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Abstract: This article studies nonparametric methods to estimate the
co-integrated volatility of multi-dimensional Lévy processes with high fre-
quency data. We construct a spectral estimator for the co-integrated volatil-
ity and prove minimax rates for an appropriate bounded nonparametric
class of Lévy processes. Given n observations of increments over intervals of
length 1/n, the rates of convergence are 1/

√
n if r ≤ 1 and (n logn)(r−2)/2

if r > 1, where r is the co-jump activity index and corresponds to the inten-
sity of dependent jumps. These rates are optimal in a minimax sense. We
bound the co-jump activity index from below by the harmonic mean of the
jump activity indices of the components. Finally, we assess the efficiency of
our estimator by comparing it with estimators in the existing literature.
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1. Introduction

Lévy processes are the main building blocks for stochastic continuous-time jump
models. Whenever the modeling of a stochastic process in finance requires the
inclusion of jumps, Lévy processes are those to be considered. They play an
instrumental role, for example, in the modeling of financial data, see Carr et al.
(2002); Barndorff-Nielsen and Shephard (2004, 2006); Wu (2007); Eberlein and
Papapantoleon (2005); Geman (2002).

Consequently, the large amount of applications has given rise to a great de-
mand for statistical methods in the study of Lévy processes, especially non-
parametric methods. Using nonparametric methods relaxes any dependency on
the model. The problem of estimating the characteristics of a Lévy process has
received considerable attention over the past decade. Starting with the work by
Belomestny and Reiß (2006), a number of articles have considered nonparamet-
ric estimation methods for Lévy processes. Therefore, one important task is to
provide estimation methods for the characteristics of a Lévy process.
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Moreover, statistical methods require the nature of the observation schemes
to be classified as high frequency or low frequency; here, we focus on a high fre-
quency setting. If we can assume high-frequency observations for a Lévy process,
we can discretize a natural estimator based on continuous-time observations,
where the jumps and the diffusion part are observed directly. In recent years,
the literature on this subject has grown extensively, see Figueroa-Lopez and
Houdré (2004); Todorov and Tauchen (2011); Coca (2018); Comte and Genon-
Catalot (2009); Neumann and Reiß (2009). We now have vast amounts of data
on the prices of various assets, exchange rates, and so on, typically tick data
which are recorded at every transaction time.

Much has been written on the estimation of Lévy density using nonpara-
metric techniques, for instance Nickl et al. (2016), Duval and Mariucci (2017),
Comte et al. (2014) and the references therein. However, the seminal work of
Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shephard (2002),
proposed realized variance as an estimator for quadratic variation. In the pres-
ence of jumps, a well-known theoretical result proves that the realized variation
converges in probability to the global quadratic variation as the time between
two consecutive observations tends towards zero. This result motivated estima-
tors that filter out the jumps, like Bipower Variation by Barndorff-Nielsen and
Shephard (2004) and Truncated Realized Variation by Mancini (2009).

In the multivariate context, the recovery of co-integrated volatility (also
known as covariance) becomes more complicated. Among various prominent
works see Christensen et al. (2013), Bibinger and Vetter (2015), Bibinger and
Winkelmann (2015). For models incorporating jumps, the realized covariation
converges in probability to the global quadratic variation containing the co-
jumps. Co-jumps refer to the case when the underlying processes jump at the
same time with the same direction. This raises the question how we can assess
the dependence structure among the jump components. We find the answer in
the Lévy copula, a subject studied by Tankov (2004) in his PhD thesis. The in-
terested reader should refer to Cont and Tankov (2004) and Kallsen and Tankov
(2006). The Lévy Copula is the basic tool for the class of multidimensional Lévy
processes. To mention only the few approaches which are close to our focus on
Lévy processes we refer to Mancini (2017), Christensen et al. (2013), Martin
and Vetter (2017), Bibinger et al. (2014), Jacod and Reiß (2014), Bücher and
Vetter (2013) and Belomestny and Trabs (2018).

Our aim in the present work is to provide minimax rates of convergence
for the estimation of co-integrated volatility when the underlying process be-
longs to a certain class of multi-dimensional Lévy processes. Many features of
co-integrated volatility have already been studied, such as asynchronous obser-
vations, microstructure noise, and allowing for dependency among the jumps
components. Whereas most of the aforementioned results prove central limit
theorems for their estimators, at least to the best of our knowledge no work
has dealt with optimal rates of convergence in the minimax sense. This work
serves to fill this gap. Jacod and Reiß (2014) proposed a spectral estimator for
integrated volatility achieving minimax rates. In the present work, we general-
ize their work on finite dimensions. By virtue of simplicity, we will concentrate
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primarily on a two-dimensional regime, but extensions to the general multi-
dimensional setting are straightforward to obtain as well.

For this purpose let us define, for a two-dimensional Lévy process X, the
Blumenthal-Getoor index r∗:

B(r) =

∫
R2

(1 ∧ ‖x‖r)F (dx), I = {0 < r ≤ 2 : B(r) < ∞} , r∗ = inf I

(1.1)
where x = (x1, x2) ∈ R

2 is the size of the jump components, ‖·‖ is the Euclidean
norm in R

2 and F is the Lévy measure. B(r) is not specifically interesting, but
the BG-index gives us the infimum number r for which B(r) is finite. This
index is a very important number for Lévy processes, because using this index
we can infer the behavior of small jump components around 0. When we have
a two-dimensional Lévy process we have either independent jumps (i.e. disjoint
or jumps in the axes) or dependent jumps(i.e. co-jumps or joint jumps). In the
present work we focus on the case of co-jumps, when the two marginals jump at
the same time in the same direction. The index r∗ gives us information about
the amount of disjoint and joint small jumps around 0. The behavior of co-jumps
around 0 is described by∫

R2

(
1 ∧ |x1x2|r/2

)
F (dx1, dx2) < ∞. (1.2)

Here, we are interested in investigating the optimal rates for the estimation of
co-integrated volatility when the model falls in a class of two-dimensional Lévy
processes, in case the jump components are either of finite or infinite variation
and satisfy (1.2). Let X = (X(1), X(2)) and r1, r2 be the indices of jump activity
for the small jump components of each process X(1), X(2) respectively. We find
that r, the activity index of co-jumps, is bounded from below by the harmonic
mean of r1, r2 even in the case of infinite variation jumps. This was not known up
to now. Under this assumption for co-jumps we show that our spectral estimate

for co-integrated volatility converges at a rate (n log n)
(r−2)

2 if r > 1 and 1√
n
if

r ≤ 1.
Assuming a two-dimensional Itô semimartingale, Mancini (2017) proposed a

truncated covariance estimator to estimate co-integrated volatility at the rate
1√
n
when r1 is small and r2 is close to 1, n− 1

2

(
1+

r2
r1

−r2

)
when r1, r2 are much

bigger than 1 and close to 2, n

(
r2
2 −1

)
when r1 is small and r2 is much bigger

than r1 or in case of independent small jump components. However, these rates
are sub-optimal when a two-dimensional Lévy process satisfies (1.2).

Let us describe the outline of this paper. In Section 2 we state the underlying
model. In Section 3 we give the assumptions to be satisfied in order to prove
the minimax rates. In Section 4 we construct our spectral estimator and state
the results of this work. Section 5 gives the insight behind the co-jump activity
index. In Section 6 we prove the upper bound for the family of our estimators. In
Section 7 we present the proof of lower bound in a minimax sense. We provide
some comparison of our estimator with existent estimators in the literature in
Section 8. In the last section we provide a simulation study.
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2. The underlying model

We assume equidistant discrete observation times iΔn, i = 0, · · · , n for a mesh
Δn → 0. Here, we use as a mesh Δn = 1

n and n → ∞. Regarding the time
horizon of the process, it is observed on a finite time span [0, 1]. Let X =
(X(1), X(2))� be a two-dimensional Lévy process with Lévy-Itô decomposition
as

Xt = bt+Wt +

∫ t

0

∫
‖x‖≤1

x(μ− μ̃)(ds, dx) +

∫ t

0

∫
‖x‖>1

xμ(ds, dx). (2.1)

Unless stated otherwise, from now on b is a drift vector in R
2,W = (W (1),W (2))

denotes a bivariate Brownian motion with covariance matrix ΣΣ�, and μ, μ̃ are
the jump measure and its compensator, respectively. The compensator takes the
form μ̃ = dsF (dx), where F is the Lévy measure of X.

Due to the independence of the continuous part and the discontinuous (jump
part) of a Lévy process, the analysis of X canonically splits into the inference
on the covariance matrix and the inference on the jump measure F . Our focus
on this paper is to investigate an estimator for the co-integrated volatility of X.

We assume a filtered space (Ω,F , (Ft)t≥0 ,P) supporting two independent

standard Brownian motions W (1),W (3) and two Poisson random measures μ(j)

for j = 1, 2 on R
2 × [0, 1]. Recall that W (1),W (2) are correlated with d〈W (1),

W (2)〉t = ρdt, where ρ is a constant on [−1, 1]. We construct W (2) as a linear

combination of the two independent Brownian motions so W
(2)
t = ρW

(1)
t +√

1− ρ2W
(3)
t . Next we calculate the variances and covariance of W (1),W (2), we

see that the following holds

V ar(W
(1)
t ) = 〈W (1)

t ,W
(1)
t 〉 = t

V ar(W
(2)
t ) = 〈W (2)

t ,W
(2)
t 〉 = ρ2t+ (1− ρ2)t = t.

For the covariance we obtain

Cov(W
(1)
t ,W

(2)
t ) = 〈W (1)

t ,W
(2)
t 〉 = ρ〈W (1)

t ,W
(1)
t 〉+

√
1− ρ2〈W (1)

t ,W
(3)
t 〉 = ρt;

the last equality holds because of W (1),W (3) being independent. So, without
loss of generality we assume that

Σ =
(

σ(1) 0

ρσ(2)
√

1−ρ2σ(2)

)
so that ΣΣ� =

(
(σ(1))2 ρσ(1)σ(2)

ρσ(1)σ(2) (σ(2))2

)
where σ(i), i = 1, 2 are deterministic. Therefore, the global quadratic variation
of X is given by:

〈X(1)
t , X

(2)
t 〉 =

∫ t

0

ρσ(1)σ(2)ds+
∑
s≤t

ΔX(1)
s ΔX(2)

s (2.2)
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where the first term is the co-integrated volatility and the second term is the sum
of products of simultaneous jumps (called co-jumps). Our target of inference,
the co-integrated volatility at time 0 ≤ t ≤ 1, is

C12
t =

∫ t

0

ρσ(1)σ(2)ds. (2.3)

3. Assumptions

To derive an estimator for co-integrated volatility and then prove a minimax
bound for this estimator, we need to establish some assumptions regarding the
behavior of small jumps and the class of our estimator. In particular, our setup
is intrinsically nonparametric and related to the properties of the observed path.
We use the following notation for a matrix: ‖ · ‖∞ is the maximum absolute row
sum of the matrix, (i.e. the ∞-norm).

Assumption (1-M). The ∞-norm of the covariance matrix is assumed to be
bounded, i.e. ‖ΣΣ�‖∞ ≤ M .

Assumption (2-M).
∫
R2

(
1 ∧ |x1x2|r/2

)
F (dx1, dx2) ≤ M , where r ∈ [0, 2).

Notice that Assumption (2-M) follows from the classical condition to control
the activity of small jumps in two dimensions. Through a trivial calculation

∫
R2

(
1 ∧ |x1x2|r/2

)
F (dx1, dx2) ≤

∫
R2

(
1 ∧ |x2

1 + x2
2|r/2

)
F (dx1, dx2)

=

∫
R2

(1 ∧ ||x||r)F (dx).

By using this unconventional Assumption (2-M), we relax the classical condi-
tion for small jumps in two dimensions and strengthen our results, since we
considered the case of dependent jumps.

Assumption (2-M) concerns the behavior of jump components with size
smaller or equal to one. By this assumption we consider the problem of control-
ling the activity of co-jumps, i.e. joint jumps. Below, a co-jump indicates that
both components jump at a time t but their jump sizes may not be the same.
Ultimately, we are asking whether the small jump components are of finite or
infinite variation. This question concerns the behavior of the compensator F ,
the Lévy measure near 0. The major difficulties here come from the possibly
erratic behavior of F near 0 and the possible dependence between the jump
components. In Section 5 we describe in more detail the dependence structure
of the jump components and the co-jump activity index r.

The Blumenthal-Getoor (BG) index allows us to classify the processes from
least active to most active, according to the above description. We denote by r∗

the BG index for a two-dimensional Lévy process which satisfies:

r∗ = inf

{
r ∈ (0, 2] :

∫
R2

(1 ∧ ||x||r)F (dx) < ∞
}
. (3.1)
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Note that a stable Lévy process of index β ∈ (0, 2) satisfies∫
R2

(1 ∧ ||x||r)F (dx) < ∞

for all r > β, but not for r ≤ β. The BG index of a β- stable is exactly β.

It should be noted that the problem of BG index estimation from discrete
observations of a Lévy process has drawn much attention in the literature. In the
case of high-frequency data, Aı̈t-Sahalia and Jacod (2011) studied the problem of
estimating the jump activity index that is defined for any Itô semimartingale. A
consistent estimator for the BG index based on one-dimensional Lévy processes
with low-frequency data was obtained in Belomestny (2010). The interested
reader may refer to Belomestny and Reiß (2015), Section 7, for a detailed review
of these results. An extension to time-changed Lévy processes can be found in
Belomestny and Panov (2013a,b).

Now we will test the Assumption (2-M) about the boundedness of small
co-jumps with some trivial examples. Despite its simple nature, the following
example offers significant insight and intuitive understanding into co-jumps with
infinite variation.

Example 3.1. Suppose we have independent jumps in the coordinates and
F (dx) is a Lévy measure on R

2 and x is a vector in R
2. Then, supp(F ) ⊆

{R× {0} ∪ {0} × R} which means that∫
R2

(1 ∧ ||x||r)F (dx) =

∫
R2

(
1 ∧ |x2

1 + x2
2|r/2

)
F (dx1, dx2)

=

∫
R

(1 ∧ |x1|r)F1(dx1)

+

∫
R

(1 ∧ |x2|r)F2(dx2) < ∞,

if the marginals of a two-dimensional Lévy process are finite in the one dimen-
sional case. See the assumption section in Jacod and Reiß (2014).

In this example, we notice that∫
R2

(
1 ∧ |x1x2|r/2

)
(1{x1=0} + 1{x2=0})F (dx1, dx2) = 0, (3.2)

since the integrand is always equal to zero. This example shows us something
more: Whenever we have independent jumps, no matter the choice of F , we can
always find a control for the activity of small jumps even if we have jumps of
infinite variation.

Example 3.2. Suppose we have independent jump size distributions and x1,
x2 ∈ B1(0), where B1(0) is the unit ball in R

2. Therefore, for F1 and F2 are not
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of zero measure,∫
B1(0)

|x1x2|r/2F (dx1, dx2) =

∫
B1(0)

|x1x2|r/2F1(dx1)F2(dx2)

≤
∫ 1

−1

(∫ 1

−1

|x1|r/2F1(dx1)

)
|x2|r/2F2(dx2) < ∞

if and only if
∫ 1

−1
|xi|r/2Fi(dxi) < ∞ for i = 1, 2. However, we know that this

inequality, for the marginal distributions, holds because of the results in Jacod
and Reiß (2014). As a result, the Assumption (2-M) holds.

4. Theoretical results

We use standard notation for asymptotic quantities like Xn = OP(wn) if (Xn/
wn)n≥1 is stochastically bounded (i.e. bounded in probability or tight). We are
in a nonparametric setting in which the process X belongs to the class Lr

M . Let
us now define this class.

Definition 4.1. For M > 0 and r ∈ [0, 2), we define the class Lr
M , the set of

all Lévy processes, satisfying

‖C‖∞ +

∫
R2

(
1 ∧ |x1x2|r/2

)
F (dx1, dx2) ≤ M, (4.1)

where C =
(

C11 C12

C21 C22

)
is the covariance matrix and ‖C‖∞ = max{C11 +

C12, C21 + C22}.
We adapt an estimator proposed by Jacod and Reiß (2014). Specifically, we

let X be a two-dimensional Lévy process with characteristic triplet (b, C, F ).
Let us remember that we are in a high-frequency setting and the consecutive
time between two observations is 1

n . The characteristic function of X1/n is given
by:

φn(un) = exp

{
1

n

(
i 〈un,b〉 −

〈Cun,un〉
2

+

∫
R2

(
exp(i 〈un,x〉

)
− 1− i 〈un,x〉1{||x||R2≤1}

)
F (dx)

)}
,

(4.2)

where un = (Un, Un). In the same vein, we define the characteristic function
φn(ũn) where ũn = (Un,−Un). Here, we focus on estimating the characteristic
function on the diagonal of first and fourth quadrant for sake of simplicity to our
calculations. The results still hold even when we move away from the diagonal.
Following a trivial calculation we get that

〈Cun,un〉 = C11U2
n + C22U2

n + 2C12U2
n

〈Cũn, ũn〉 = C11U2
n + C22U2

n − 2C12U2
n.
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So, the covariance is given by

C12 =
〈Cun,un〉 − 〈Cũn, ũn〉

4U2
n

. (4.3)

We consider, based on the observations, the empirical characteristic function of
the increments, at each stage n:

φ̂n(un) =
1

n

n∑
j=1

ei〈un,Δ
n
j X〉 un ∈ R

2. (4.4)

Similarly, we consider the empirical characteristic function φ̂n(ũn). Based on
the trivial calculation (4.3), we now define the spectral estimator

Ĉ12
n (Un) =

n

2U2
n

(
log

∣∣∣∣ φ̂n(ũn)

φ̂n(un)

∣∣∣∣)1{φ̂n(ũn) 	=0 and φ̂n(un) 	=0}. (4.5)

The first result of this paper is the following theorem.

Theorem 4.2. Let X belong to the class Lr
M . Assume M > 0 and r ∈ [0, 2),

then as n → ∞ the family of estimators Ĉ12
n (Un) with

Un =

{√
n if r ≤ 1√
(r − 1)n logn/

√
4M if r > 1

satisfies |Ĉ12
n (Un)− C12| = OP(wn) within the class Lr

M where

wn =

{
1/

√
n if r ≤ 1

(n log n)
r−2
2 if r > 1.

(4.6)

Particularly, we have that the family of estimators Ĉ12
n is consistent with the

theoretical co-integrated volatility C12 with the exact rates of convergence wn.

Theorem 4.2 gives us an upper bound for the family of our estimators Ĉn
12.

In Section 6, we give a proof of the upper bound for the family of our estimators
Ĉn

12. Let us finally show that on the class Lr
M the rate wn (4.6) can be achieved

exactly and thus constitutes the exact minimax optimal rate.

Theorem 4.3. There are constants A,B > 0 such that

lim inf
n→∞

inf
Ĉ12

n

sup
X∈Lr

M

P[d(Ĉ12
n , C12) > Awn] ≥ B > 0,

where Ĉ12
n is any estimator for the co-integrated volatility, and wn is defined as

in (4.6).

Theorem 4.3 gives us a lower bound for the family of our estimators Ĉ12
n

within the class Lr
M . The rates wn (4.6) for estimating C12, namely the co-

integrated volatility at time t = 1 are optimal in a minimax sense. In Section 7
we prove this result.
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5. Co-jump activity index

Practically all financial applications require a multivariate model with depen-
dence between the components. Examples are basket option pricing, portfolio
risk and hedge management. In most of these applications, jumps in the price
process must be taken into account. In particular, measuring the activity of co-
jumps up to time t provides a tool for measuring the propagation among assets
or effects due to important positive or negative economic developments. For
portfolio and risk management, it is essential to understand co-jumps in order
to distinguish between idiosyncratic and systemic risk. Knowledge of co-jump
activity index helps us from a modeling viewpoint to judge whether the jump
part of a multidimensional Lévy process is of finite or infinite variation.

Although we can always bound the co-jump activity index from above with
the component of highest activity index, we are interested in bounding the co-
jump activity index from below in case that at least one of the jump components
is of infinite variation.

Each component X(i) of a two-dimensional Lévy process has its own activity
index ri for i = 1, 2. In the following we will describe the method for bounding
from below the activity index of co-jumps. The BG index of a Lévy process
depends only on the Lévy measure F . r is an index taking care of positive and
negative jumps, for simplicity’s sake but without loss of generality we develop
our method for the case in which the Lévy measure is one-sided, i.e. X(i) only
makes positive jumps.

Assumption (r-stable). Each X(i) is following a ri-stable Lévy process. Take
r2 ≥ 1, and r1 ∈ (0, r2] with ci > 0, i = 1, 2. The jumps of each X(i) have Lévy
measure

F (i)(dxi) = cix
−1−ri
i 1(xi > 0)dxi.

We denote, for each i = 1, 2, that

Ui(xi) := F (i)
(
[xi,+∞)

)
= ci

x−ri
i

ri
xi ∈ [0,∞] (5.1)

be the tail integral of the marginal Lévy measure F (i). Note that ri is the BG
index of X(i).

The co-jump activity index r will be influenced by the dependence struc-
ture between the jump components. We will use a Lévy copula to describe this
dependency. The concept of Lévy copula allows us to characterize in a time-
independent scheme the dependence structure of the pure jump part of a Lévy
process. Here, we use the Lévy copula, which permits a range from a dependent
to a total independent framework. For the definition and concepts of indepen-
dence and total positive dependence copula we refer to Kallsen and Tankov
(2006). The next definition for joint jumps is taken from Mancini (2017).

Definition 5.1. The occurrence of joint jumps in (X(1), X(2)) is described by
the following tail integrals

U(x1, x2) = Fγ

(
[x1,+∞)× [x2,+∞)

)
= Cγ

(
U1(x1), U2(x2)

)
, x1, x2 ∈ [0,∞]
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where Cγ : [0,∞]2 → [0,∞] is a Lévy copula of the form

Cγ(u1, u2) = γC⊥(u1, u2) + (1− γ)C‖(u1, u2),

where C⊥(u1, u2) = u21(u1 = ∞) + u11(u2 = ∞) is the independence copula,
C‖(u1, u2) = u1∧u2 is the total positive dependence copula and γ varies in [0, 1].

The following remark gives us some clarifications on the definition of the
above Lévy copula.

Remark 5.2. The marginal tails Ui are defined on [0,∞], the joint tail is defined
on [0,∞]2. u1, u2 stands for U1(x1), U2(x2), and (u1, u2) = (+∞,+∞) is allowed:
both Ui(xi) could be ∞, namely when both xi = 0. In that case U(x1, x2) =
Cγ(U1(x1), U2(x2)) is +∞, and Cγ(∞,∞) = 0. Cγ is a Lévy copula because it
is a convex combination of two Lévy copulas, i.e. Cγ is a 2-increasing, grounded
and with uniform margins, because C⊥ and C‖ are such. Cγ(u1, u2) is not a
tail integral, it has different properties, for instance Cγ(u1,+∞) = u1, while for
any tail U we have U(x1,+∞) = 0. Finally, when γ = 0 jump components are
totally dependent while when γ = 1 the opposite.

We observe that the activity index of co-jumps is bounded from below by the
harmonic mean.

Lemma 5.3. Suppose that Assumptions (2-M) and (r-stable) hold. Let X(i) be
an one-sided ri-stable Lévy process for i = 1, 2 with positive jumps r2 ≥ 1, 0 ≤
r1 ≤ r2 and 0 < c1 ≤ c2. We assume either complete dependent or independent
jumps using Lévy copulas defined as in Definition 5.1. Then, we have that

r >
2r1r2
r1 + r2

≥ r1 ∧ r2

where r is the activity index of co-jumps.

Proof. The independent jumps have sizes of either (x1, 0) or (0, x2). This means
that we have jumps only on the Cartesian axes. The independent copula regu-
lates such jumps. On the other hand, the complete dependent jumps are regu-
lated by the dependent copula; their size falls into the point (x1, x2). The com-
plete dependent jumps are completely positively monotonic, i.e. there exists a

strictly increasing and positive function f such that ∀t > 0, ΔX
(2)
t = f(ΔX

(1)
t ).

This means that when x1 is a jump realization so there is a realization x2 such
as x2 = f(x1), then x1 is interpreted as the first component of the joint jump.
In fact, the sizes (x1, x2) are supported by the graph x2 = f(x1). For the de-
pendent copula we need the minimum between U1(x1) and U2(x2), which is
attained when U1(x1) = U2(x2). Hence, the graph x2 = U−1

2 (U1(x1)) supports
the joint jumps.

In our case we assume one-sided ri-stable processes, which means that the

union graph of the joint jumps is given by x2 =
(

c1r2
r1c2

)−1/r2
· xr1/r2

1 . We denote

by Fγ the Lévy measure in terms of the Lévy copula, using the Definition 5.1.
Therefore,

Fγ(dx) = (1− γ)C‖
(
U1(x1), U2(x2)

)
+ γC⊥

(
U1(x1), U2(x2)

)
. (5.2)
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Observe that
∫
1 ∧ (x1x2)

r/2dC⊥(U1(x1), U2(x2)) = 0, since the independent
copula regulates the jumps on the axes. Inserting (5.2) into Assumption (2-M),
it turns out that for ε smaller than 1, we get∫

0≤x1,x2≤ε

(x1x2)
r/2Fγ(dx1, dx2) =

∫
0≤x1,x2≤ε

(
x1x2

)r/2
dCγ

(
U1(x1), U2(x2)

)
= (1− γ)

∫
0≤x1,x2≤ε

(
x1x2

)r/2
dC‖

(
U1(x1), U2(x2)

)
.

The second equality holds because of the fact that the integrand is always equally
to zero in case of independent jumps. For sake of simplicity, we assume γ = 0,
i.e. totally dependent jumps. We assume that the jump sizes (x1, x2) fall into the
interval (0, ε) for sufficiently small ε > 0. By Assumption (r-stable) and c1 ≤ c2,

then we have U1(ε) ≤ U2(ε). Indeed, for the derivative of x−r

r with respect to
r to be positive on r ∈ (0, 2], the condition r log ε < −1 suffices, such that
U1(ε) ≤ U2(ε) holds. The last inequality implies ε ≥ U−1

2

(
U1(ε)

)
= f(ε). Since

we want to bound x1 ≤ ε and x2 = f(x1) ≤ ε, this gives us x1 ≤ f−1(ε)∧ ε = ε.
Hence,∫

0≤x1≤ε

(
x1 · f(x1)

)r/2
dU1(x1) =

∫
0≤x1≤ε

(
x1 · f(x1)

)r/2
c1x

−1−r1
1 dx1

= Cr/2 · c1
∫
0≤x1≤ε

(
x

r1
r2

+1

1

)r/2

x−1−r1
1 dx1

(5.3)

where C =
(

c1r2
r1c2

)− 1
r2
.

In light of the above calculations, in order for the integral in (5.3) not to be

divergent we need
(

r1
r2

+ 1
)

r
2 − 1 − r1 > −1, which means that r > 2r1r2

r1+r2
. We

observe that r, the activity index of co-jumps, is at least the harmonic mean of
the indices r1, r2. In addition, 2r1r2

r1+r2
≥ r1, since we assume r1 ≤ r2. To conclude,

the Blumenthal-Getoor (BG) index of the co-jump activity will be bounded from
below by

r >
2r1r2
r1 + r2

≥ r1 ∧ r2. (5.4)

The proof now is complete.

We see here that the higher the activity of one jump component, the higher
the activity of co-jumps.

Next we proceed to the proof of the upper bound Theorem 4.2 using a spectral
estimate for the co-integrated volatility. Given the fact that we know an estimate
for the integrated volatility ÎV , we should consider a straightforward estimate
for co-integrated volatility. By polarization, ÎV

(
X(1)+X(2)

)
/2− ÎV

(
X(1)

)
/2−

ÎV
(
X(2)

)
/2, is a possible estimator for the co-integrated volatility. However, we

refrain from using this estimate because the rates of convergence are slower than
following the procedure as in Section 6. Let us illustrate this argument with an
example.
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Example 5.4. Let (Xt) ≡ (X
(1)
t , X

(2)
t ) be a Lévy process with characteristic

triplet (0, 0, F (dx)), i.e., without a Gaussian part. We assume its components
are independent ri− stable Lévy processes for i = 1, 2 such that 0 ≤ r1 ≤ r2 < 2
and r2 ≥ 1. Using Lemma 4.1 from Kallsen and Tankov (2006) F is supported
by the coordinates axes and it can be written as F (dx) = F (1)(dx1)+F (2)(dx2).
The Lévy measures of the components are

F (1)(dx1) =
1

|x1|1+r1
dx1 and F (2)(dx2) =

1

|x2|1+r2
dx2.

More precisely,∫
1 ∧ ‖x‖rF (dx) ≥

∫
0<x1,x2<1

|x2
1 + x2

2|r/2F (dx1, dx2)

=

∫
0<x1<1

|x1|rF (1)(dx1) +

∫
0<x2<1

|x2|rF (2)(dx2)

=

∫
0<x1<1

|x1|r−1−r1dx1 +

∫
0<x2<1

|x2|r−1−r2dx2

(5.5)

In order the integrals in the last equality not to be divergent we need r > r2
and r > r1. As a consequence, we find that r > max(r2, r1). Using (3.1) we find
that the Blumenthal-Getoor index r∗ = r2.

6. Upper Bound

In this section we prove Theorem 4.2. We say that a sequence of estimators Ĉ12
n

achieves the rate wn on Lr
M , for estimating C12, if |Ĉ12

n − C12| = OP(wn). This

means that the family 1
wn

|Ĉ12
n − C12| is tight. Note that the argumentation is

in line with the bias-variance decomposition.

6.1. The bias-variance decomposition

We start with deriving a bias-variance-type decomposition of the estimation
error of the estimator for co-integrated volatility.

Lemma 6.1. We have that

Ĉ12
n (Un)− C12 = Dn +Hn.

The deterministic error given as

Dn =
n

2U2
n

(
log |φn(ũn)| − log |φn(un)|

)
− C12 (6.1)

and the stochastic error as

Hn = − n

2U2
n

(
log

∣∣∣φn(ũn)

φn(un)

∣∣∣− (
log

∣∣∣ φ̂n(ũn)

φ̂n(un)

∣∣∣)1{φ̂n(ũn) 	=0 and φ̂n(un) 	=0}

)
.

(6.2)



Minimax rates for co-integrated volatility 3537

Proof. We set C12
n (Un) =

n
2U2

n

(
log |φn(ũn)| − log |φn(un)|

)
, recalling the form

of the estimator (4.5). We get

Ĉ12
n (Un)− C12 = Ĉ12

n (Un) + C12
n (Un)− C12

n (Un)− C12

= C12
n (Un)− C12 + Ĉ12

n (Un)− C12
n (Un).

(6.3)

Inserting (4.5) into (6.3), we get that estimation error is given by Ĉ12
n −C12 =

Dn +Hn.

Notice that the indicator of the event in (6.2) is crucial, since we need to
guard large values for the empirical characteristic functions. We want to secure
that both φ̂n(un) and φ̂n(ũn) are not equal to zero at the same time.

Our goal is to show that the estimation error is stochastically bounded, i.e.
OP(wn). Firstly, we bound the deterministic error.

6.2. Bounding the deterministic error

Lemma 6.2. Grant Assumption (2-M). The deterministic error satisfies

|Dn| ≤ 2r/2MUr−2
n +AU−2

n ,

where A is a positive constant.

Proof. Recall the characteristic function of X1/n in (4.2). We define

dn = 2

∫
R2

(
1− cos

(〈
un,x

〉 ))
F (dx) (6.4)

d̃n = 2

∫
R2

(
1− cos

(
〈ũn,x〉

))
F (dx). (6.5)

Therefore,

|φn(un)| = exp

(
− 1

2n

(
〈Cun,un〉+ dn

))
and |φn(ũn)| = exp

(
− 1

2n

(〈
Cũn, ũn

〉
+ d̃n

))
. Notice that here we use an argu-

ment of complex analysis, if Z ∈ C then |eZ | = eRe(Z). Summing up,

n

2U2
n

(
log |φn(ũn)| − log |φn(un)|

)
− C12 =

1

4U2
n

(
dn − d̃n

)
. (6.6)

By (6.6), we have

|Dn| =
1

2U2
n

∣∣∣∣∣
∫ (

1− cos
(
〈un,x〉

))
F (dx)−

∫ (
1− cos

(
〈ũn,x〉

))
F (dx)

∣∣∣∣∣
=

1

2U2
n

∣∣∣∣∣
∫ (

cos
(
〈ũn,x〉

)
− cos

(
〈un,x〉

))
F (dx)

∣∣∣∣∣
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≤ 1

2U2
n

∫ (
2 ∧ | 〈un,x〉2 − 〈ũn,x〉2 |

)
F (dx)

=
1

2U2
n

∫ (
2 ∧ |4U2

nx1x2|
)
F (dx1, dx2),

where we used the fact that | cosx− cos y| ≤ 2 ∧ |x2 − y2|. Using the inequality
a ∧ b ≤ apb1−p for p ∈ (0, 1), the last term can be bounded as follows

|Dn| ≤
1

U2
n

∫ (
1 ∧ 2U2

n|x1x2|
)
F (dx1, dx2)

≤ 1

U2
n

∫
B1(0)

(
2U2

n|x1x2|
)r/2

11−r/2F (dx1, dx2)

+
1

U2
n

∫
R2\B1(0)

1F (dx1, dx2)

= Ur−2
n

∫
B1(0)

(2|x1x2|)r/2F (dx1, dx2) + U−2
n F

(
R

2 \B1(0)
)
,

(6.7)

here r
2 ∈ (0, 1) because r ∈ (0, 2) is the co-jump activity index. By Assumption

(2-M) and for some constant A > 0,

|Dn| ≤ 2r/2MUr−2
n +AU−2

n (6.8)

as required.

6.3. Bounding the stochastic error

We want to investigate how close the empirical characteristic function is to
the characteristic function of a two-dimensional Lévy process. The variables

ei〈un,Δ
n
j X〉 are i.i.d. as j varies, with expectation φn(un). The respective state-

ment holds true for ei〈ũn,Δ
n
j X〉 as well. So φ̂n(un) is an unbiased estimator

because E[φ̂n(un)] = φn(un). Also, the variance of the empirical characteris-

tic function is given by V ar(φ̂n(un)) = 1
n

(
1− |φn(un)|2

)
, where we use the

following definition.

Definition 6.3. For a C- valued random variable Z we define

V ar(Z) = E[(Z − E(Z))(Z̄ − E(Z̄))]

= E[Z̄Z − ZE(Z̄)− Z̄E(Z) + E(Z)E(Z̄)]

= E(|Z|2)− |E(Z)|2.

Lemma 6.4. Let Vn = φ̂n(un) − φ(un) and Ṽn = φ̂n(ũn) − φn(ũn), where
Vn, Ṽn ∈ C. Then, E(|Vn|2) ≤ 1

n and E(|Ṽn|2) ≤ 1
n .

Proof. Set Vn = Z ∈ C such that Vn = φ̂n(un) − φn(un). Remember that

φ̂n is unbiased due to the fact that E[φ̂n(un)] = φn(un), thus |E(Z)|2 = 0.
Taking this into consideration with the previous Definition 6.3, we obtain that
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E[|Z|2] = V ar[Z]. Therefore,

E(|Vn|2) = V ar(Vn) = V ar(φ̂n(un)) =
1

n

(
1− |φn(un)|2

)
≤ 1

n
. (6.9)

The same argument holds also for E(|Ṽn|2). This completes the proof.

We choose un =
(
Un, Un) and ũn = (Un,−Un). Recall that we estimate

the characteristic function on the diagonal of first and fourth quadrant for cal-
culation simplicity. Particularly, we choose for M > 0, r ∈ [0, 2) and n large
enough

Un =

{√
n if r ≤ 1√
(r − 1)n log n/

√
4M if r > 1.

(6.10)

Lemma 6.5. Grant Assumption (1-M). For some positive constants B,Γ,M

and on the event
{
|Vn| ∨ |Ṽn| ≤ 1

nr/4

}
the stochastic error satisfies:

E

[
|Hn|1{ |Vn|∨|Ṽn|≤ 1

nr/4

}] ≤

⎧⎨⎩
BΓ√
n

if r ≤ 1
BM

(r−1)n
2−r
2 logn

if r > 1.
(6.11)

Proof. Recalling the form of stochastic error (6.2), the first quantity we need to
bound is:

1∣∣φn(un)
∣∣ = exp

(
1

2n
(〈Cun,un〉+ dn)

)
= exp

(
1

2n

(
C11U2

n + C22U2
n + 2C12U2

n + dn
))

≤ exp

(
1

2n
U2
n

(
C11 + C22 + 2C12 + 4

∫
R2

(1∧ ‖ x ‖2)F (dx)

))
≤ exp

(
1

2n
U2
n

(
4‖C‖∞ + 4

∫
R2

(1∧ ‖ x ‖2)F (dx)

))
≤ exp

(
4M

2n
U2
n

)
.

(6.12)
The first inequality holds because

dn = 2

∫ (
1− cos(〈un,x〉)

)
F (dx) ≤ 2

∫ (
1 ∧ |〈un,x〉|2

)
F (dx)

≤ 4U2
n

∫
(1 ∧ ‖x‖2)F (dx),

using the Cauchy-Schwarz inequality for |〈un,x〉|2 ≤ ‖un‖2‖x‖2 and the fact
that Un ≥ 1. The last inequality in (6.12) derives from Assumption (1-M) and
the fact that we always have

∫
R2(1 ∧ ‖x‖2)F (dx) < ∞. Next, the form of Un

(6.10) implies that

1

|φn(un)|
≤
{
Γ if r ≤ 1

n
r−1
2 if r > 1,

(6.13)
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where Γ = e2M . The equivalent statement holds for φn(ũn). Let us now argue
that

φ̂n(ũn)

φ̂n(un)
=

Ṽn + φn(ũn)

Vn + φn(un)
=

φn(ũn)
(
1 + Ṽn

φn(ũn)

)
φn(un)

(
1 + Vn

φn(un)

) �= 0,∞

as soon as n ≥ n0 = (2Γ)
4

(2−r)∧r by (6.13) and on the set
{
|Vn| ∨ |Ṽn| ≤ 1

nr/4

}
.

Therefore,
∣∣∣ Vn

φn(un)

∣∣∣ ≤ 1
2 and

∣∣∣ Ṽn

φn(ũn)

∣∣∣ ≤ 1
2 . Accordingly, for the stochastic error

on the event
{
|Vn| ∨ |Ṽn| ≤ 1

nr/4

}
we obtain for some deterministic constant B:

|Hn| ≤
n

2U2
n

∣∣∣∣∣ log
∣∣∣∣∣ φ̂n(ũn)

φ̂n(un)

∣∣∣∣∣− log

∣∣∣∣φn(ũn)

φn(un)

∣∣∣∣
∣∣∣∣∣

=
n

2U2
n

∣∣∣∣∣ log
∣∣∣∣∣1 + φ̂n(ũn)− φn(ũn)

φn(ũn)

∣∣∣∣∣− log

∣∣∣∣∣1 + φ̂n(un)− φn(un)

φn(un)

∣∣∣∣∣
∣∣∣∣∣

=
n

2U2
n

∣∣∣∣∣ log
∣∣∣∣∣1 + Ṽn

φn(ũn)

∣∣∣∣∣− log

∣∣∣∣1 + Vn

φn(un)

∣∣∣∣
∣∣∣∣∣

≤ Bn

2U2
n

∣∣∣∣∣
∣∣∣∣∣ Ṽn

φn(ũn)

∣∣∣∣∣−
∣∣∣∣ Vn

φn(un)

∣∣∣∣
∣∣∣∣∣.

In the last inequality, we use the linearized stochastic errors for

log

∣∣∣∣∣1 + Ṽn

φn(ũn)

∣∣∣∣∣ ≈
∣∣∣∣∣ Ṽn

φn(ũn)

∣∣∣∣∣
because of the fact that Ṽn

φn(ũn)
and Vn

φn(un)
are small enough. So there is a

positive constant B such that log
∣∣∣1 + Ṽn

φn(ũn)

∣∣∣ ≤ B
∣∣∣ Ṽn

φn(ũn)

∣∣∣. Therefore,
|Hn| ≤

Bn

U2
n

max

(∣∣∣∣∣ Ṽn

φn(ũn)

∣∣∣∣∣ ,
∣∣∣∣ Vn

φn(un)

∣∣∣∣
)
. (6.14)

Henceforth, combining E[|Vn|] ≤ 1√
n
and E[|Ṽn|] ≤ 1√

n
with (6.14), for n ≥ n0,

and for some constant B > 0, we have

E

[
|Hn|1{ |Vn|∨|Ṽn|≤ 1

nr/4

}]
≤ E

[
Bn

U2
n

max

(∣∣∣∣∣ Ṽn

φn(ũn)

∣∣∣∣∣ ,
∣∣∣∣ Vn

φn(un)

∣∣∣∣
)
1{ |Vn|∨|Ṽn|≤ 1

nr/4

}
]

≤ Bn

U2
n

max

( ∣∣∣∣ 1

φn(un)

∣∣∣∣ , ∣∣∣∣ 1

φn(ũn)

∣∣∣∣ ) 1√
n
.
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The last inequality holds because we applied the Cauchy-Schwarz inequality and
by Lemma 6.4. To sum up, by (6.13) we get that

E

[
|Hn|1{ |Vn|∨|Ṽn|≤ 1

nr/4

}] ≤

⎧⎨⎩
BΓ√
n

if r ≤ 1
BM

(r−1)n
2−r
2 logn

if r > 1
(6.15)

as required.

Remark 6.6. Here, we are interested in the events
{
|Vn| ≤ 1

nr/4

}
and

{
|Ṽn| ≤

1
nr/4

}
because the probabilities of the above events are negligible. Indeed, ap-

plying the Chebyshev inequality and by Lemma 6.4 we get

P

(
|Vn| >

1

nr/4

)
≤ nr/2

E
(
|Vn|2

)
≤ nr/2 1

n
= n

r−2
2 ,

which tends towards zero as n → ∞. Likewise, the probability of the event{
|Ṽn| > 1

nr/4

}
tends towards zero as n → ∞.

Until now we bound from above the deterministic and stochastic errors. We
are now ready to prove that the family 1

wn
|Ĉ12

n − C12| is tight in Lr
M and thus

establish an upper bound for our estimator.

End proof of Theorem 4.2

Applying the Markov inequality, we get for any ε > 0, there exists a finite L > 0
such that,

P

(
1

wn
|Ĉ12

n (Un)− C12| ≥ L

)
≤ 1

L
E

[
1

wn
|Ĉ12

n (Un)− C12|1{|Vn|∨|Ṽn|≤ 1

nr/4
}

]
+ P

(
|Vn| >

1

nr/4

)
+ P

(
|Ṽn| >

1

nr/4

)
≤ 1

L
E

[
1

wn
|Ĉ12

n (Un)− C12|1{|Vn|∨|Ṽn|≤ 1

nr/4
}

]
+ 2n

r−2
2

≤ 1

L
E

[
1

wn
|Hn|1{|Vn|∨|Ṽn|≤ 1

nr/4
}

]
+

1

L

1

wn
|Dn|

+ 2n
r−2
2 .

Further applying Lemmas 6.5 and 6.2, we deduce that, as n → ∞, there is a
constant CL,r,M which depends on L, r,M such that

P

(
1

wn
|Ĉ12

n (Un)− C12| ≥ L

)
≤ CL,r,M , (6.16)

for CL,r,M ≤ ε, which proves that the family 1
wn

|Ĉ12
n (Un) − C12| is tight in

X ∈ Lr
M . The proof is complete.
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7. Lower bound

In nonparametric statistics it is common to use a minimax approach in order to
prove optimality of estimators. In the previous section, we proved Theorem 4.2,
which gave us an upper bound for the estimation of co-integrated volatility using
a spectral approach and establishing the rates (4.6) on the class Lr

M .
In this section, we want to prove Theorem 4.3. The existence of a lower

bound on the class Lr
M constitutes the exact minimax rates for the estimation

of co-integrated volatility. Indeed, we have something more for the lower bound,
namely that any estimator on a general class of Itô semimartingales satisfying
a condition similar to Definition 4.1 achieves a lower bound with rates (4.6). In
view of the formulation of (4.1), we can consider, for any M > 0, the class

Sr
M = the set of all Itô semimartingales with

‖Ct‖∞ +

∫
R2

(1 ∧ |x1x2|r/2)Ft(dx1, dx2) ≤ M for all t.

Observe that Lr
M ⊂ Sr

M . The lower bound for the class Lr
M will hold for the class

Sr
M as well. So far, we do not know whether the spectral approach for the upper

bound yields the same optimal rate on the larger class of Itô semimartingale.
We refer to Chapter 2 in Tsybakov (2009) for the techniques to prove the

lower bounds. We establish the lower bound following the argumentation in line
with a two-hypothesis test. Next, we introduce a distance between probability
measures that will be useful for the lower bound.

Definition 7.1. Let (X ,A) be a measurable space and let PX and PY be two
probability measures on (X ,A). The total variation distance between PX,PY

is defined as follows:

TV(PX,PY) := sup
A∈A

∣∣∣∣∫ (p0 − p1)ν(dx)

∣∣∣∣ ,
where p0 = dPX/dν, p1 = dPY/dν and ν = PX + PY a σ-finite measure.

To sum up, in order to prove a lower bound on the minimax probability of
error for hypotheses we use Theorem 2.2 in Tsybakov (2009). The lower bound
is obtained when the following two properties are satisfied. First, we choose
the appropriate parameters for the co-integrated volatility to be close enough
but distinguished. Second, we bound from below the total variation distance
between the two probability densities of our parameters.

Let us illustrate the above procedure giving a trivial lemma and proving that
the above arguments are adequate, so as to obtain the lower bound correspond-
ing to our family of estimators Lr

M . The interested reader may refer to Lehmann
and Romano (2006) who explore a lot of examples for hypothesis testing and
distances between Gaussian random variables.

Lemma 7.2. Assume X belongs to the class Lr
M with Lévy-Khintchine triplet

(0,ΣΣ�, 0). Then there are constants A,K such that

lim inf
n→∞

inf
Ĉ12

n

sup
X∈Lr

M

P[d(Ĉ12
n , C12) > Awn] ≥ K,
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where wn = 1√
n
, and Ĉ12

n is any estimator for the co-integrated volatility within

the class Lr
M .

Proof. Consider X and Y belong to Lr
M . Also, we assume that no jumps are oc-

curred so the Lévy Khintchine triplets for each process will satisfy (0,ΣXΣ�
X, 0)

and (0,ΣYΣ�
Y, 0) respectively. As a result, X will evolve as follows:

dX(1)(t) = σ
(1)
t dW

(1)
t

dX(2)(t) = σ
(2)
t dW

(2)
t

similarly for Y. We know that the Itô integral dX(1)(t) = σ
(1)
t dW

(1)
t is normally

distributed with mean 0 and its variance is given by Itô isometry which translates
to

X(1)
∼ N

(
0,

∫ 1

0

(σ
(1)
t )2dt

)
.

Therefore, X follows the parametric model

X =
(

X(1)

X(2)

)
∼ N

(
( 00 ) ,ΣXΣ�

X

)
similarly for Y.

We will prove the lower bound using the two-hypothesis test, as mentioned
in the beginning of this section. We observe that

Lr
M ⊃ BM

where BM is the class of all Brownian motions where the covariance matrix is
bounded component-wise by a constant M . As a consequence,

sup
X∈BM

P[d(Ĉ12
n , C12) ≥ Awn] ≤ sup

X∈Lr
M

P[d(C12, Ĉ12
n ) ≥ Awn].

It is enough to prove a lower bound for the rate wn = 1√
n

for the class of all

Brownian motions.
The two-hypothesis test is the following

PX = N
(
0,ΣXΣ�

X

)
vs PY = N

(
0,ΣYΣ�

Y

)
,

where the covariance matrices are given by ΣXΣ�
X = ( 2 1

1 1 ) and ΣYΣ�
Y =(

2 1+ 1√
n

1+ 1√
n

1

)
. Intuitively, we perturb the off-diagonal elements, namely the

covariance, by the rate we want to achieve. Following the argumentation of the
two-hypothesis test, it is sufficient to prove that the total variation distance is
bounded. To do so, we use the Pinsker inequality. By Pinsker inequality we have
that

TV(PY,PX) ≤
√
KL(PY,PX)/2,

where KL(PY,PX) is the Kullback-Leibler divergence. Next, we show that the
Kullback-Leibler distance is bounded. We define the Kullback-Leibler divergence
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between two multivariate normal distributions. Here, we denote by Σ1 = ΣXΣ�
X

and Σ2 = ΣYΣ�
Y. Therefore,

KL(PY,PX) =
1

2

(
log

|Σ1|
|Σ2|

− 2 + tr(Σ−1
1 Σ2)

)
,

where | · | denotes the determinant of a matrix. Calculating the appropriate
quantities, we obtain

|Σ1| = | 2 1
1 1 | = 1,

|Σ2| =
∣∣∣∣ 2 1+ 1√

n

1+ 1√
n

1

∣∣∣∣ = 2−
(
1 +

1√
n

)2

,

tr(Σ−1
1 Σ2) = 2− 2√

n
.

Therefore,

KL(PX,PY) =
1

2

⎛⎜⎝log

⎛⎜⎝ 1

2−
(
1 + 1√

n

)2

⎞⎟⎠− 2 + 2− 2√
n

⎞⎟⎠ .

Consequently, we obtain that the right hand side tends to zero as n → ∞.
By Pinsker inequality, the total variation distance tends to zero. Upon using
the minimax probability of error is bounded from below by 1/2 and the claim
follows.

To prove Theorem 4.3 we need to construct the two-hypothesis test in order
to bound from below the minimax probability error as we described previously
in Lemma 7.2.

7.1. Two-hypothesis test

Let X, Y ∈ R
2 be Lévy processes with respective triplets (0,ΣXΣ�

X, Fn),
(0,ΣYΣ�

Y, Gn), where Fn, Gn are Lévy measures in R
2 satisfying∫

R2

(
1 ∧ |x1x2|r/2

)
Fn(dx1, dx2) ≤ M (7.1)

where x = (x1, x2) is a vector in R
2 representing the size of small jumps for

each process and M is a constant (below M changes from line to line and
may depend on r, but all constants are denoted as M). The same applies for
the measure Gn. We set ΣXΣ�

X = ( 2 1
1 1 ) and ΣYΣ�

Y =
(

2 1+πwn
1+πwn 1

)
to be

the parameters of our two-hypothesis test. Under this setting, we perturb the
off-diagonal elements with the rate with which we want to achieve the lower
bound. The quantity which we want to recover is the co-integrated volatility, so
we need the off-diagonal elements. We use these forms of matrices in order for
the Gaussian part to be non-degenerated, namely the eigenvalues of the matrices
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to be positive. As we discussed in the beginning of this section, it is sufficient
to construct two sequences Xn, Yn which belong to the class Lr

M , with the
following two properties:

Property 1. The two parameters, namely the two covariance matrices are close
enough but distinguished.

Note that for this property the object of our study is the distance between
matrices. In this case we consider as a distance the Frobenius norm, and every-
thing still holds. By construction and Frobenius norm

||ΣYΣ�
Y − ΣXΣ�

X||F =
√
tr(ΣYΣ�

Y − ΣXΣ�
X)(ΣYΣ�

Y − ΣXΣ�
X)�

=
√
2πwn,

which means that the parameters are close enough but distinguished.

Property 2. The total variation distance between PX and PY tends towards
zero.

As far as the second property is concerned, the total variation distance tends
towards zero is not trivial. In fact, achieving the second property is quite de-
manding and we prove several lemmas to conclude this property.

7.2. Construction of the co-jump measure in R
2

First, we have to construct a measure to satisfy property (7.1). Before we proceed
with the technical part of this construction, let us highlight the idea behind it.
Note that we are studying a two-dimensional Lévy process, so it is reasonable to
include the possibility of dependence between the two jump components, more
specifically the common jumps, i.e. the co-jumps.

Observe here that co-jumps are one-dimensional objects. Co-jumps are the
jumps on the diagonal, due to the fact that the two processes jump at the same
time with the same jump size. Mathematically speaking, this can be formalized
as follows:

Definition 7.3 (Co-jump measure). Let X =
(
X(1), X(2)

)
be a Lévy processes,

with ΔX
(j)
t �= 0 for j = 1, 2. Here, ΔX

(j)
t = X

(j)
t − X

(j)
t− denotes the possible

jump at time t. The measure on R
2 is defined by:

Fn(ω; t, B) = E

[
#
{
t ∈ [0, 1] : (ΔX

(1)
t ,ΔX

(2)
t ) ∈ B

}]
= E

[
μX(1)X(2)

(ω; t, B)
]
,

where B =
{
(x1, x2) ∈ R

2 : x1 = x2

}
. This is called the Lévy measure in R

2

of co-jumps for X. Fn(B) is the expected number of joint jumps, per unite of
time, whose size falls into B, and μ is the Poisson random measure of co-jumps

where, μX(ω; t, B) =
∑

s≤t 1B(ΔX
(1)
s ,ΔX

(2)
s ).

We assume that the co-jump measure Fn has a density fn with respect to
Lebesgue measure on B. Because the jump dynamics of the co-jump measure
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is dictated by its density, say fn, we can define the measure of the co-jumps as
following.

Definition 7.4. For A ⊂ B ⊂ R
2, we write the measure of co-jumps as

Fn(A) :=

∫
fn(x)1A(x, x)dx :=

∫
fn(x)1Ã(x)dx, (7.2)

where Ã = {x : (x, x) ∈ A}.
The support of the co-jump measure is on B but the co-jump measure lives

on R
2. We focus on the case of co-jumps, i.e., when X(1) and X(2) jump at

the same time with the same jump size. We are interested in the jumps on the
diagonal.

Further, we do not integrate with respect to the Lebesgue measure, since it is
equal to zero on the diagonal. In this case we integrate with respect to a measure
that is not absolutely continuous with the Lebesgue measure, which we call co-
jump measure. We assume that Fn, Gn have densities fn and gn respectively.
By (7.2) we want to show that∫

R2

g(x1, x2)dFn(x1, x2) =

∫
R

g(x, x)fn(x)dx (7.3)

without being equal to zero. Being interested in the set of co-jumps, we pass
from two dimensions to one dimension. Co-jumps are the concept of total de-
pendency between the small jump components. Indeed, we use the argument of
dependency in order to reduce dimensionality. In order to prove this argument,
we need the following lemma.

Lemma 7.5. Let g : R2 → R be a measurable function and Fn be the co-jump
measure on R

2. Then∫
R2

g(x1, x2)dFn(x1, x2) =

∫
B

g(x1, x2)dFn(x1, x2) =

∫
fn(x)g(x, x)dx,

where Fn(A) is defined as in Definition 7.4.

Proof. First we use the step functions to prove the lemma. This extends by
linearity and by taking limits for all measurable functions g. Indeed, we only
need to show the lemma for the case of step functions. Let

g(x1, x2) =

m∑
k=1

ak1Ak
(x1, x2)

where Ak ⊂ A and ∪m
k=1Ak = A. Therefore,∫

g(x1, x2)dFn(x1, x2) =

∫ m∑
k=1

ak1Ak
(x1, x2)dFn(x1, x2)

=

m∑
k=1

ak

∫
1Ak

(x1, x2)dFn(x1, x2)
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=

m∑
k=1

ak

∫
Ak

dFn(x1, x2)

=

m∑
k=1

ak

∫
1Ak

(x, x)fn(x)dx

=

∫ m∑
k=1

ak1Ak
(x, x)fn(x)dx

=

∫
g(x, x)fn(x)dx,

and the claim follows.

Furthermore, we need to find a measure whose mass is bounded away from
the origin but may explode around 0 and integrates ‖x‖2. In order to construct
the co-jump measure with the above properties, we need to find an appropriate
density function for the co-jumps measure Fn(A) so as to satisfy the following
condition for r ∈ (1, 2) and x = (x, x):∫

A

(
1 ∧ |x1x2|r/2

)
Fn(dx1, dx2) =

∫
(1 ∧ |x|r) fn(x)1A(x, x)dx < ∞.

Indeed, the following lemma implies condition (7.1) by choosing properly the
density function of the co-jumps.

Proposition 7.6. Let wn be defined by (4.6) and r ∈ (1, 2). Let there be the
even functions hn : R2 → R such that hn(U) = h̃n(U) · h̃n(U), where

h̃n(U) =

{√
wn |U | ≤ Un√
wne

−|U−Un|3 |U | > Un,

and Un = 2w
− 1

2−r
n . Then, for any A from Definition 7.4, we have∫

(1 ∧ |x|r)1A(x, x)Fn(dx) < ∞, (7.4)

where Fn(A) =
∫
R

|Hn(x)|
x2 1A(x, x)dx and Hn is the Fourier transform of hn.

Proof. The mathematical tool used for the formation of the density function is
the Fourier transform. Intuitively, we use the function hn as a constant inside
a fixed interval and which decays exponentially outside this interval. Notice
that in the exponential we used the power of 3 because we need to differentiate
two times, as we shall see later. Also, Un is different from the one used in
Theorem 4.2.

Notice that hn has a range on R, which is why we use the Fourier transform
on R. The pair of Fourier transform takes the following form:

Hn(x) = F [hn(U)](x) =

∫ ∞

−∞
eiUxhn(U)dU
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hn(U) = F−1[Hn(x)](U) =
1

2π

∫ +∞

−∞
e−iUxHn(x)dx

and the respective first derivatives will have the form

∂1Hn(x) = iF [Uhn(U)](x)

∂1hn(U) = (−i)F−1[xHn(x)](U).

For a thorough analysis of the Fourier transform the interested reader should
refer to Bracewell (1986).

In the next step, the pair of Fourier transform will provide us with a proper
and well-defined density function for the co-jump measure. First, we note that
the L

2-norm of hn is bounded. Indeed,

‖hn‖L2(B) =‖h̃2
n‖L2(R) =

(∫ ∞

−∞
|h̃n(U)|4dU

)1/2

= wn

(∫
|U |≤Un

dU +

∫
|U |>Un

e−4|U−Un|3dU

)1/2

=
√
2wn

(
Un +

∫ ∞

Un

e−4|U−Un|3dU

)1/2

=
√
2wn

(
Un +

∫ ∞

0

e−4K3

dK

)1/2

≤ Cwn

√
Un ≤ Cw

3−2r
4−2r
n ,

(7.5)

for Un ≥ 1. In the last equality, substituting K = U − Un, we get that∫∞
0

e−4K3

dK is bounded by a constant C. In addition, hn is an L2-function.
Applying the Plancherel theorem we deduce that

‖Hn‖L2(R) =
√
2π‖hn‖L2(R) ≤ Cw

3−2r
4−2r
n . (7.6)

Similarly, we get a bound for the L2− norm of the first derivative of hn

‖∂1hn‖L2(R) ≤
C√
2π

wn. (7.7)

Moreover, ‖Hn‖L1 is also bounded∫ +∞

−∞
|Hn(x)|dx =

∫ +∞

−∞

1√
1 + x2

√
1 + x2|Hn(x)|dx

≤
(∫ +∞

−∞

1

1 + x2
dx

)1/2(∫ +∞

−∞
H2

n(x)(1 + x2)dx

)1/2

≤
√
π

(∫ +∞

−∞
H2

n(x) + x2H2
n(x)dx

)1/2

≤
√
π
(
‖Hn‖L2 + ‖∂1hn‖L2

)
≤

√
πC(1 + w

3−2r
4−2r
n ) < ∞.

(7.8)
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We get the first inequality because of the Cauchy-Schwarz inequality. By means
of (7.6) and (7.7), we get the last inequality. The L

1-norm of Hn is bounded in
n when r ≤ 3/2.

At this point we are ready to define the co-jumps measures Fn(A) and Gn(A)
in terms of the Fourier transform Hn(x).

Fn(A) =

∫
R

|Hn(x)|
x2

1A(x, x)dx Gn(A) = Fn(A) +

∫
R

Hn(x)

x2
1A(x, x)dx.

(7.9)
for any A ∈ B(R2). These measures satisfy the basic properties of Lévy mea-
sures. They are non-negative, integrate x2, and may explode around zero since
Hn(x)
x2 → ∞ as x → 0.
It remains to prove (7.1) under this argumentation. Based on the above con-

struction and A = {(x1, x2) ∈ R
2 : x1 = x2 = x}, (7.1) transforms into:∫

(1 ∧ |x|r) |Hn(x)|
|x|2 dx, (7.10)

so we need to show that (7.10) is finite. Next we show how to bound from above
|Hn(x)|.

Hn(x) =

∫ +∞

−∞
hn(U) cos(Ux)dU + i

∫ +∞

−∞
hn(U) sin(Ux)dU

=

∫ ∞

−∞
hn(U) cos(Ux)dU.

(7.11)

In the first line the second term is equal to zero since it is the integral of the
product of an even and an odd function.

Hn(x) = 2wn

∫ Un

0

cos(Ux)dU + 2wn

∫ ∞

Un

e−2(U−Un)
3

cos(Ux)dU

= 2wn

(
sin(Unx)

x
+

∫ ∞

0

e−2K3

cos((K + Un)x)dK

) (7.12)

Note that in the second line we substitute K = U−Un and the integral is always
bounded from above by a constant C. So,

|Hn(x)| ≤ Cwn

(
| sin(Unx)|

|x| + 1

)
. (7.13)

On the sets
{
|x| ≤ 1

Un

}
,
{

1
Un

< |x| ≤ 1
}
, {|x| > 1} we deduce that

1. |x| ≤ 1
Un

⇒ |Unx| ≤ 1 ⇒ | sin(Unx)| ≤ |Unx| ⇒ | sin(Unx)|
|x| + 1 ≤ CUn.

2. 1
Un

< |x| ≤ 1 ⇒ | sin(Unx)|
|x| + 1 = | sin(Unx)|+|x|

|x| ≤ 2
|x| .

3. |x| > 1 ⇒ | sin(Unx)|
|x| + 1 ≤ 2.
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In turn, we get that

|Hn(x)| ≤ Cwn

(
Un1

(
|x| ≤ 1

Un

)
+

1

|x|1
(

1

Un
< |x| ≤ 1

)
+ 1(|x| > 1)

)
.

(7.14)

By splitting the integration domain into the sets
{
|x| ≤ 1

Un

}
,
{

1
Un

< |x| ≤ 1
}
,

{|x| > 1} and recalling that r ∈ (1, 2), condition (7.1) will take the form:∫
(1 ∧ |x|r) |Hn(x)|

|x|2 dx

≤ Cwn

∫
1 ∧ |x|r
|x|2 Un1

(
|x| ≤ 1

Un

)
dx

+

∫
1 ∧ |x|r
|x|2

1

|x|1
(

1

Un
< |x| ≤ 1

)
dx+

∫
1 ∧ |x|r
|x|2 1(|x| > 1)dx

≤ Cwn(U
2−r
n + 1) ≤ C.

In light of the form of Un the last inequality holds. Recall that Un = 2/w
1/(2−r)
n .

Therefore, (7.4) is satisfied, which implies condition (7.1), by which the proof is
complete.

Till now we constructed the co-jump measure, which satisfies (7.1), and the
covariance matrices for the hypothesis test. So the triplets for the hypothesis
test are now defined. Next step, we study the characteristic functions of the two
processes, which will be useful later on in the proof of Property 2.

7.3. Characteristic functions of X1/n and Y1/n

At this point, we study the processes X,Y for one observation at the moment
t = 1

n . We denote by ψn(u), φn(u) the characteristic functions of X1/n, Y1/n

respectively, and by ηn(u) = ψn(u)− φn(u) their difference. The characteristic
triplet for each process is

X1/n ∼
(
0,ΣXΣ�

X, Gn(dx)
)

Y1/n ∼
(
0,ΣYΣ�

Y, Fn(dx)
)
,

where ΣXΣ�
X = ( 2 1

1 1 ) and ΣYΣ�
Y =

(
2 1+πwn

1+πwn 1

)
. Denote by CX = ΣXΣ�

X

and CY = ΣYΣ�
Y. The characteristic functions will be defined as follows

φn(u) = exp

{
− 1

2n

(
〈CYu,u〉+ 2φ̃n(u)

)}
and

ψn(u) = exp

{
− 1

2n

(
〈CXu,u〉+ 2φ̃n(u) + 2ψ̃n(u)

)}
.
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Thus, we get

ψn(u) = ψn(U) = exp

{
− 1

2n

(
5U2 + 2φ̃n(U) + 2ψ̃n(U)

)}
(7.15)

φn(u) = φn(U) = exp

{
− 1

2n

(
5U2 + 2πwnU

2 + 2φ̃n(U)
)}

. (7.16)

We denote by

φ̃n(u) = φ̃n(U) =

∫
A

(
1− cos(Ux)

) |Hn(x)|
x2

dx (7.17)

and

ψ̃n(u) = ψ̃n(U) =

∫
A

(
1− cos(Ux)

)Hn(x)

x2
dx (7.18)

because of the form of co-jump measure (7.9) and the fact that Hn is an even
function, its Fourier transform will be a real function. Also, recall the Fourier
transform of the co-jump measure has support on R and A is a subset of the
diagonal. Moreover,

〈CXu,u〉 = 5U2 and 〈CYu,u〉 = 5U2 + 2πwnU
2.

Next we bound from above (7.17) and (7.18). First, observe that

ψ̃′′
n(U) =

∫
cos(Ux)Hn(x)dx = 2πhn(U),

since Hn is an even function. We consider the following two cases:

|U | ≤ Un : ψ̃′′
n(U) = 2πwn ⇒ ψ̃′

n(U) = 2πwnU ⇒ ψ̃n(U) = 2πwn
U2

2

|U | ≥ Un : |ψ̃′
n(U)| ≤ 2πwn|U | ⇒ |ψ̃n(U)| ≤ 2πwn

U2

2
.

(7.19)

Now, concerning the φ̃n(U) we exploit the same arguments as before and by
(7.8) we obtain

|φ̃′
n(U)| ≤

∫ |x sin(Ux)|
x2

|Hn(x)|dx ≤
∫ |U |x

x
|Hn(x)|dx ≤ C|U |

(
1 + w

3−2r
4−2r
n

)
(7.20)

φ̃n(U) =

∫
1− cos(Ux)

x2
|Hn(x)|dx ≤

∫
(Ux)2

x2
|Hn(x)|dx ≤ CU2

(
1 + w

3−2r
4−2r
n

)
.

(7.21)

7.4. Total variation distance

As we discussed in the first step, X and Y have a nonvanishing Gaussian part
so that the variables X1/n and Y1/n have densities. We denote by f1/n and
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g1/n the densities of X1/n and Y1/n respectively. In order to establish a lower
bound for our class with the rates (4.6), the last ingredient to be shown is
Property 2, that the total variation distance between PX and PY goes towards
zero. Mathematically speaking, this formulates as

TV(PX,PY) = 2n

∫
|f1/n(x)− g1/n(x)|dx → 0. (7.22)

We denote as kn = f1/n − g1/n the difference between the densities, ηn = Fkn
the Fourier transform of kn, and ∂1ηn the first derivative of ηn. One would be
tempted to use the following

TV(PX,PY) = 2n

∫
|f1/n(x)− g1/n(x)|dx

= 2n

∫ ∣∣∣∣ ∫ e−iUx
(
φn(U)− ψn(U)

)
dU

∣∣∣∣dx
≤ 2n

∫ (∫
|e−iUx||φn(U)− ψn(U)|dU

)
dx

≤ 2n

∫ (∫
|φn(U)− ψn(U)|dU

)
dx.

(7.23)

In the second equality we wrote the density function as the Inverse Fourier
transform of its characteristic function. But the last integral is infinite. Hence,
this procedure is not working for our goal. Since we want to prove that

2n

∫
|f1/n(x)− g1/n(x)|dx → 0, (7.24)

we know that the total variation distance between PX and PY is not more than
2n times

∫
|kn(x)|dx. By using the same argument as for the Jacod and Reiß

(2014) Theorem 3.1, by Cauchy-Schwarz inequality and Plancherel theorem, we
obtain ∫

|kn(x)|dx =

∫
1√

1 + x2
(
√

1 + x2)|kn(x)|dx

≤
√
π

(∫ (
k2n(x) + x2k2n(x)

)
dx

)1/2

≤
√
π (‖ηn‖L2 + ‖∂1ηn‖L2)

1/2
.

In the second inequality we used the Cauchy-Schwarz inequality and in the last
one we used Plancherel identity.

Thus, the only ingredient which remains to be shown is the following lemma
in order to satisfy Property 2.

Lemma 7.7. We show that

4n2

∫
|ηn(U)|2dU → 0 and 4n2

∫
|∂1ηn(U)|2dU → 0 (7.25)

as n → ∞.
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Proof. First, we study the convergence of ηn(U):

|ηn(U)| =|φn(U)− ψn(U)| = |ψn(U)|
∣∣∣∣1− φn(U)

ψn(U)

∣∣∣∣
= |ψn(U)|

∣∣∣∣1− exp

(
1

2n
(2ψ̃n(U)− 2πwnU

2)

) ∣∣∣∣
≤ |ψn(U)|

∣∣∣∣ 12n (
2ψ̃n(U)− 2πwnU

2
) ∣∣∣∣.

The last inequality holds due to the fact that 1− e−x ≤ x. The difference of the
characteristic functions vanishes for |U | ≤ Un because of 2ψ̃n(U) = 2πwnU

2 by
(7.19).

By means of φ̃n(U)+ ψ̃n(U) ≥ 0, we get that |ψn(U)| ≤ e−
U2

2n and |φn(U)| ≤
e−

U2

2n . Thus, for some multiplicative constant C

|ηn(U)| ≤ C
U2wn

2n
e−

U2

2n 1{|U |≥Un}. (7.26)

We define by

A :=

∫
{|U |≥Un}

U4e−
U2

n dU. (7.27)

Using Cauchy-Schwarz inequality we bound the integral (7.27) from above by

A ≤ 2

(∫ ∞

Un

U5e−
U2

n dU

)1/2

·
(∫ ∞

Un

U3e−
U2

n dU

)1/2

≤ C

(
nU4

ne
−U2

n
n

)1/2(
nU2

ne
−U2

n
n

)1/2

.

(7.28)

The integrals in the first line on the r.h.s can be calculated exactly by calculus

methods, and recalling Un = 2/w
1/(2−r)
n = 2

√
n logn we get

4n2

∫
|ηn(U)|2dU ≤ Cw2

n

∫
{|U |≥Un}

U4e−
U2

n dU ≤ C
(log n)3/2

n3/2
.

The first part of the (7.25) follows. Now recall the form of the characteristic
functions and their difference ηn = ψn(U)− φn(U). Therefore by (7.19), (7.20),

and the fact that |ψn(U)| ≤ e−
U2

2n , |φn(U)| ≤ e−
U2

2n we get that

|∂1ηn(U)| ≤ 1

n

(
2πwn|U ||φn(U)|+ |φ̃′

n(U) + 5U ||ηn(U)|+ |ψ̃′
n(U)||ψn(U)|

)
≤ 1

n

(
2πwn|U |e−U2

2n + |φ̃′
n(U) + 5U |e−U2

2n
CwnU

2

2n
+ 2πwn|U |e−U2

2n

)
≤ 1

n

(
4πwn|U |e−U2

2n +

(
5|U |+ C|U |(1 + w

3−2r
4−2r
n )

)
e−

U2

2n
CwnU

2

2n

)
≤ C

wn|U |
n

e−
U2

2n

(
1 +

(
w

3−2r
4−2r
n + 1

)
U2

2n

)
.
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Therefore,

4n2

∫ ∞

Un

|∂1ηn(U)|2 ≤ Cw2
n

∫ ∞

Un

U2e−
U2

n dU

+ C
w2

n

n2

(
1 + w

3−2r
4−2r
n

)2 ∫ ∞

Un

U6e−
U2

n dU.

Now, 1+w
3−2r
4−2r
n

n tends towards zero. Additionally, the integrals on the right hand
side can be bounded again using Cauchy-Schwarz inequality, like integral A in
(7.27). Following these, we can calculate the integrals through basic calculus
methods exactly. As a result,

4n2

∫ ∞

Un

|∂1ηn(U)|2dU ≤ C
(logn)5/2

n1/2
,

which also goes to zero as n → ∞ and the proof is completed.

End proof of Theorem 4.3

Lower bound for the rate wn = 1√
n
when r ∈ (0, 2). To prove this bound,

it is enough to show that it holds on the subclass of all Brownian motions since
BM ⊂ Lr

M . Taken together with Lemma 7.2, this bound is achieved.

Lower bound for the rate wn = 1/(n log n)
2−r
2 when r ∈ (1, 2). The main

steps of this proof are to show that Property 1 and Property 2 are satisfied.
Now, with reference to Lemma 7.5 for the construction of co-jump measure,
Proposition 7.6 and Lemma 7.7 we conclude the proof of Theorem 4.3.

8. Discussion

In this section we make some important remarks concerning the upper bound
and the rates of convergence. First, we want to compare the efficiency of our
estimator with the work of Mancini (2017) in which she considered at least one
jump component of a two-dimensional Itô semimartingale with infinity varia-
tion. Mancini (2017) introduced the truncated realized covariance (TRC) as an
estimator for co-integrated volatility. The proposed estimator is

ÎC =
n∑

i=1

ΔiX
(1)1{(ΔiX(1))2≤rh}ΔiX

(2)1{(ΔiX(2))2≤rh},

where rh = h2u is the truncation level with h = 1/n, u ∈ (0, 1
2 ) and n → ∞.

It is clear that, when rh → 0, all jumps are asymptotically excluded. It is
assumed that the two jump components have an activity index r1, r2 where
0 ≤ r1 ≤ r2 < 2 and r2 ≥ 1. Notice by recalling Lemma 5.3 that in our case
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we used the index r for the activity of co-jumps. In the following we use the
notation “a � b” when a is much grater than b.

The truncated estimator achieves the rate (1−γ)
√
rh

(1+
r2
r1

−r2) when r1, r2 �
1 and the jump components are dependent. The TRC estimator reaches the rate

hr
− r2

2

h when the two jump components are independent and r2 � r1 and the

rate
√
h when r1 is small and r2 is close to 1. The parameter γ describes the

dependence structure of the two jumps with γ ∈ [0, 1]. When γ = 0 we have full
dependency between the jump components, while γ = 1 means independence
between the jump components.

Finally, for a fair comparison with the spectral estimator, the TRC rates
read in our notation using the following modifications. We assume

√
rh to be

approximately 1√
n
as truncation level, since u ∈ (0, 1

2 ). The truncation level is

not optimal, but the work of Figueroa-López and Mancini (2017) proposed an
optimal way for the truncation level using mean and conditional mean square
error for the case of a one-dimensional Itô semimartingale.

For reasons of simplicity we take into consideration only the two extreme cases
of dependency. In the first two rows we assume γ = 0, i.e. fully dependency
between the jump components, while in the last row we consider γ = 1, i.e.
the jumps are totally independent. Further, we assume that the observations
are drawn from a two-dimensional stable Lévy process. In the second row, by
Lemma 5.3, we get the rate for the spectral estimator in case of dependent
jumps. In the last row, using Example 5.4 we conclude the rate for the spectral
estimator, since the last row is referring to independent jumps.

Rates of convergence
r, r1, r2 ∈ (0, 2], γ ∈ [0, 1] TRC estimator Spectral estimator

r2 close to 1, r1 small, r = 1, γ = 0 n− 1
2 , n− 1

2

r1 ≤ r2 close to 2, r = r2, γ = 0 n
− 1

2

(
1+

r2
r1

−r2

)
(n logn)

r−2
2

r1 small, r2 close to 2, r = r2, γ = 1 n
r2−2

2 (n logn)
r−2
2

In the first row we observe that the truncated estimator establishes the same
rates as the spectral estimator when both jump components have activity in-
dices close to 1. Notwithstanding, the second row refers to the case of both
jump components being of infinite variation. Then by Lemma 5.3, the spectral

estimator will achieve the rate (n log n)
r2−2

2 . Here, we notice that the truncated
estimator achieves slower rates than the spectral estimator. The same happens
in the last row, when we assume independent jumps and one component is
of infinite variation. Then by Example 5.4 the spectral estimator will achieve

the rate (n logn)
r2−2

2 , which is faster than the rate of TRC estimator. How-
ever, the above comparison refers to the special case of a two-dimensional Lévy
process. The TRC estimator still achieves its rates of convergence in case of a
two-dimensional Itô semimartingale. In contrary, the spectral estimator reaches
the optimal rates only in case of a two-dimensional Lévy process.
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8.1. Numerical experiments

In this section we test our estimates with Monte-Carlo experiments.1 This means
that we first have to simulate the sample paths of a bivariate Lévy process on
[0, 1].

Section 6 of Cont and Tankov (2004) suggested various simulation algorithms
for Lévy processes. We extend here Algorithms 6.6, 6.5, 6.3 to a bivariate setting.
In addition, we use the generalized shot noise method for series representation
of a two-dimensional Lévy process of infinite variation introduced by Rosinski
(1990).

We now perform Monte-Carlo tests of our spectral estimate Ĉ12
n (Un), com-

paring it to the Truncated Realized Covariance (TRC) estimate ÎCT of Mancini
(2017) for a two-dimensional Itô semimartingale. To provide a balanced com-
parison, we will draw our observations from a process Xt = Bt+Jt, where Bt is
a two-dimensional Brownian motion and Jt is a two-dimensional jump process.
Its jumps are driven by a two-dimensional r-stable process. Xt thus models a
process with both diffusion and jump components. For Figure 1, in each run
of our simulation, we will generate n = 1,000 observations, corresponding to
observations taken every 1/1,000 over a time interval [0, 1].

Fig 1. Simulated distributions of the estimates.

The estimates Ĉ12
n (Un) and ÎCT depend on a number of parameters. We be-

gin by considering the covariance matrix C = ( 2 1
1 1 ) for two correlated Brownian

motions. In our simulations, the cointegrated volatility of Xt is equal to 1, and
so we may choose the parameters accordingly. In our tests, we found the value
M = 4.229 worked well for bounding from above the jump activity in the case

1The interested reader can view the code at https://github.com/KarinaPapayia/
Co-integrated-volatility-multidimensional-Levy-processes

https://github.com/KarinaPapayia/Co-integrated-volatility-multidimensional-Levy-processes
https://github.com/KarinaPapayia/Co-integrated-volatility-multidimensional-Levy-processes
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of infinite variation jumps. In the case of ÎCT we chose h = 1/1,000, u = 0.387,

and as truncation level rh =
(

1
1,000

)2∗0.387
. We found that this truncation level

cuts the jumps bigger than
(

1
1,000

)2∗0.387
, which means that almost all jumps

were eliminated.

Figure 1 plots the simulated distributions of the estimates Ĉ12
n (Un) and ÎCT

together with a nonparametric fit, shown as a solid line. We can see that in every
choice for r1, r2, the estimates are centered around 1, which is the expected
theoretical cointegrated volatility. Figure 1 shows that the spectral estimator is
more skewed, while the spread of the TRC estimator is much smaller.

Figure 2 plots the RMSEs of the estimates Ĉ12
n (Un), ÎCT against different

choices for the activity index of the co-jumps. We study the performance of the
estimates under finite, moderate, and infinite activity of co-jumps. We can see
that, as n grows, the RMSE of the spectral estimate Ĉ12

n (Un) is getting slightly
smaller compared with the truncated estimate. However, we observe that the
RMSEs of the truncated estimate ÎCT are smaller compared with the spectral
estimate when n = 1,000.

Fig 2. Simulated RMSEs of the estimates Ĉ12
n (Un) and ÎCT .

We observe this behavior in Figure 2 for the truncated estimate ÎCT because
of our choice of truncation level, which is not an optimal. While the choice of
u = 0.387 for the truncation level rh works well for n = 1,000, it does not work
well when the number of observations is bigger, for example when n = 10,000.
Figure 8 shows the sensitivity of the TRC estimator in case of IV jumps.

Figures 3, 4 give violin plots for the spectral estimate Ĉ12
n (Un) under a number

of choices for the amount of observations n and the activity index for the co-
jumps, whilst Figures 5, 6 show violin plots for the truncated estimate ÎCT

under the same settings. The number of observations varies from 1,000 to 10,000
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by step 1,000.

Fig 3. Violin plots for the estimates Ĉ12
n (Un).

Fig 4. Violin plots for the estimates Ĉ12
n (Un).

In Figure 3, we used as an activity index for the jumps r1 = 0.5, r2 = 0.8,
while in Figure 4 we set r1 = 1.2 and r2 = 1.8. In the case of r1 = 1.2 and
r2 = 1.8, we see that the estimation for the covariance slightly deviates from
the center as n grows. We tuned the parameter M for n = 5,000.

Figures 5 and 6 show again that the truncated estimate ÎCT slightly deviates
from the center as n is larger than 6,000 or smaller than 5,000, an expected effect
due to the choice of truncation level. We should mention here that the parameter
u is tuned for n = 5,000. We expect this effect to disappear once the optimal
choice for the threshold rh is established.

Finally, Un is the parameter which controls the frequency for our spectral
estimate Ĉ12

n (Un). Un depends on n,M, r. In view of the form (6.10) for Un we
can find a constant to multiply which will give us the optimal choice for Un.
The results will still hold. In fact Figure 7 shows that the spectral estimate for
M > 3, n = 5,000 and r = 1.5 is centered around the theoretical co-integrated
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Fig 5. Violin plots for the estimates ÎCT .

Fig 6. Violin plots for the estimates ÎCT .

volatility C12. Figure 7 shows a violin plot for the spectral estimate tuning up
the parameter M .

Figure 8 shows that the truncated estimate ÎCT is quite sensitive to the
choice of threshold. Here, we used n = 5,000, r1 = 1.2, r2 = 1.5, h = 1/5,000
and u varies from 0.410 to 0.419. Recall that rh = h2u. We notice that the
threshold estimate deviates strongly from the theoretical co-integrated volatility.
Figure 8 shows that the threshold estimate is centered around C12 only when
u = 0, 419. As a result, it is crucial to choose an optimal threshold for the
truncated estimate.
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A. Bücher and M. Vetter. Nonparametric inference on Lévy measures and cop-
ulas. The Annals of Statistics, 41(3):1485–1515, 2013. MR3113819

P. Carr, H. Geman, D. Madan, and M. Yor. The fine structure of asset returns:
An empirical investigation. The Journal of Business, 75(2):305–332, 2002.

K. Christensen, M. Podolskij, and M. Vetter. On covariation estimation for
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