, 2003), all DAGs in the same Markov equivalence class are indistinguish-
able based on obervational data, and therefore should have the same marginal
likelihood. This represents a basic compatibility requirement for priors for DAG
model selection, and is satisfied by the method of Geiger and Heckerman (2002).

Our contribution is threefold. First we show that posterior consistency for
model selection under DAG-Wishart priors holds only up to Markov equivalence,
that is only when the comparison is between the true graph and one that is
not in the same equivalence class. Next we highlight that DAG-Wishart priors
without suitably specified hyperparameters will fail to assign the same marginal
likelihood to Markov equivalent DAGs, and therefore are not compatible for
DAG model selection. This shortcoming is overcome in our third contribution
where we present a constructive method to obtain compatible DAG-Wishart
priors for model selection of high-dimensional DAGs, and show how this severely
constrains the shape hyperparameters of the DAG-Wishart.

The rest of this paper is organized as follows. In Section 2 we provide back-
ground material on the DAG-Wishart distribution and its properties for model
selection. In Section 3.1 we start from a simple example that illustrates the
behavior of the DAG-Wishart prior within a Markov equivalence class, then
show in Section 3.2 its inability to correctly select the true DAG among Markov
equivalent DAGs, and finally propose a compatible DAG-Wishart prior in Sec-
tion 3.3. An empirical illustration of the results is provided in Section 4. Sec-
tion 5 presents a brief summary, together with future directions of investigation
on objective compatible DAG-Wishart priors.

2. DAG-Wishart prior and equivalence classes

A Directed Acyclic Graph (DAG) D = (V,E) with vertex set V and edge set
E ⊆ V ×V , is a graph with no cycles, that is with no paths starting and ending
with the same node. The element e = (i, j) ∈ E, also expressed as i → j, denotes
the presence in the graph of an edge directed from vertex i to vertex j. For a
given DAG D, we assume a parent ordering of the vertices of D, whereby edges
can only be directed from vertices with larger order to those with lower order.
For a given D a parent ordering always exists, although it may not be unique.
Additionally the ordering depends on the DAG so that two distinct DAGs will
usually have distinct parent ordering of the vertices. The ordering allows to
specify a suitable parametrization of the DAG model and the ensuing prior. We
denote with oi(D) the order of node i ∈ V in graph D, with pai(D) the set of
parents of node i in D, and with fai(D) = pai(D) ∪ {i} the family of i in D.
Let y = (yi)i∈V be a p-variate Gaussian random vector with zero p-dimensional
vector mean and p × p positive definite covariance matrix Σ ∈ PD, where PD
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is the space of covariance matrices Markov with respect to D. In this case the
distribution of y obeys the directed Markov property with respect to D i.e.
yi |= y{j∈V :oj(D)>oi(D)}\pai(D)|ypai(D) (Lauritzen, 1996) where, for any A ⊆ V ,
yA is the column vector yA = (yi)i∈A. For the generic square matrix M we will
write MA for (Mij)i,j∈A, the submatrix of M whose rows and column indexes
belong to A; by convention y∅ = M∅ = 1. For two disjoint sets A,B ⊆ V , we
write MA|B for the Schur complement of MA in the matrix MA∪B . We finally
write Mi×A and MA×i, i ∈ V , for the column vectors (Mij)j∈A and (Mji)j∈A,
respectively.

The positive definite precision matrixΩ=Σ−1 has a uniquemodified Cholesky
decomposition Ω = LD−1L�, where L is a lower-triangular p× p matrix with
Lii = 1, i ∈ V , and D is a diagonal p × p matrix with positive entries on the
main diagonal; see e.g. Pourahmadi (2007). There is a relationship between the
Markov property of the distribution of y and the structure of L: Lij = 0 for
oj(D) < oi(D) if and only if i /∈ paj(D). We call LD the set of lower triangular
matrices with unit main diagonal entries and with off-diagonal terms coherent
with the parent ordering of D, and we call Dp

+ the set of p×p diagonal matrices
with positive entries. Then ΘD = Dp

+×LD is the Cholesky space corresponding
to D, and (D,L) ∈ ΘD is the Cholesky parameter.

The DAG-Wishart distribution πΘD
U ,a (Ben-David et al., 2015) on the Cholesky

space ΘD, with hyperparameter U (a p× p positive definite matrix) and shape
hyperparameter a(D) = (a1(D), . . . , ap(D)) has density

πΘD
U ,a(D)(D,L) =

1

ZD(U ,a(D))
exp

{
−1

2
tr
((
LD−1L�)U)} ∏

i∈V

D
− aoi

(D)

2
ii

(1)
for all (D,L) ∈ ΘD, with aoi(D) := aoi(D)(D) and ZD(U ,a(D)) being the
normalizing constant. The latter is finite, and hence the prior is proper, if
aoi(D) − vi(D) > 2 for all i ∈ V where vi(D) := |pai(D)| is the cardinality
of the parent set of i in D. Its expression is then

ZD(U ,a(D)) =

p∏
i=1

Γ

(
ci(D)

2
− 1

)
2

aoi
(D)

2 −1
(√

π
)vi(D)

∣∣Upai(D)

∣∣ ci(D)−3

2

∣∣Ufai(D)

∣∣ ci(D)−2

2

, (2)

with ci(D) := aoi(D) − vi(D). Density (2), when regarded as a parametrized
family in U , is not identifiable if we require U to be only positive definite;
however it becomes identifiable if U ∈ PD; see Ben-David et al. (2015).

Theoretical properties in terms of graph selection consistency and estimation
consistency of the DAG-Wishart prior are shown in Cao et al. (2019), under
regularity conditions that we will assume valid throughout the paper.

Let Y n be the n× pn data matrix, obtained by stacking one upon the other
the row-vectors y�

1 , . . . ,y
�
n which are independent and identically distributed

according to Npn

(
0,

(
LD−1L�)−1

)
, a distribution that obeys the directed

Markov property with respect to some DAG D, and the number of random
variables pn is increasing in n.
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If a priori (D,L) ∼ πΘD
Un,a(D), then a posteriori (D,L) ∼ πΘD

nS̃n,a(D)+n
, where

S̃n = Un/n + Sn and Sn =
∑n

j=1 yjy
�
j /n is the sample covariance matrix.

Therefore the DAG-Wishart prior is conjugate. For convenience, in the sequel
the dependence of Y n, Un, Sn, S̃n, and of all other quantities of interest on n
will be omitted, whilst we keep explicit the dependence on the graph dimension
pn, to highlight that it increases with the sample size.

Following Cao et al. (2019), the marginal likelihood of a DAG D can be
written as

π(Y |D) = (2π)−n/2ZD(nS̃,a(D) + n)/ZD(U ,a(D)),

and, accordingly, the Bayes factor between any two DAGs D and D0 is

BFD,D0 (Y ) =
ZD(nS̃,a(D) + n)

ZD(U ,a(D))

ZD0(U ,a(D0))

ZD0(nS̃,a(D0) + n)
. (3)

We have Bayes factor consistency if, for all D �= D0, BFD,D0

P̄→ 0 whenever

D0 is the true DAG generating Y , where
P̄→ denotes convergence in probability

and P̄ is the probability measure under the true DAG D0. On the other hand,
we have posterior ratio consistency if, with D0 being the true DAG, it holds
that, as n → ∞,

max
D�=D0

π(D|Y )

π(D0|Y )
= max

D�=D0

BFD,D0(Y )
π(D)

π(D0)

P̄→ 0. (4)

Notice that while Bayes factor consistency involves only a pairwise comparison,
equation (4) is evaluated over the whole DAG-space.

It is well known that two distinct DAGs can represent the same set of con-
ditional independencies in the joint distribution of the random vector y (see
the illustrative example in Section 3.1). In this case the two DAGs are obser-
vationally indistinguishable, and they are said to be Markov equivalent (Verma
and Pearl, 1991). The Markov equivalence class of a DAG D, denoted by [D],
is the set of all DAGs Markov equivalent to D. All DAGs in the same equiv-
alence class must have (i) the same skeleton (they are identical if edge direc-
tions are neglected); (ii) the same immoralities (the induced sub-graphs of the
form i → j ← z, with i, j, z ∈ V ). Since Markov equivalent graphs cannot
be distinguished on the basis of observational data, it is appropriate to re-
quire score equivalence, namely that any two Markov equivalent DAGs D and
D0 should have the same marginal likelihood, equivalently BFD,D0(Y ) = 1,
∀D ∈ [D0]. If a prior realizes score equivalence, we name it compatible. It fol-
lows that, if compatible parameter priors are used, the posterior probabilities
associated with two Markov equivalent DAGs will differ only if their prior prob-
abilities do.
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3. DAG-Wishart priors for model selection

3.1. A simple motivating example

Consider two DAGs D1 = (V,E1) and D2 = (V,E2), where V = {A,B}, E1 =
{(B,A)} and E2 = {(A,B)}, that is D1 is A ← B and D2 is A → B. They
are trivially equivalent, since they encode two alternative factorizations for the
same unconstrained joint density of A and B. Note that oA(D1) = oB(D2) = 1
and oB(D1) = oA(D2) = 2 provide a parent ordering. Clearly no observational
data (finite or infinite) can detect the orientation of the edge. Since D1 and
D2 are observationally equivalent, their marginal likelihood should be the same,
and consequently the Bayes Factor for the comparison of the two DAGs should
be identically equal to one for each n.

We now assign to (D,L), separately under D1 and D2, a DAG-Wishart prior
having shape hyperparameter a(D) = (a1(D), a2(D)), with aoi(D) > 2+ vi(D),
i ∈ V . We assume the same U under both D1 and D2, although this is not
strictly necessary. Only for the present section we assume that pn = p constant
in n. Then the normalizing constant of the prior under D1 is

ZD1 (U ,a(D1)) =
Γ
(

a1(D1)−3
2

)
Γ
(

a2(D1)−2
2

)
2

a1(D1)+a2(D1)
2 −2

√
π

U
a2(D1)−a1(D1)+2

2

A det (U)
a1(D1)−3

2

,

and similarly for ZD2 (U ,a(D2)) with A and a(D1) replaced respectively by B
and a(D2). The Bayes Factor of D1 against D2 is

BFD1,D2(Y ) =
m(Y |D1)

m(Y |D2)
=

ZD1

(
nS̃, n+ a(D1)

)
ZD1 (U ,a(D1))

ZD2 (U ,a(D2))

ZD2

(
nS̃, n+ a(D2)

)

= K(a(D2),a(D1))

[
det(nS̃)

detU

] a1(D2)−a1(D1)
2

[
UB + nSB

UB

] a1(D1)−a2(D1)−2
2

[
UA

UA + nSA

] a1(D2)−a2(D2)−2
2

,

where

K(a(D1),a(D2)) =
Γ
(

a1(D1)+n−3
2

)
Γ
(

a2(D1)+n−2
2

)
Γ
(

a1(D1)−3
2

)
Γ
(

a2(D1)−2
2

) Γ
(

a1(D2)−3
2

)
Γ
(

a2(D2)−2
2

)
Γ
(

a1(D2)+n−3
2

)
Γ
(

a2(D2)+n−2
2

) .
Note that, if (i) ai(D1) = ai(D2), i = 1, 2, and (ii) a1(Dj)−a2(Dj) = 2, j = 1, 2,
then BFD1,D2(Y ) = 1 as it ought to be because of the observational equivalence
of D1 andD2. On the other hand, for a general DAG-Wishart with no constraints
on the hyperparameters a’s – beyond those required for the prior being proper-
there is no guarantee that the Bayes factor between equivalent graphs will be
one. For instance, with the choice aoi(D) = vi(D) + 10, as in Cao et al. (2019,
Section 8.1), condition (ii) above is not satisfied because a1(D1) = a1(D2) = 11
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and a2(D1) = a2(D2) = 10. With this choice of hyperparameters, the Bayes
factor reduces to

BFD1,D2(Y ) =

[
UB + nSB

UB

UA

UA + nSA

]−1/2

and then

BFD1,D2(Y ) =

⎡
⎣σ2

A +Op

(
1√
n

)
σ2
B +Op

(
1√
n

)
⎤
⎦
1/2 [

UB

UA

]1/2
P̄→

√
UB

UA

σA

σB
,

both under D1 and under D2. Note that with this choice of a(D1) and a(D2),
Assumption 5(i) of Cao et al. (2019) is satisfied, and our simplified context of
pn = p is also coherent with their Assumptions 1, 2, 4 and 5(ii). The remaining
Assumption 3 concerns the prior on D, and therefore does not affect the result
on Bayes factor inconsistency.

If the true DAG generating the data is D2, the ratio of the posterior proba-
bilities is

π(D1|Y )

π(D2|Y )
= BFD1,D2(Y )

π(D1)

π(D2)

P̄→
√

UB

UA

σA

σB

π(D1)

π(D2)
.

Posterior ratio consistency between the equivalent DAGs D1 and D2 fails if the
ratio above is different from zero. This however is the case for any choice of
priors on model space for which π(D1)/π(D2) > 0. In particular, because the
prior on DAG-space of Cao et al. (2019, formula (3.1)) only depends on the
skeleton, it follows that π(D1)/π(D2) = 1 when D1 and D2 belong to the same
equivalence class as in our example, and this contradicts their Theorem 4.1.

3.2. Posterior ratio consistency for equivalent graphs

The example in Section 3.1 shows that a DAG-Wishart prior with freely chosen
shape hyperparameter a(D) does not produce the same marginal likelihood, and
does not reach posterior ratio consistency, within Markov equivalence classes of
DAGs. Proposition 3.1 shows that posterior ratio consistency under a general
DAG-Wishart prior only holds outside the Markov equivalence class of the true
generating DAG D0. On the other hand, the posterior ratio converges, up to a
constant, to the prior ratio within the true equivalence class.

Proposition 3.1. Let D0 be the true DAG and (D,L) ∈ ΘD0 . For (D,L) ∼
π
ΘD0

U ,a(D0)
and Y |((D,L)) ∼ Npn(0, (LD−1L�)−1), as n → ∞

i) max
D/∈[D0]

π(D|Y )

π(D0|Y )

P̄−→ 0,

ii)
π(D|Y )

π(D0|Y )

P̄−→ CD,D0

π(D)

π(D0)
, for all D ∈ [D0], D �= D0,

where CD,D0 is a positive constant.



Compatible DAG model selection 4117

Proof. See the Appendix.

We underline that part i) of Proposition 3.1 makes use of the regularity
Assumptions 1-5 employed by Cao et al. (2019). In particular, the prior on
DAG-space π(D) is chosen to be

π(D) ∝
∏
i∈V

qvi(D)
n (1− qn)

pn−oi−vi(D),

where qn = e−ηnn and ηn = dn(log pn/n)
1/(2+k), for some k > 0, so that the

probability of edge inclusion vanishes to zero exponentially fast in the limit.
On the other hand, part ii) makes no specific assumption on the prior on DAG
space. Furthermore, if this prior only depends on the skeleton then π(D)/π(D0)
is identically one because DAGs belonging to the same equivalence class share
the same skeleton.

Proposition 3.1 states that if D ∈ [D0] then under any specification of the
DAG-Wishart prior, posterior ratio consistency does not hold because 0 <
CD,D0 < ∞. Furthermore, compatibility within the equivalence class (that is
equivalent DAGs should have the same marginal likelihood) is not guaranteed
because CD,D0 can be different from one. We therefore elaborate on Theorem
4.1 of Cao et al. (2019), and carefully distinguish between graphs belonging to
the same Markov equivalence class, or living in distinct equivalence classes.

In the following corollary we formalize that the posterior mode D̂ will be in
the correct equivalence class with probability 1, but asymptotic model selection
consistency of the posterior mode is precluded within the equivalence class, as
there is no guarantee that the highest posterior mass will be assigned to the
correct DAG.

Corollary 3.2. Let D0 be the true DAG and (D,L) ∈ ΘD0 . For (D,L) ∼
π
ΘD0

U ,a(D0)
and Y |((D,L)) ∼ Npn(0, (LD−1L�)−1), as n → ∞

P̄ (D̂ ∈ [D0]) → 1,

P̄

(
D̂ ∈ argmax

D∈[D0]

CD,D0

π(D)

π(D0)

)
→ 1,

for finite non-null CD,D0 given in Proposition 3.1.

3.3. Compatible DAG-Wishart prior

In this section we provide a constructive method to obtain a DAG-Wishart
prior suitable for model selection because it satisfies score equivalence, that is
it produces a Bayes factor equal to one when comparing DAGs belonging to
the same Markov equivalence class. We follow the method of Geiger and Heck-
erman (2002), which we view as a method for assigning compatible parameter
priors across a collection of DAGs; see Consonni et al. (2018) for a discussion
of issues arising when specifying priors targeted for model selection. Geiger and
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Heckerman (2002) state a set of assumptions on the statistical model and the
prior which permit the construction of a parameter prior under any DAG model,
starting from a single parameter prior under a complete DAG model. An im-
portant byproduct of their methodology is that score equivalence is guaranteed
to hold.

First consider an unrestricted precision matrix Ω, corresponding to a com-
plete DAG Dc, and assign to it a Wishart prior Ω ∼ Wpn(a,U) having density

p(Ω | a,U) ∝ |Ω|
a−pn−1

2 exp

{
−1

2
tr(ΩU)

}
, (5)

where U is a positive definite matrix and a > pn−1 to guarantee that the prior
is proper.

Let (D,L) denote the modified Cholesky decomposition of Ω, so that Ω =
LD−1L�. Since |Ω| =

∏
i∈V D−1

ii , the prior on (D,L) induced from (5) is given
by

p(D,L | a,U) ∝
(∏

i∈V

D
− a−p−1

2
ii

)
exp

{
−1

2
tr((LD−1L�)U)

}
× J(D,L)

where J(D,L) is the Jacobian of the transformation Ω → (D,L). The following
Lemma gives the expression for the Jacobian in the setting of a general DAG.

Lemma 3.3 (Ben-David et al. 2015, Supplemental Section B). Let Ω be a
precision matrix, Markov with respect to a DAG D. The Jacobian of the mapping
Ω → (D,L) is

J(D,L) =
∏
i∈V

D
−(vi(D)+2)
ii . (6)

If D = Dc is complete, so that Ω is unrestricted, the number of parents of i is

pn − oi(Dc) and the Jacobian (6) becomes
∏

i∈V D
−(pn−oi(Dc)+2)
ii . Accordingly,

the prior on (D,L) induced by the Wishart prior (5) is

p(D,L | a,U) ∝
(∏

i∈V

D
− a+pn−2oi(Dc)+3

2
ii

)
exp

{
−1

2
tr((LD−1L�)U)

}
, (7)

because |Ω| a2− pn+1
2 ×J(L,D) yields

∏
i∈V D

−αi
2

ii where αi

2 = (a2 −
pn+1

2 )+(pn−
oi(Dc) + 2) = a+pn−2oi(Dc)+3

2 . In other words, the prior distribution on the
Cholesky space ΘDc induced by the Wishart distribution on PDc (the space of
positive definite matrices) is a DAG-Wishart whose shape hyperparameters have
the fixed configuration aoi(Dc) = a−pn+2(pn−oi(Dc))+3 = a+pn−2oi(Dc)+3.

For a given DAG D, a DAG-Wishart prior with symmetric positive definite
matrix U and vector a(D) satisfies the following conditions (Ben-David et al.,
2015)

(I) |=

i∈V

(
Dii,Lpai(D)×i

)
(global parameter independence),
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(II) Dii ∼ InvGamma
(

aoi
(D)−vi(D)−2

2 , 1
2Ui|pai(D)

)
(III) Lpai(D)×i|Dii ∼ Nvi(D)

(
−(Upai(D))

−1Upai(D)×i,Dii(Upai(D))
−1

)
.

Then, given an arbitrary DAG D and an allied parent ordering, a compatible
prior for (D,L) can be constructed as follows. For each node i ∈ V , (i) identify
a complete DAG Dc(i) s.t. pai(Dc(i)) = pai(D), (ii) obtain (Dc(i),Lc(i)), the
Cholesky decomposition parameter for the unconstrained Ω under Dc(i) and

(iii) assign to (Dii,Lpai(D)×i) the same prior of (D
c(i)
ii ,Lpai(Dc(i))×i). Figure 1

provides an illustration.
Although this procedure looks somewhat convoluted it is actually straightfor-

ward to apply. First of all it works separately for each node of the graph. Next,
from conditions (II) and (III) above, it appears that it depends on the matrix
U only through blocks corresponding to the node under consideration and its
parents in each specific DAG we entertain. It remains to work out the shape
hyperparameter of the Inverse Gamma distribution for Dii. Consider node i un-
der D with parent set pai(D) whose cardinality is vi(D). By construction node i
in the corresponding complete DAG Dc(i) will have the same parent set. Hence
vi(Dc(i)), the cardinality of the parent set of i in Dc(i), will be equal to vi(D).
From condition (II) we get

Dii ∼ InvGamma

(
aoi(Dc(i))− vi(Dc(i))− 2

2
,
1

2
Ui|pai(Dc(i))

)
,

and then aoi(Dc(i))−vi(Dc(i))−2 = a+pn−2(pn−vi(Dc(i)))+3−vi(Dc(i))−2 =
a − pn + vi(D) + 1. In conclusion, for any given DAG, the specification of the
compatible prior for the Cholesky parameter associated to each node i ∈ V ,
(Dii,Lpai(D)×i), requires only knowledge of the cardinality of its set of parents,
as we summarize in Algorithm 1.

Algorithm 1 Construction of compatible prior for (D,L)

Require: D, parent ordering, a(D) and U
for each node i ∈ V do

Dii ∼ InvGamma
(

a−pn+vi(D)+1
2

, 1
2
Ui|pai(D)

)
Lpai(D)×i|Dii ∼ Nvi(D)

(
−(Upai(D))

−1Upai(D)×i,Dii(Upai(D))
−1

)
end for
p(D,L) =

∏
i∈V p(Dii,Lpai(D)×i)

The compatible DAG-Wishart prior has aoi(D) = a − pn + 2vi(D) + 3 =
2vi(D) + (a− pn + 3). Interestingly, this has the structure aoi(D) = cvi(D) + b
recommended in the experimental section of Ben-David et al. (2015). Since a >
pn−1 but otherwise is a free hyperparameter, it follows that aoi(D) = 2vi(D)+b
(b > 2) ensures compatibility of priors.

Furthermore, the regularity Assumption 5 of Cao et al. (2019) requires, for
all i ∈ V and D, that 2 < aoi(D) − vi(D) < d for some constant d. When
the shape hyperparameters are constrained by the compatibility requirements,
the left-hand-side inequality aoi(D)− vi(D) > 2 is satisfied; on the other hand,
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since aoi(D)− vi(D) < vi(D)+ b, the right-hand-side inequality is satisfied only
if the cardinality of the parent sets has an upper bound as n grows (a sparsity
condition); see also Proposition 3.5 below.

Example 3.4. Consider DAG D in Figure 1, whose node labels satisfy a parent
ordering, with corresponding complete DAGs Dc(i), i = A,B,C,D. A compatible
prior for (D,L) is assigned, for any a > 3, as follows:

DDD ∼ InvGamma

(
a− 3

2
,
1

2
UDD

)

DCC ∼ InvGamma

(
a− 2

2
,
1

2
UC|D

)
LDC |DCC ∼ N1 (−UDC/UDD,DCC/UDD)

DBB ∼ InvGamma

(
a− 2

2
,
1

2
UB|D

)
LDB |DBB ∼ N1 (−UDB/UDD,DBB/UDD)

DAA ∼ InvGamma

(
a− 1

2
,
1

2
UA|BC

)

LBC,A|DAA ∼ N2

(
−U−1

BC,BCUBC,A,U
−1
BC,BCDAA

)
,

where the shape hyperparameter for the prior of DDD is given by a + pn −
2vD(D) + 1, with pn = 2 and vD(D) = 1, and similarly for the remaining
priors.

D C

AB

D
D C

AB

Dc(D) = Dc(B)

D C

AB

Dc(C)

D C

AB

Dc(A)

Fig 1. A DAG D with corresponding complete DAGs Dc(i), i = A,B,C,D for compatible
prior specification.

The next proposition specializes the result ii) of Proposition 3.1 to the case
of compatible DAG-Wishart priors.

Proposition 3.5. Let D0 be the true DAG and (D,L) ∈ ΘD0 . For (D,L) ∼
π
ΘD0

U ,a(D0)
and Y |((D,L)) ∼ Npn(0, (LD−1L�)−1), if aoi(D) = a−pn+2vi(D)+

3, for some a ≥ pn, i ∈ V ,

π(D|Y )

π(D0|Y )
=

π(D)

π(D0)
, for all D ∈ [D0], D �= D0.
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Furthermore, if vi(D) < d, for all i ∈ V , all n and some finite constant d, then

max
D/∈[D0]

π(D|Y )

π(D0|Y )

P̄−→ 0.

Proof. See the Appendix.

We remark that the first statement in Proposition 3.5 is not an asymptotic
result but it holds for each finite sample size n. Since score equivalence for
Markov equivalent DAGs is a natural and important requirement we believe
that posterior ratio consistency should only be required outside the Markov
equivalence class of the true DAG. Our compatible DAG-Wishart achieves this
double aim.

Propositions 3.1 and 3.5 together clarify that in the comparison between two
DAGs, posterior ratio consistency and score equivalence of Markov equivalent
DAGs are conflicting goals. In general a DAG is not identifiable based on obser-
vational data alone. This is still true if observational and interventional data are
entertained (Hauser and Bühlmann, 2015). Outside the Gaussian setup identi-
fiability of the true generating DAG is possible (Shimizu et al., 2006; Peters
et al., 2011). Interestingly within the Gaussian setting identification is still pos-
sible using a structural equation model with noise components all having the
same variance (Peters and Bühlmann, 2014).

Example 3.6 (continued). Back to the example in Section 3.1, the compatible
DAG-Wishart prior requires

a1(D1) = a1(D2) = a+ 3,

a2(D1) = a2(D2) = a+ 1,

for some a > 1. Therefore,

ZD1

(
nS̃, n+ a(D1)

)
=

Γ
(
a+n
2

)
Γ
(
a+n−1

2

)
2a+n

√
π

det
(
nS̃

) a+n
2

= ZD2

(
nS̃, n+ a(D2)

)
.

and similarly ZD1 (U ,a(D1)) = ZD2 (U ,a(D2)). Coherently with equivalents
graphs, the Bayes Factor is then equal to one, solving the contradiction.

4. Simulation studies

In this section we present two simulation studies to contrast the behavior of com-
patible and non-compatible, DAG-Wishart priors with regard to model choice.
With reference to the Example of Section 3.1, we consider two scenarios: 1)
the true DAG model is that of independence between the two variables and
the alternative is DAG D1, so the models are not equivalent; 2) the true DAG
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Fig 2. Bayes factor (BF) between competing and true model using a non-compatible DAG-
Wishart prior. Scenario 1): models are not Markov equivalent; scenario 2): models are Markov
equivalent. Reported BF is an average over M = 100 repetitions. The theoretical asymptotic
value is highlighted as a horizontal line.

is D1 and the alternative is D2, so the models are equivalent. In both scenar-
ios, the prior hyperparameter U is set equal to the identity matrix; addition-
ally a(D) = (11, 10) for all DAG models involved, so that the compatibility
requirement explicated in Section 3 is not satisfied. For each scenario we gen-
erate M = 100 data sets, and we replicate the experiment under two settings:
(a) σA =

√
2, σB = 1 and (b) σA = 1, σB =

√
2. For each of the four combina-

tions (1a), (1b), (2a) and (2b), Figure 2 reports the average Bayes factor (over
the M repetitions) of the competing model versus the true generating model
as a function of the sample size. As expected, under (1a) and (1b), wherein
DAGs are not Markov equivalent, we observe Bayes factor consistency, regard-
less of the values of σA and σB . On the contrary, under (2a) and (2b) the Bayes



Compatible DAG model selection 4123

factor converges to a theoretical value that is finite and, respectively, strictly
lower and higher than one. Therefore in the latter scenarios neither Bayes fac-
tor consistency nor compatibility is assured, and even if the data are in both
cases generated in accordance with D1, the two scenarios suggest contradicting
results, depending on the true underlying variances.

In a second study we extend our analysis to include compatible, as well as non-
compatible, DAG Wishart priors for the comparison of Markov equivalent and
non-equivalent DAGs. Specifically, we randomly generate three non-equivalent
DAGs using the R package pcalg (Kalisch et al., 2012; Hauser and Bühlmann,
2012), in a sparse setting with edge inclusion probability 3/(2pn − 2) (Peters
and Bühlmann, 2014; Castelletti et al., 2018). We also generate three equivalent
DAGs: we start from one randomly chosen DAG, and we generate a new DAG by
attempting to invert the direction of a randomly chosen edge, until the inversion
does not alter the corresponding equivalence class. Shape hyperparameters a(D)
for non-compatible priors have been all set equal to vi(D)+3, whilst compatible
a(D) are set to 2vi(D) + 3. The results for sample size n = 100 and number
of nodes pn ∈ {20, 50, 200} are shown in Tables 1, 2 and 3, respectively. For
M = 100 repetitions, we compute the log Bayes factors between the DAG in
the column against the DAG in the row. For each given DAG, each dataset is
obtained with n random extractions from the zero-mean multivariate Gaussian
distribution, Markov with respect to the row DAG, Npn

(
0,

(
LD−1L�)−1

)
,

where Dii = 1 for all i ∈ V and each Lij , i, j ∈ V , are uniformly chosen in the
interval [0.1, 1] if i ∈ paj(D), and Lij = 0 otherwise. We then report the mean
and standard deviation (in parenthesis) of each log Bayes factor, and highlight
the model with the highest log-BF in bold. We also report the proportion of
times that the corresponding model on the column is selected. Across all tables,
we note that when comparing non-equivalent DAGs, the correct model is always
chosen both with compatible and non-compatible hyperparameter specifications.
On the other hand, when we compare equivalent graphs, non-compatible choices
for a(D) may lead to wrong conclusions, whilst compatible specifications return,
by construction, Bayes factors that do not discriminate among models.

5. Discussion

The DAG-Wishart distribution is a flexible prior for the parameters associated
to the Cholesky decomposition of the precision matrix of a Gaussian model
Markov with respect to a given DAG. By allowing distinct shape hyperparame-
ters (one for each vertex) it can enhance estimation in high dimensional settings
through differential shrinkage (Ben-David et al., 2015). However care must be
exercised when using it in a model selection setting. In particular we show that
consistency properties proved in Cao et al. (2019) only hold for DAGs that do
not belong to the same Markov equivalence class. Furthermore, if the shape
hyperparameters of the prior distribution are freely chosen, two Markov equiv-
alent DAGs will be assigned different marginal likelihoods, an unreasonable
feature in model selection based on observational data. We present a construc-
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Table 1. Simulation study, pn = 20 and n = 100. Average log-Bayes factors between models on columns and rows, for compatible and non-
compatible DAG-Wishart priors, for three Markov equivalent, as well as non-equivalent DAGs. For each row 100 datasets were generated according
to the corresponding DAG. Highest log-Bayes factor is reported in bold, and standard deviation in parenthesis, together with proportion of times
corresponding model on the column is selected.

Non-compatible prior Compatible prior
D1 D2 D3 D1 D2 D3

Non-equivalent DAGs
D1 0.0000 -141.8839 -150.9445 0.0000 -144.9076 -154.0877

(0.0000) (14.8990) (15.1606) (0.0000) (15.1913) (15.4763)
100% 0% 0% 100% 0% 0%

D2 -175.7093 0.0000 -135.9295 -180.3152 0.0000 -138.4078
(18.0930) (0.0000) (17.0051) (18.2697) (0.0000) (17.1789)

0% 100% 0% 0% 100% 0%
D3 -138.2916 -100.1602 0.0000 -142.2880 -101.6536 0.0000

(15.5685) (11.9462) (0.0000) (15.7725) (12.1668) (0.0000)
0% 0% 100% 0% 0% 100%

Equivalent DAGs
D1 0.0000 -0.0559 0.2587 0.0000 0.0000 0.0000

(0.0000) (0.0869) (0.0879) (0.0000) (0.0000) (0.0000)
1% 2% 97% – – –

D2 0.0061 0.0000 -0.0778 0.0000 0.0000 0.0000
(0.0975) (0.0000) (0.1229) (0.0000) (0.0000) (0.0000)
44% 49% 7% – – –

D3 0.0142 -0.0467 0.0000 0.0000 0.0000 0.0000
(0.0853) (0.1184) (0.0000) (0.0000) (0.0000) (0.0000)
43% 17% 40% – – –
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Table 2. Simulation study, pn = 50 and n = 100. Average log-Bayes factors between models on columns and rows, for compatible and non-
compatible DAG-Wishart priors, for three Markov equivalent, as well as non-equivalent DAGs. For each row 100 datasets were generated according
to the corresponding DAG. Highest log-Bayes factor is reported in bold, and standard deviation in parenthesis, together with proportion of times
corresponding model on the column is selected.

Non-compatible prior Compatible prior
D1 D2 D3 D1 D2 D3

Non-equivalent DAGs
D1 0.0000 -413.5615 -368.6975 0.0000 -426.6263 -375.3692

(0.0000) (28.7591) (27.5878) (0.0000) (29.3854) (28.0724)
100% 0% 0% 100% 0% 0%

D2 -573.4748 0.0000 -496.4580 -583.3696 0.0000 -502.6452
(31.1688) (0.0000) (28.5000) (31.8421) (0.0000) (29.0201)

0% 100% 0% 0% 100% 0%
D3 -425.8196 -388.6999 0.0000 -434.5435 -401.2242 0.0000

(26.2763) (22.6814) (0.0000) (26.6887) (23.1208) (0.0000)
0% 0% 100% 0% 0% 100%

Equivalent DAGs
D1 0.0000 0.0903 -0.2258 0.0000 0.0000 0.0000

(0.0000) (0.1028) (0.1137) (0.0000) (0.0000) (0.0000)
19% 79% 2% – – –

D2 0.2385 0.0000 0.1554 0.0000 0.0000 0.0000
(0.0967) (0.0000) (0.1503) (0.0000) (0.0000) (0.0000)
81% 0% 19% – – –

D3 0.0547 0.1295 0.0000 0.0000 0.0000 0.0000
(0.1049) (0.1395) (0.0000) (0.0000) (0.0000) (0.0000)

8% 76% 16% – – –
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Table 3. Simulation study, pn = 200 and n = 100. Average log-Bayes factors between models on columns and rows, for compatible and non-
compatible DAG-Wishart priors, for three Markov equivalent, as well as non-equivalent DAGs. For each row 100 datasets were generated according
to the corresponding DAG. Highest log-Bayes factor is reported in bold, and standard deviation in parenthesis, together with proportion of times
corresponding model on the column is selected.

Non-compatible prior Compatible prior
D1 D2 D3 D1 D2 D3

Non-equivalent DAGs
D1 0.0000 -2125.1471 -2105.1915 0.0000 -2172.6796 -2144.7647

(0.0000) (61.1288) (60.3531) (0.0000) (62.1403) (61.1484)
100% 0% 0% 100% 0% 0%

D2 -1787.5176 0.0000 -1767.1222 -1822.8475 0.0000 -1806.6065
(55.6965) (0.0000) (56.7089) (56.7273) (0.0000) (57.8676)

0% 100% 0% 0% 100% 0%
D3 -1899.1510 -1904.9126 0.0000 -1929.2827 -1941.2513 0.0000

(55.9835) (57.5023) (0.0000) (56.8492) (58.3046) (0.0000)
0% 0% 100% 0% 0% 100%

Equivalent DAGs
D1 0.0000 -0.2662 -0.0570 0.0000 0.0000 0.0000

(0.0000) (0.0717) (0.0705) (0.0000) (0.0000) (0.0000)
82% 0% 18% – – –

D2 0.4220 0.0000 0.8709 0.0000 0.0000 0.0000
(0.1007) (0.0000) (0.1411) (0.0000) (0.0000) (0.0000)

0% 0% 100% – – –
D3 -0.4416 -0.7750 0.0000 0.0000 0.0000 0.0000

(0.1051) (0.1502) (0.0000) (0.0000) (0.0000) (0.0000)
0% 0% 100% – – –
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tive method for eliciting a DAG-Wishart prior that guarantees score equivalence
among Markov equivalent DAGs, by imposing constraints on the shape hyper-
parameters.

The analysis in Cao et al. (2019) and in this paper is predicated on the
choice of a proper prior for the Cholesky decomposition parameter. Often how-
ever, either because prior information is lacking or for a more neutral scientific
communication of findings, an Objective Bayes (OB) approach is deemed prefer-
able (Berger, 2006). An effective OB approach for model selection is represented
by the Fractional Bayes Factor (FBF, O’Hagan 1995). Briefly the idea is to start
with a default, typically improper, prior which is subsequently trained, using a
fraction of the entire likelihood, to produce a prior which is then coupled with
the likelihood raised to the complementary fraction to obtain an FBF marginal
likelihood for model comparison; see also Consonni and La Rocca (2012) and
Consonni, La Rocca and Peluso (2017) for an implementation of the FBF in a
graphical model setup. An interesting line of research is the construction of an
FBF compatible DAG-Wishart prior for model selection. Proving consistency
in high dimensional settings is challenging because the prior is data-dependent.
We conjecture that suitable sparsity conditions on the complexity of the graph
as n increases might allow the fraction to grow at a sufficiently slow rate to
achieve consistency.

Appendix

Proof of Proposition 3.1. We first prove ii). Assume that D ∈ [D0], that is D is
Markov equivalent to the true DAG D0. By Chickering (1995, Theorem 2), there
exists a sequence of Markov equivalent DAGs D0 =: D0,D1, . . . ,Dk−1,Dk := D
from D0 to D, such that graphs Di−1 and Di adjacent in the sequence differ
only for the reversal of a covered edge, that is for an edge (i, j) of D for which
paj(D) = pai(D) ∪ {i}. Therefore it is sufficient to compare D and D0 differing
only by one covered edge reversal. This means that, for some nodes i1 and i2,

pai1(D) = pai2(D0) =: pa∗,

pai1(D0) = pa∗ ∪ i2,

pai2(D) = pa∗ ∪ i1

pai(D) = pai(D0) for all i ∈ V \ {i1, i2}.

We first write the posterior ratio as

π(D|Y )

π(D0|Y )
=

m(Y |D)

m(Y |D0)

π(D)

π(D0)

=
ZD

(
nS̃, n+ a(D)

)
ZD0 (U ,a(D0))

ZD0

(
nS̃, n+ a(D0)

)
ZD (U ,a(D))

π(D)

π(D0)
.

Define the useful quantities v∗ := |pa∗|, ci(D) := aoi(D) − vi(D), c̃i(D) :=
aoi(D) − vi(D0) and c∗i (D) := aoi(D) − v∗. Note that ci(D) − ci(D0) =
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c̃i(D) − c̃i(D0) = c∗i (D) − c∗i (D0) = aoi(D) − aoi(D0). We can write the ra-
tio ZD (U ,a(D)) /ZD0 (U ,a(D0)) as

∏
i∈{i1,i2}

⎧⎨
⎩

Γ
(

c∗i (D)
2 − 1

)
Γ
(

c∗i (D0)−1

2 − 1
)

∣∣Upai(D)

∣∣ c∗i (D)−1

2 −1

∣∣Upai(D0)

∣∣ c∗
i
(D0)−2

2 −1

∣∣Ufai(D0)

∣∣ c∗i (D0)−1

2 −1

∣∣Ufai(D)

∣∣ c∗
i
(D)

2 −1

⎫⎬
⎭ ·

∏
i∈V \{i1,i2}

⎧⎪⎨
⎪⎩

Γ
(

c̃i(D)
2 − 1

)
Γ
(

c̃i(D0)
2 − 1

)
(∣∣Upai(D0)

∣∣∣∣Ufai(D0)

∣∣
) aoi

(D)−aoi
(D0)

2

⎫⎪⎬
⎪⎭
(√

2
)∑pn

i=1(ai(D)−ai(D0))

Using the following relationships:∣∣∣Upai1 (D)

∣∣∣ =
∣∣∣Upai2 (D0)

∣∣∣ = |Upa∗ | , (8)∣∣∣Upai1 (D0)

∣∣∣ =
∣∣∣Ufai2 (D0)

∣∣∣ = |Upa∗ |Ui2|pa∗ , (9)∣∣∣Ufai1 (D)

∣∣∣ =
∣∣∣Upai2 (D)

∣∣∣ = |Upa∗ |Ui1|pa∗ , (10)∣∣∣Ufai1 (D0)

∣∣∣ =
∣∣∣Ufai2 (D)

∣∣∣ = |Upa∗ | |Ui1,i2|pa∗ |, (11)

we can then write ZD (U ,a(D)) /ZD0 (U ,a(D0)) as

∏
i∈{i1,i2}

⎧⎨
⎩

Γ
(

c∗i (D)
2 − 1

)
Γ
(

c∗i (D0)−1

2 − 1
)
⎫⎬
⎭

U
aoi2

(D)−aoi1
(D)

2 −1

i1|pa∗

U
aoi1

(D0)−aoi2
(D0)

2 −1

i2|pa∗

∣∣Ui1,i2|pa∗

∣∣ aoi1
(D0)−aoi2

(D)

2

·
∏

i∈V \{i1,i2}

⎧⎪⎨
⎪⎩

Γ
(

c̃i(D)
2 − 1

)
Γ
(

c̃i(D0)
2 − 1

)
U

aoi
(D)−aoi

(D0)

2

i|pai(D0)

⎫⎪⎬
⎪⎭

(√
2
)∑pn

i=1(ai(D)−ai(D0))

.

The terms c̃i(D) and c∗i (D) are bounded for all i and D from Assumption 5
of Cao et al. (2019), and therefore C1

D,D0
:= ZD0 (U ,a(D0)) /ZD (U ,a(D)) ∈

(0,∞).
Define cni (D) := aoi(D)− vi(D) + n and note that

Γ
(

cni (D)
2 − 1

)
Γ
(

cni (D0)

2 − 1
) =

Γ
(

cni (D0)+(cni (D)−cni (D0))
2 − 1

)
Γ
(

cni (D0)

2 − 1
) ∼ n

cni (D)−cni (D0)

2 . (12)

We can state

π(D|Y )

π(D0|Y )
= C1

D,D0

π(D)

π(D0)

ZD
(
nS̃,a(D) + n

)
ZD0

(
nS̃,a(D0) + n

)
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�P̄ C2
D,D0

π(D)

π(D0)

S̃
aoi2

(D)−aoi1
(D)

2 −1

i1|pa∗

S̃
aoi1

(D0)−aoi2
(D0)

2 −1

i2|pa∗

∣∣∣S̃i2|pa∗

∣∣∣
aoi1

(D0)−aoi2
(D)

2

∏
i∈pa∗

S̃
aoi (D

j)−aoi
(D0)

2

i|pai(D0)

with C2
D,D0

:= C1
D,D0

(√
2
)∑pn

i=1(ai(D)−ai(D0))
, and where xn �P̄ yn for two

generic sequences xn and yn means that xn is of the same order as yn in prob-
ability P̄ . Note that the sub-matrices of S̃ in the formula above are of fixed
dimension, and we can then rely on S̃i1|pa∗ = Σi1|pa∗ + Op (1/

√
n), and sim-

ilarly for the other quantities. Therefore we can further simplify the posterior
ratio to

π(D|Y )

π(D0|Y )
�P̄ C3

D,D0

π(D)

π(D0)
,

with

C3
D,D0

:= C2
D,D0

Σ
aoi2

(D)−aoi1
(D)

2 −1

i1|pa∗

Σ
aoi1

(D0)−aoi2
(D0)

2 −1

i2|pa∗

∣∣Σi1,i2|pa∗

∣∣ aoi1
(D0)−aoi2

(D)

2

∏
i∈pa∗

Σ
aoi

(D)−aoi
(D0)

2

i|pai(D0)

.

With k covered edges to be inverted between D and D0, we finally have

π(D|Y )

π(D0|Y )
=

k∏
j=1

π(Dj |Y )

π(Dj−1|Y )
= CD,D0

π(D)

π(D0)
(13)

CD,D0 :=

k∏
j=1

C3
Dj ,Dj−1 ∈ (0,∞).

This completes the proof of part ii). The proof of part i) which deals with
posterior ratio consistency between D0 and a DAG D /∈ [D0] (not Markov
equivalent to D0) follows from Cao et al. (2019, Theorem 4.1).

Proof of Proposition 3.5. As outlined in the proof of Proposition 3.1, it is suf-
ficient to compare equivalent D and D0 differing by one covered edge reversal,
where the covered edge nodes are i1 and i2. Since D and D0 have the same
skeleton,

∑
i vi(D) =

∑
i vi(D0), and then

∑
i ai(D) =

∑
i ai(D0). Using this

fact, together with ai(D) = ai(D0) for all i ∈ V \ {i1, i2}, we can write

ZD(U ,a(D))

ZD0(U ,a(D0))
=

∏
i∈{i1,i2}

⎧⎨
⎩

Γ
(

ci(D)−2
2

)
Γ
(

ci(D0)−2
2

) |Upai(D)|
ci(D)−3

2

|Upai(D0)|
ci(D0)−3

2

|Ufai(D0)|
ci(D0)−2

2

|Ufai(D)|
ci(D)−2

2

⎫⎬
⎭,

where ci(D) = aoi(D) − vi(D). Since vi1(D) = vi2(D0) and vi2(D) = vi1(D0),
also ci1(D) = ci2(D0) and ci2(D) = ci1(D0), and then the terms with Gamma
functions cancel. Using also Equations (8)-(11), all other terms cancel and
ZD (U ,a(D)) /ZD0 (U ,a(D0)) = 1. Similarly, the ratio between ZD(nS̃,
a(D) + n) and ZD0(nS̃,a(D0) + n) is equal to one, proving the first statement.
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If furthermore vi(D) < d, some finite d, for all i ∈ V and for all n, then
Assumption 5 of Cao et al. (2019) is respected and their Theorem 4.1 implies

that maxD/∈[D0] π(D|Y )/π(D0|Y )
P̄−→ 0.
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