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Abstract: The classical regular and partial autocorrelation functions are
powerful tools for stationary time series modelling and analysis. However,
it is increasingly recognized that many time series are not stationary and
the use of classical global autocorrelations can give misleading answers.
This article introduces two estimators of the local partial autocorrelation
function and establishes their asymptotic properties. The article then il-
lustrates the use of these new estimators on both simulated and real time
series. The examples clearly demonstrate the strong practical benefits of
local estimators for time series that exhibit nonstationarities.
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1. Introduction

Much work has been undertaken to develop both theory and methods for the use
of the autocorrelation and partial autocorrelation for mean zero second-order
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stationary time series. See, for example, Priestley (1983), Brockwell and Davis
(1991) or Chatfield (2003). For stationary time series, both autocorrelations are
fundamental for eliciting second-order structure and are particularly useful for
subsequent modelling and prediction. Unfortunately, in many applied situations,
for example neurophysiology (Fiecas and Ombao, 2016) or biology (Hargreaves
et al., 2018), the stationarity assumption is not tenable and, hence, use of the
classical stationary-based autocorrelations is highly questionable. Indeed, it is
not possible for a time-varying parameter to be adequately summarised by a sin-
gle coefficient. Before practical analysis, one should therefore attempt to assess
whether the series is stationary or not. Many techniques and software packages
exist that enable such assessment, see reviews in Dahlhaus (2012) or Cardinali
and Nason (2018) or newer techniques that measure, rather than test, the degree
of nonstationarity, e.g. Das and Nason (2016).

A large literature on nonstationary time series modelling has developed since
the 1950s. See, for example, Page (1952), Silverman (1957), Whittle (1963),
Priestley (1965), Tong (1974) and Dahlhaus (1997). Alternative model forms
including the piecewise stationary time series of Adak (1998); the wavelet mod-
els of Nason, von Sachs and Kroisandt (2000); and the SLEX models of Ombao
et al. (2002) have been proposed. A comprehensive review of locally station-
ary series can be found in Dahlhaus (2012). As part of these developments, the
local autocovariance, for non- or locally stationary processes, has been studied
in the literature and details on specific estimators can be found in Hyndman
and Wand (1997), Nason (2013a), Cardinali (2014) and Zhao (2015), for exam-
ple. However, to date, little attention seems to have been paid to local partial
autocorrelation and the benefits it could bring. An exception is Degerine and
Lambert (1996) and Degerine and Lambert-Lacroix (2003), who extended the
classical partial autocorrelation to encompass nonstationary processes. Their
seminal work mentions estimation, including the windowing idea that we use in
Section 3, but provides no theory for their estimator nor evaluation via simu-
lation or on real time series. More recently, Yang, Holan and Wikle (2016) use
a hierarchical Bayesian modelling approach to estimate process time-frequency
structure, linking the time-dependent partial autocorrelations to the coefficients
of a time-varying autoregressive process.

Autocorrelation and partial autocorrelation are intimately related, present-
ing complementary views on the underlying structure within a time series. For
example, arguably, partial autocorrelation provides direct information on the or-
der and underlying structure of autoregressive-type processes (see Appendix A
for additional background on its interpretation). As in the stationary case, for
real-life statistical analysis one needs both local autocorrelation and partial au-
tocorrelation. This article fills the gap for the latter. We introduce two new
estimators of the local partial autocorrelation function, supplying new results
on their theoretical properties. We further exhibit our estimators on a simulated
series and three real time series that demonstrate the importance of using a local
approach. In addition, our work also provides a freeware R software package,
lpacf, for local partial autocorrelation that complements existing software for
local autocorrelations, such as lacf in the locits package.
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2. The local partial autocorrelation function

2.1. The (process) local partial autocorrelation function, qT , for a
locally stationary process

Let {Xt,T } be a zero-mean locally stationary process such as the locally station-
ary Fourier process, Dahlhaus (1997, Definition 2.1), or the locally stationary
wavelet process, Nason, von Sachs and Kroisandt (2000, Definition 1). Locally
stationary process theory supports short-memory processes and often has quan-
tities of interest such as the time-varying spectrum, f(z, ω) at (rescaled) time
z ∈ (0, 1) and frequency ω, or local autocovariance c(z, τ) at location z and lag
τ , which are estimated via a process quantity (fT or cT ), which depends on
the sample size T and asymptotically approaches to the quantity of interest as
T → ∞. Consider, for example, fT (z, ω) from Neumann and von Sachs (1997) or
cT (z, τ) from Nason, von Sachs and Kroisandt (2000). We follow this paradigm
by first introducing the process local partial autocorrelation, qT .

The (process) partial autocorrelation function, qT (z, τ), of a zero-mean locally
stationary process can be understood informally as

qT (z, τ) = corr
(
X[zT ],T , X[zT ]+τ,T |“in-between” data

)
,

where [x] denotes the integer part of the real number x. A formal definition
follows.

Definition 2.1. The local process partial autocorrelation of a zero-mean locally
stationary process {Xt,T }T−1

t=0 , at rescaled time z ∈ (0, 1) and lag τ , is defined
by

qT (z, τ) = corr
{
X[zT ]+τ,T − P[zT ],τ (X[zT ]+τ,T ), X[zT ],T − P[zT ],τ (X[zT ],T )

}
,
(1)

where P[zT ],τ (· ) is the projection operator onto sp(X[zT ]+1,T , . . . , X[zT ]+τ−1,T ).
Here sp is the closed span defined by Brockwell and Davis (1991).

The next proposition shows an alternative useful representation of qT .

Proposition 2.2. Let {Xt,T } be a zero-mean locally stationary process. Then
the process local partial autocorrelation, qT , can be expressed as

qT (z, τ) = ϕ[zT ],τ,τ ;T

[
Var{X[zT ],T − P[zT ],τ (X[zT ],T )}

Var{X[zT ]+τ,T − P[zT ],τ (X[zT ]+τ,T )}

]1/2
, (2)

where ϕ[zT ],τ,τ ;T is from projecting X[zT ]+τ,T onto sp(X[zT ],T , . . . , X[zT ]+τ−1,T ),
the projection being

X̂[zT ]+τ,T = ϕ[zT ],τ,1;TX[zT ]+τ−1,T + . . .+ ϕ[zT ],τ,τ ;TX[zT ],T . (3)

Proof. See Appendix H.1.

Formulae (1) and (2) are natural generalisations of their stationary equiva-
lents, compare for example with Definitions 3.4.1 and 3.4.2 from Brockwell and
Davis (1991).
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2.2. Equivalent expressions for the process local partial
autocorrelation function, qT

As a step to estimation, we will express qT by exploiting a well-known connec-
tion between partial autocorrelation and linear prediction. We introduce the fol-

lowing notation P[zT ],τ (X[zT ],T ) = X̂
(b)
[zT ],T and P[zT ],τ (X[zT ]+τ,T ) = X̂

(f)
[zT ]+τ,T .

These are simply the respective linear predictors of X[zT ],T (back-casted), and
X[zT ]+τ,T (f orecasted), using the predictor set X[zT ]+1,T , . . . , X[zT ]+τ−1,T . The
numerator and denominator in (2) can be re-expressed as a Mean Squared Pre-
diction Error (MSPE). Consequently, we can rewrite qT (z, τ) as

qT (z, τ) = ϕ[zT ],τ,τ ;T

⎧⎨
⎩ MSPE(X̂

(b)
[zT ],T , X[zT ],T )

MSPE(X̂
(f)
[zT ]+τ,T , X[zT ]+τ,T )

⎫⎬
⎭

1/2

. (4)

For details see Appendix H.2. For stationary processes the square root term
in (4) equals one and qT (z, τ) coincides with the classical q(τ).

In general, given t observations of a zero-mean locally stationary process,
X0,T , . . . , Xt−1,T , the mean squared prediction error of a linear predictor of

Xt,T , X̂t,T =
∑t−1

s=0 bt−1−s,TXs,T , can be written as

MSPE
(
X̂t,T , Xt,T

)
= bTt Σt;T bt,

where bt = (bt−1,T , . . . , b0,T ,−1)T and Σt,T is the covariance of X0,T , . . . , Xt,T ,
see, e.g., Fryzlewicz, Van Bellegem and von Sachs (2003, Section 3.3). In our
case, the back-casted and forecasted values of X[zT ],T and X[zT ]+τ,T are also
linear predictors using the window of observations X[zT ]+1,T , . . . , X[zT ]+τ−1,T ,
and can be expressed as

X̂
(b)
[zT ],T =

τ−1∑
p=1

b
(b)
p,TX[zT ]+p,T and X̂

(f)
[zT ]+τ,T =

τ−1∑
p=1

b
(f)
τ−1−p,TX[zT ]+p,T ,

respectively. Here, the b(b), b(f) coefficient vectors are obtained through min-
imisation of the corresponding mean squared prediction error using the same
principle as in the stationary case.

We next give a proposition that paves the way towards a natural definition
of the local partial autocorrelation function q in Section 2.3.

Proposition 2.3. Let {Xt,T } be a zero-mean locally stationary process. Then
qT can also be expressed as

qT (z, τ) = ϕ[zT ],τ,τ ;T

⎧⎨
⎩ (b

(b)
[zT ])

TΣ
(b)
[zT ];T b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TΣ
(f)
[zT ]+τ ;T b

(f)
[zT ]+τ

⎫⎬
⎭

1/2

, (5)

where ϕ[zT ],τ,τ ;T is as in (3), and b
(b)
[zT ] = (−1, b̃

(b)
1,T , . . . , b̃

(b)
τ−1,T )

T and b
(f)
[zT ]+τ =

(b
(f)
τ−2,T , . . . , b

(f)
0,T ,−1)T are τ×1 coefficient vectors. To simplify notation we have
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suppressed the dependency of the b-vector components on [zT ] and also depen-

dency of b
(b)
[zT ], Σ

(b)
[zT ];T , b

(f)
[zT ]+τ , Σ

(f)
[zT ]+τ ;T on τ , even though it is still present.

The τ × τ covariance matrices Σ
(b)
[zT ];T and Σ

(f)
[zT ]+τ ;T are given in Appendix B.

Proof. See Appendix H.2.

We will use expression (5) as the basis of an estimator in Section 2.4. The
last element of the vector ϕ[zT ],τ ;T , denoted ϕ[zT ],τ,τ ;T , can be obtained as the
solution to the (local) Yule-Walker equations Σ[zT ];Tϕ[zT ],τ ;T = r[zT ];T , where
Σ[zT ];T is the τ×τ covariance matrix given in Appendix B and r[zT ];T is the τ×1

covariance vector of X[zT ]+τ,T with
(
X[zT ]+τ−1,T , . . . , X[zT ],T

)
. This is equiva-

lent to obtaining a solution X̂[zT ]+τ,T that achieves minimum mean squared
prediction error over the class of linear predictors. For stationary processes the
covariance matrix Γτ is Toeplitz. However, for locally stationary processes the
covariance matrix Σ[zT ];T only has an approximate Toeplitz structure. Once
again, for ease of notation, we have suppressed the dependency on the lag τ
from the vector r[zT ];T and covariance matrix Σ[zT ];T , the latter given in Ap-
pendix B.

2.3. The wavelet local partial autocorrelation function, q

The local (process) partial autocorrelation introduced in Section 2.1 can be
applied to any zero-mean locally stationary process. However, for the theory we
develop below, we need to establish the underlying asymptotic quantity, which is
intimately related to the data generating model. Hence, from now on, we assume
that the process {Xt,T } is a zero-mean locally stationary wavelet process and
define the local partial autocorrelation function, q, which we show later to be
the asymptotic limit of qT from (2).

Definition 2.4. Let {Xt,T } be a zero-mean locally stationary wavelet process
as defined in Fryzlewicz, Van Bellegem and von Sachs (2003) with local auto-
covariance c(z, τ) and spectrum {Sj(z)}j that satisfy

∞∑
τ=0

sup
z

|c(z, τ)| < ∞, C1 := ess inf
z,ω

∑
j>0

Sj(z)|ψ̂j(ω)|2 > 0,

where ψ̂j(ω) =
∑

s ψj,0(s) exp(iωs). Then, the local partial autocorrelation func-
tion is

q (z, τ) = ϕ[zT ],τ,τ

⎧⎨
⎩ (b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

⎫⎬
⎭

1/2

, (6)

where

1. the quantity ϕ[zT ],τ,τ is the last element of ϕ[zT ],τ (of length τ) obtained
as the solution to the local Yule-Walker equations i.e. B[zT ]ϕ[zT ],τ = r[zT ],
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2. the matrices B
(f)
[zT ]+τ and B

(b)
[zT ] are the local approximations of Σ

(f)
[zT ]+τ ;T

and Σ
(b)
[zT ];T , as in the proof of Lemma A.1 from Fryzlewicz, Van Bellegem

and von Sachs (2003). The r[zT ] are also local approximations to r[zT ];T

from Section 2.2 but using c(z, τ),

3. the coefficient vectors b
(f)
[zT ]+τ and b

(b)
[zT ] are obtained as the solution to the

forecasting and back-casting prediction equations, or equivalently through
minimisation of the MSPE. See Section 3.1 and Proposition 3.1 from Fry-
zlewicz, Van Bellegem and von Sachs (2003) for details.

Next, Proposition 2.5 shows that the (process) local partial autocorrelation,
qT , converges to the local partial autocorrelation, q, defined by (6).

Proposition 2.5. Let {Xt,T } be a zero-mean locally stationary wavelet process
as defined by Definition 2.4, with spectrum {Sj(z)}∞j=1 constructed with nondec-
imated discrete wavelet system {ψj,k(t)}. Let local partial autocorrelations qT
and q be defined as in (4) and (6) respectively. Then, as T → ∞, uniformly in
τ ∈ Z and z ∈ (0, 1), we have | qT (z, τ)− q (z, τ) | = O(T−1).

Proof. See Appendix H.3.

This result parallels the local autocovariance result of Nason, von Sachs and
Kroisandt (2000), where it is shown that |cT (z, τ)−c(z, τ)| = O(T−1) as T → ∞
uniformly in τ ∈ Z and z ∈ (0, 1).

2.4. Wavelet local partial autocorrelation estimation

We now consider the important problem of local partial autocorrelation esti-
mation. We begin by first noting that all the quantities on the right-hand side
of (6) for q(z, τ) are based on the local autocovariance c(z, τ). A natural esti-
mator of q can thus be obtained by replacing all occurrences of c(z, τ) by the
wavelet-based estimator ĉ(z, τ) from Nason (2013a, Section 3.3) as follows.

Definition 2.6. The wavelet-based local partial autocorrelation estimator is
defined as

q̃ (z, τ) = ϕ̃[zT ],τ,τ

⎧⎨
⎩ ( b̃

(b)

[zT ])
T B̃

(b)
[zT ] b̃

(b)

[zT ]

( b̃
(f)

[zT ]+τ )
T B̃

(f)
[zT ]+τ b̃

(f)

[zT ]+τ

⎫⎬
⎭

1/2

, (7)

where the matrix estimates, B̃
(b)
[zT ], B̃

(f)
[zT ]+τ , and vector estimates b̃

(b)

[zT ], b̃
(f)

[zT ]+τ ,

are obtained from their population quantities in Sections 2.2 and 2.3 by plug-
ging in the wavelet-based local autocovariance estimator ĉ from Nason (2013a).
Similarly, the vector ϕ̃[zT ],τ is obtained as the solution to the local Yule-Walker
equations in Definition 2.4 again replacing c by ĉ.

We next establish the consistency of q̃ for q.
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Proposition 2.7. Let {Xt,T } be a zero-mean locally stationary wavelet process
under the assumptions given in Definition 2.4. The local partial autocorrelation
estimator q̃ (z, τ) from (7) is consistent for the true local partial autocorrelation
q (z, τ), in that q̃ (z, τ)− q (z, τ) = op(1) as T → ∞.

Proof. See Appendix H.4.

Our wavelet-based estimator, q̃ (z, τ), develops earlier work on forecasting by
Fryzlewicz (2003) in a new direction. However, the estimator is not simple to
implement and, as we will see later, does not perform as well as the following
alternative approach, which applies a window to the classical partial autocorre-
lation.

3. Windowed estimation of local partial autocorrelation

3.1. The integrated local wavelet periodogram

We introduce an alternative estimator, q̃W (z, τ), that is simpler to implement
than q̃ (z, τ), and turns out to perform better. This new estimator is constructed
by windowing the classical partial autocorrelation (designed for stationary pro-
cesses) over an interval centred at time [zT ] with length L(T ), where L(T ) → ∞
and L(T )/T → 0, as T → ∞. Proposition 3.4, in Section 3.2, establishes the
asymptotic behaviour of q̃W (z, τ) by approximating the integrated local wavelet
periodogram of a (zero-mean) locally stationary wavelet process by its equiv-
alent stationary version at a fixed rescaled time (see Theorem 1). The proof
of the theorem introduces new bounds for quantities involving cross-correlation
wavelets, as well as a new exact formula for cross-correlation Haar wavelets.
Key definitions and results are presented below, while full proofs are provided
in Appendix I.

Definition 3.1. Let {Xt,T } be a locally stationary wavelet process as in Defi-
nition 1 from Nason, von Sachs and Kroisandt (2000) with evolutionary wavelet
spectrum {Sj(z)}∞j=1 for z ∈ (0, 1), Lipschitz constants {Lj}∞j=1, process con-
stants {Cj}∞j=1 and underlying discrete nondecimated wavelets {ψj,k}. The in-
tegrated local periodogram on the interval [[zT ]− L(T )/2 + 1, [zT ] + L(T )/2]
is given by

JL(T )(z, φ) =

∞∑
j=1

φjI
∗
L(T )(z, j).

Here {φj}∞j=1 ∈ Φ and Φ is a set of complex-valued bounded sequences equipped
with uniform norm ||φ||∞ := supj |φj |, z ∈ (0, 1) and, for j ∈ N, I∗L(T )(z, j) is
the uncorrected, tapered local wavelet periodogram given by

I∗L(T )(z, j) = H−1
L(T )

∣∣∣∣∣∣
L(T )−1∑

t=0

h {t/L(T )}X[zT ]+t−L(T )/2+1,T ψj,[zT ](t)

∣∣∣∣∣∣
2

, (8)
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for j ∈ N, h : [0, 1] → R+ and normalizing factor

HL(T ) :=

L(T )−1∑
j=0

h2{j/L(T )} ∼ L(T )

∫ 1

0

h2(x) dx. (9)

We next approximate the integrated local (wavelet) periodogram, JL(T )(z, φ),
by the corresponding statistics of a stationary process {Yt} with the same local
corresponding statistics at t = zT , for fixed z. Conceptually, this is a common
approach useful in establishing asymptotic properties for functions of locally sta-
tionary processes (Dahlhaus and Giraitis, 1998), which in this work we advance
to include wavelet-based expansions. Specifically, define

JY
L(T )(φ) =

∞∑
j=1

φjI
∗,Y
L(T )(j),

where

I∗,YL(T )(j) := H−1
L(T )

∣∣∣∣∣∣
L(T )−1∑
s=0

h {s/L(T )}Y[zT ]−L(T )/2+1+s,T ψj,[zT ](s)

∣∣∣∣∣∣
2

is the wavelet periodogram on the segment [zT ]−L(T )/2+1, . . . , [zT ]+L(T )/2
of the stationary process

Ys =

∞∑
j=1

Wj(z)

∞∑
k=−∞

ψj,k(s)ξj,k. (10)

Here ψj,k is the same wavelet sequence as previously, {ξj,k} a set of independent
identically distributed random variables with mean zero and unit variance and
Wj(z) is such that W 2

j (z) = Sj(z) for all z ∈ (0, 1) and j ∈ N. The next theorem
is the key result establishing the asymptotic properties of the integrated local
wavelet periodogram.

Theorem 1. Let {Xt,T } be a zero-mean Gaussian locally stationary wavelet
process as defined by Definition 3.1. Suppose

∑
j C

2
j 2

2j < ∞, {Wj}j is Lip-

schitz continuous with Lipschitz constants Lj such that
∑

j L
2
j2

2j < ∞ and∑
j W

2
j (z)2

2j < ∞ at any rescaled time z, L(T )/T → 0 as T → ∞, and φ ∈ Φ
is a sequence of bounded variation. Further, assume h is a rectangular kernel.
Then, using the family of discrete Haar wavelets, we have

E
{
JL(T )(z, φ)

}
= E

{
JY
L(T )(φ)

}
+O

{
L(T )

−1
}
, (11)

JL(T )(z, φ)− E
{
JL(T )(z, φ)

}
= op

(
L(T )

−1/2
)
, (12)

JY
L(T )(φ)− E

{
JY
L(T )(φ)

}
= op

(
L(T )

−1/2
)
. (13)

Proof. Appendix I.3 contains the full proof.
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An important difference between earlier literature in this area and our work
is the introduction of windowing. We provide new results on windowed versions
of the cross-correlation wavelets, which we denote iN,z, where, to simplify no-
tation, we replace L(T ) by N and sometimes omit z. To prove Theorem 1 we
need bounds on quantities involving iN,z which we can obtain via their con-
nection with cross-correlation wavelets and, in particular, our new closed form
expression for the cross-correlation Haar wavelet. For completeness, we define
the truncated cross-correlation wavelet here and some of the key bounds.

Definition 3.2. For N ∈ N, scales j, � ∈ N and rescaled time z ∈ (0, 1),
the windowed cross-scale autocorrelation wavelets iN,z(j, �, · ) over the interval
[[zT ]−N/2 + 1, [zT ] +N/2] are

iN,z(j, �, k) =

N−1∑
t=0

ψj,[zT ]−tψ�,k−[zT ]−t−1+N/2, (14)

where {ψj,m}j,m is a family of discrete wavelets and k ∈ Z.

The similarity between the cross-scale autocorrelation wavelets Ψj,�(· ), de-
fined in Fryzlewicz (2003, Definition 5.4.2) as Ψj,�(τ) =

∑
k∈Z

ψj,kψ�,k+τ for
j, � ∈ N and τ ∈ Z, and their windowed version, iN,z(j, �, · ) defined above, is
key to how we subsequently bound quantities involving iN,z. The exact new
formulae for Haar cross-scale autocorrelation wavelets are established in Ap-
pendix C, along with a pictorial description in Figure 6 in Appendix E.

As bounds for iN (j, �, · ) are a key component of the proof of Theorem 1,
these are provided by the next three results. The first bound for iN is valid for
all discrete wavelets based on Daubechies (1992) compactly supported wavelets,
although we later only use it for Haar wavelets.

Lemma 1. Using previous notation and assumptions, let b1 = [zT ] +N/2 + 1
and b2 = [zT ] +N/2 +N� − 1. Then

|iN,z(j, �, k)| ≤ |Ψj,�(k − 2[zT ] +N/2− 1)|, (15)

holds when

[zT ] > Nj − 2 and k < b1 (16)

or when

k > b2, (17)

for integers k, z ∈ (0, 1), j, � ∈ N and Nj is the length of the discrete wavelet
ψj,· for all Daubechies compactly supported wavelets.

When b1 ≤ k ≤ b2 we have (i) for Daubechies’ wavelets with two or more
vanishing moments:

|iN,z(j, �, k)| ≤ |Ψj,�(k − 2[zT ] +N/2− 1)|

+
2−(j+�)/2

[zT ]−N
{γ + log([zT ]−N)− log([zT ]) + logN
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+ O([zT ]−1) +O{([zT ]−N)−1}+O(N−1)
}
, (18)

where γ is the Euler-Mascheroni constant and (ii) for Haar wavelets we have:

|iN,z(j, �, k)| ≤ 2−(j+�)/2 {min(N�, Nj) +N�} . (19)

Proof. See Appendix I.1.

We use Lemma 1 to prove the next two useful results about iN .

Lemma 2. Using previous notation and assumptions, and assuming {ψj,k} are
discrete Haar wavelets

∞∑
k=−∞

∞∑
j=1

|iN,z(j, �, k)|2 = O(22�), (20)

∞∑
k=−∞

∞∑
n=−∞

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

= O{2(�+m)}. (21)

Proof. See Appendix I.2.

These properties of the integrated local wavelet periodogram allow us to
establish the asymptotic behaviour of q̃W (z, τ) in the following section.

3.2. Windowed local partial autocorrelation estimation

We now define a local partial autocorrelation estimator by using the classical
(stationary) partial autocorrelation computed on a window of length L(T ) cen-
tred at time [zT ]. The theoretical properties of this windowed estimator are
derived and we investigate its empirical behaviour.

Definition 3.3. Let q̂ be the usual partial autocorrelation estimator as defined
by Brockwell and Davis (1991, Definition 3.4.3) for example. Define the window
I(z, L) := [z − L(T )/2T, z + L(T )/2T ] for some interval length function L(T )
and location z ∈ (0, 1). Define the windowed estimator, q̃W (z, τ), of the local
partial autocorrelation function at rescaled time z and lag τ , to be the classical
partial autocorrelation function evaluated on observations contained in I(z, L)
and denoted by

q̃W (z, τ) = q̂I(z,L)(τ).

Our definition uses a rectangular window, but some of our applications later
use an Epanechnikov window. Other variants could also be substituted.

The integrated wavelet periodogram approximation derived in Theorem 1 en-
sures that our windowed estimator can benefit from the established asymptotic
distributional properties of the partial autocovariance estimator in the station-
ary setting, including its standard deviation, relevant for practical tasks.
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Proposition 3.4. Let {Xt,T } be a Gaussian locally stationary wavelet pro-
cess, with zero mean, under the conditions set out by Theorem 1. Then, for the
windowed local partial autocorrelation estimator q̃W (z, τ) from Definition 3.3,
assuming L(T ) → ∞ and L(T )/T → 0, as T → ∞, we have that q̃W (z, τ) con-
verges in distribution to q̂Y (τ), where Y is a stationary process with the same
characteristics at rescaled time z as the process {Xt,T } (as in equation (10))
and q̂Y (τ) = ϕ̂Y

τ,τ is the classical Yule-Walker partial autocorrelation function
estimator.

Proof. Appendix I.4 contains the proof, which relies on the integrated wavelet
periodogram approximation from Theorem 1.

When dealing with processes that can be locally well modelled by an au-
toregressive structure, the result above amounts to establishing the asymptotic
normality of our windowed local partial autocovariance estimator for large lags
(see next corollary).

Corollary 1. Under the assumptions from Proposition 3.4 and assuming that
{Xt,T } can be locally well modelled by an autoregressive structure of order say
p, then for lags τ larger than p we have that L(T )1/2 q̃W (z, τ) converges in
distribution to a standard normal random variable.

Proof. The proof follows directly from Proposition 3.4 and classical theory on
the asymptotic behaviour of Yule-Walker estimates for stationary autoregressive
processes (see for instance Theorem 8.1.2 from Brockwell and Davis (1991)).

3.3. Choice of control parameters

As with many nonparametric estimation methods in the literature, we have to
make various choices in an attempt to obtain good estimators q̃W (z, τ). Unfor-
tunately there is no universal automatic best choice, at least in the real world.
For the wavelet estimator, q̃, we have to specify an underlying wavelet, a method
for handling boundaries and also a smoothing parameter, e.g. s in Section 3.3 of
Nason (2013a). However, a further advantage of the windowed estimator is that
we really only have to choose the window width L(T ) and the window kernel.
Dahlhaus and Giraitis (1998) show that the Epanechnikov window is a good
choice, which we also advocate here.

Unfortunately, rates of convergence of the estimator, although providing the-
oretical insight, do not really help with the practical selection of the window
width. A promising direction for practical bandwidth selection might be via
methods such as the locally stationary process bootstrap for pre-periodogram-
like quantities, as proposed by Kreiss and Paparoditis (2014), but development
of this is beyond the scope of the current paper.

Below, we use a manually-selected window width, by observing choices that
achieve a good balance between estimates that are too rough, and those that
appear too smooth (and change little on further smoothing). Section 4.3 and
Appendix G provide some empirical evidence that the window width choice is
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not too hard, and the results are not particularly sensitive to it. Such manually-
selected procedures are well-acknowledged in the literature, e.g. Chaudhuri and
Marron (1999), although a cross-validation method for bandwidth selection is
available in our associated software at increased computational cost. This cross-
validation combines a series of dyadic cross-validations, each a simple extension
of the even/odd dyadic cross-validation for wavelet shrinkage found in Nason
(1996).

4. Local partial autocorrelation estimates in practice

4.1. Simulated nonstationary autoregressive examples

We illustrate our local partial autocorrelation function estimators on two sim-
ple, well-understood examples: (a) simulated time-varying autoregressive pro-
cess TVAR(1) and (b) piecewise AR(p).

Consider a single T = 512 realization from a time-varying autoregressive
process with lag one coefficient linearly changing from 0.9 to −0.9 over the
series. Figure 1 shows the partial autocorrelation function estimators, under the
classical assumption of process stationarity (top left plot) and our two (time-
dependent) estimators (top right and bottom plots). The 95% confidence bands
are constructed under the null hypothesis of white noise and are the standard
ones as displayed by, e.g., established R software. The red dotted lines show the
true partial autocorrelation, a linear function of time at lag 1, and constant (0)
through time from lag 2 onwards.

Unsurprisingly, the classical partial autocorrelation is misleading, indicating
a significant incorrect strong lag two structure, and entirely failing to detect the
existing (true) lag 1 dependence. By contrast, our two developed local partial au-
tocorrelation estimators correctly track the true time-dependent autoregressive
parameters, thereby showing the importance of not using techniques designed
for stationary series on nonstationary ones. Amongst our two proposals, the
wavelet-based estimate seems a bit worse, particularly for the lag two partial
autocorrelation after about time 350. This was confirmed by a small simulation
study, based on 100 realizations drawn from the TVAR process. The average
root-mean-square error for the wavelet estimator (times 102, standard errors
in parantheses) at lags one and two was 2.4 (0.76) and 18.0 (3.9), respectively,
whereas for the windowed estimator it was 1.5 (0.70) and 27.9 (4.7) respectively.
Both estimators are less accurate near the ends of the series, which is a common
problem with such estimators, see Cheng and Hall (2003), for example. However,
the windowed estimator usually appears less affected, and thus is the estimator
we propose to use in practice.

The TVAR process used in Figure 1 exhibits a large range of time-varying
parameter values from −0.9 to +0.9. However, we repeated the example for less
extreme parameter changes. Unless the parameter change is very small, and the
process is close to stationary, the classical partial autocorrelation still misleads.
For smaller parameter changes, the classical partial autocorrelation often gets
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Fig 1. Partial autocorrelation function (pacf) estimators applied to a single realization of a
time-varying autoregressive process. Top left: classical (stationary) pacf. Top right: Lag one
local pacf. Bottom: Lag two local pacf. Theoretical: red dotted line, Daubechies D5 wavelet-
based estimate (q̃, Section 2.4) is dashed blue line, Epanechnikov windowed estimate (q̃W ,
Section 3) is solid black line. Bandwidth selected using AutoBestBW from locits package.

the process order correct, but gives a partial autocorrelation value that is often
close to the average of the local partial autocorrelations.

Our second example considers a piecewise stationary AR(p) process of length
T = 256. The first and last segments (each of length 85) are realizations of an
AR(1) process with φ = −0.2, and the middle segment (of length 86) follows an
AR(2) process with φ = (0.5, 0.2). Note the middle segment has a significantly
different structure to the first and last. Our estimators correctly identify the
process structure, otherwise invisible to classical approaches. This is verified by
performing a small simulation study and drawing from this process 100 times.
The average root-mean-square error for the wavelet estimator at lags one and
two (times 102, standard errors in parentheses) is 11 (2) and 3 (2), respectively,
whereas for the windowed estimator it is 7 (1) and 3 (1) respectively. The process
lag 2 structure is closer to stationarity (with corresponding true pacf 0, 0.2, 0
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Fig 2. Left: ABML time series. Right: second-order differences of ABML.

in the three segments) and this is reflected in the similar results for the two
estimators.

4.2. U.K. National Accounts data

The ABML time series obtained from the Office for National Statistics contains
values of the U.K. gross-valued added (GVA), which is a component of gross
domestic product (GDP). Our ABML series is recorded quarterly from quarter
one 1955 to quarter three 2010 and consists of T = 223 observations. As with
many economic time series, ABML exhibits a clear trend, which we removed
using second-order differences; these are shown in Figure 2. Naturally, other
methods for removing the trend could be tried. The second-order differences
strongly suggest that the series is not second-order stationary, with the series
variance increasing markedly over time. Use of methods from Nason (2013a)
show that the autocorrelation also changes over time. In particular, the lag one
autocorrelation undergoes a major and rapid shift around 1991.

Much of the increase in variance observed in Figure 2 is probably due to in-
flation. However, we have also analysed two different inflation-corrected versions
of ABML, one provided by the U.K. Office of National Statistics, and both of
these are also not second-order stationary, as determined by tests of stationarity
in Priestley and Subba Rao (1969) and Nason (2013a).

Our new estimation methodology enables us to obtain the windowed local
partial autocorrelation estimator, q̃W (z, τ), shown in Figure 3 and computed
on the ABML second-order differences. Note that crucially the local partial
autocorrelation estimates within each lag (τ) are time-dependent (z), and here
these estimates suggest significant dependencies up to lag τ = 4. There are
times, such as the 1970s, when the higher-order partial autocorrelations are
not outside of the approximate significant bands, indicating that a lower lag,
2, might be appropriate. These results are (i) economically interesting as the
local variance, autocorrelation and partial autocorrelation all change over time,
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Fig 3. Windowed partial autocorrelation, q̃W (z, τ), of ABML second difference series for lags
one to four indicated on each curve (Epanechnikov window with L = 40). Horizontal red
dotted lines are approximate 95% confidence intervals.

(ii) highlight the concerns with having no access to second-order conditional
information (as was the case until now) and (iii) further pose the challenge of
accurately forecasting such data. Although the topic of time series forecasting
is outside the scope of this paper, many authors acknowledge the superiority of
wavelet-based forecasting (Aminghafari and Poggi, 2007; Schlüter and Deuschle,
2010) and we envisage the proposed local partial autocorrelation estimator could
further improve results.

4.3. Precipitation in Eastport, U.S.

Understanding precipitation patterns is important for detecting climate change
indications and for policy decisions. The left panel in Figure 4 shows monthly
precipitation in millimetres from January 1887 until December 1950 (768 obser-
vations) at a location in Eastport. The data can be found in Hipel and McLeod
(1994) and have been analysed in many publications including Rao, Hamed and
Chen (2012); Dhakal et al. (2015). Our windowed local partial autocorrelation
estimate of the Eastport data is given in the right panel of Figure 4 and shows
clear nonstationarity at lags one through three. Some authors analyse this se-
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Fig 4. Left: Precipitation (mm) in Eastport, U.S. Right: Windowed partial autocorrelation,
q̃W (z, τ), of left for lags one to four indicated on each curve (Epanechnikov window with L =
250, chosen by AutoBestBW from locits package). Horizontal red dotted lines are approximate
95% confidence intervals.

ries as if it were stationary and our analysis suggests that this is inappropriate.
Indeed, if one applies a formal hypothesis test of nonstationarity on appropri-
ate lengths of the series, such as that proposed by Cardinali and Nason (2018),
there is strong evidence for nonstationarity. From a modelling point of view,
the estimated local partial autocorrelation behaviour might support fitting a
time-varying AR(3) model.

To provide some empirical support to the notion that window width is not
visually critical to the interpretation of the local partial autocorrelation, Ap-
pendix G shows the smoothed local partial autocorrelation plots similar to that
in the right-hand plot of Figure 4, but at three smaller window widths of 160, 80
and 40. The plot at window width of 160 is not that different to the one above at
L = 250 and, indeed, the L = 80 plot is not that dissimilar. However, the L = 40
plot almost certainly contains too much ‘noise’ and should be disregarded.

4.4. Euro-Dollar exchange rate

Following the introduction of the Euro currency in 1999 several authors, includ-
ing Ahamada and Boutahar (2002) and Garcin (2017), have considered different
properties of this series, which have an influence on setting monetary policy in
various jurisdictions.

We analyze log returns of the monthly Euro-Dollar exchange rate as provided
by EuroStat at http://ec.europa.eu/eurostat/web/products-datasets/-/
ei_mfrt_m from January 1999 until October 2017. The log returns and corre-
sponding local partial autocorrelation function estimates are given in Figure 5.
This demonstrates that the log returns do not appear to be time varying (out-
side of the boundary locations) and exhibit only lag one partial autocorrelation.
This apparent stationarity is confirmed with formal tests using the locits (Na-
son (2013b), Nason (2013a)) and fractal (Constantine and Percival (2016),

http://ec.europa.eu/eurostat/web/products-datasets/-/ei_mfrt_m
http://ec.europa.eu/eurostat/web/products-datasets/-/ei_mfrt_m
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Fig 5. Left: Monthly Euro-Dollar log returns. Right: Windowed partial autocorrelation,
q̃W (z, τ), of left for lags one to five indicated on each curve. Horizontal red dotted lines
are approximate 95% confidence intervals. (Epanechnikov window with L = 147).

Priestley and Subba Rao (1969)) packages in R. Interestingly this relationship
holds throughout the financial crisis, from 2008 to 2011.

These examples highlight the versatility of our method and its potential use
to identify stationary behaviour, manifest through local partial autocorrelation
estimates that are constant through time. In addition, it highlights how the
approach can identify departures from stationarity, evident through explicit
time-dependent profiles at particular lags.

5. Discussion

This article develops two new estimators of the local partial autocorrelation
function and studied their theoretical properties when applied to a locally sta-
tionary wavelet process. We established consistency for the wavelet-based es-
timator and asymptotic distribution for the windowed estimator. The latter
result relied on new results on the integrated local wavelet periodogram, the
(windowed) Haar cross-correlation wavelets and related quantities. For practi-
cal reasons, we promote the use of the windowed estimator. We demonstrated
the utility of these estimators for eliciting local second-order structure on sim-
ulated data, the U.S. Eastport precipitation time series and the U.K. ABML
time series. We also demonstrated the versatility of our method in the (desirable)
presence of stationarity for the Euro-Dollar exchange rates. On a practical note,
should the practitioner believe that higher process powers also display a locally
stationary behaviour, the proposed local partial autocorrelation function could
then be used to additionally uncover higher-order dependency structures. Most
of the theoretical results relating to the generic local partial autocorrelation
function estimator presented here are based on Haar wavelets, but many results
and definitions also apply to other Daubechies’ compactly supported wavelets.
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The associated software package lpacf contains functionality to compute the es-
timators for all such wavelets, up to ten vanishing moments as contained within
the wavethresh package (Nason, 2013c), as well as a cross-validation method
for automatic bandwidth selection. The lpacf package will be released on to
the Comprehensive R Archive Network (CRAN) in due course.
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Appendix A: Résumé: partial autocorrelation for stationary series

Let {Xt}t∈Z be a zero-mean second-order stationary process with autocovariance
function γ(τ). Loosely speaking, the partial autocorrelation function at lag τ
is the correlation between X1 and Xτ+1 whilst adjusting for the “in-between”
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smallest closed subspace of H which contains each Xt, t ∈ H. Then, following
Brockwell and Davis (1991, p. 98), the lag τ partial autocorrelation function q(τ)
of {Xt} is defined by q(τ) = corr {Xτ+1 − P1,τ (Xτ+1), X1 − P1,τ (X1)}, where
P1,τ (· ) denotes the projection operator onto sp(X2, . . . , Xτ ). See also Fan and
Yao (2003, p. 43)

Alternatively, if γ(0) > 0 and γ(h) → 0 as h → ∞, then the partial auto-
correlation function, q(τ), can be obtained as the final entry of the vector ϕτ

which is the solution to the well-known Yule-Walker equations Γτϕτ = γτ . Here
Γτ = {γ(i − j)}τi,j=1 is a τ × τ covariance matrix and γτ = {γ(i)}τi=1 is a vec-
tor of covariances. Equivalently, q(τ) = ϕτ,τ where ϕτ,τ is the coefficient of X1

when projecting Xτ+1 on the space spanned by X1, . . . , Xτ , i.e. the projection
X̂τ+1 = ϕτ,1Xτ + . . .+ ϕτ,τX1.

For a sampled series {Xt}Tt=1, the sample partial autocorrelation at lag τ is
often estimated by solving Γ̂τ ϕ̂τ = γ̂τ , where γ̂ are the usual sample autocovari-
ances, and taking q̂(τ) := q̂[1,T ](τ) = ϕ̂τ,τ . Here we use the index notation [1, T ]

in order to indicate the range of observations on which the estimation of Γ̂τ

and γ̂τ is based. The properties of q̂(· ) are well-known, see Brockwell and Davis
(1991, Section 8.10). In particular, T 1/2 {q̂(τ)− q(τ)} has a limiting Gaussian
distribution, as T → ∞, with mean zero and variance proportional to the last
term on the diagonal of Γ−1

τ .

Appendix B: Miscellaneous covariance matrices

Temporarily removing the T subscript below to save space, the τ × τ covariance
matrices are given by

Σ
(b)
[zT ];T =

⎛
⎜⎝ Cov(X[zT ], X[zT ]) · · · Cov(X[zT ], X[zT ]+τ−1)

... · · ·
...

Cov(X[zT ]+τ−1, X[zT ]) · · · Cov(X[zT ]+τ−1, X[zT ]+τ−1)

⎞
⎟⎠

and

Σ
(f)
[zT ]+τ ;T =

⎛
⎜⎝Cov(X[zT ]+1, X[zT ]+1) · · · Cov(X[zT ]+1, X[zT ]+τ )

... · · ·
...

Cov(X[zT ]+τ , X[zT ]+1) · · · Cov(X[zT ]+τ , X[zT ]+τ )

⎞
⎟⎠

and

Σ[zT ];T =

⎛
⎜⎝Cov(X[zT ]+τ−1, X[zT ]+τ−1) · · · Cov(X[zT ], X[zT ]+τ−1)

... · · ·
...

Cov(X[zT ]+τ−1, X[zT ]) · · · Cov(X[zT ], X[zT ])

⎞
⎟⎠

Appendix C: Cross-scale autocorrelation Haar wavelets

First note that by substituting s = [zT ]− t in (14) and by denoting the rectan-
gular kernel by h, we obtain:

iN,z(j, �, k) =

[zT ]∑
s=[zT ]−N+1

ψj,sψ�,s+k−2[zT ]+N/2−1h

(
[zT ]− s

N

)
. (22)
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The above expression is by no means restricted to h being a rectangular kernel,
and other kernels may be used, as explained in the article main text.

This new formulation of iN,z is very similar to that of the cross-correlation
wavelet Ψj,�, except that the summation limits are [zT −N+1] and [zT ] instead
of −∞ and ∞. This similarity is true for all Daubechies’ compactly supported
wavelets. We shall use this similarity to bound iN,z using Lemma 1.

Proposition C.1. The cross-scale autocorrelation Haar wavelets Ψj,�(· ) at
scales � < j are given by

Ψj,�(τ) = 2−(j−�)/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ < −2�,

−(2−�τ + 1) for − 2� ≤ τ < −2�−1,

2−�τ for − 2�−1 ≤ τ < 0,

0 for 0 ≤ τ < 2j−1 − 2�,

2−�(2τ − 2j + 2�+1) for 2j−1 − 2� ≤ τ < 2j−1 − 2�−1,

2−�(2j − 2τ) for 2j−1 − 2�−1 ≤ τ < 2j−1,

0 for 2j−1 ≤ τ < 2j − 2�,

2−�(2j − τ − 2�) for 2j − 2� ≤ τ < 2j − 2�−1,

2−�(τ − 2j) for 2j − 2�−1 ≤ τ < 2j ,

0 for 2j ≤ τ.

(23)
For � > j we have Ψj,�(τ) = Ψ�,j(−τ) and a precise formula appears in equa-
tion (24) (Appendix C). Note Ψj,j(τ) = Ψj(τ), the regular autocorrelation
wavelet.

Proof. Please refer to Killick et al. (2020) for a detailed proof.

Corollary 2. For completeness (and usefulness in working out derived quanti-
ties) we can write down Ψj,�(τ) for � > j explicitly as Ψj,�(τ) =

2−(�−j)/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ ≤ −2�,

−2−j(τ + 2�) for − 2� < τ ≤ −2� + 2j−1,

2−j(2� + τ − 2j) for − 2� + 2j−1 < τ ≤ −2� + 2j ,

0 for − 2� + 2j < τ ≤ −2�−1,

2−j(2� + 2τ) for − 2l−1 < τ ≤ −2�−1 + 2j−1,

2−j(2j+1 − 2� − 2τ) for − 2�−1 + 2j−1 < τ ≤ −2�−1 + 2j ,

0 for − 2�−1 + 2j < τ ≤ 0,

−2−jτ for 0 < τ ≤ 2j−1,

−(1− 2−jτ) for 2j−1 < τ ≤ 2j .

(24)

Appendix D: Subsidiary result used in the proof of Lemma 1

Lemma 3. For a, b such that 2a, 2b ∈ N and a, b > 0 it is the case that∫ π

−π

{1− cos(2aω)}{1− cos(2bω)}
1− cos(ω)

dω = 4πmin(a, b). (25)
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Proof. Please refer to Killick et al. (2020) for a detailed proof.

Appendix E: Additional results required for the proofs from
Section 3

Lemma 4. The core function, Ωi(u) for Haar wavelets is given by

Ωi(u) = 2−i/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for u < −1,

−(u+ 1) for − 1 ≤ u < −1
2 ,

u for − 1
2 ≤ u < 0,

0 for 0 ≤ u < 2i−1 − 1,

2u− 2i + 2 for 2i−1 − 1 ≤ u < 2i−1 − 1
2 ,

2i − 2u for 2i−1 − 1
2 ≤ u < 2i−1,

0 for 2i−1 ≤ u < 2i − 1,

2i − u− 1 for 2i − 1 ≤ u < 2i − 1
2 ,

u− 2i for 2i − 1
2 ≤ u < 2i,

0 for 2i ≤ u,

(26)

for u ∈ R and i ∈ N ∪ {0}.

Figure 6 shows a depiction of Ωi(u).

Proof. Please refer to Killick et al. (2020) for a detailed proof.

Lemma 5. Under the conditions and notations set out so far, for the nondeci-
mated family of discrete Haar wavelets we have

TBB(�,m) =
∑
k∈B

∑
n∈B

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

= O{22(�+m)}.

Proof. Please refer to Killick et al. (2020) for a detailed proof.

Lemma 6. Under the conditions and notations set out so far, for the nondeci-
mated family of discrete Haar wavelets we have that the order of the cross terms
is:

T�BB(�,m) =
∑
k/∈B

∑
n∈B

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

= O(22(�+m))

TB�B(�,m) =
∑
k∈B

∑
n/∈B

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

= O(22(�+m)).

Proof. Please refer to Killick et al. (2020) for a detailed proof.
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Fig 6. Depiction of Ωi(u). The function is symmetric about 2(i−1) − 1
2
and the extent of the

function is from −1 on the left to 2i on the right. The width of all of the triangles is always
1 for all i. As i increases the function gets stretched to the right (but also anchored on the
left at u = −1), the peaks decrease in size like 2−i/2.

Lemma 7. Under the conditions and notations set out so far, for the nondeci-
mated family of discrete Haar wavelets we have that

T�B�B(�,m) =
∑
k/∈B

∑
n/∈B

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

= O{22(�+m)}.

Proof. Please refer to Killick et al. (2020) for a detailed proof.

Appendix F: Some exact formulae for Haar wavelets

Fourth-order absolute value wavelet cross-correlations for Haar wavelets. In
what follows we demonstrate new results on the the fourth-order absolute value
wavelet cross-correlations, for Haar wavelets which were used in showing the
previous results in Appendix I.3.

Recall these were defined as B
(r)
� (j, i) =

∑∞
p=−∞ |p|r|Ψj,�(p)Ψi,�(p)| for r =

0, 1 and scales �, j, i ∈ N.

The B products are symmetric in their arguments, B
(r)
� (j, i) = B

(r)
� (i, j).

Note that for r = 0, for ease of notation, these B(0) quantities appeared as B
in the previous proofs.
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Proposition F.1. For Haar wavelets. (Part A) For i, j > �:

B
(0)
� (j, i) =

⎧⎪⎨
⎪⎩
2−j(22�−1 + 1) for j = i,

2−j(22�−1 + 1)2−3/2 for i = j + 1,

2−j/22−i/2(22�−1 + 1)/6 for |j − i| > 1.

Also, for all i, j, � such that i, j > �, B
(0)
� (j, i) is bounded by

B
(0)
� (j, i) ≤ 2−j/22−i/222�.

(Part B) For i, j < �:

B
(0)
� (j, i) =

{
2−�(22j−1 + 1) for i = j < �,
3
22

−�2−j/225i/2−1 for i < j < �.

(Part C) For i < � < j:

B
(0)
� (j, i) =

{
1
82

−(�+1)/223i/2(2i−� + 2) for j = �+ 1,
1
82

−j/223i/2(2− 2i−�) for j > �+ 1.
(27)

(Part D) For � = j and i > �:

B
(0)
� (�, i) = 2−(i−�)/2

{
17
9 2�−3 for i = �+ 1,
17
272

�−3 for i > �+ 1.
(28)

For i < � we have the following bound:

B
(0)
� (�, i) ≤ 23i/22−�/2.

(Part E) Finally, when all indices are equal we can use (34) from Nason, von
Sachs and Kroisandt (2000) to show

B
(0)
� (�, �) =

∑
p

Ψ2
�(p) = A�,� =

1

3
2−�(22� + 5),

for � > 0 and A is the matrix from Nason, von Sachs and Kroisandt (2000).

The symmetry of B permits evaluation of B
(0)
� (j, i) for other orderings of

(i, j).

An overall bound for all i, j, � is B
(0)
� (j, i) ≤ K2−(j+i)/222� for some positive

constant K.

Proof. Please refer to Killick et al. (2020) for a detailed proof.
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Fig 7. Windowed partial autocorrelation of Eastport Precipitation Data, q̃W (z, τ), of left
for lags one to four indicated on each curve. Horizontal red dotted lines are approximate
95% confidence intervals. All plots were created with the Epanechnikov window with sizes a)
L = 160, b) L = 80, c) L = 40.

Appendix G: LPACF of Eastport precipitation data at different
window widths

The plots in Figure 7 were produced by the following functions executed using
the lpacf package with binwidths of 160, 80 and 40.

function(binwidth=250){

#

# Compute the Epanechnikov kernel smoothed local PACF using

# a specified binwidth, using parallel processing function

# mclapply on all points.

#

# Then plot the answer: only the first four lags

# using colours 1 thru 4.

#

plot(lpacf.Epan(EastPortPrecip, allpoints=TRUE,
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binwidth=binwidth, lapplyfn=mclapply),

lags=1:4, lcol=1:4)

#

# Construct and plot "standard" confidence intervals

#

ci <- 1.96/sqrt(binwidth)

abline(h = c(-ci, ci), lty = 2, col = 2)

}

Appendix H: Proofs from Section 2

H.1. Proof of Proposition 2.2

Proof. We shall use the notation P[zT ],τ (X[zT ],T ) = X̂
(b)
[zT ],T and P[zT ],τ

(X[zT ]+τ,T ) = X̂
(f)
[zT ]+τ,T , since these are the linear predictors of X[zT ],T (back-

casted), respectively X[zT ]+τ,T (f orecasted), using the set of predictors
X[zT ]+1,T , . . . , X[zT ]+τ−1,T .

Decomposing the projection space sp(X[zT ],T , . . . , X[zT ]+τ−1,T ) into
sp(X[zT ]+1,T , . . ., X[zT ]+τ−1,T ) and its orthogonal complement, we can also

write X̂[zT ]+τ,T as

X̂[zT ]+τ,T = X̂
(f)
[zT ]+τ,T + P⊥

[zT ],τ (X[zT ]+τ,T ), (29)

where P⊥
[zT ],τ (· ) denotes the projection onto the orthogonal complement

space above. Since this space is sp(X[zT ],T − X̂
(b)
[zT ],T ), it then follows that

P⊥
[zT ],τ (X[zT ]+τ,T ) = a(X[zT ],T − X̂

(b)
[zT ],T ), and using equation (29) we obtain

cov
(
X̂[zT ]+τ,T , X[zT ],T − X̂

(b)
[zT ],T

)
= a var

(
X[zT ],T − X̂

(b)
[zT ],T

)
.

Due to orthogonality of projection spaces, we have
(
X[zT ],T − X̂

(b)
[zT ],T

)
⊥

sp(X[zT ]+1,T , . . ., X[zT ]+τ−1,T ) and from the equation above and equation (3),
it follows that a = ϕ[zT ],τ,τ ;T .

Hence P⊥
[zT ],τ (X[zT ]+τ,T )) = ϕ[zT ],τ,τ ;T (X[zT ],T − X̂

(b)
[zT ],T ) and we obtain

ϕ[zT ],τ,τ ;T =
cov

(
P⊥
[zT ],τ (X[zT ]+τ,T )), X[zT ],T − X̂

(b)
[zT ],T

)
var

(
X[zT ],T − X̂

(b)
[zT ],T

)

=
cov

(
X[zT ]+τ,T , X[zT ],T − X̂

(b)
[zT ],T

)
var

(
X[zT ],T − X̂

(b)
[zT ],T

) ,
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as cov(X[zT ]+τ,T−P⊥
[zT ],τ (X[zT ]+τ,T ), Y ) = 0, ∀Y ∈ sp(X[zT ],T−X̂

(b)
[zT ],T ). Hence,

ϕ[zT ],τ,τ ;T =
cov

(
X[zT ]+τ,T − X̂

(f)
[zT ]+τ,T , X[zT ],T − X̂

(b)
[zT ],T

)
var

(
X[zT ],T − X̂

(b)
[zT ],T

) (30)

because X̂
(f)
[zT ]+τ,T ⊥ sp(X[zT ],T − X̂

(b)
[zT ],T ).

Recall from equation (1) that

qT (z, τ) = corr
(
X[zT ]+τ,T − P[zT ],τ (X[zT ]+τ,T ), X[zT ],T − P[zT ],τ (X[zT ],T )

)
,

or equivalently

qT (z, τ) = corr
(
X[zT ]+τ,T − X̂

(f)
[zT ]+τ,T , X[zT ],T − X̂

(b)
[zT ],T

)
which, combined with equation (30), yields

qT (z, τ) = ϕ[zT ],τ,τ ;T

⎧⎨
⎩

var
(
X[zT ],T − X̂

(b)
[zT ],T

)
var

(
X[zT ]+τ,T − X̂

(f)
[zT ]+τ,T

)
⎫⎬
⎭

1/2

as desired.

H.2. Proof of Proposition 2.3

Proof. As X̂
(b)
[zT ],T and X̂

(f)
[zT ]+τ,T are projections of X[zT ],T and X[zT ]+τ,T , re-

spectively, on the space sp(X[zT ]+1,T , . . . , X[zT ]+τ−1,T ) it follows that

E(X[zT ],T − X̂
(b)
[zT ],T ) = 0 and E(X[zT ]+τ,T − X̂

(f)
[zT ]+τ,T ) = 0.

Hence, the numerator and denominator in (2) can be re-expressed as a Mean
Squared Prediction Error (MSPE), since

var(X[zT ],T − X̂
(b)
[zT ],T ) = E(X̂

(b)
[zT ],T −X[zT ],T )

2

= MSPE(X̂
(b)
[zT ],T , X[zT ],T ), and

var(X[zT ]+τ,T − X̂
(f)
[zT ]+τ,T ) = E(X̂

(f)
[zT ]+τ,T −X[zT ]+τ,T )

2

= MSPE(X̂
(f)
[zT ]+τ,T , X[zT ]+τ,T ).

Using these expressions we can rewrite qT (z, τ) from (2) as

qT (z, τ) = ϕ[zT ],τ,τ ;T

⎧⎨
⎩ MSPE(X̂

(b)
[zT ],T , X[zT ],T )

MSPE(X̂
(f)
[zT ]+τ,T , X[zT ]+τ,T )

⎫⎬
⎭

1/2

.
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Now use the fact that the MSPE of a linear predictor of Xt,T can be written
as

MSPE
(
X̂t,T , Xt,T

)
= E

(
X̂t,T −Xt,T

)2
= bTt Σt,T bt,

where bt = (bt−1,T , . . . , b0,T ,−1)T and Σt,T is the covariance of X0,T , . . . , Xt,T

(Fryzlewicz, Van Bellegem and von Sachs, 2003, Section 3.3). In our case, the
back-casted and forecasted values of X[zT ],T and X[zT ]+τ,T are also linear pre-
dictors using the window of observations X[zT ]+1,T , . . . , X[zT ]+τ−1,T , and thus
their corresponding MSPE can be expressed as

MSPE(X̂
(b)
[zT ],T , X[zT ],T ) = (b

(b)
[zT ])

TΣ
(b)
[zT ];T b

(b)
[zT ], (31)

MSPE(X̂
(f)
[zT ]+τ,T , X[zT ]+τ,T ) = (b

(f)
[zT ]+τ )

TΣ
(f)
[zT ]+τ ;T b

(f)
[zT ]+τ , (32)

where, as above, the τ × 1 coefficient vectors are b
(b)
[zT ] = (−1, b̃

(b)
1,T , . . . , b̃

(b)
τ−1,T )

T

and b
(f)
[zT ]+τ = (b

(f)
τ−2,T , . . . , b

(f)
0,T ,−1)T and the τ × τ covariance matrices Σ

(b)
[zT ];T

and Σ
(f)
[zT ]+τ ;T appear in Appendix B.

Therefore, on combining equation (4) with (31) and (32) we obtain as desired

qT (z, τ) = ϕ[zT ],τ,τ ;T

⎧⎨
⎩ (b

(b)
[zT ])

TΣ
(b)
[zT ];T b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TΣ
(f)
[zT ]+τ ;T b

(f)
[zT ]+τ

⎫⎬
⎭

1/2

.

H.3. Proof of Proposition 2.5

Proof. The proof treats the convergence of ϕ[zT ],τ,τ ;T and the quotient that
forms the square-root in equation (4) separately. Firstly, we address the quotient
convergence.

A: Quotient Convergence: By Proposition 3.1 from Fryzlewicz, Van Bellegem
and von Sachs (2003) we have

MSPE
(
X̂

(b)
[zT ],T , X[zT ],T

)
= (b

(b)
[zT ])

TΣ
(b)
[zT ];T b

(b)
[zT ] (33)

=
{
(b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

}
{1 + oT (1)} (34)

and

MSPE
(
X̂

(f)
[zT ]+τ,T , X[zT ]+τ,T

)
= (b

(f)
[zT ]+τ )

TΣ
(f)
[zT ]+τ ;T b

(f)
[zT ]+τ

=
{
(b

(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

}
{1 + oT (1)} .

Hence

MSPE
(
X̂

(b)
[zT ],T , X[zT ],T

)
MSPE

(
X̂

(f)
[zT ]+τ,T , X[zT ]+τ,T

) =

{
(b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

}
{
(b

(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

} {1 + oT (1)}
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B: Convergence of ϕ[zT ],τ,τ ;T . We defined ϕ[zT ],τ,τ ;T as the last element in

ϕ[zT ],τ ;T that is the solution to the Yule-Walker equations Σ[zT ];Tϕ[zT ],τ ;T =
r[zT ];T .

Let [O(T−1)] be an appropriately-sized matrix whose elements are all O(T−1)
and O(T−1) be a similarly defined vector.

Now consider

Σ[zT ];T

(
ϕ[zT ],τ ;T −ϕ[zT ],τ

)
= Σ[zT ];Tϕ[zT ],τ ;T − Σ[zT ];Tϕ[zT ],τ

= r[zT ];T −
(
B[zT ] + [O(T−1)]

)
ϕ[zT ],τ

= r[zT ];T − r[zT ] − [O(T−1)]ϕ[zT ],τ

(as |cT (z, τ)− c(z, τ)| = O(T−1))

= O(T−1)− [O(T−1)]ϕ[zT ],τ .

Observe that [O(T−1)]ϕ[zT ],τ =
(∑

j

∑
i Kj,iϕ[zT ],τ,j/T

)
1, where Kj,i is the

(j, i)th constant, and in what follows we shall seek to bound this quantity.
From the Cauchy-Schwarz inequality ‖ϕ[zT ],τ‖1 ≤ |τ |1/2‖ϕ[zT ],τ‖2 = Cτ as

τ is fixed, and by standard properties of the spectral norm

‖ϕ[zT ],τ‖22 = ϕT
[zT ],τϕ[zT ],τ

≤ ϕT
[zT ],τΣ[zT ];Tϕ[zT ],τ‖Σ−1

[zT ];T ‖

= MSPE
(
X̂[zT ]+τ−1,T , X[zT ]+τ−1,T

)
‖Σ−1

[zT ];T ‖ < ∞,

as the spectral norm ‖Σ−1
[zT ];T ‖ is bounded using Lemma A.3 from Fryzlewicz,

Van Bellegem and von Sachs (2003).
Thus [O(T−1)]ϕ[zT ],τ = O(T−1) and it follows that

Σ[zT ];T

(
ϕ[zT ],τ ;T −ϕ[zT ],τ

)
= O(T−1),

which is equivalent to ϕ[zT ],τ ;T − ϕ[zT ],τ = Σ−1
[zT ];TO(T−1). By bounds of

Rayleigh quotients (Abadir and Magnus, 2005, pg.181), ‖ϕ[zT ],τ ;T − ϕ[zT ],τ‖2
= ‖Σ−1

[zT ];TO(T−1)‖2 ≤ μ1/2‖O(T−1)‖2 = (μ|τ |)1/2/T = O(T−1) as τ is fixed.

Here μ is the largest eigenvalue of
(
Σ−1

[zT ];T

)T
Σ−1

[zT ];T , i.e. μ = ‖Σ−1
[zT ];T ‖2, and

so μ < ∞. It follows that ϕ[zT ],τ ;T −ϕ[zT ],τ = O(T−1).
Putting parts A and B together:

| qT (z, τ)− q (z, τ)| =

∣∣∣∣∣∣∣ϕ[zT ],τ,τ ;T

⎧⎨
⎩

MSPE
(
X̂

(b)
[zT ],T , X[zT ],T

)
MSPE

(
X̂

(f)
[zT ]+τ,T , X[zT ]+τ,T

)
⎫⎬
⎭

1/2

−ϕ[zT ],τ,τ

⎧⎨
⎩ (b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

⎫⎬
⎭

1/2
∣∣∣∣∣∣∣



3298 R. Killick et al.

=
∣∣{ϕ[zT ],τ,τ +O(T−1)

}
⎡
⎣

{
(b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

}
{1 + oT (1)}{

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

}
{1 + oT (1)}

⎤
⎦
1/2

−ϕ[zT ],τ,τ

⎧⎨
⎩ (b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

⎫⎬
⎭

1/2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ϕ[zT ],τ,τ

⎧⎨
⎩ (b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ )

⎫⎬
⎭

1/2

([
{1 + oT (1)}
{1 + oT (1)}

]1/2
− 1

)

+O(T−1)

⎧⎨
⎩

MSPE
(
X̂

(b)
[zT ],T , X[zT ],T

)
MSPE

(
X̂

(f)
[zT ]+τ,T , X[zT ]+τ,T

)
⎫⎬
⎭

1/2
∣∣∣∣∣∣∣

= O(T−1).

For the last equality the first term is asymptotically zero since {1+oT (1)}
{1+oT (1)} → 1

as T → ∞, ϕ[zT ],τ,τ < ∞ and

{
(b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

}1/2 {
(b

(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

}−1/2

< ∞,

or, more concisely, q (z, τ) < ∞. The second term is O(T−1) as each expectation
is finite. This concludes the proof.

H.4. Proof of Proposition 2.7

Proof. First recall that we defined the local partial autocorrelation as

q (z, τ) = ϕ[zT ],τ,τ ;T

{
Var{X[zT ],T − P[zT ],τ (X[zT ],T )}

Var{X[zT ]+τ,T − P[zT ],τ (X[zT ]+τ,T )}

}1/2

,

where the coefficient ϕ[zT ],τ,τ ;T is obtained in a manner akin to the (stationary)
partial autocorrelation coefficient by expressing X[zT ]+τ,T as an AR(τ) pro-
cess and solving the associated Yule-Walker equations. The fraction under the
square root quantifies the ratio between the backward and forward variances as-
sociated to the AR(τ) process. The Yule-Walker equations here are localized at
the rescaled time z, in the sense that they involve observations over the interval
[[zT ], [zT ] + τ ].

Recall that, in estimating the local partial autocorrelation, we use the ĉ(z, τ)
estimator of Nason, von Sachs and Kroisandt (2000), which was shown there to
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be consistent for the (true) local autocovariance c(z, τ). By the classical station-
ary theory, it follows that the estimated Yule-Walker coefficients of the AR(τ)
process (solution vector to the local Yule-Walker equations) are consistent esti-

mators of the true coefficients, hence ϕ̃[zT ],τ,τ ;T
P−→ ϕ[zT ],τ,τ , and the forward

and backward variances are also estimated consistently.
Using the continuous mapping theorem (Billingsley, 1999) and assuming that

the variance is non-zero, it follows that the square-root of the ratio of estimated
backward and forward variances⎧⎨

⎩ ( b̃
(b)

[zT ])
T B̃

(b)
[zT ] b̃

(b)

[zT ]

( b̃
(f)

[zT ]+τ )
T B̃

(f)
[zT ]+τ b̃

(f)

[zT ]+τ

⎫⎬
⎭

1/2

is a consistent estimator of the true ratio of variances⎧⎨
⎩ (b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

⎫⎬
⎭

1/2

.

This together with the consistency of ϕ̃[zT ],τ,τ ;T , yields

ϕ̃[zT ],τ,τ ;T

⎧⎨
⎩ ( b̃

(b)

[zT ])
T B̃

(b)
[zT ] b̃

(b)

[zT ]

( b̃
(f)

[zT ]+τ )
T B̃

(f)
[zT ]+τ b̃

(f)

[zT ]+τ

⎫⎬
⎭

1/2

P−→

ϕ[zT ],τ,τ

⎧⎨
⎩ (b

(b)
[zT ])

TB
(b)
[zT ]b

(b)
[zT ]

(b
(f)
[zT ]+τ )

TB
(f)
[zT ]+τb

(f)
[zT ]+τ

⎫⎬
⎭

1/2

.

(35)

Appendix I: Proofs from Section 3

I.1. Proof of Lemma 1

Proof. It is obvious that inequality (15) holds when iN,z(j, �, k) = 0. This occurs
when the lower limit in the sum (14), plus the extra k−2[zT ]+N/2−1 exceeds
the support of ψ�,·. In other words, iN,z(j, �, k) = 0 when:

[zT ]−N + 1 + k − 2[zT ] +N/2− 1 > N� − 1

=⇒ k − [zT ]−N/2 > N� − 1

=⇒ k > [zT ] +N/2 +N� − 1 = b2. (36)

It can also be shown that iN,z(j, �, k) = 0 when k < [zT ] − N/2 + 1 but this
inequality is not of interest in this proof.

For the inequalities in (16) we decompose Ψ into three terms:

Ψj,�(k − 2[zT ] +N/2− 1) = L+ iN,z(j, �, k) + U, (37)
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where

L =

[zT ]−N∑
s=−∞

ψj,sψ�,s+k−2[zT ]+N/2−1 (38)

and

U =

∞∑
s=[zT ]+1

ψj,sψ�,s+k−2[zT ]+N/2−1. (39)

Clearly, the inequality (15) is satisfied when iN,z(j, �, k) = Ψj,�(k − 2[zT ] +
N/2 − 1) which occurs when L = U = 0. We now investigate the conditions
when L = U = 0.

(A) When is U = 0? When the lower limit of the sum defining U in (39)
exceeds the support of ψj,·, i.e.

[zT ] + 1 > Nj − 1 =⇒ [zT ] > Nj − 2, (40)

or when the lower limit exceeds the support of ψ�,·, i.e.

[zT ] + 1 + k − 2[zT ] +N/2− 1 > N� − 1 =⇒ k > [zT ]−N/2 +N� − 1. (41)

(B) When is L = 0? When the upper limit of the sum defining L in (38) is
less than the lower support bound of ψj,·, which is zero, i.e.

[zT ]−N < 0 =⇒ [zT ] < N, (42)

or when the upper limit is less than the support of ψ�,·, i.e.

[zT ]−N + k − 2[zT ] +N/2− 1 < 0 =⇒ k < [zT ] +N/2 + 1 = b1. (43)

Hence, U = L = 0 when inequalities (40) and (43) are satisfied. Note: we
are not particularly interested in inequalities (41) and (42). For the former, the
inequality (41) would have to be allied with (42) (as (43) would be contradictory
to (41)) and, asymptotically (42) will not hold (as we expect the rate of increase
of T to be much bigger than N).

So far we have demonstrated the Lemma up to inequalities (16) and (17) and
now we look to establish the second part of the Lemma.

To establish (18) it can be shown that, for Daubechies’ wavelets with two or
more vanishing moments,

|iN,z(j, �, k)| ≤ 2−(j+�)/2K2

[zT ]∑
s=[zT ]−N+1

s−1(s− [zT ] +N)−1 (44)

= 2−(j+�)/2
(
HN −H[zT ] +H[zT ]−N

)
/([zT ]−N),

where Hn is the nth Harmonic number, and K is a constant (maximum absolute
value of the wavelet). Now using the following approximation for Hn

Hn = logn+ γ +O(n−1),

where γ is the Euler-Mascheroni constant, we can obtain the result in (18).
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Now we consider Haar wavelets. First, let us recall what the discrete Haar
wavelet is. We have

ψj,k =

⎧⎪⎨
⎪⎩
2−j/2 for 0 ≤ k < Nj/2,

−2−j/2 for Nj/2 ≤ k < Nj ,

0 otherwise.

For Haar wavelets Nj = 2j for j ∈ N. Next we will require the discrete Fourier
transform of the Haar wavelet given by:

ψ̂j(ω) =

∞∑
s=−∞

ψj,se
−iωs,

for ω ∈ (−π, π). The inverse of this transform is:

ψj,s = (2π)−1

∫ π

−π

ψ̂j(ω)e
iωsdω (45)

for s ∈ Z.
Now let us work out the precise form of the Fourier transform of the discrete

Haar wavelet:

ψ̂j(ω) = 2−j/2

⎛
⎝Nj/2−1∑

s=0

e−iωs −
Nj−1∑

s=Nj/2

e−iωs

⎞
⎠

= 2−j/2

⎧⎨
⎩

Nj/2−1∑
s=0

e−iωs −
Nj/2−1∑

s=0

e−iω(s+Nj/2)

⎫⎬
⎭

= 2−j/2

Nj/2−1∑
s=0

e−iωs
(
1− e−iωNj/2

)

= 2−j/2
(
1− e−iωNj/2

)Nj/2−1∑
s=0

e−iωs

= 2−j/2
(
1− e−iωNj/2

) 1− exp(−iωNj/2)

1− exp(−iω)

= 2−j/2

(
1− e−iωNj/2

)2
1− exp(−iω)

We now directly examine formula (22) with a rectangular kernel, as discussed
in the main body of the paper. To simplify notation, we let B = [zT ]−N and
r = k − 2[zT ] + N/2 − 1. In (22) replace the discrete wavelets ψj,s and ψ�,s+r

by their Fourier inverse representations given by (45) to obtain:

iN,z(j, �, k) =

B+N∑
s=B+1

(2π)−2

∫ π

−π

∫ π

−π

ψ̂j(ω)e
iωsψ̂�(ν)e

iν(s+r)dωdν (46)
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= (2π)−1

∫ π

−π

ψ̂�(ν)e
iνr

{
(2π)−1× (47)

∫ π

−π

ψ̂j(ω)

B+N∑
s=B+1

ei(ω+ν)sdω

}
dν (48)

= (2π)−1

∫ π

−π

ψ̂�(ν)e
iνr

{
(2π)−1× (49)∫ π

−π

ψ̂j(ω)e
i(ω+ν)(B+1) 1− ei(ω+ν)N

1− ei(ω+ν)
dω

}
dν

= (2π)−1

∫ π

−π

ψ̂�(ν)e
iνrGj,B,N (ν)dν, (50)

where

Gj,B,N (ν) = (2π)−1

∫ π

−π

ψ̂j(ω)e
i(ω+ν)(B+1) 1− ei(ω+ν)N

1− ei(ω+ν)
dω

=

B+N∑
s=B+1

eiνsψj,s

= ψ̂j(ν)−
B∑

s=−∞
ψj,se

iνs −
∞∑

s=B+N+1

ψj,se
iνs.

We now examine what happens to Gj,B,N (ν) under four different cases depend-
ing on how the support of the wavelet ψj,s overlaps the interval [B + 1, B +N ]
or not. Note: the support of the wavelet is the interval [0, Nj − 1]. Note: we
are mostly interested in the situation when T,N are large and hence not so
interested in a potential fifth case when [B + 1, B +N ] ⊆ [0, Nj − 1].

Case-I: Suppose [0, Nj − 1] ⊆ [B + 1, B + N ]. That is, the support of the
wavelet lies entirely within the interval [B + 1, B +N ]. Then

Gj,B,N (ν) =

B+N∑
s=B+1

eiνsψj,s =

Nj−1∑
s=0

ψj,se
iνs = ψ̂j(ν). (51)

Case-II: Suppose 0 < B+1 but B+1 < Nj −1, that is right-hand end of the
wavelet support overlaps [B + 1, B +N ] but the left-hand end does not. Then:

Gj,B,N (ν) =

Nj−1∑
s=B+1

ψj,se
iνs = ψ̂j(ν)−

B∑
s=0

ψj,se
iνs (52)

= ψ̂j(ν)−Gj,B(ν), (53)

where

Gj,B(ν) =

B∑
s=0

ψj,se
iνs. (54)
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Case-III: Suppose [0, Nj−1] and [B,B+N ] do not overlap. Then Gj,B,N (ν) =
0.

Case-IV: Suppose that 0 < B+N and B+N < Nj − 1, that is the left-hand
end of the wavelet support overlaps [B+1, B+N ] but the right-hand end does
not. And B + 1 < 0 which is not of interest as it means that [zT ]−N + 1 < 0
which should not happen, for large T , as T increases faster than N .

From (54) for B > 0 we derive Gj,B(ν) =⎧⎪⎪⎨
⎪⎪⎩
2−j/2

∑B
s=0 e

iνs if 0 ≤ B ≤ Nj/2− 1,

2−j/2
(∑Nj/2−1

s=0 eiνs −
∑B

s=Nj/2
eiνs

)
if Nj/2− 1 < B ≤ Nj − 1,

2−j/2
∑Nj/2−1

s=0

{
eiνs − eiν(s+Nj/2)

}
if Nj − 1 < B.

(55)

Computing the sums in (55) gives Gj,B(ν) =

2−j/2

{exp(iν)− 1}

⎧⎪⎨
⎪⎩
exp{iν(B + 1)} − 1, for B ∈ S1,

2 exp(iνNj/2)− exp{iν(B + 1)} − 1, for B ∈ S2,

{1− exp(iνNj/2)}{exp(iνNj/2)− 1}, for B ∈ S3,

(56)

where S1 = {B : 0 ≤ B ≤ Nj/2− 1}, S2 = {B : Nj/2− 1 < B ≤ Nj − 1}, S3 =
{B : Nj − 1 < B}.

Now returning to the main formula (46).

Case-I: suppose [0, Nj − 1] ⊆ [B+1, B+N ] then Gj,B,N (ν) = ψ̂j(ν) as given
by (51). Hence, substituting into (46) gives:

iN,z(j, �, k) = (2π)−1

∫ π

−π

ψ̂�(ν)e
iνrGj,B,N (ν) dν (57)

= (2π)−1

∫ π

−π

2−�/2 (1− e−iνN�/2)2

1− e−iν
eiνr2−j/2 (1− e−iνNj/2)2

1− e−iν
dν

=
2−(j+�)/2

2π

∫ π

−π

eiνr
(1− e−iνN�/2)2(1− e−iνNj/2)2

(1− e−iν)2
dν (58)

We now bound iN,z(j, �, k) by the integral of the absolute value of its integrand,
i.e.

|iN,z(j, �, k)| ≤
2−(j+�)/2

2π

∫ π

−π

2{1− cos(N�ν/2)}2{1− cos(Njν/2)}
2{1− cos(ν)} dν

=
21−(j+�)/2

2π

∫ π

−π

{1− cos(N�ν/2)}{1− cos(Njν/2)}
1− cos(ν)

dν,

because |eiνr| = 1, |(1 − e−iν)|2 = 2{1 − cos(ν)}, and so on. Using Lemma 3
with a = N�/4, b = Nj/4 gives

|iN,z(j, �, k)| ≤ 2−(j+�)/2 min(N�, Nj) (59)

=

{
2−(j−�)/2 for � ≤ j,

2−(�−j)/2 for � > j,
(60)

as Nj = 2j for Haar wavelets.
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Case-IIa. Consider the case when 0 ≤ B ≤ Nj/2 − 1. From (53) we have

Gj,B,N (ν) = ψ̂j(ν)−Gj,B(ν). Hence:

iN,z(j, �, k) ≤
1

2π

∫ π

−π

ψ̂�(ν)e
iνrGj,B,N (ν) dν

=
1

2π

∫ π

−π

ψ̂�(ν)e
iνr

[
ψ̂j(ν)−Gj,B(ν)

]
dν

=
1

2π

∫ π

−π

ψ̂�(ν)e
iνrψ̂j(ν) dν

− 1

2π

∫ π

−π

ψ̂�(ν)e
iνr 2j/2

eiν − 1

[
eiν(B+1) − 1

]
dν

= (58)− 2−(j+�)/2

2π

∫ π

−π

(
1− e−iνN�/2

)2 (
1− eiν(B+1)

)
eiνr

(1− eiν) (1− e−iν)
dν

≤ (58)− 2−(j+�)/2

2π

∫ π

−π

(
1− e−iνN�/2

)2 (
1− eiνNj/2

)
eiνr

(1− eiν) (1− e−iν)
dν

We now bound iN,z(j, �, k) by the integral of the absolute value of its integrand,
i.e.

|iN,z(j, �, k)| ≤ (60) +
2−(j+�)/2

2π
×∫ π

−π

|
(
1− e−iνN�/2

)2 || (1− eiνNj/2
)
||eiνr|

| (1− eiν) (1− e−iν) | dν

≤ (60) +
2−(j+�)/2

2π

∫ π

−π

2 (1− cos(νN�/2)) 2

2 (1− cos(ν))
dν

= (60) +
2−(j+�)/2

π

∫ π

−π

2π(N�/2)FN�/2(ν) dν

= (60) + 2−(j+�)/2N�

= 2−(j+�)/2 (min(N�, Nj) +N�) .

Case-IIb. Consider the case when Nj/2− 1 < B ≤ Nj − 1. Again using (53)

we have Gj,B,N (ν) = ψ̂j(ν)−Gj,B(ν) and from the corresponding value of (56),
we obtain (based on the same logic as above in Cases I and IIa):

iN,z(j, �, k) ≤
1

2π

∫ π

−π

ψ̂�(ν)e
iνrGj,B,N (ν) dν

=
1

2π

∫ π

−π

ψ̂�(ν)e
iνr

[
ψ̂j(ν)−Gj,B(ν)

]
dν

= (58)− 1

2π

∫ π

−π

ψ̂�(ν)e
iνr 2j/2

eiν − 1

[
2eiνNj/2 − eiν(B+1) − 1

]
dν

≤ (58)− 1

2π

∫ π

−π

ψ̂�(ν)e
iνr 2j/2

eiν − 1

[
2eiνNj/2 − eiνNj − 1

]
dν
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= (58)

+
2−(j+�)/2

2π

∫ π

−π

(
1− e−iνN�/2

)2 (
2eiνNj/2 − 1− eiνNj

)
eiνr

(1− eiν) (1− e−iν)
dν

We now bound iN,z(j, �, k) by the integral of the absolute value of its integrand,
i.e.

|iN,z(j, �, k)| ≤ (60) +
2−(j+�)/2

2π∫ π

−π

|
(
1− e−iνN�/2

)2 || (1− 2eiνNj/2 + eiνNj
)
||eiνr|

| (1− eiν) (1− e−iν) | dν

≤ (60) +
2−(j+�)/2

2π

∫ π

−π

2 (1− cos{νN�/2)} 2
2 {1− cos(ν)} dν

= (60) +
21−(j+�)/2

π

∫ π

−π

π(N�/2)FN�/2(ν) dν

= (60) + 2−(j+�)/2N�

= 2−(j+�)/2 (min(N�, Nj) +N�) .

Case-III. Clearly, |iN,z(j, �, k)| ≤ 0 ≤ (60) and Case-IV does not apply.

I.2. Proof of Lemma 2

This lemma has two parts, hence we next prove the first part.

Proof. In what follows we use the two bounds (15) for k < b1 and k > b2
and (19) for b1 ≤ k ≤ b2 from Lemma 1. Denote B = [b1, b2] and express

∞∑
k=−∞

∞∑
j=1

|iN,z(j, �, k)|2 =
∑
k∈B

∞∑
j=1

|iN,z(j, �, k)|2 +
∑
k∈�B

∞∑
j=1

|iN,z(j, �, k)|2.

For the first sum:

∑
k∈B

∞∑
j=1

|iN,z(j, �, k)|2 ≤
∑
k∈B

∞∑
j=1

2−(j+�) (min(N�, Nj) +N�)
2

=
∑
k∈B

⎧⎨
⎩

�−1∑
j=1

2−(j+�) (Nj +N�)
2
+

∞∑
j=�

2−(j+�) (2N�)
2

⎫⎬
⎭

= 2−�
∑
k∈B

⎧⎨
⎩

�−1∑
j=1

2−j
(
22j + 22� + 21+j+�

)
+ 4

∞∑
j=�

2−j22�

⎫⎬
⎭
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= 2−�
∑
k∈B

⎧⎨
⎩

�−1∑
j=1

2j + 22�
�−1∑
j=1

2−j

+21+�
�−1∑
j=1

1 + 22+2�
∞∑
j=�

2−j

⎫⎬
⎭

= 2−�
∑
k∈B

{
2� − 2 + 22�

(
1− 2−�+1

)
+(�− 1) 21+� + 22+2�2−�+1

}
= (N� − 1) 2−�

{
(2�+ 5) 2� − 2 + 22�

}
= (N� − 1)

(
2�+ 5− 2−�+1 + 2�

)
= O

(
22�
)
.

For the second sum:∑
k∈�B

∞∑
j=1

|iN,z(j, �, k)|2 ≤
∑
k∈�B

∞∑
j=1

|Ψj,� (k − 2[zT ] +N/2− 1) |2

≤
∑
j

B�(j, j),

where B�(j, p) is the fourth-order cross-correlation wavelet absolute value prod-

uct of order r = 0, defined as B
(r)
� (j, i) =

∑∞
p=−∞ |p|r|Ψj,�(p)Ψi,�(p)| for r = 0, 1

and scales �, j, i ∈ N.
Splitting the sum of j and using Proposition F.1 leads to the following:

∑
j

B�(j, j) =

�−1∑
j=0

B�(j, j) +

∞∑
j=�+1

B�(j, j) +B�(�, �)

=

�−1∑
j=0

2−�
(
22j−1 + 1

)
+

∞∑
j=�+1

2−j
(
22�−1 + 1

)
+

1

3
2−�

(
22� + 5

)
= 2−�

[
1

2

1

3

(
22� − 1

)
+ �

]
+
(
22�−1 + 1

)
2−� +

1

3
2−�

(
22� + 5

)
= O

(
2�
)
.

Hence
∑∞

k=−∞
∑∞

j=1 |iN,z(j, �, k)|2 = O(22�).

I.3. Proof of Theorem 1

Proof. First recall that we are under the zero-mean locally stationary wavelet
process framework, with {Xt,T }T−1

t=0 a doubly-index stochastic process with rep-
resentation given by

Xt,T =

∞∑
j=1

∞∑
k=−∞

w0
j,k;Tψj,k(t)ξj,k. (61)
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The integrated local periodogram was defined as

JN (z, φ) =

∞∑
j=1

φjI
∗
N (z, j)

where {φj}∞j=1 ∈ Φ, with Φ a set of complex-valued bounded sequences equipped
with uniform norm ||φ||∞ := supj |φj | and in order to avoid notational clutter
N replaces the interval length notation L(T ) present in the main body of the
paper. The quantity I∗N (z, j) denotes the uncorrected tapered local wavelet pe-
riodogram

I∗N (z, j) = H−1
N

∣∣∣∣∣
N−1∑
t=0

h

(
t

N

)
Xt−N/2+1,Tψj,[zT ](t)

∣∣∣∣∣
2

,

with h : [0, 1] → R+ a data taper, HN :=
∑N−1

j=0 h2(j/N) ∼ N
∫ 1

0
h2(x) dx the

normalizing factor and h(· ) is assumed symmetric and with a bounded second
derivative.

As in Dahlhaus and Giraitis (1998) we approximate JN (z, φ) by the corre-
sponding statistics of a stationary process with the same local corresponding
statistics at t = zT , z fixed. Let

JY
N (φ) =

∞∑
j=1

φjI
∗,Y
N (j)

where

I∗,YN (j) := H−1
N

∣∣∣∣∣
N−1∑
s=0

h
( s

N

)
Y[zT ]−N/2+1+s,Tψj,[zT ](s)

∣∣∣∣∣
2

is the wavelet periodogram on the segment [zT ] − N/2 + 1, . . . , [zT ] + N/2 of
the stationary process

Ys =

∞∑
j=1

Wj(z)

∞∑
k=−∞

ψj,k(s)ξj,k.

Note: The next section uses sequences of bounded variation The total varia-
tion of a sequence {φj}∞j=1 is defined by TV({φj}) =

∑∞
j=1 |φj+1 − φj | and the

space of all sequences of finite total variation is denoted by bv, see Dunford and
Schwartz (1958) for example.

From equations (12) and (13), we obtain JN (z, φ)− E (JN (z, φ)) = JY
N (φ)−

E
(
JY
N (φ)

)
+ op(N

−1/2) and using equation (11) it follows that

JN (z, φ) = JY
N (φ) +O

(
N−1

)
+ op(N

−1/2)

which reveals the approximation we make and should be compared to equation
(4.4) in Dahlhaus and Giraitis (1998), where a term O

(
N
T

)
appears instead of

O
(
N−1

)
.



3308 R. Killick et al.

Using the uncorrected tapered local periodogram expression in equation (8)
and the LSW definition (61), by rearranging formulae we can write the inte-
grated wavelet periodogram:

JN (z, φ) =

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

d̂N,z(�, k,m, n)ξ�,kξm,n,

where

d̂N,z(�, k,m, n) = H−1
N w0

�,kw
0
m,n

∞∑
j=1

φjiN,z(j, �, k)iN,z(j,m, n)

and from (22)

iN,z(j, �, k) =

N−1∑
t=0

h

(
t

N

)
ψj,[zT ]−tψ�,k−[zT ]−t−1+N/2.

Using the properties of the {ξ�,k}�,k field, we obtain

E{JN (z, φ)} =

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

d̂N,z(�, k,m, n)δl,mδk,n

=

∞∑
�=1

∞∑
k=−∞

d̂N,z(�, k, �, k)

=

∞∑
�=1

∞∑
k=−∞

H−1
N

[{
w0

�,k −W�(k/T )
}
+ {W�(k/T )−W�(z)}

+W�(z)]
2

∞∑
j=1

φj |iN,z(j, �, k)|2

=
∞∑
�=1

∞∑
k=−∞

H−1
N W 2

� (z)
∞∑
j=1

φj |iN,z(j, �, k)|2

︸ ︷︷ ︸
E(JY

N (φ))

+ cross terms,

where the assumption
∑

j Wj(z)
222j < ∞ (at any rescaled time z) ensures that

E(JY
N (φ)) is finite.

Therefore, using the LSW property that supk

∣∣∣w0
�,k;T −W�(k/T )

∣∣∣ ≤ C�/T ,

leads to

|E{JN (z, φ)} − E{JY
N (φ)}| ≤ sum of the modulus of the cross terms,

all upper bounded by terms of the form

A =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

C2
�

T 2

∞∑
j=1

|iN,z(j, �, k)|2,
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B =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

⎡
⎣C�

T
{W�(k/T )−W�(z)}

∞∑
j=1

|iN,z(j, �, k)|2
⎤
⎦ ,

C =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

⎡
⎣{W�(k/T )−W�(z)}2

∞∑
j=1

|iN,z(j, �, k)|2
⎤
⎦ ,

D =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

⎡
⎣{W�(k/T )−W�(z)}W�(z)

∞∑
j=1

|iN,z(j, �, k)|2
⎤
⎦ .

In order to further bound these quantities, we use Lemma 2 that proves
∞∑

k=−∞

∞∑
j=1

|iN,z(j, �, k)|2 = O(22�),

hence we obtain

A =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

C2
�

T 2

∞∑
j=1

|iN,z(j, �, k)|2 =
‖φ‖
HN

∞∑
�=1

C2
�

T 2

∞∑
k=−∞

∞∑
j=1

|iN,z(j, �, k)|2

≤ ‖φ‖
HN

1

T 2

∞∑
�=1

C2
� 2

2� = O(N−1T−2),

where we have used
∑∞

�=1 C
2
� 2

2� < ∞.

B =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

⎡
⎣C�

T
{W�(k/T )−W�(z)}

∞∑
j=1

|iN,z(j, �, k)|2
⎤
⎦

≤ ‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

∞∑
j=1

C�

T
L�

∣∣∣∣k − [zT ]

T

∣∣∣∣ |iN,z(j, �, k)|2

≤ ‖φ‖
HN

1

T

∞∑
�=1

C�L�2
2� = O(N−1T−1),

using the Lipschitz continuity of {Wj}j , T−1|k − [zT ]| ∈ (0, 1) and the Hölder
inequality

∞∑
�=1

C�L�2
2� <

( ∞∑
�=1

C2
� 2

2�

)1/2( ∞∑
�=1

L2
�2

2�

)1/2

< ∞

coupled with the assumptions in the theorem.
We now need to bound

C =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

⎡
⎣{W�(k/T )−W�(z)}2

∞∑
j=1

|iN,z(j, �, k)|2
⎤
⎦

≤ ‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

∞∑
j=1

L2
�

|(k − [zT ])2|
T 2

|iN,z(j, �, k)|2.

As
∑

� L
2
�2

2� < ∞ and as |k−[zT ]
T |2 ∈ (0, 1), we obtain that C = O(N−1).
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The term

D =
‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

⎡
⎣{W�(k/T )−W�(z)}W�(z)

∞∑
j=1

|iN,z(j, �, k)|2
⎤
⎦

≤ ‖φ‖
HN

∞∑
�=1

∞∑
k=−∞

∞∑
j=1

L�W�(z)
|(k − [zT ])|

T
|iN,z(j, �, k)|2

can be bounded using Hölder’s inequality

∞∑
�=1

W�(z)L�2
2� <

( ∞∑
�=1

W 2
� (z)2

2�

)1/2( ∞∑
�=1

L2
�2

2�

)1/2

< ∞

based on the assumptions in the theorem and recalling that we assumed {Yt}
to be stationary. Hence D = O(N−1).

This completes the proof of E {JN (z, φ)} = E
{
JY
N (φ)

}
+O

(
N−1

)
.

Now let us establish consistency and its rate. Start by considering

var{JN (z, φ)} = E {JN (z, φ)− E(JN (z, φ)}2

=

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

∞∑
�′=1

∞∑
k′=−∞

∞∑
m′=1

∞∑
n′=−∞

d̂N,z(�, k,m, n)d̂N,z(�
′, k′,m′, n′) cov(ξ�,kξm,n, ξ�′,k′ξm′,n′).

Using Isserlis, we can decompose

cov(ξ�,kξm,n, ξ�′,k′ξm′,n′) = E(ξ�,kξm,nξ�′,k′ξm′,n′)

− E(ξ�,kξm,n)E(ξ�′,k′ξm′,n′)

= E(ξ�,kξm,n)E(ξ�′,k′ξm′,n′)

+ E(ξ�,kξ�′,k′)E(ξm,nξm′,n′)

+ E(ξ�,kξm′,n′)E(ξ�′,k′ξm,n)

− E(ξ�,kξm,n)E(ξ�′,k′ξm′,n′)

= δ�,�′δk,k′δm,m′δn,n′ + δ�,m′δk,n′δm,�δn,k′ ,

hence

var{JN (z, φ)} =

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

d̂2N,z(�, k,m, n)

+

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

d̂N,z(�, k,m, n)d̂N,z(m,n, �, k)

= 2

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

d̂2N,z(�, k,m, n),
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as d̂2N,z(m,n, �, k) = d̂2N,z(�, k,m, n). Hence, we seek to bound

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

d̂2N,z(�, k,m, n). (62)

Let us now expand the above

1

2
var{JN (z, φ)} =

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

[{
w0

�,k −W�(k/T )
}

+ {W�(k/T )−W�(z)}+W�(z)]
2

×
[{
w0

m,n −Wm(n/T )
}
+ {Wm(n/T )−Wm(z)}+Wm(z)

]2
×

⎧⎨
⎩

∞∑
j=1

φj |iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

.

Using an inequality of the type (a + b + c)2 ≤ 3(a2 + b2 + c2), the above
quantity is upper bounded by a linear combination of a finite number of terms,
of the following types

AA =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

C2
�

T 2

C2
m

T 2

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

BB =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

C2
�

T 2
{Wm(n/T )−Wm(z)}2

×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

CC =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

{W�(k/T )−W�(z)}2 {Wm(n/T )−Wm(z)}2

×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

DD =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

{W�(k/T )−W�(z)}2 W 2
m(z)

×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

EE =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

W 2
� (z)W

2
m(z)
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×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

.

In order to bound the above quantities, we use Lemma 2 which proves that

∞∑
k=−∞

∞∑
n=−∞

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

= O(2(�+m)). (63)

Using this result we can bound each term in turn, as follows.
The first term

AA =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

C2
�

T 2

C2
m

T 2

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

=
‖φ2‖
H2

N

∞∑
�=1

∞∑
m=1

C2
�

T 2

C2
m

T 2

∞∑
k=−∞

∞∑
n=−∞

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

≤ ‖φ2‖
H2

N

1

T 4

∞∑
�=1

C2
� 2

2�
∞∑

m=1

C2
m22m = O(N−2T−4)

where we used
∑∞

�=1 C
2
� 2

2� < ∞.
The term

BB =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

C2
�

T 2
×

{Wm(n/T )−Wm(z))
2

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

=
‖φ2‖
H2

N

1

T 2

∞∑
�=1

C2
�

∞∑
m=1

∞∑
k=−∞

∞∑
n=−∞

{Wm(n/T )−Wm(z)}2 ×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

≤ ‖φ2‖
H2

N

1

T 2

∞∑
�=1

C2
�

∞∑
m=1

∞∑
k=−∞

×

∞∑
n=−∞

L2
m

∣∣∣ n
T

− z
∣∣∣2
⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

≤ ‖φ2‖
H2

N

1

T 2

∞∑
�=1

C2
� 2

2�
∞∑

m=1

L2
m22m = O(N−2T−2),
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where we have used the Lipschitz continuity ofWm, | nT −z|2 ∈ (0, 1),
∑

� C
2
� 2

2� <
∞ and

∑
m L2

m22m < ∞.
Using the same set of arguments, we bound

CC =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

{W�(k/T )−W�(z)}2 {Wm(n/T )−Wm(z)}2

×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

≤ ‖φ2‖
H2

N

∞∑
�=1

∞∑
m=1

∞∑
k=−∞

∞∑
n=−∞

L2
�

∣∣∣∣ kT − z

∣∣∣∣2 L2
m

∣∣∣ n
T

− z
∣∣∣2 ×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

≤ ‖φ2‖
H2

N

∞∑
�=1

L2
�2

2�
∞∑

m=1

L2
m22m = O(N−2).

The term

DD =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

{W�(k/T )−W�(z)}2 W 2
m(z)

×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

,

≤ ‖φ2‖
H2

N

∞∑
�=1

∞∑
m=1

W 2
m(z)

∞∑
k=−∞

∞∑
n=−∞

L2
�

∣∣∣∣ kT − z

∣∣∣∣2

×

⎧⎨
⎩

∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

≤ ‖φ2‖
H2

N

∞∑
�=1

L2
�2

2�
∞∑

m=1

W 2
m(z)22m = O(N−2),

as | kT − z|2 ∈ (0, 1),
∑

� L
2
�2

2� < ∞ and
∑

m W 2
m(z)22m < ∞ at a set z (recall

the process {Yt} was assumed stationary).
Similarly,

EE =
‖φ2‖
H2

N

∞∑
�=1

∞∑
k=−∞

∞∑
m=1

∞∑
n=−∞

W 2
� (z)W

2
m(z)

×

⎧⎨
⎩

∞∑
j=1

φj |iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2
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≤ ‖φ2‖
H2

N

∞∑
�=1

W 2
� (z)

∞∑
m=1

W 2
m(z)

∞∑
k=−∞

∞∑
n=−∞⎧⎨

⎩
∞∑
j=1

|iN,z(j, �, k)iN,z(j,m, n)|

⎫⎬
⎭

2

≤ ‖φ2‖
H2

N

∞∑
�=1

W 2
� (z)2

2�
∞∑

m=1

W 2
m(z)22m = O(N−2).

We therefore obtain that

var{N1/2JN (z, φ)} ≤ K/N, for some constant K, (64)

hence JN (z, φ) − E{JN (z, φ)} = oP (N
−1/2). The result for the process {Yt}

follows similarly, which concludes the proof of Theorem 1.

I.4. Proof of Proposition 3.4

Proof. Theorem 1 established the limit properties of the approximation we make
for JL(T )(z, φ). From (12) and (13), we obtain JL(T )(z, φ) − E

{
JL(T )(z, φ)

}
=

JY
L(T )(φ) − E

{
JY
L(T )(φ)

}
+ op

{
L(T )

−1/2
}

and using equation (11) it follows

that
JL(T )(z, φ) = JY

L(T )(φ) +O
{
L(T )

−1
}
+ op

{
L(T )

−1/2
}
. (65)

Now recall we defined our windowed local partial autocorrelation estima-

tor q̃W (z, τ) = q̂[z−L(T )/2T,z+L(T )/2T ](τ), hence q̃W (z, τ) =
(
Γ̂−1
z,τ γ̂z,τ

)
τ
where

both Γ̂z,τ and γ̂
z,τ

are a matrix, respectively vector of local tapered covariances

ĉ(z, τ).
The elements of the covariance matrix (Γ̂) and vector (γ̂) are ĉ(z, τ) =∑
j Ŝj(z)Ψj(τ) and thus can be written as integrated periodograms JL(T ), since

Ŝj(z) = A−1
J I∗L(T )(z) and I∗L(T )(z) =

(
I∗L(T )(z, 1), . . . , I

∗
L(T )(z, J)

)T
. Using the

result in equation (65), in the manner of Dahlhaus and Giraitis (1998), it follows
that q̃W (z, τ) has the same asymptotic distribution as in the stationary case.
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