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Abstract: Identification of causal relations among variables is central to
many scientific investigations, as in regulatory network analysis of gene
interactions and brain network analysis of effective connectivity of causal
relations between regions of interest. Statistically, causal relations are often
modeled by a directed acyclic graph (DAG), and hence that reconstruction
of a DAG’s structure leads to the discovery of causal relations. Yet, re-
construction of a DAG’s structure from observational data is impossible
because a DAG Gaussian model is usually not identifiable with unequal
error variances. In this article, we reconstruct a DAG’s structure with the
help of interventional data. Particularly, we construct a constrained likeli-
hood to regularize intervention in addition to adjacency matrices to identify
a DAG’s structure, subject to an error variance constraint to further rein-
force the model identifiability. Theoretically, we show that the proposed
constrained likelihood leads to identifiable models, thus correct reconstruc-
tion of a DAG’s structure through parameter estimation even with unequal
error variances. Computationally, we design efficient algorithms for the pro-
posed method. In simulations, we show that the proposed method enables
to produce a higher accuracy of reconstruction with the help of interven-
tional observations.
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1. Introduction

Directed acyclic graph (DAG) models are useful to describe pairwise causal
relations between random variables, defined by a certain Markov property [5],
with each node representing one variable and each directed edge representing
the corresponding pairwise causal relation. DAG models have been widely used
in gene and social networks [7, 19]. To identify causal relations, intervention
observations are usually collected in addition to observational attributes [16].
The central topic this article addresses is the reconstruction of a DAG model
based on interventional data and pertinent issues with respect to the effect of
the intervention on the reconstruction of a DAG’s structure.

In the literature, it is generally believed that interventions may help the
reconstruction of a DAG’s structure, particularly when a DAG model is not
identifiable from data, that is, DAGs in a Markov equivalence class are not dis-
tinguishable based on observational data alone [16]. In biological experiments,
for instance, intervention occurs in a form of randomized treatments in a clinical
trial or a form of gene knockdown or knockout experiments in systems biology.
In such a situation, some or all system variables are controlled, permitting direc-
tion estimation of ambiguous edges connecting to these controlled variables. Yet
exactly how intervention impacts reconstruction of a DAG’s structure remains
unknown. Consequently, it is practically important to design a reconstruction
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method for interventional data, permitting the identification of a DAG’s struc-
ture. Most existing methods for intervention [6, 10, 8] assume known interven-
tion, that is, affected variables of the intervention are known a priori before data
collection; see [9] for references therein. However, assuming known intervention
is impractical, as in system biology, where the effect of various chemicals inter-
vening a system cannot be precisely known. To our knowledge, one exception
is a Bayesian method of [4], which is designed for a low-dimensional problem
without theoretical guarantee, due to the super-exponential complexity in the
number of nodes.

In this article, we propose a novel variance constraint on interventions to fully
identify the DAG structure in the framework of unknown intervention. Theo-
retically, we show in Theorem 1 that a DAG structure is fully identifiable under
the constraint, which is otherwise only possible when all the error variances
are not the same [18]. Moreover, we propose a constrained maximum likelihood
to seek the most efficient interventions by sparsity pursuit, leading to an iden-
tifiable reconstruction of a DAG’s structure. Computationally, we develop an
efficient algorithm to solve nonconvex minimization subject to the quadratic
variance constraint based on the alternating direction method of multipliers
(ADMM) [2]. In simulations, we investigate the impact of the intervention on
reconstruction and compare the proposed method with its counterpart without
intervention. Overall, the proposed method performs well.

This article is organized into seven sections. Section 2 introduces the proposed
method and discusses the issue of identifiability due to intervention, followed by
the computational development in Section 3. Section 4 establishes the consis-
tency theorems of the proposed method. Section 5 performs some simulations
to study the intervention effect, and two real datasets are analyzed. Section 6
summarizes the results. Finally, the Appendix A contains technical details and
proofs.

2. Method

Consider a causal model consisting of p random variables Y = (Y1, . . . , Yp)
�

described by a DAG, with each node representing one variable and directed
edges encoding causal relations between any two variables, where � denotes
the transpose. This model factorizes the joint distribution of Y , P (Y ) into a
product of conditional distributions of each variable given its parents: P (Y ) =∏p

j=1 P (Yj |paj), where paj denotes the parent set of Yj and is defined to be
empty if Yj has no parents. This factorization is known as the local Markov
property [5].

A DAG is modeled by structural equations as

Y = AY + ε, ε ∼ N(0,D), (1)

where ε = (ε1, ε2, . . . , εp)
� represents the latent or unexplained error, D =

Diag(σ2
1 , · · · , σ2

p) is the error covariance matrix and A = (Aij)p×p is an ad-
jacency matrix that uniquely determines a DAG. Here Aij �= 0 encodes an
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edge from node j to node i. In (1), the inverse covariance matrix of Y is
Ω = (I −A)�D−1(I −A), where I is the identity matrix.

When σ1 = · · · = σp, (1) is identifiable [18].Then a DAG’s structure can be
reconstructed by estimating A. However, when σ1 = · · · = σp breaks down, (1)
is usually not identifiable, which means that A is not estimable.

2.1. Intervention or covariate models and variance constraint

To treat non-identifiability in an observational study, consider a model consisting
of W intervention variables X = (X1, X2, . . . , XW )�, where the outcome of Y
is observed with intervention variables X that may be non-informative.

After incorporating the intervention variables into (1), we obtain that

Y = AY +BX + ε, ε ∼ N(0,D), (2)

where A, ε and D are defined as in (1), B = (Bjw)p×W is an unknown in-
tervention coefficient matrix, whose jwth entry Bjw indicates the directional
strength of the intervention of Xw on Yj . When Bjw = 0; j = 1, · · · , p, there
is no intervention of Xw on Yi, and thus Xw is non-informative. Note that (2)
becomes a causal model with covariates X.

In the situation of unequal error variances, with the help of the intervention,
we may impose constraints to achieve model identifiability, which otherwise
is impossible [18]. Assume that X ∼ N(0,ΣX), which is independent of ε.
Without loss of generality, assume that ΣX = I subsequently because we can

reparametrize X as Σ
−1/2
X X. Then under (2), Y ∼ N(0,Ω−1), where Ω =

(I −A)�(BB� +D)−1(I −A). In (2), we impose the variance constraint:

Var(BX + ε) = θI, or BB� +D = θI, (3)

where θ > 0 is a parameter to be estimated.
More details are deferred to Sections 3 and 4.

Theorem 1 (Identifiability). Assume that X ∼ N(0,ΣX) is independent of ε
in (2), and Ajk �= 0 for all k which is a parent of j; j = 1, 2, · · · , p. Under (3),
A is identifiable from the distribution of (Y ,X).

As suggested by Theorem 1, A in (2) becomes identifiable when (3) is im-
posed on B, which is otherwise impossible. Note, however, that interventions
B leading to identifiable A may not be unique. In what is to follow, we impose
a sparsity constraint to identify a most sparse B in terms of the number of
nonzero elements of B.

2.2. Constrained maximum likelihood

This section estimates A subject to the DAG requirement while seeking a most
sparse B subject to (3). Consequently, the smallest set of informative interven-
tion variables can be identified through B.
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Under (2), two data matrices (yij)n×p and (xiw)n×W are observed, with n
representing the sample size. Then the negative log likelihood is

l(A,B,D) =

p∑
j=1

[
− n

2
log σ2

j +
1

2σ2
j

n∑
i=1

(
yij−

∑
k �=j

Ajkyik−
W∑

w=1

Bjwxiw

)2]
. (4)

To identify nonzero entries of A and B, we impose sparsity constraints to
regularize: ∑

1≤j �=l≤p

I(Ajl �= 0) ≤ K1,
∑

1≤j≤p,1≤l≤W

I(Bjl �= 0) ≤ K2, (5)

where K1 and K2 are nonnegative integer-valued tuning parameters. Note that
the constraint on B removes zero entries thus zero-columns of B, which can be
regarded as selection of intervention variables. To reinforce the DAG require-
ment, we impose acyclic constraints [27] to reinforce the DAG requirement to
ensure no loops to occur:

λik + I(j �= k)− λjk ≥ I(Aij �= 0); i, j, k = 1, · · · , p, i �= j, (6)

where λ = {λjl}p×p is a dual variable matrix.
For computation, we replace the indicator functions in (5) and (6) by its

computational surrogate Jτ (z) = min( |z|τ , 1) [20] to circumvent the difficulty of
non-discontinuity in optimization. This yields∑

1≤j<l≤p

Jτ (Ajl) ≤ K1,
∑

1≤j≤p,1≤l≤W

Jτ (Bjl) ≤ K2, (7)

λik + I(j �= k)− λjk ≥ Jτ (Aij); i, j, k = 1, · · · , p, i �= j, (8)

where Jτ (z) approximates the indicator function as τ → 0+.
Minimizing (4) in (A,B,D) subject to (7), (8), and (3) yields the constrained

maximum likelihood estimate (CMLE):

minA,B,D l(A,B,D) =∑p
j=1

[
− n

2 log σ2
j +

1
2σ2

j

∑n
i=1

(
yij −

∑
k �=j Ajkyik −

∑W
w=1 Bjwxiw

)2]
,

subj to
∑

1≤j<l≤p Jτ (Ajl) ≤ K1,
∑

1≤j≤p,1≤l≤W Jτ (Bjl) ≤ K2,

λik + I(j �= k)− λjk ≥ Jτ (Aij); i, j, k = 1, · · · , p, i �= j,

BB� +D = θI, (9)

where (K1,K2, τ) are tuning parameters.

3. Computation

This section develops a computational strategy to solve (9). First, θ is estimated

by θ̂ through an estimate Â of A from the method in [27], that is,

θ̂ =
1

n

n∑
i=1

p∑
j=1

(
yij −

p∑
k �=j,k=1

Âjkyik

)2

, (10)
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where {Âjk}j,k=1,··· ,p are obtained by a constrained maximum likelihood esti-
mate with the sparsity constraint and acyclic constraint, based on the structural
equation model (1) with observational data Y alone. Then we solve (9) with

θ replaced by θ̂ using a blockwise coordinate descent alternating between two
blocks (A,B) and D until convergence. In particular, the (A,B)-block is solved
via a difference convex (DC) programming followed by an alternating direction
method of multipliers (ADMM), while the D-block is updated by gradient de-
scent. More details are further discussed subsequently.

3.1. Optimization subject to the variance constraint

To deal with the variance constraint in (9), we first consider a general con-
strained minimization subject to the variance constraint as follows:

minB f(B), subj to BB� = Λ, (11)

where f(B) is a cost function and Λ is a diagonal matrix.
For (11), we work with its equivalent form by introducing a dual matrix C to

decouple B and the constraint: min(B,C) f(B), subject to CC� = Λ and C −
B = 0. Then we apply the alternating direction method of multipliers (ADMM)
[2] to obtain its augmented Lagrangian: Lρ(B,C,y) = f(B) + y�vec(C −
B) + ρ

2 ||C −B||2F , where y ∈ R
pW is the Lagrangian multiplier for constraint

C−B = 0, and ρ > 0 is the augmented Lagrangian parameter. Then it is further
simplified by introducing a dual variable matrix V = {Vjl}p×W to incorporate
y�vec(C −B) into the quadratic form

min(B,C,V ) Lρ(B,C,V ) = f(B) +
ρ

2
||C −B + V ||2F , subj to CC� = Λ.

(12)
Now we apply ADMM to iterate through three steps to solve (12) until conver-
gence. In the kth iteration,

C(k+1) = argminC
ρ

2
||C −B(k) + V (k)||2F , subj to CC� = Λ, (13)

B(k+1) = argminB f(B) +
ρ

2
||C(k+1) −B + V (k)||2F , (14)

V (k+1) = V (k) +C(k+1) −B(k+1). (15)

In (13)–(15), the variance constraint CC� = Λ enters only in (13). Next we
provide a closed-form solution of (13) in Lemma 1.

Lemma 1. The solution of (13) can be written as C(k+1) = Λ1/2PO�, where a
singular value decomposition of (B(k) −V (k))�Λ1/2 gives OEP�, O ∈ R

W×p,
E,P ∈ R

p×p are the left, diagonal, and right matrices in the decomposition.

3.2. Algorithm for solving (9)

After plugging θ̂ into (9), we begin with the update of the (A,B)-block by
fixing D at an initial value D0 and optimize (9) with regard to (A,B). A good
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estimate of D0 can be obtained by solving (9) without the variance constraint,
details are given in the Appendix.

To solve (9) with a fixed D, we follow [27] to convert (9) to its equivalent dual
form. The procedure contains two steps. First, we apply a DC programming
method and decompose the nonconvex constraint function of the nonconvex
constraints (7) and (8) into a difference of two convex functions, based on which
we construct a sequence of convex approximation of nonconvex constrained sets
iteratively, the details are given in the Appendix. Then at the mth iteration,
we solve a relaxed subproblem (16). The iteration process continues until a
termination criterion is met.

The mth subproblem amounts to

min(A,B,λ,ξ)l(A,B)

+μ1

τ

∑
1≤j �=l≤p |Ajl|w(m−1)

jl + μ2

τ

∑
1≤j≤p,1≤l≤W |Bjl|v(m−1)

jl ,

subj toλjs + τI(l �= s)− λls = |Ajl|1w(m−1)
jl + τ(1− w

(m−1)
jl ) + ξjls;

j, l, s = 1, . . . , p, j �= l, ξjls ≥ 0,

BB� +D = θ̂I, (16)

where ξ = {ξjls}p×p×p, ξjls ≥ 0 is a slack variable tensor, and w
(m−1)
jl =

I(|Â(m−1)
jl | ≤ τ) and v

(m−1)
jl = I(|B̂(m−1)

jl | ≤ τ) are obtained from the (m−1)th
iteration.

For (16), we apply ADMM method by decoupling (A,B) in the likelihood
from the rest part of the cost function and the acyclic constraint. As in Section
3.1, we introduce dual variable tensor y = {yjls}p×p×p, dual variable matrix
U = {Ujl}p×(p+W ) and V = {Vjl}p×W . Then we minimize the augmented
Lagrangian under the variance constraint:

min(A,C,B,F ,λ,ξ,y,U ,V )Lρ(A,C,B,F ,λ, ξ,y,U ,V ) = l(A,B)

+μ1

τ

∑
1≤j �=l≤p |Fjl|w(m−1)

jl + μ2

τ

∑
1≤j≤p,1≤l≤W |Bjl|v(m−1)

jl

+
∑

1≤s≤p

∑
1≤j �=l≤p

ρ
2

(
|Fjl|w(m−1)

jl + τ(1− w
(m−1)
jl ) + ξjls − λjl

−τI(l �= s) + λls + yjls

)2

+ρ
2

∑
1≤j,l≤p(Ajl − Fjl + Ujl)

2

+ρ
2

∑
1≤j≤p,1≤l≤W (Bjl − Fj,l+p + Uj,l+p)

2

+ρ
2

∑
1≤j≤p,1≤l≤W (Cjl −Bjl + Vjl)

2,

subj to CC� +D = θ̂I. (17)

Again, we solve (17) over blocks (A,C,B,F ,λ, ξ,y,U ,V ) iteratively until con-
vergence, where analytic updating formulas are given in the Appendix. After
ADMM iterations converge, we continue the DC iterations until converge, then
the current (A,B)-block is updated.
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When updating the D-block, we conduct a gradient descent update for each
of (σ2

1 , · · · , σ2
p) based on the current values of (Â, B̂). The gradients for the jth

dimension is l′j = − n
2σ2

j
− 1

2σ4
j

∑n
i=1(yij −

∑
k �=j Âjkyik −

∑W
w=1 B̂jwxiw)

2. Then

σ2
j is updated by

σ2
j = σ2

j − αl′j , (18)

where α > 0 is the step size.
The computational strategy is summarized in Algorithm 1.

Algorithm 1: Constrained maximum likelihood

Step 1. Obtain an estimate θ̂ of θ by (10), then plug θ̂ into (9).
Step 2. Fix D at an initial value D0. Set pre-specified error tolerance ε0 and the
maximum number of iterations M0 for blockwise coordinate descent.
Step 3. ((A,B)-block) Initialize A and B. Set pre-specified error tolerance ε1 and the
maximum number of DC iterations M1.

Step 3.1. At the mth DC iteration, compute Â(m) and B̂(m) by cycling through
the ADMM updating steps until convergence.
Step 3.2. When |l(Â(m+1), B̂(m+1), D̂)− l(Â(m), B̂(m), D̂)| ≤ ε1 or m = M1, stop

the DC loop and output (Â, B̂) = (Â(m), B̂(m)).
Step 4. (D-block) Update D according to (18).
Step 5. Iterate through steps 3 through 4 until

∑p
j=1 |l′j | ≤ ε0 or the number of

iterations equals to M0, stop and output (Â, B̂).

The computation complexity of Algorithm 1 is of order O(M0M1M2p
2(p +

W )+n(p+W )2+p(p+W )3), where M0, M1 and M2 are the maximum number
of iterations for (A,B)-step, DC and ADMM, respectively. For each ADMM
iteration, the computation complexity is O(p2(p+W )). The preparation phase
has O(n(p + W )2 + p(p + W )3) complexity. In practice, the DC loop usually
converges in a few iterations, which has finite termination property, c.f., Lemma
2 in [21].

4. Theory

This section develops a theory quantifying the reconstruction error of the CMLE
defined in (9). In particular, we first show the estimated θ̂ recovers the optimal

parameter estimation of the oracle estimator θ̂O, which is defined as the maxi-
mum likelihood estimate in [27] provided that the true non-zero pattern of the
DAG is given. Then we establish reconstruction consistency of the true DAG’s
structure defined by adjacency matrixA in the presence of intervention variables
X in (2).

Let A, B, and D represent model parameters under (2). Let E = {(i, j) :
Aij �= 0} be the set of non-zero edges in the graph G, and |E| denote the size of
the set. Let Ω = (I −A)�(BB� +D)−1(I −A) = (I −A)�(I −A)/θ be the
precision matrix of Y . In what follows, we will assume the variance constraint
(3), and by Theorem 1, A is identifiable from the distribution of (Y ,X), and
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thus the graph structure of G is identifiable. Let G0,A0,B0,R0, E0,Ω0, θ0 de-
note the truth. Let ÂO and θ̂O denote the oracle estimator, or the maximum
likelihood estimate provided that the true set E0 of non-zero edges is given. Let
Ω̂O = (I − ÂO)

�(I − ÂO)/θ̂O be the oracle estimator for Ω.
For the observational model, let Aobs be the model parameter, then the

precision matrix is Ωobs = (I − Aobs)�(I − Aobs)/θ, whose oracle estimator

is Ω̂obs
O = (I − Âobs

O )�(I − Âobs
O )/θ̂O where Âobs

O is the oracle estimator of Aobs.
The degree of reconstructability is defined as

Cmin(Ω
0) = inf

{A �=A0,|E|≤|E0|,A induces a DAG}

− log(1− h2(Ω,Ω0))

max(|E0 \ E|, 1) ,

where h2(Ω,Ω0) is the Hellinger distance between Ω and Ω0 under (2) and the
variance constraint (3), and E1 \ E2 denote the set difference between E1 and
E2. The degree of reconstructability measures the difficulty of reconstructing
the graph, and we require it to be larger than a certain level in order for our
proposed method to be consistent in reconstructing the graph structure. For a
detailed discussion about the degree of reconstructability of a graph, c.f., [27].

Assumption A.1 (Boundedness). For some positive constants M1 and M2,
infΩ cmin(Ω) ≥ M1, sup1≤k≤p |Ωkk| ≤ M2, where cmin(Ω) is the smallest eigen-
value of Ω and Ωkk is the kth diagonal element of Ω.

Assumption A.2 (Boundedness). For some positive constants M3 and M4,
infΓ cmin(Γ) ≥ M3 and sup1≤k≤p+W |Γkk| ≤ M4, where Π is the covariance
matrix of the joint distribution of (Y ,X) and Γ = Π−1.

Assumption B (Degree of reconstructability). Cmin(Ω
0) ≥ 4d−1

0 n−1 ×
max(log p, |E0|), for some positive constant d0 > 0, say d0 = 2

27
1

963 .

Assumption C. For some positive constants d1, d2 and d3,

h2(Ω,Ω0) ≥ d1h
2(Ωτ ,Ω

0)− d3pτ
d2 ,

where Ωτ = (I −Aτ )
�(I −Aτ )/θ and Aτ is a truncated version of A with its

ijth element AijI(|Aij | ≥ τ).

Assumptions A.1 and A.2 concern the smallest eigenvalues and the maximum
diagonal element of Ω. Under Assumption A.1, the likelihood function becomes
bounded. Assumption B is a key condition for the consistency of reconstructed
graph structure, we require the degree of reconstructability to be no less than a
lower bound, which is related to the size of p or |E0|. Assumption C requires the
Hellinger distance to be smooth so that we approximate L0 function with its
computational surrogate, the TLP function [21] to the desired level by tuning τ .

First, we show that θ is uniquely defined regardless of the value of B.

Lemma 2. Under (2), θ uniquely satisfies (3).

Then we show the optimal parameter estimation of θ achieved by utilizing
the observational data in the Theorem 2.
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Theorem 2 (Optimal parameter estimation). Under Assumptions A.1 and C,
if K1 = |E0| and τ ≤ Cmin(Ω

0)M1/4p, then there exists a constant c2 > 0, say
c2 = 4

27
1

1926 , such that for any (n, |E0|, p),

P (θ̂ �= θ̂O) ≤ P (Ω̂obs �= Ω̂obs
O ) ≤ exp(−c2nCmin(Ω

0) + 2 log(p(p− 1) + 1) + 3).

Under Assumption B, P (θ̂ �= θ̂O) → 0 as n, p, |E0| → ∞.

The next theorem gives a reconstruction error bound, under which we ob-
tain reconstruction consistency of the CMLE as well as its optimal parameter
estimation.

Theorem 3 (Error bound and oracle properties). Under Assumptions A.1, A.2
and C, if K1 = |E0|, τ ≤ Cmin(Ω

0)M1/4p, then there exists a constant c2 > 0,
say c2 = 4

27
1

1926 , such that for any (n, |E0|, p),

P (Ĝ �= G0) ≤ P (Ω̂ �= Ω̂O) ≤ exp(−c2nCmin(Ω
0) + 2 log(p(p− 1) + 1) + 3).

Under Assumption B, P (Ĝ �= G0) → 0, Eh2(Ω̂,Ω0)

Eh2(Ω̂O,Ω0)
→ 1 as n, p, |E0| → ∞.

5. Numerical study

5.1. Simulations

This section examines the performance of the proposed method and demon-
strates how intervention, as well as the variance constraint, improves the recon-
structability of a DAG’s structure. Seven methods are compared, including the
proposed method with intervention, that without the variance constraint (3),
the observational method without intervention [27], the constraint-based PC
algorithm [22], the score-and-search method GES [3], and two hybrid methods,
Max-Min Hill-Climbing (MMHC) [24] and ARGES [14]. For PC algorithm and
GES, we use R package pcalg, while for MMHC we use R package bnlearn.
For ARGES, we use the ARGES-CIG version [14] by first conducting a neigh-
borhood selection using R package huge and then apply the greedy search us-
ing pcalg. For the other three methods, we implement in R with the main
algorithm written in C, which is also available in the R package intdag [17]
https://cran.r-project.org/web/packages/intdag/index.html.

Several performance metrics are used to measure the accuracy of reconstruc-
tion of a graph’s skeleton as well as directionality. With respect to the skeleton
of a graph, we use the false discovery rate (FDR) and false negative rate (FNR),
defined as FDR = FP/(TP + FP) and FNR = FN/(TP + FN), where TP, FP,
TN, and FN denote the true positives, false positives, true negatives and false
negatives, respectively. These two metrics together measure the abilities to con-
trol false discoveries, as well as false negatives. With regard to directionality, we
employ the Structural Hamming Distance (SHD), defined as the minimal num-
ber of operations required to transform one DAG to the other, including edge
insertions, deletions or flips, c.f., [24]. Note that a smaller SHD value indicates

https://cran.r-project.org/web/packages/intdag/index.html
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two DAGs are closer to each other. To compute the SHD, we use the R-package
pcalg. All the metrics are used on the estimation of adjacency matrix A, since
we focus on the reconstructability of DAG.

For tuning, PC algorithm and MMHC require one tuning parameter α con-
trolling the significance level for independence tests, yet there is no practical
tuning way via a separate tuning set. In this simulation, the significance level
is fixed at 0.05. This choice of α seems sensible as the number of estimated
edges is roughly the same as the number of edges in the true graph, as shown in
the simulation. For ARGES, the first stage of neighborhood selection needs one
tuning parameter corresponding to the LASSO penalization, we use the func-
tions huge.path() in the R package huge to select the tuning range based on
the data, and the function huge.fit() to select the tuning parameter. For the
observational DAG method [27], τ is chosen from a set {0.1, 0.05, 0.01}, and the
sparsity regularization parameter μ1 is chosen so that the number of estimated
edges roughly ranges from 0 to 100. For our methods, τ and μ1 are selected
similarly, and μ2 = r × μ1 with the ratio r selected from {1, 2, 4, 8}. For each
method, the optimal tuning parameters are obtained by maximizing the pre-
dicted log-likelihood (4) based on an independent tuning set of size 1000 over a
set pre-specified grid points.

In simulations, we examine a sparse neighborhood graph and a sparse graph
with non-sparse neighborhoods in Examples 1 and 2, respectively. A sparse
neighborhood requires each node to have sparse links, but a sparse graph does
not necessarily have sparse neighborhoods. To further investigate the operating
characteristics of the methods, we consider two additional situations in Exam-
ples 3 and 4, in which the true graphs satisfy the variance constraint while other
settings resemble Examples 1 and 2, respectively. Finally, to compare the perfor-
mances of the methods in non-sparse situations, Examples 5 and 6 are added by
increasing the sampling probabilities when generating the edges. More details
are given in the example settings.

Example 1 (Sparse neighborhood). A DAG with 50 nodes is generated with
a random generation mechanism as described in [11]. First, the partial ordering
of these nodes is randomly generated. Second, we sample edges according to
a binomial distribution with probability 0.02, where the edges are assigned to
a weight 0.5. The intervention matrix B is a diagonal matrix with diagonal
values being 0.5s, describing a situation that each node in DAG is intervened by
exactly one intervention covariate. Third, we set the error variances (σ2

1 , · · ·σ2
p)

�

to be a sequence from 1.5 to 1 with equally spaced points. Finally, we sample X
from a p-dimensional normal distribution N(0, I) and generate Y is generated
according to (2).

Example 2 (Non-sparse neighborhood). This example is modified from the
previous example to generate a DAG of 50 nodes with a special structure of
so-called “one-control-all”, where all directed edges are connected from the first
node to the other nodes with connection strength of 0.5. Evidently, the neigh-
borhood of the first node is not sparse, but the overall graph remains sparse. The
intervention matrix B and the error variances are the same as in Example 1.



4144 S. Peng et al.

Table 1

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 1. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold.

(n, p) Method FDR(A) FNR(A) SHD

(100,50) Our 0.17(0.03) 0.01(0.01) 10.60(2.32)
(100,50) Int 0.28(0.06) 0.02(0.02) 20.60(6.04)
(100,50) Obs 0.39(0.20) 0.23(0.07) 39.10(22.90)
(100,50) PC 0.29(0.06) 0.20(0.07) 21.10(5.20)
(100,50) GES 0.62(0.05) 0.24(0.06) 64.50(10.28)
(100,50) MMHC 0.23(0.08) 0.19(0.09) 22.60(6.08)
(100,50) ARGES 0.50(0.00) 1.00(0.01) 50.00(0.00)
(200,50) Our 0.05(0.03) 0.00(0.00) 2.50(1.84)
(200,50) Int 0.14(0.04) 0.00(0.01) 8.20(2.74)
(200,50) Obs 0.37(0.16) 0.13(0.06) 29.80(13.12)
(200,50) PC 0.29(0.05) 0.11(0.06) 19.10(3.63)
(200,50) GES 0.51(0.05) 0.15(0.08) 43.40(5.25)
(200,50) MMHC 0.18(0.05) 0.09(0.05) 16.30(5.14)
(200,50) ARGES 0.49(0.04) 0.73(0.15) 48.70(2.41)
(500,50) Our 0.01(0.02) 0.00(0.00) 0.50(0.97)
(500,50) Int 0.05(0.05) 0.00(0.00) 2.50(2.80)
(500,50) Obs 0.18(0.10) 0.00(0.01) 11.70(7.60)
(500,50) PC 0.28(0.05) 0.04(0.05) 19.00(3.89)
(500,50) GES 0.45(0.06) 0.13(0.06) 35.50(8.40)
(500,50) MMHC 0.19(0.07) 0.08(0.06) 13.90(5.53)
(500,50) ARGES 0.25(0.06) 0.10(0.07) 18.40(4.40)

Example 3 (Sparse neighborhood with a causal model satisfying (3)). This
example is modified from Example 1, in which the intervention matrix is diag-
onal, and the squared diagonals are generated from a sequence from 0.5 to 1
with equally spaced points so that the variance constraint is satisfied. The true
θ is 2 in (3). Other settings remain the same as Example 1.

Example 4 (Non-sparse neighborhood with a causal model satisfying (3)).
This example is modified from Example 2, in which the intervention matrix and
θ = 2 are set in the same fashion as in Example 3.

Example 5 (Non-sparse case). This example is modified from Example 1, in
which the sampling probability of the binomial distribution is increased to 0.1
when generating the edges, the rest are in the same fashion as in Example 1.

Example 6 (Non-sparse case with a causal model satisfying (3)). This example
is modified from Example 3, in which the sampling probability of the binomial
distribution is increased to 0.1 when generating the edges, the rest are in the
same fashion as in Example 3.

As indicated in Tables 1–4, the proposed method with the variance constraint
(2) performs favorably against the other methods. In Examples 1 and 3, it
performs the best in all the cases in terms of all the three evaluation metrics. In
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Table 2

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 2. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘N/A’ means the method did not return a result after 24 hours. The

best performers are in bold.

(n, p) Method FDR(A) FNR(A) SHD

(100,50) Our 0.59(0.19) 0.05(0.05) 81.40(29.54)
(100,50) Int 0.63(0.13) 0.07(0.07) 91.90(35.95)
(100,50) Obs 0.67(0.16) 0.21(0.09) 115.20(65.37)
(100,50) PC 0.84(0.06) 0.90(0.04) 63.20(2.57)
(100,50) GES 0.61(0.05) 0.17(0.06) 66.00(10.80)
(100,50) MMHC 0.68(0.04) 0.80(0.02) 60.40(3.47)
(100,50) ARGES 0.50(0.00) 0.96(0.04) 49.00(0.00)
(200,50) Our 0.38(0.18) 0.01(0.02) 35.20(18.56)
(200,50) Int 0.37(0.24) 0.00(0.01) 39.40(29.05)
(200,50) Obs 0.29(0.25) 0.06(0.06) 36.60(51.85)
(200,50) PC 0.78(0.07) 0.82(0.06) 63.10(5.11)
(200,50) GES 0.44(0.05) 0.06(0.01) 32.80(7.15)
(200,50) MMHC 0.60(0.05) 0.69(0.02) 57.30(4.22)
(200,50) ARGES 0.07(0.02) 0.23(0.09) 11.90(4.12)
(500,50) Our 0.07(0.16) 0.00(0.01) 6.40(16.78)
(500,50) Int 0.29(0.10) 0.00(0.00) 20.90(8.27)
(500,50) Obs 0.28(0.18) 0.00(0.00) 22.50(15.20)
(500,50) PC N/A N/A N/A
(500,50) GES 0.38(0.13) 0.03(0.02) 25.90(20.59)
(500,50) MMHC N/A N/A N/A
(500,50) ARGES 0.11(0.14) 0.04(0.01) 7.30(15.02)

Example 2, it achieves the top performances in terms of FDR and FNR when
n = 100, in terms of FNR when n = 200 and performs the best in terms of
all the three metrics when n = 500. In Example 4, it also achieves the top
performances in terms of FDR when n = 100, in terms of FDR and SHD when
n = 200 and in terms of FNR when n = 500. Interestingly, in Examples 2 and 4,
PC algorithm and MMHC do not handle “non-sparse neighborhood” structures
well as they fail to return results within 24 hours in the case of n = 500. Also,
when n is small, ARGES performs poorly, almost identifying no directed edges,
such as in the cases of n = 100 of Examples 1–4 and n = 200 of Examples
3 and 4. One explanation is that when n is small the tuning process of the
neighborhood selection step tends to select a large penalty, resulting in a very
sparse conditional independent graph (CIG).

Overall, both the variance constraint (3) and intervention lead to improve-
ments of the reconstruction accuracy across all the situations. Specifically, the
proposed method has an average amount of improvement (10.00, 10.50, 8.20, 6.80)
in terms of SHD over the intervention method without the variance constraint
when n = 100 in all the four examples, respectively. The amount of improvement
becomes (5.70, 4.20, 8.30, 6.70) when n increases to 200 and (2.00, 14.50, 2.90,
19.00) when n = 500. The improvement remains noticeable in Examples 2 and 4
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Table 3

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 3. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘NaN’ in the FDR column means the ARGES method does not have

any discoveries in all the replications.

(n, p) Method FDR(A) FNR(A) SHD

(100,50) Our 0.11(0.05) 0.04(0.04) 7.60(3.41)
(100,50) Int 0.22(0.08) 0.05(0.04) 15.80(5.63)
(100,50) Obs 0.44(0.08) 0.14(0.05) 36.70(9.48)
(100,50) PC 0.30(0.05) 0.21(0.07) 22.80(4.54)
(100,50) GES 0.61(0.05) 0.21(0.09) 63.30(7.97)
(100,50) MMHC 0.27(0.09) 0.22(0.11) 26.50(8.61)
(100,50) ARGES NaN 1.00(0.00) 50.00(0.00)
(200,50) Our 0.04(0.06) 0.00(0.00) 2.30(3.40)
(200,50) Int 0.16(0.11) 0.00(0.01) 10.60(9.07)
(200,50) Obs 0.25(0.06) 0.03(0.04) 16.80(4.92)
(200,50) PC 0.27(0.06) 0.12(0.05) 18.00(4.14)
(200,50) GES 0.53(0.04) 0.17(0.05) 44.70(6.43)
(200,50) MMHC 0.22(0.07) 0.08(0.06) 18.10(5.34)
(200,50) ARGES 0.50(0.00) 1.00(0.00) 50.00(0.00)
(500,50) Our 0.01(0.01) 0.00(0.00) 0.40(0.52)
(500,50) Int 0.06(0.02) 0.00(0.00) 3.30(1.34)
(500,50) Obs 0.17(0.05) 0.02(0.02) 10.00(3.40)
(500,50) PC 0.27(0.04) 0.05(0.03) 18.10(3.31)
(500,50) GES 0.42(0.08) 0.10(0.06) 32.00(8.51)
(500,50) MMHC 0.14(0.04) 0.03(0.03) 8.80(3.01)
(500,50) ARGES 0.43(0.06) 0.46(0.16) 41.80(6.07)

even when n is large. Interestingly, a DAG’s structure can be well-reconstructed
even without the variance constraint, particularly when n is large, for exam-
ple, n = 500 in Examples 1 and 3. Moreover, the proposed method has an
average improvement of (28.50, 33.80, 29.10, 40.20) in SHD over the observa-
tional method when n = 100, (27.30, 1.40, 14.50, 60.60) when n = 200 and
(11.20, 16.10, 9.60, 21.70) when n = 500. The amount of improvement is sig-
nificant across all the cases except the case of n = 200 in Example 2.

In Examples 2 and 4, with a non-sparse neighborhood structure, the esti-
mation becomes more challenging. In such situations, we added the simulations
with n = 1000, as shown in Tables 5–6, the proposed method with the variance
constraint (2) outperforms all the competitors, with SHD very close to 0 in
Example 2 and exactly 0 in Example 4. As a comparison, PC and MMHC fail
to return results within 24 hours, GES and ARGES perform even worse than
the cases with n = 500. For large sample sizes, GES and ARGES tend to have
more false positives, with estimated graph structure failing to determine the
directions of the edges between the first node and the rest.

As demonstrated in Tables 7–8, the benefits of the proposed methods are
evident against the competitors in the non-sparse cases of Examples 5 and 6,
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Table 4

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 4. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘N/A’ means the method did not return a result after 24 hours. The
best performers are in bold. ‘NaN’ in the FDR column means the ARGES method does not

have any discoveries in all the replications.

(n, p) Method FDR(A) FNR(A) SHD

(100,50) Our 0.65(0.09) 0.16(0.09) 93.40(41.51)
(100,50) Int 0.66(0.12) 0.15(0.05) 100.20(49.61)
(100,50) Obs 0.76(0.02) 0.22(0.08) 133.60(20.30)
(100,50) PC 0.87(0.05) 0.91(0.04) 65.70(3.86)
(100,50) GES 0.63(0.04) 0.24(0.06) 68.70(9.83)
(100,50) MMHC 0.68(0.03) 0.79(0.02) 60.20(2.70)
(100,50) ARGES NaN 1.00(0.00) 49.00(0.00)
(200,50) Our 0.27(0.15) 0.20(0.03) 21.30(14.74)
(200,50) Int 0.33(0.13) 0.02(0.04) 28.00(15.24)
(200,50) Obs 0.61(0.09) 0.05(0.05) 81.90(29.97)
(200,50) PC 0.82(0.09) 0.86(0.06) 63.60(5.72)
(200,50) GES 0.46(0.04) 0.06(0.01) 34.60(7.18)
(200,50) MMHC 0.61(0.04) 0.70(0.02) 57.30(3.71)
(200,50) ARGES 0.50(0.00) 0.97(0.04) 49.00(0.00)
(500,50) Our 0.14(0.05) 0.00(0.00) 8.10(2.88)
(500,50) Int 0.29(0.24) 0.00(0.01) 27.10(23.13)
(500,50) Obs 0.38(0.05) 0.00(0.00) 29.80(5.85)
(500,50) PC N/A N/A N/A
(500,50) GES 0.35(0.06) 0.04(0.00) 17.90(4.95)
(500,50) MMHC N/A N/A N/A
(500,50) ARGES 0.05(0.02) 0.05(0.02) 2.80(0.92)

Table 5

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 2. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘N/A’ means the method did not return a result after 24 hours. The

best performers are in bold.

(n, p) Method FDR(A) FNR(A) SHD

(1000,50) Our 0.02(0.02) 0.00(0.00) 1.20(1.23)
(1000,50) Int 0.09(0.06) 0.00(0.00) 5.00(3.40)
(1000,50) Obs 0.17(0.12) 0.00(0.00) 11.10(8.37)
(1000,50) PC N/A N/A N/A
(1000,50) GES 0.58(0.01) 0.00(0.00) 58.80(2.20)
(1000,50) MMHC N/A N/A N/A
(1000,50) ARGES 0.46(0.15) 0.00(0.01) 44.40(14.90)
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Table 6

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 4. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘N/A’ means the method did not return a result after 24 hours. The

best performers are in bold.

(n, p) Method FDR(A) FNR(A) SHD

(1000,50) Our 0.00(0.00) 0.00(0.00) 0.00(0.00)
(1000,50) Int 0.04(0.03) 0.00(0.01) 2.10(1.79)
(1000,50) Obs 0.07(0.14) 0.00(0.01) 5.20(10.00)
(1000,50) PC N/A N/A N/A
(1000,50) GES 0.57(0.01) 0.00(0.00) 58.00(2.36)
(1000,50) MMHC N/A N/A N/A
(1000,50) ARGES 0.50(0.00) 0.00(0.0) 49.10(0.32)

Table 7

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 5. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘NaN’ in the FDR column means the ARGES method does not have

any discoveries in all the replications.

(n, p) Method FDR(A) FNR(A) SHD

(200,50) Our 0.34(0.11) 0.02(0.21) 135.80(66.63)
(200,50) Int 0.47(0.14) 0.21(0.34) 211.20(74.60)
(200,50) Obs 0.53(0.01) 0.04(0.02) 277.30(9.79)
(200,50) PC 0.27(0.07) 0.78(0.03) 203.40(7.37)
(200,50) GES 0.86(0.02) 0.63(0.06) 604.10(23.94)
(200,50) MMHC 0.60(0.07) 0.90(0.02) 236.60(4.84)
(200,50) ARGES NaN 1.00(0.00) 250.00(0.00)
(500,50) Our 0.18(0.11) 0.01(0.02) 61.70(43.24)
(500,50) Int 0.36(0.28) 0.21(0.32) 175.20(198.45)
(500,50) Obs 0.44(0.07) 0.11(0.21) 194.40(41.48)
(500,50) PC 0.19(0.04) 0.71(0.02) 187.50(5.70)
(500,50) GES 0.83(0.03) 0.64(0.05) 505.80(31.71)
(500,50) MMHC 0.55(0.06) 0.87(0.02) 225.70(6.58)
(500,50) ARGES NaN 1.00(0.00) 250.00(0.00)
(1000,50) Our 0.02(0.01) 0.03(0.04) 10.60(10.51)
(1000,50) Int 0.09(0.06) 0.03(0.02) 29.20(19.47)
(1000,50) Obs 0.10(0.11) 0.04(0.04) 39.30(40.73)
(1000,50) PC 0.18(0.04) 0.69(0.02) 181.30(7.24)
(1000,50) GES 0.80(0.02) 0.71(0.03) 394.40(15.90)
(1000,50) MMHC 0.55(0.05) 0.85(0.02) 222.20(6.92)
(1000,50) ARGES NaN 1.00(0.00) 250.00(0.00)
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Table 8

Averaged false discovery rate (FDR), false negative rate (FNR), and Structural Hamming
Distance (SHD), as well as their standard errors for four competing methods based on 10

simulation replications in Example 6. Here “Our”, “Int”, “Obs”, “PC”, “GES”, “MMHC”,
“ARGES” denote the proposed method subject to the variance constraint, the proposed
method without the variance constraint, the proposed method without intervention, PC

method, GES method, MMHC method and ARGES method, respectively. The best
performers are in bold. ‘NaN’ in the FDR column means the ARGES method does not have

any discoveries in all the replications.

(n, p) Method FDR(A) FNR(A) SHD

(200,50) Our 0.39(0.10) 0.04(0.03) 164.20(69.71)
(200,50) Int 0.50(0.06) 0.04(0.02) 243.60(50.96)
(200,50) Obs 0.51(0.15) 0.16(0.21) 273.10(126.29)
(200,50) PC 0.26(0.08) 0.78(0.02) 202.30(6.77)
(200,50) GES 0.86(0.03) 0.63(0.06) 588.30(27.56)
(200,50) MMHC 0.60(0.07) 0.90(0.02) 237.70(6.13)
(200,50) ARGES NaN 1.00(0.00) 250.00(0.00)
(500,50) Our 0.14(0.04) 0.00(0.01) 41.50(15.35)
(500,50) Int 0.27(0.16) 0.10(0.26) 104.80(83.12)
(500,50) Obs 0.36(0.10) 0.02(0.02) 148.80(56.29)
(500,50) PC 0.16(0.03) 0.69(0.02) 178.80(5.25)
(500,50) GES 0.83(0.02) 0.65(0.04) 485.20(26.17)
(500,50) MMHC 0.59(0.07) 0.88(0.02) 231.30(5.42)
(500,50) ARGES NaN 1.00(0.00) 250.00(0.00)
(1000,50) Our 0.02(0.01) 0.02(0.03) 8.60(6.50)
(1000,50) Int 0.10(0.04) 0.04(0.02) 31.00(14.91)
(1000,50) Obs 0.13(0.06) 0.04(0.03) 47.40(20.37)
(1000,50) PC 0.18(0.05) 0.68(0.02) 180.00(7.39)
(1000,50) GES 0.80(0.04) 0.71(0.06) 382.80(23.86)
(1000,50) MMHC 0.57(0.07) 0.85(0.03) 223.50(7.15)
(1000,50) ARGES NaN 1.00(0.00) 250.00(0.00)

where each node in the graph has 10 edges instead of 2 edges on average. The
proposed method with the variance constraint continues to perform the best in
all cases in the three metrics, except the case of n = 200 in which PC performs
better in FDR. When the sample size increases from 200 to 500 and then to
1000, our methods exhibit a larger amount of improvement, as the SHD reduces
from 135.80 to 61.70 and to 10.60 in Example 5 while from 164.20 to 41.50 and to
8.60 in Example 6. By comparison, ARGES fails to produce a meaningful graph
in all cases, GES yields very large values of FDR, FNR, and SHD. Whereas PC
and MMHC do perform better than GES, their performances do not improve
much at all when the sample size increases.

In conclusion, intervention clearly has a positive impact on the reconstruct-
ability of a DAG through interventional covariates. With the variance constraint,
the accuracy of reconstruction can be further enhanced.

5.2. Analysis of Alzheimer’s disease dataset

This section applies our proposed method to analyze the Alzheimer’s disease
dataset [25], where 8560 gene expressions were collected for 176 Alzheimer’s dis-
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ease patients and 187 healthy participants. Our primary goal is to reconstruct
a causal network of Alzheimer’s disease-related genes with the help of interven-
tion, and compare the DAG structures for the patient and control groups, for
identifying regulatory gene-gene interactions that differentiate these two patient
groups.

Biologically, transcription factors (TFs) are proteins controlling the tran-
scription process. By regulating genes, TFs ensure that target genes have right
expressions in a cell and during a biological organism. In fact, a TF binds to its
target DNA sequence and thus can be mapped to specific genes. For our pur-
pose, we use the database [23] to extract a list of human DNA binding TFs and
map them to genes in the dataset, resulting in 1031 mapped TF genes. Then we
treat TF genes as intervention covariates to facilitate reconstruction of causal
relations encoded by the gene networks.

To identify TF gene expressions associated with Alzheimer’s disease in our
dataset, we examine the KEGG database [12]. There, 168 genes in the Alzhei-
mer’s disease pathway, among which the expressions of 99 genes are mapped
to the pathway. Among the mapped genes, we perform a two-sample t-test to
obtain the significant ones between the patient and control groups, resulting in
43 selected genes at the significance level 0.05.

After pre-processing, we apply the proposed method to both the groups to
reconstruct two DAG networks for the disease and control groups with 176 and
187 subjects, involving p = 43 genes as causal variables and W = 1031 TFs
as intervention variables, where the tuning parameters of the method are esti-
mated by a five-fold cross validation. As shown in Figure 1, there are 29 and
33 estimated directed connections in the patient and control groups, respec-
tively, with 11 shared common directed connections. Moreover, the two networks
share some common sub-structures, particularly, we can find common directed
connections from NDUFAB1 to ATP5A1, ATP5G3, and COX7A2. However, different
sub-structures are also revealed. In the patient group, several genes, including
SDHD, NDUFA1, NDUFAB1, ATP5G3, ATP5A1 and ATP5C1 have directed connections
to SDHB, whereas in the control group, only two of them are connected to SDHB.
This suggests that the differences in the two DAG networks reflect the disparity
in the gene regulatory relations between an Alzheimer’s disease subject and a
healthy subject.

Biologically, our estimated directed connections match the known biologi-
cal pathway of Alzheimer’s disease in the KEGG database. For example, the
estimated directed connections between NDU-genes, SDH-genes, ATP-genes and
COX-genes match the pathway of the electron transport chain in mitochondria.
Also, the estimated connection from CALM3 to PPP3CB matches the biological
pathway from calcium-modulated protein(CaM) to protein phosphatase 3 cat-
alytic subunit alpha(PP3CA).

5.3. Analysis of cytometry data

This section applies the proposed method to analyze the flow cytometry data in
[19] to reconstruct causal relations between phosphorylated proteins and phos-
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Fig 1. Top: DAG network for Alzheimer’s disease patient group. There are 38 directed connec-
tions. Bottom: DAG network for healthy participant group. There are 30 directed connections,
11 of which are shared by the DAG network of patient group.
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Fig 2. Consensus intracellular signaling network as benchmark. Four nodes in brown are
intervened by five intervention nodes marked in blue, with directed links indicating their in-
tervention directions by solid red lines. Note that no links are present between intervention
nodes.

pholipids in human primary naive CD4+ T cells of the immune system. These
cells were perturbed with molecular interventions to drive the ordering of con-
nections in an intracellular signaling network. The original flow cytometry data
contains n = 7466 cell measurements, each consisting of the amount of p = 11
proteins and phospholipids. The data is collected from nine different experi-
ments in which different components in the network are intervened, either by
stimulatory cues or inhibitory interventions. For our analysis, we use the con-
tinuous version of the original data [19]. Our objective is to reconstruct this
network while the consensus network [19] is used as a benchmark for discov-
ery.

For interventional data, we pre-process by selecting nine out of the eleven
components, four of which form a DAG with three directed links while remaining
five serve as intervention nodes; see Figure 2 for a display of an enlarge network
with the nine nodes, known as consensus network, where links between the five
intervention nodes are purposely removed for the intervention purpose. Note
that the removal of these links does not affect our analysis, because each node is
independent of its non-descendants given its direct parents by the local Markov
property. Among the five intervention nodes, only three of them are informative
with the other two Plcg and PIP2 having no effects on the four nodes to be
intervened.

We fit our proposed method with and without interventions. For tuning, we
use one-tenth of the samples for training, and the rest for tuning. As displayed
in Figures 3 and 4, the proposed method with intervention correctly identi-
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Fig 3. Intracellular signaling network reconstructed by the proposed method with intervention.
Two directed links in solid black are correctly identified, denoted by solid black lines, while the
directed link from Pmek to Erk is missed, denoted by a dashed black line. Three intervention
links are identified by our model (denoted by solid red lines), all of which are present in the
consensus network.

Fig 4. Intracellular signaling network estimated by the model without intervention. One di-
rected connection is correctly identified, denoted by the solid black line, while another connec-
tion is reversed, denoted by dotted black line, and the directed connection from Pmek to Erk

is missed, denoted by dashed black line.
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Fig 5. Residual plots from our intervention model. Each subplot corresponds to one node in
the DAG network.

fies the directed link from Erk to Akt, while the observational method alters
the direction oppositely. Both the methods enable to reconstruct the directed
link from Praf to Pmek, whereas they both miss the link from Pmek to Erk.
Consequently, the proposed method with intervention identifies more correct
directed links than that without intervention. With respect to the interven-
tion effects, our method identifies three intervention links in the network, which
rule out the true non-informative intervention nodes Plcg and PIP2. PIP3 is
also non-informative in our estimation, and a possible reason is that Akt is al-
ready intervened by PKA, and thus the intervention effect of PIP3 on Akt is
unnecessary. Similarly, the intervention from PKC to Praf is identified by the
proposed method, while bothPKA and PKC have interventions on Praf in the
consensus network. Finally, the proposed method yields a sparse intervention
pattern.

One plausible explanation of missing the link from Pmek to Erk is that the
linear causal model fails to capture nonlinear functional relations among cy-
tometry measurements of proteins Praf, Pmek, Erk, and Akt, as evident from
nonlinear patterns revealed by their residual plots of the structural equation
model in Figure 5. Another possibility is that the five nodes on the bottom-left
in Figure 3 are not originally designed as intervention nodes in the experiments.
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6. Discussion

In this paper, a constrained maximum likelihood method is proposed to recon-
struct the structure of a DAG using interventional data and efficient ADMM
algorithms are developed to solve the optimization problems. In particular, a
novel variance constraint is introduced and leverages the information in the
interventional data to improve identifiability. Theories are established and it
is shown that with the introduction of our variance constraint, the graphical
structure is shown to be fully identifiable under some mild assumptions. The
theoretical results are also demonstrated in our simulation results, as our pro-
posed method performs well against competitors and can reconstruct the DAG
more accurately than the observational method.

Appendix A: Technical Details

A.1. Computation details for solving (9)

For (9), after plugging in θ̂ and fix D, we proceed in two steps. First, we relax
nonconvex constraints (7) and (8) using a sequence of convex approximations
involving 2p + 1 linear constraints, where each approximation is refined itera-
tively. Then we solve each subproblem by employing a constrained alternating
direction method of multipliers to estimate. The underlying process iterates
until convergence.

For convex relaxation of nonconvex constraints (7) and (8) in (9), we employ
difference convex (DC) programming similar to [27]. In particular, we decom-
pose Jτ into a difference of two convex functions: Jτ (z) = S1(z) − S2(z) ≡
min( |z|τ , 1) = |z|

τ −max( |z|τ − 1, 0). On this ground, we construct a sequence of
convex approximating sets iteratively by replacing S2 in the decomposition at
iteration m by its affine majorization at iteration m− 1. (9) becomes

min(A,B,λ)l(A,B,λ)

subj to 1
τ

∑
1≤j �=l≤p |Ajl|w(m−1)

jl ≤ K1 −
∑

1≤j<l≤p(1− w
(m−1)
jl ),

1
τ

∑
1≤j≤p,1≤l≤W |Bjl|v(m−1)

jl ≤ K2 −
∑

1≤j≤p,1≤l≤W (1− v
(k,m−1)
jl ),

λjs + τI(l �= s)− λls ≥ |Ajl|1w(m−1)
jl + τ(1− w

(m−1)
jl );

j, l, s = 1, . . . , p, j �= l,

BB� +D = θ̂I, (19)

where w
(m−1)
jl = I(‖Â(m−1)

jl ‖1 ≤ τ), v
(m−1)
jl = I(|B̂(m−1)

jl | ≤ τ); 1 ≤ i, j ≤ p,

and (Â(m−1), B̂(m−1)) is the solution at iteration m− 1.

Now consider a regularization version of (19), with a slack variable ξ added
to the inequality constraint, yielding (16).
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A.2. Analytic updating expressions for ADMM in (20)

At ADMM iteration step s+ 1, the updating formula are

A(s+1) = argminALρ(A,C(s),B(s),λ(s), ξ(s),y(s),U (s),V (s)),

C(s+1) = argminCLρ(A
(s+1),C,B(s),λ(s), ξ(s),y(s),U (s),V (s))

subj to CC� + D̂ = σ2I,

B(s+1) = argminBLρ(A
(s+1),C(s+1),B,λ(s), ξ(s),y(s),U (s),V (s)),

λ(s+1) = argminλLρ(A
(s+1),C(s+1),B(s+1),λ, ξ(s),y(s),U (s),V (s)),

ξ(s+1) = argminξLρ(A
(s+1),C(s+1),B(s+1),λ(s+1), ξ,y(s),U (s),V (s)),

subj to ξijk ≥ 0; i, j, k = 1, . . . , p, j �= k,

y
(s+1)
ijk = y

(s)
ijk +

(
|F (s+1)

ij |+ ξ
(s+1)
ijk − τλ

(s+1)
ik − τI(j �= k) + τλ

(s+1)
jk

)
,

U
(s+1)
jl = U (s) +

(
A

(s+1)
jl − F

(s+1)
jl

)
, 1 ≤ j, l ≤ p,

U
(s+1)
j,l+p = U (s) +

(
B

(s+1)
jl − F

(s+1)
j,l+p

)
, 1 ≤ j ≤ p, 1 ≤ l ≤ W,

V
(s+1)
jl = V

(s)
jl + (C

(s+1)
jl −B

(s+1)
jl ), 1 ≤ j ≤ p, 1 ≤ l ≤ W. (20)

A.2.1. A-step and B-step

For simplicity, denote H = (A,B) be the concatenation of adjacency matrix
and intervention matrix, let Z = (Y ,X) be the concatenated data matrices.
For each row of H , the optimization problem is summarized as minHj,j−

1
2 ||zj −

Zj−H
�
j,j− ||2 + ρ

2‖Hj,j− − F
(s)
j,j− + U

(s)
j,j−‖2F , where Hj,j− is the jth row of H

with Hjj excluded, Zj− is Z with its jth column removed and xj is the jth
column of X. The minimizer is the solution to

(
Z�

j−Zj− + ρI
)
Hj,j− = Z�

j−zj +

ρ(F
(s)
j,j− −U

(s)
j,j−), where the factorization of Z�

j−Zj− +ρI can be cached to speed
up subsequent updates.

A.2.2. C-step

By Lemma 1, the updating formula for C is C(s+1) = Λ1/2PO�, where O and
P are obtained from singular value decomposition of (B(s) − V (s))�Λ1/2 =
OEP�.

A.2.3. F -step

F -step updates two parts of the matrix, one is the adjacency matrix, one is the
intervention matrix.
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Part I: adjacency matrix For i = 1, · · · , p and j = 1, · · · , p, we solve the
following problem:

min
F

μ1

∑
i,j

|Fij |wm−1
ij +

ρ

2

∑
ijk

(|Fij |wm−1
ij + τ(1− wm−1

ij )− Ls
ijk)

+
ρ

2

∑
i,j

(As+1
ij − Fij + Us

ij)
2,

where Ls
ijk = λs

ik + τI(j �= k)− λs
jk − ξsijk − ysijk.

We can solve Fij elementwise:

F s+1
ij =

⎧⎪⎨
⎪⎩
S(

As+1
ij + Us

ij

1 + p
,
μ1 − pρ

∑
k L

s
ijk

ρ(1 + p)
) if wm−1

ij = 1,

As+1
ij + Us

ij if wm−1
ij = 0,

where

S(b, λ) =

⎧⎪⎨
⎪⎩
b− 0.5λ if b > 0.5λ,

b+ 0.5λ if b < −0.5λ,

0 otherwise,

is the soft-thresholding operator.

Part II: intervention matrix For i = 1, · · · , p and j = p + 1, · · · , p + W ,
we solve the following problem:

min
F

μ2

∑
i,j

|Fij |vm−1
ij +

ρ

2

∑
i,j

(As+1
ij −Fij +Us

ij)
2+

ρ

2

∑
i,j

(Cs
i,j−p−Fij +Zs

i,j−p)
2.

We can solve Fij elementwise:

F s+1
ij =

{
S( 12 (A

s+1
ij + Us

ij + Cs
i,j−p + Zs

i,j−p),
μ2

2ρ ) if vm−1
ij = 1,

1
2 (A

s+1
ij + Us

ij + Cs
i,j−p + Zs

i,j−p) if vm−1
ij = 0.

A.2.4. λ-step and ξ-step

(λs+1, ξs+1) is updated by λs+1 = Mp×pW
s+1
p×p ,

where

Mp×p =
1

τ

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 2

p
1
p . . . 1

p

1 1
p

2
p ... 1

p
...

...
. . .

...
1 1

p . . . 1
p

2
p

⎞
⎟⎟⎟⎟⎟⎠

W s+1
1j = 1,

W s+1
ik = 1

2 (τ +
∑

j(|Bs+1
kj |w(m−1)

ij + τ(1− w
(m−1)
ij ) + ξs+1

ijk + ysijk)

−
∑

j(|Bs+1
kj |w(m−1)

ij + τ(1− w
(m−1)
ij ) + ξs+1

jik + ysjik)); i �= k,
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W s+1
kk = 1

2 (−(p− 1)τ +
∑

j(|Bs+1
kj |w(m−1)

ij + τ(1− w
(m−1)
ij ) + ξs+1

kjk + yskjk)

−
∑

j(|Bs+1
kj |w(m−1)

ij + τ(1− w
(m−1)
ij ) + ξs+1

jkk + ysjkk)),

for i, j, k = 1, . . . , p.

ξs+1
ijk := max(0, (τλs

ik + τI(j �= k)− τλs
jk − |Bs+1

ij | − ysijk)); i, j, k = 1, . . . , p.

A.3. Computation details for estimating D0

A good estimate of D0 is obtained by solving (9) without the variance con-
straint (3). First, we introduce a re-parametrization to exploit the convexity.
Let R = D−1/2, Φ = D−1/2A and Ψ = D−1/2B, then (2) becomes Y =
R−1ΦY + R−1ΨX + R−1ε, ε ∼ N(0, I) and Φ = (φjk)p×p, Ψ = (ψjw)p×W

are scaled versions of adjacency matrix A and intervention matrix B and
R = (r1, · · · , rp). Under the new parametrization, the likelihood (4) becomes

l(Φ,Ψ,R) =
∑p

j=1

[
−n log rj+

1
2

∑n
i=1

(
rjyij−

∑
k �=j φjkyik−

∑W
w=1 ψjwxiw

)2]
,

an easy check will confirm that l(Φ,Ψ,R) is convex in (Φ,Ψ,R). Then (9) with-
out variance constraint (3) is written as

min(Φ,Ψ,R) l(Φ,Ψ,R) =∑p
j=1

[
− n log rj +

1
2

∑n
i=1

(
rjyij −

∑
k �=j φjkyik −

∑W
w=1 ψjwxiw

)2]
,

subj to
∑

1≤j<l≤p Jτ (φjl) ≤ K1,
∑

1≤j≤p,1≤l≤W Jτ (ψjl) ≤ K2,∑
j1=jL+1:1≤k≤L Jτ (φjkjk+1

) ≤ L− 1; any (j1, . . . , JL), L = 2, . . . , p. (21)

To solve (21), following the computation strategy illustrated in Appendix 7.1
and 7.2, after transformation, in the mth DC step, we solve

min(Φ,Ψ,F ,λ,ξ,y,U ,R)Lρ(Φ,Ψ,F ,λ, ξ,y,U ,R) = l(Φ,Ψ,R)

+μ1

τ

∑
1≤j �=l≤p |Fjl|w(m−1)

jl + μ2

τ

∑
1≤j≤p,1≤l≤W |ψjl|v(m−1)

jl

+
∑

1≤s≤p

∑
1≤j �=l≤p

ρ
2

(
|Fjl|w(m−1)

jl + τ(1− w
(m−1)
jl ) + ξjls − λjl

−τI(l �= s) + λls + yjls

)2

+ρ
2

∑
1≤j,l≤p(φjl − Fjl + Ujl)

2

+ρ
2

∑
1≤j≤p,1≤l≤W (ψjl − Fj,l+p + Uj,l+p)

2, (22)

which is solved over blocks (Φ,Ψ,F ,λ, ξ,y,U ,R). The updating formula are
similar to those in Appendix 7.2, with one exception, which is R-step, which is
illustrated in the following section.

After solving (21), estimates (Φ̂, Ψ̂, R̂) are obtained, then D0 = R̂−2.

A.3.1. R-step

Denote T = (Φ,Ψ) be the concatenation of Φ and Ψ, let Z = (Y ,X) be the
concatenated data matrices we solve the minimization problem: minrj −n log rj+
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1
2

∣∣∣∣rjzj − Zj−T
T
jj−

∣∣∣∣2. The derivative equation becomes − n
rj

+
∑n

i=1(rjzij −∑
k �=j Tjkzik)zij = 0, yielding a solution rj = b+

√
b2+4na
2a , where a =

∑n
i=1 z

2
ij

and b =
∑n

i=1 zij
∑

k �=j Tjkzik.

A.4. Technical proofs

Proof of Lemma 2. Let ε′ = BX + ε, under (3), (2) reduces to

Y = AY + ε′, (23)

where ε′ ∼ N(0, θI). In (23), Ω = (I − A)�(I − A)/θ. Given A and the
distribution of Y , the value of θ is unique. This completes the proof.

Proof of Theorem 1. Let ε′ = BX + ε. Note that X ∼ N(0,ΣX). Hence ε′ ∼
N(0, θI), which is independent of any specific value of B. Now (2) is written as

Y = AY + ε′. (24)

By (3), ε′ ∼ N(0, θI), (24) reduces to an observational model with equal error
variance. By Theorem 1 of [18], A is identifiable from the distribution of Y ,
which in turn is identifiable from the joint distribution (Y ,X) that is propor-
tional to the distribution of Y . This completes the proof.

Proof of Lemma 1. The update step for C in ADMM is

C(k+1) = argminC ||C −B(k) + V (k)||2F , s.t. CC� = Λ, (25)

(25) is equivalent to maxC Tr [C�(B(k) − V (k))], s.t. CC� = Λ, we can
transform it into a standard form by introducing Q = C�Λ−1/2 and S =
(B(k) − V (k+1))�Λ1/2. Then (25) becomes

max
Q

Tr [Q�S], s.t. Q�Q = I. (26)

To solve (26), we can do a singular value decomposition S = OEP�, where
O ∈ R

w×p, E,P ∈ R
p×p, O�O = P�P = PP� = I. Then the cost func-

tion in (26) can be written in the form Tr [Q�OEP�] = Tr [(QP )�OE] =∑p
j=1[M

�O]jjEjj , where M = QP ∈ R
w×p and [M�O]jj denotes the jth di-

agonal element of the cross product M�O. Note that the constraint Q�Q = I
is equivalent to M�M = I since P is an orthogonal matrix. Since Ejj ≥ 0,
if we can maximize each of [M�O]jj ; j = 1, · · · , p at the same time, then the
problem is solved.

Since [M�O]jj =
∑W

i=1 MijOij , by the Cauchy-Schwartz inequality and the

fact thatM�M = O�O = I, we have
∑W

i=1 MijOij ≤
√∑W

i=1 M
2
ij

∑W
i=1 O

2
ij =√

1× 1 = 1, where the equality holds if and only ifMij = Oij for i = 1, 2, · · · ,W .
If we maximize each [M�O]jj ; j = 1, · · · , p at the same time, we need M = O,
which leads to Q = OP�. Then the solution of (25) is C(k+1) = Λ1/2PO�.
This completes the proof.
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Proof of Theorem 2. When we ignore the intervention covariates X and pull
them into the error terms, under the variance constraint (3), (2) reduces to
(24) with equal error variances, under which A is identifiable from Ω. Note
that Ωobs = (I −Aobs)�(I −Aobs)/θ is a function of (Aobs, θ), it follows that

P (θ̂ �= θ̂O) ≤ P (Ω̂obs �= Ω̂obs
O ). The rest of the proof follows from Theorem 3 of

[27]. This completes the proof.

Proof of Theorem 3. First, we define a complexity measure for the size of a
space F . The bracketing Hellinger metric entropy of F , denoted by H(·,F), is
the logarithm of the cardinality of the u-bracketing of F of the smallest size.
That is, for a bracket covering S(ε,m) = {f l

1, f
u
1 , · · · , f l

m, fu
m} ⊂ L2 satisfying

max1≤j≤m ‖fu
j −f l

j‖2 ≤ ε and for any f ∈ F , there exists a j such that f l
j ≤ f ≤

fu
j , a.e. P , then H(u,F) = log(min{m : S(u,m)}), where ‖f‖2 =

∫
f2(z)dμ,

with μ the dominating measure.
Denote Eτ = {(i, j) : |Aij ≥ τ}. When K = |E0|,

∑
1≤i �=j≤p Jτ (Aij) ≤ |E0|,

so |Êτ | ≤ |E0|. If Êτ = E0, then
∑

1≤i �=j≤p |Aij |I(|Aij | < τ) = 0, then Â = ÂO.

Therefore, it suffices to prove the case when Êτ �= E0.
Define ΩEτ = (I − AEτ )�(I − AEτ )/θEτ for any Eτ ⊂ {(i, j) : 1 ≤ i �=

j ≤ p}. We can partition Eτ as Eτ = (Eτ \ E0) ∩ (E ∪ E0). Let Bkj =
{ΩEτ : Eτ �= E0, |Eτ ∩ E0| = k, |Eτ \ E0| = j, (d1(|E0| − k)Cmin(Ω

0) −
d3qτ

d2) ≤ h2(ΩEτ ,Ω0)}; k = 0, . . . , |E0| − 1, j = 1, . . . , |E0| − k. Then Bkj has(|E0|
k

)(
p(p−1)−|E0|

j

)
different elements Eτ ’s of sizes |Eτ ∩E0| = k, |Eτ \E0| = j.

By definition {ΩEτ : Eτ �= E0, |Eτ �= E0| ≤ |E0|, Cmin(Ω
0) ≤ h2(ΩEτ ,Ω0)} ⊂

∪|E0|−1
k=0 ∪|E0|−k

j=1 Bkj . Let L(Ω) = log f(Ω, y, x) where f(Ω, y, x) = f(Ω, y|x)fX(x)
is the joint density. Then

P (Ĝ �= G0)

≤ P (Ω̂ �= Ω̂O)

≤ P ∗( sup
ΩEτ :Eτ �=E0,|Eτ |≤|E0|

(L(ΩEτ )− L(Ω̂O)) ≥ 0
)

≤ P ∗( sup
ΩEτ :Eτ �=E0,|Eτ |≤|E0|

(L(ΩEτ )− L(Ω0)) ≥ 0
)

≤
∑

Eτ⊂{(i,j):1≤i<j≤p}:Eτ �=E0,|Eτ |≤|E0|
P ∗( sup

ΩEτ ∈Bkj

(L(ΩEτ )− L(Ω̂O)) ≥ 0
)

≡ I,

where P ∗ is the outer measure.
For I, we apply Theorem 1 of [26] to bound each term in the sum. We verify

the entropy condition (3.1) there for the bracketing entropy over Bkj . Let Π de-
note the covariance matrix of the joint distribution of (Y ,X) and Γ = Π−1, then
Ω is the upper p× p diagonal block of Γ. Let Fkj = {f1/2(Γ, ·, ·) : Ω ∈ Bkj} be

the class of square-root densities. Define Δ = Γ̃−Γ and let λ1, . . . , λp+W be the

eigenvalues of
√
ΠΔ

√
Π, z = (y�, x�)�. Then max1≤i≤p+W λi ≤ λmax(Δ) ×

λmax(Π) ≤ c(p+W )‖Π‖max following Prob.III.6.14 [1]. By Lemma 6.5 of [28],
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it can be shown

| log f(Γ̃, y, x)− log f(Γ, y, x)| ≤ max
1≤i≤p+W

λi(D(z) + p+W )

≤ c(p+W )‖Δ||max(D(z) + p+W ),

where λmax denotes the largest eigenvalue, D(z) = λmax(Γ) tr(zz�) ≤ M4 ×
tr(zz�). Note that E tr(zz�) ≤ c(p+W ) for some constant c > 0. By Assump-
tion A.2, λ2

max(
√
Π) ≤ 1/M3. Then

I ′ ≡
∫

sup
Γ̃∈Bδ(Γ)

(f1/2(Γ̃, y, x)− f1/2(Γ, y, x))2dμ

≤ sup
Γ̃∈Bδ(Γ)

c
′
(p+W )||Δ||2maxE(D(z) + p+W )2,

for some constant c
′
> 0.

Then for some positive constant Q, I ′ ≤ Q(p+W )4δ2. By Lemma 1 of [15],
it suffices to bound the entropy of Bij . There are |E| nonzero entries of A with(
p(p−1)
|E|

)
possible locations. By [13], for u ≥ ε2,

H(u,Fij) ≤ c0(log

(
p(p− 1)

|E|

)
+ |E| log(min(M

1/2
2 , 1)

u
))

≤ c0(|E| log(ep(p− 1)

|E| ) + |E| log(min(M
1/2
2 , 1)

u
))

≤ c0(|E| log p log(1/u))

Then ε = εn,p,|E0| = min(1, (2c0)
1/2c−1

4 log(21/2/c3) log p (|E0|/n)1/2) satis-
fies

sup
0≤|Eτ |≤|E0|

∫ 21/2ε

2−8ε2
H(t/c3,Fij)dt ≤ (2|E0|)1/2ε log(21/2/c3) ≤ c4n

1/2ε2. (27)

for some constants c3, c4 > 0, say c3 = 10, c4 = (2/3)5/2

512 . By Assumption B,

Cmin(Ω
0) ≥ εn,p,|E0| implies (27), provided that 2d−1

0 > (2c0)
1/2c−1

4 log(21/2/c3).

Using the facts about binomial coefficients:
∑|E0|−k

j=1

(
p(p−1)−|E0|

j

)
≤ (p(p− 1)−

|E0| + 1)|E
0|−k and

(|E0|
k

)
≤ |E0|k, we have, by Theorem 1 of [26], that for a

constant c2 > 0, say c2 = 4
27

1
1926 ,

I ≤
|E0|−1∑
k=0

|E0|−k∑
j=1

P ∗( sup
ΩEτ ∈Bkj

(L(ΩEτ )− L(Ω̂O)) ≥ 0
)

≤ 4

|E0|−1∑
k=0

(
|E0|
k

)
exp

(
− c2n(d1Cmin(Ω

0)− d3qτ
d2)

) |E0|−k∑
j=1

(
p(p− 1)− |E0|

j

)
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≤ 4

|E0|∑
i=1

exp
(
− i((c2d1/2)Cmin(Ω

0)− log(p(p− 1)− |E0|+ 1)− log |E0|)
)

≤ R
(
exp(−(c2d1/2)Cmin(Ω

0)− log(p(p− 1)− |E0|+ 1)− log |E0|)
)
,

provided that τ ≤ Cmin(Ω
0)M1/4p, where R(x) = x/(1 − x). Moreover, since

I ≤ 1 and log(p(p− 1)− |E0|+ 1) + log |E0|) ≤ 2 log((p(p− 1) + 1)/2),

I ≤ 5 exp(−(c2d1/2)nCmin(Ω
0) + 2 log((p(p− 1) + 1)/2))

≤ exp(−c2nCmin + 2 log(p(p− 1) + 1) + 3).

Under Assumption B, P (Ĝ �= G0) → 0 as n, p, |E0| → ∞. For parameter
estimation,

Eh2(Ω̂,Ω0) ≤ E[h2(Ω̂O,Ω
0)I(Ω̂ = Ω̂O)] + P (Ω̂ �= Ω̂O)

≤ (1 + o(1))Eh2(Ω̂O,Ω
0),

then Eh2(Ω̂,Ω0)

Eh2(Ω̂O,Ω0)
→ 1 as n, p, |E0| → ∞.

This completes the proof.
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