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for time-to-event data
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Abstract: Random measures are the key ingredient for effective nonpara-
metric Bayesian modeling of time-to-event data. This paper focuses on pri-
ors for the hazard rate function, a popular choice being the kernel mixture
with respect to a gamma random measure. Sampling schemes are usually
based on approximations of the underlying random measure, both a pri-
ori and conditionally on the data. Our main goal is the quantification of
approximation errors through the Wasserstein distance. Though easy to
simulate, the Wasserstein distance is generally difficult to evaluate, mak-
ing tractable and informative bounds essential. Here we accomplish this
task on the wider class of completely random measures, yielding a measure
of discrepancy between many noteworthy random measures, including the
gamma, generalized gamma and beta families. By specializing these results
to gamma kernel mixtures, we achieve upper and lower bounds for the
Wasserstein distance between hazard rates, cumulative hazard rates and
survival functions.
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1. Introduction

One of the most attractive features of the Bayesian nonparametric approach
to statistical inference is the modeling flexibility implied by priors with large
support. There are several classes of priors where this property is complemented
by analytical tractability, thus contributing to making Bayesian nonparametrics
very popular in several applied areas. See Hjort et al. [28] and Ghosal and van der
Vaart [23] for broad overviews. In this framework, survival analysis stands out as
one of the most lively fields of application. A prominent model for exchangeable
time-to-event data is the extended gamma process for hazard rates [17], which
allows for continuous observables and has been further generalized to kernel
mixtures in Lo and Weng [37] and James [32]. These works paved the way
for another active line of research that defines priors for the hazard rates by
relaxing the dependence structure between the observables, going beyond the
exchangeability assumption. For example, Pennell and Dunson [45], De Iorio
et al. [13] and Hanson, Jara and Zhao [25] model subject specific hazards based
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on continuous covariates; Lijoi and Nipoti [35] and Zhou et al. [53] define priors
for cluster specific hazards, while Nipoti, Jara and Guindani [43] account for
both individual and cluster covariates simultaneously. In this work we rather
focus on priors for the hazard rates of exchangeable time-to-event data.

An important feature shared by most classes of nonparametric priors is their
definition in terms of random measures and transformations thereof. While there
is a wealth of theoretical results that have eased their actual implementation in
practice, sampling schemes are typically based on approximations of the under-
lying random measures. Nonetheless, with a very few exceptions [29, 2, 5], there
is no extensive analysis on how to judge the quality of such approximations.

Consider the common situation where one is interested in making inference or
sampling from a wide class of random measures C, but can only treat a subclass
Cπ because of convenient analytical or computational properties. The restric-
tion to Cπ is usually argued through density statements, typically in terms of
weak convergence of random measures. In many cases this reduces to the weak
convergence of one-dimensional distributions, i.e. for every μ̃ ∈ C there exists
an approximating sequence {μ̃n}n≥1 in Cπ such that μ̃n(A) converges weakly to
μ̃(A) for every Borel set A. This leaves out the possibility of establishing the rate
of convergence and, more importantly, provides no guidance on the choice of the
approximation μ̃n̄ ∈ {μ̃n}n≥1 to use in practical implementations. Spurred by
these considerations, the goal we pursue is to quantify the approximation errors
by evaluating the Wasserstein distance between μ̃n(A) and μ̃(A). Since conver-
gence in Wasserstein distance implies weak convergence, this has the additional
advantage of strengthening most results known in the literature.

The Wasserstein distance was first defined by Gini [24] as a simple mea-
sure of discrepancy between random variables. During the 20th century it has
been redefined and studied in many other disciplines, such as transportation
theory, partial differential equations, ergodic theory and optimization. Nowa-
days, depending on the field of study, it is known with different names, such as
Gini distance, coupling distance, Monge-Kantorovich distance, Earth Moving
distance and Mallows distance; see Villani [51], Rachev [46] and Cifarelli and
Regazzini [8] for reviews. Indeed, one can find it scattered across the statis-
tics literature [38, 16, 3, 6], though only in recent years it has achieved major
success, especially in probability and machine learning. For a detailed review
on the uses of the Wasserstein distance in statistics see Panaretos and Zemel
[44]. As for the Bayesian literature, the Wasserstein distance was first used in
Nguyen [42] and has been mainly used to evaluate approximations of the poste-
rior distribution and to address consistency [42, 50, 7, 21, 15, 26]. These works
deal with the convergence of the (random) Wasserstein distance between the
attained values of random probability measures. In a similar vein, though with-
out a specific statistical motivation, Mijoule, Peccati and Swan [40] examine the
Wasserstein convergence rate of the empirical distribution to the prior, namely
the de Finetti measure, for an exchangeable sequence of {0,1}-valued random
variables. Our approach goes in a different direction: we are interested in a
distance between the laws of random measures rather than a random distance
between measures.
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The Wasserstein distance is easy to simulate [49] but difficult to evaluate an-
alytically and, hence, tractable bounds are needed for concrete applications. We
achieve them in two steps. First, we determine bounds for the Wasserstein dis-
tance between so-called completely random measures, since they act as building
blocks of most popular nonparametric priors. This is carried out by relying on
results in Mariucci and Reiß [39] on Lévy processes. The techniques we develop
in this first part measure the discrepancy between the laws of many noteworthy
random measures, including the gamma, generalized gamma and beta families.
Secondly, we move on to using these bounds in order to quantify the divergence
between hazard rate mixture models that are used to analyze time-to-event
data. These are then applied to evaluate the approximation error in a posterior
sampling scheme for the hazards, in multiplicative intensity models, that relies
on an algorithm for extended gamma processes [1].

The outline of the paper is as follows. After providing some basic notions
and results on the Wasserstein distance and on completely random measures in
Section 2, we determine upper and lower bounds for the Wasserstein distance
between one-dimensional distributions associated to completely random mea-
sures in Section 3. This is, then, specialized to the case of gamma and beta
completely random measures in Section 3.2. These results are the starting point
for carrying out an in-depth analysis of hazard rate mixture models driven by
completely random measures. In Section 4 we obtain a quantification of the
discrepancy between two hazard rate mixtures and for the associated random
survival functions. Examples related to its specification with mixing gamma ran-
dom measures may be found in Section 4.3. Finally, in Section 5 we apply these
results to evaluate the approximation error of a sampling scheme for the poste-
rior hazards, conditional on the data. Proofs of the main results are deferred to
Section 6.

2. Background and preliminaries

In this first section we recall some basic notions about completely random mea-
sures and their convergence in terms of the Wasserstein distance.

Let X be a Polish space with distance dX and Borel σ-algebra X . The space
MX of boundedly finite measures on X endowed with the weak� topology is
a Polish space as well; see Daley and Vere-Jones [9]. We denote by MX the
corresponding Borel σ-algebra. A random measure is a measurable function
from some probability space (Ω,Σ,P) to (MX,MX).

Definition 1. If a random measure μ̃ is such that, for any n ≥ 2 and any
collection of pairwise disjoint bounded sets {A1, · · · , An} in X , the random
variables μ̃(A1), · · · , μ̃(An) are mutually independent, then it is a completely
random measure (crm).

Every crm can be uniquely represented as the sum of three independent
components, μ + μ̃f + μ̃, where μ is a fixed measure on X, μ̃f is a random
measure with fixed atoms and μ̃ is a random measure without fixed atoms. See
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Kingman [33]. Here we focus on crms without fixed atoms and rely on the fact
that their distribution is uniquely determined by a Poisson random measure.
Indeed,

μ̃(dy)
d
=

∫
R+

sN (ds, dy), (1)

where N is a crm on R
+ × X such that N (B) has a Poisson distribution of

parameter ν(B) = EN (B) for every Borel set B ∈ B(R+) ⊗ X such that
ν(B) < +∞. The mean measure ν on R

+ ×X is referred to as Lévy intensity of
μ̃ and is such that for all x ∈ X, ν(R+ × {x}) = 0, and for all bounded A in X
and ε > 0, ∫

A

∫
R+

(ε ∧ s) ν(ds, dy) < +∞, (2)

where ∧ denotes the minimum. Motivated by Bayesian nonparametric modeling,
we focus on Lévy intensities ν without atoms such that: (i) integrability condi-
tion (2) holds for every A in X ; (ii) for all A in X and ε > 0, ν((0, ε]×A) = +∞.
The latter corresponds to assuming μ̃ infinitely active. Infinite activity is a nec-
essary requirement for defining random probability measures by normalization
of crms. See Lijoi and Prünster [36] for a review. Finally, in view of (1), the
probability distribution of μ̃ can be characterized through the Laplace functional
transform

E

(
e−

∫
X
f(y)μ̃(dy)

)
= exp

{
−

∫
R+×X

[1− e−s f(y)]ν(ds, dy)

}
, (3)

for all measurable functions f : X → [0,+∞).
When dealing with convergence of random measures we think of random

measures in terms of probability distributions on MX. Results in strong con-
vergence are often too hard to establish, so that one usually deals with weak
convergence (of distributions) of random measures, L(μ̃n) ⇒ L(μ̃), where L(X)
denotes the probability distribution of a random element X, which can be ei-
ther finite- or infinite-dimensional. A remarkable result establishes that this
is equivalent to the weak convergence of all finite-dimensional distributions
L(μ̃n(A1), · · · , μ̃n(Ad)) ⇒ L(μ̃(A1), · · · , μ̃(Ad)), for A1, . . . , Ad ∈ X stochas-
tic continuity sets for μ̃; see Theorem 11.1.VII in Daley and Vere-Jones [10].
Moreover, when dealing with crms, the weak convergence of finite-dimensional
distributions is equivalent to the weak convergence of one-dimensional distribu-
tions. Thus, if d denotes a metric on the space of probability distributions on R

whose convergence is stronger than the weak convergence, one has that if

d(L(μ̃n(A)),L(μ̃(A))) → 0 (4)

for every A ∈ X , then μ̃n converges weakly to μ̃. In the sequel, we will choose d
as the Wasserstein distance with respect to the Euclidean norm on R. See Villani
[51]. In order to define this distance in its full generality, let Y be a Polish with
respect to the metric dY. For any pair of random elements Y1 and Y2 taking
values in Y, let C(Y1, Y2) denote the Fréchet class of Y1 and Y2, i.e. the set of
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random elements (Z1, Z2) on the product space Y
2 such that L(Zi) = L(Yi) for

i = 1, 2.

Definition 2. The Wasserstein distance of order p ∈ [1,+∞) between L(Y1)
and L(Y2) is defined as

Wp,dY
(L(Y1),L(Y2)) = inf

(Z1,Z2)∈C(Y1,Y2)

{
E(dY(Z1, Z2)

p)
1
p
}
.

We focus on the case p = 1 and (Y, dY) = (R, | · |). We denote such a distance
as W and omit reference to the law L in the notation. In view of the previous
discussion on weak convergence, a major goal that we pursue is evaluating or
bounding W(μ̃1(A), μ̃2(A)), for A in X . The results and general techniques
that will be detailed in the next sections make use of some known facts on
Wasserstein distances and crms concisely recalled here. First, for any pair of
random variables (X,Y ),

|E(X)− E(Y )| ≤ W(X,Y ) ≤ E(|X|) + E(|Y |). (5)

Thus the Wasserstein distance is finite when the random variables have finite
mean. We will therefore focus our attention on crms whose total mass has finite
mean and refer to them as crms with finite mean. By Campbell’s Theorem this
boils down to

E(μ̃(R)) = E

( ∫
R+×X

sN (ds, dy)

)
=

∫
R+×X

s ν(ds, dy) < +∞. (6)

Finally, we highlight two properties of the Wasserstein distance that will be
used in many proofs. Let X,Y be random variables and let FX , FY denote their
distribution functions. Then by [11],

W(X,Y ) =

∫ +∞

−∞
|FX(u)− FY (u)| du. (7)

Moreover, if X1, . . . , Xn are independent random variables and Y1, · · · , Yn are
independent as well, then by [3],

W(X1 + · · ·+Xn, Y1 + · · ·+ Yn) ≤
n∑

i=1

W(Xi, Yi). (8)

3. Wasserstein bounds for CRMs

3.1. General result

There are situations where one is only interested in a numerical value for the
Wasserstein distance: in such a case there are efficient ways to simulate it.
See [49]. On the other hand, one may be interested in understanding how the
distance is affected by the parameters of the distributions or by meaningful
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functionals, such as moments. This raises the need for an analytical evaluation
of the Wasserstein distance, which in general is not an easy task. The most
common practice is thus to develop informative bounds and to analyze how these
are affected by the choices above. In this section we will express a bound for
the Wasserstein distance between the one-dimensional distributions of crms in
terms of their corresponding Lévy intensities. The proof is based on a compound
Poisson approximation of crms.

Theorem 1. Let μ̃1 and μ̃2 be infinitely active crms with finite mean. Then
for every A ∈ X

g�(A) ≤ W (μ̃1(A), μ̃2(A)) ≤ gu(A),

where

g�(A) = |E(μ̃1(A))− E(μ̃2(A))| =
∣∣∣∣
∫
R+

s ν1(ds×A)−
∫
R+

s ν2(ds×A)

∣∣∣∣,
gu(A) =

∫ +∞

0

|ν1((u,+∞)×A)− ν2((u,+∞)×A)| du.

We observe that gu(A) has a compelling form with respect to the upper bound

in (5), since it equals zero if μ̃1
d
= μ̃2. We stress that this bound holds for all

crms and may be evaluated through numerical integration. Nonetheless, when
specializing to certain classes of crms, we manage to upper bound gu(A) with an
expression that can be evaluated exactly, as we do in Section 3.2. In particular,
easily computable upper bounds are available whenever the tails of the Lévy
intensities are ordered, as we prove in the next corollary. In such a case not
only we have a simple expression for gu(A), we may also prove that the upper
and lower bounds coincide, providing the exact expression of the Wasserstein
distance itself.

Corollary 2. Consider the hypotheses of Theorem 1 and let A ∈ X . If the
tails of ν1(ds × A) and ν2(ds × A) are ordered, namely νi((u,+∞) × A) ≤
νj((u,+∞)×A) for all u ∈ R

+ and i 
= j in {1, 2}, then

W(μ̃1(A), μ̃2(A)) =

∣∣∣∣
∫
R+

s ν1(ds×A)−
∫
R+

s ν2(ds×A)

∣∣∣∣.
Remark 1. The condition of Corollary 2 holds whenever there exists a domi-
nating measure η on R

+ such that the Radon–Nikodym derivatives of ν1(ds×A)
and ν2(ds × A) are ordered, i.e. νi,A(s) ≤ νj,A(s) for all s ∈ R

+ and i 
= j in
{1, 2}. This more restrictive condition, which is however much easier to verify,
holds true for many examples to be displayed in the sequel.

As underlined in Section 2, the convergence in the Wasserstein distance of
μ̃n(A) to μ̃(A), for every A ∈ X , is sufficient to guarantee the weak convergence
of the sequence (μ̃n)n≥1 and provide convergence rates. This motivates our
main interest in set-wise results as those in Theorem 1. However, one can also
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define a uniform distance between laws of random measures with finite mean,
by considering

dW(μ̃1, μ̃2) = sup
A∈X

W(μ̃1(A), μ̃2(A)).

Corollary 2 can be used to find the exact expression of such distance. We focus
on homogeneous crms, i.e. such that their Lévy intensity is a product measure
ν(ds, dx) = ρ(s) dsα(dx). It will be next shown that dW admits a very intuitive
representation, being proportional to the total variation distance between the
base measures

TV(α1, α2) = sup
A∈X

|α1(A)− α2(A)|.

Corollary 3. Let μ̃i be infinitely active homogeneous crms with finite mean
such that the Lévy intensities νi(ds, dx) = ρ(s) dsαi(dx), for i = 1, 2. Then,

dW(μ̃1, μ̃2) = TV(α1, α2)

∫
R+

s ρ(s) ds.

3.2. Examples

When the conditions of Corollary 2 do not hold, one may often find upper
bounds of gu(A) which may be evaluated exactly for specific examples of crms.
In the next proposition we consider a gamma crm with rate parameter b > 0
and base measure α whose Lévy intensity is

ν(ds, dy) =
e−sb

s
1(0,+∞)(s) dsα(dy).

We use the notation μ̃ ∼ Ga(b, α). The random measure μ̃ is infinitely active
and, if α is a finite measure on X, it has finite mean.

Proposition 4. Let μ̃i ∼ Ga(bi, αi), where 0 < b1 < b2 and αi is a finite
measure on X for i = 1, 2. Then,

g�(b,α, A) ≤ W(μ̃1(A), μ̃2(A)) ≤ gu(b,α, A),

where

g�(b,α, t) =

∣∣∣∣α1(A)

b1
− α2(A)

b2

∣∣∣∣,
gu(b,α, t) =

α1(A)

b1
−α2(A)

b2
+1(0,+∞)(α2(A)−α1(A)) 2

α2(A)− α1(A)

b2 − b1
log

b2
b1
,

and we have used the vector notations b = (b1, b2) and α = (α1, α2).

This result extends the ones in Gairing et al. [20], who develop upper bounds
for similar integrals of gamma Lévy intensities in a more restrictive framework
as they do not allow for both base measures and the scale parameter to differ
between the two specifications. The bounds of Proposition 4 are informative
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Fig 1. Wasserstein distance W(μ̃1(A), μ̃2(A)) between gamma crms and relative upper and
lower bounds. In the upper panel α1(A) = 1, b1 = 2, b2 = 3 are fixed, whereas α2(A) ranges
from 0.5 to 2. In the lower one α1(A) = 1, b1 = 1, α2(A) = 2 are fixed, whereas b2 ranges
from 0.5 to 2. In both plots the Simulated Wasserstein distance is based on 10 samples of
1000 observations using the Python Optimal Transport (POT) package [19].

in the sense that, the closer the parameters of the two crms, the smaller the
bound of the Wasserstein distance. Moreover, when the base measures are equal
on A, the upper and lower bounds coincide, providing the exact expression for
the Wasserstein distance, in accordance with Corollary 2. The same holds true
if b1 = b2, since

lim
b2→b+1

1

b2 − b1
log

b2
b1

=
1

b1
.

In Figure 1 we compare the simulated Wasserstein distance between two
gamma crms with the upper bound in Theorem 1, which can be evaluated
numerically, the ones in Proposition 4, which can be evaluated exactly, and the
upper bound in (5), which is non-informative. For a wide range of parameters the
bounds of Theorem 1 and Proposition 4 coincide with the Wasserstein distance.
In contrast, when the Lévy intensities are not ordered, the upper and lower
bounds do not coincide. The upper bound of Proposition 4 is tight whenever
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at least one of the two parameters is close to the corresponding parameter of
the other crm (i.e. α1(A) ≈ α2(A) or b1 ≈ b2), whereas the upper bound
of Theorem 1 is tight on the whole range of parameters. Moreover, they are
both more informative than the upper bound in (5). The lower bound, on the
other hand, is always tight and becomes non-informative when the two crms
have different parameters but equal ratios (αi(A)/bi), i.e. when they have equal
mean.

A different situation occurs with beta crms, where the Lévy densities corre-
sponding to different concentration parameters and same base measure are not
ordered. We recall that μ̃ ∼ Be(c, α) is a beta crm of concentration parameter
c and base measure α if the Lévy intensity is

ν(ds, dy) =
c (1− s)c−1

s
1(0,1)(s) dsα(dy).

Proposition 5. Let μ̃i ∼ Be(ci, αi), where 0 < c1 ≤ c2 and αi is a finite
measure on X for i = 1, 2.

1) If c1 = c2 = c, then W(μ̃1(A), μ̃2(A)) = c |α1(A)− α2(A)|.
Thus, dW(μ̃1, μ̃2) = cTV(α1, α2).

2) If α1 = α2 = α, then W(μ̃1(A), μ̃2(A))) ≤ 2α(A) log
(
c2
c1

)
.

We conclude this section with an immediate application of Corollary 3 on the
distance dW between the laws of generalized gamma crms.

Example 1. Consider generalized gamma crms with Lévy intensities

νi(ds, dx) =
1

Γ(1− σ)
s−1−σe−bsdsαi(dx),

where σ ∈ [0, 1) and b > 0, for i = 1, 2. Then Corollary 3 ensures that
dW(μ̃1, μ̃2) = bσ−1 TV(α1, α2). When σ = 0 we recover the distance between
two gamma crms with same rate parameter.

4. Hazard rate mixtures

Applications in survival analysis and reliability involve time-to-event data and
have spurred important developments in Bayesian nonparametric modeling.
Stimulating and exhaustive overviews of popular models in the area can be
found in Müller et al. [41] and in Ghosal and van der Vaart [23]. If T1, . . . , Tn

are from an exchangeable sequence of time-to-event data, i.e.

Ti | P̃ iid∼ P̃ (i = 1, . . . , n), P̃ ∼ Π, (9)

the choice of Π follows from specifying a prior on the survival function t 
→
S̃(t) = P̃ ((t,∞)). This may be done directly by resorting, e.g., to neutral to
the right random probability measure [14], or by setting a prior on the corre-
sponding cumulative hazard function by means of, e.g., the Beta process [27].
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Alternatively, one may specify a prior on the hazard rate function if one can
assume that S̃ is almost surely continuous: in this case a convenient option is a
kernel mixture model [17]. For all these model specifications, one can also take
into account the presence of censored observations. The most common mech-
anism is right-censoring, which associates to each Ti a censoring time Ci. In
this case, the actual observations are the pairs (Xi,Δi), where Xi = Ti ∧ Ci

and Δi = 1(0,Ci](Ti) identifies exact observations whenever it equals 1. Here
we focus on priors for the hazard rates, i.e. the instantaneous risk of failure,
that are induced by kernel mixtures over a gamma crm. The model, originally
proposed as a prior for increasing hazard rates in Dykstra and Laud [17], is ideal
for treating right censored observations and has led to several interesting gen-
eralizations. Henceforth, we consider a specification that has been investigated
in its full generality by James [32].

Before focusing on our main results, let us first recall some basic definitions
that will also allow us to set the notation to be used throughout. If F is a
cumulative distribution function on [0,+∞) and S = 1 − F the corresponding
survival function, we assume it is absolutely continuous so that one can define
the hazard rate h = F ′/(1− F ) and rewrite, for any t ≥ 0,

S(t) = exp{−H(t)}, H(t) =

∫ t

0

h(s) ds,

where H is the cumulative hazard function. Let k : R+ × X → [0,+∞) be a
measurable kernel function. If μ̃ is a crm, with corresponding Poisson random
measure N , and k is such that

lim
t→∞

∫ t

0

∫
R+×X

k(u | y) s duN (ds, dy) = +∞, (10)

a prior for the hazard rates is the probability distribution of the process {h̃(t) |
t ≥ 0} such that for any t ≥ 0,

h̃(t) =

∫
X

k(t | y) μ̃(dy) d
=

∫
R+×X

k(t | y) sN (ds, dy). (11)

Thus, condition (10) ensures that the mean cumulative hazards go to +∞ as
time increases. We use the techniques developed in the previous sections to
obtain bounds on the Wasserstein distance between the marginal hazard rates
coming from different kernels and different crms. Moreover, we successfully
address the same issue when considering the Wasserstein distance between cu-
mulative hazards and survival functions.

4.1. Bounds for hazard rates

Consider two random hazard rates h̃1 = {h̃1(t) | t ≥ 0} and h̃2 = {h̃2(t) | t ≥
0} as in (11). From a statistical standpoint, these may be seen as different
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prior specifications corresponding, e.g., to different mixing cmrs or kernels.
Alternatively, h̃2 may be thought of as an approximation of the actual prior h̃1

and one may be interested to ascertain the quality of such an approximation.
The issue is of great interest when we need to sample from h̃1, or its posterior
distribution, while it is much easier to sample from h̃2: in this case a bound on
the error can provide an effective guidance as on how to fix the parameters of the
approximating distribution. We first investigate how different crms and kernels
impact the marginal hazards and use the Wasserstein distance as a measure. In
other terms, we will be focusing on W(h̃1(t), h̃2(t)) for every t ≥ 0. The results
in the previous sections will provide the necessary background for obtaining the
desired bounds. Before displaying these, we state a technical result. To this end,
we recall that if ν is a measure on X and g : X → Y is a measurable function,
the pushforward measure g# ν on Y is defined by (g# ν)(A) = ν(g−1(A)).

Lemma 6. Let μ̃ be a crm with intensity measure ν and let f : X → R
+

be a measurable function. Then the random measure μ̃f (dy) = f(y) μ̃(dy) is a
crm with Lévy intensity equal to the pushforward measure νf = pf # ν where
pf (s, y) = (s f(y), y). Thus for every A ∈ X ,

∫
R+×A

s νf (ds, dy) =

∫
R+×A

sf(y) ν(ds, dy). (12)

When ν(ds, dy) = ν(s, y) dsα(dy), by Lemma 6 with a change of variable,

νf (ds, dy) =
1

f(s)
ν
( s

f(y)
, y

)
dsα(dy).

Thus, we will use the notation νf (ds, dy) = 1
f(s)ν(d

s
f(y) , dy). The relevance of

this change of measure result is apparent since the prior specification in (11)
involves a multiplicative structure with the kernel and the mixing crm. The
following example deals with the gamma case.

Example 2. Consider μ̃ ∼ Ga(b, α) and a generic kernel k. Then the random
measures defined by μ̃k(t|·)(dy) = k(t | y)μ̃(dy) are crms with Lévy intensity

νk(t|·)(ds, dy) =
e−

sb
k(t | y)

s
1(0,+∞)(s) dsα(dy).

Thus μ̃k(t|·) is an extended gamma crm with scale function β(y) = k(t | y)
b and

base measure α. Extended gamma crms are easily shown to be infinitely active.

Lemma 6 ensures that marginally the hazard process in (11) satisfies h̃(t)
d
=

μ̃k(t|·)(X), where μ̃k(t|·) is a crm. In order to bound the Wasserstein distance
between marginal hazards we may thus apply the results of Theorem 1 with
A = X. By (12), μ̃k(t|·) has finite mean and it is infinitely active if, respectively,

∫
R+×X

k(t | y) s ν(ds, dy) < +∞, (13)
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∫
[0,ε]×A

1

k(t | y)ν
(
d

s

k(t | y) , dy
)
= +∞, (14)

for every ε ≥ 0, A ∈ X and t ≥ 0. If ν is infinitely active, (14) holds.

Theorem 7. Let h̃1 = {h̃1(t) | t ≥ 0} and h̃2 = {h̃2(t) | t ≥ 0} be random hazard
rates as in (11) with associated infinitely active crms μ̃i, Lévy intensity νi, and
kernel ki that satisfy (10) and (13), for i = 1, 2. Then the Wasserstein distance
between the marginal hazard rates is finite and for every t ≥ 0,

g�(t) ≤ W(h̃1(t), h̃2(t)) ≤ gu(t),

where

g�(t) =

∣∣∣∣
∫
R+×X

k1(t | y) s ν1(ds, dy)−
∫
R+×X

k2(t | y) s ν2(ds, dy)
∣∣∣∣,

gu(t) =

∫ +∞

0

∣∣∣∣
∫
(u,+∞)×X

1

k1(t | y)
ν1

(
d

s

k1(t | y)
, dy

)

− 1

k2(t | y)
ν2

(
d

s

k2(t | y)
, dy

)∣∣∣∣ du.
In particular, if there exists a dominating measure η such that the Radon–
Nikodym derivatives νi(s, y) satisfy, for i 
= j in {1, 2},

1

ki(t | y)
νi

( s

ki(t | y)
, y

)
≤ 1

kj(t | y)
νj

( s

kj(t | y)
, y

)

for all (s, y) ∈ R
+ × X and t ≥ 0, then

W(h̃1(t), h̃2(t)) =

∣∣∣∣
∫
R+×X

k1(t | y) s ν1(ds, dy)−
∫
R+×X

k2(t | y) s ν2(ds, dy)
∣∣∣∣.

4.2. Bounds for survival functions

The bounds we have derived for the hazard rates translate into bounds for
the corresponding survival functions and these are of great interest since one
typically targets estimation of functionals of the survival function. First, we
consider the corresponding cumulative hazards processes H̃ = {H̃(t) | t ≥ 0},
defined by

H̃(t) =

∫ t

0

h̃(u) du =

∫
X

K(t | y) μ̃(dy), (15)

where K(t | y) =
∫ t

0
k(u | y) du is the cumulative kernel. Thus, the cumulative

hazards can be treated as a kernel mixture as well, and an analogue of Theorem 7
is available.

Theorem 8. Let H̃1 = {H̃1(t) | t ≥ 0} and H̃2 = {H̃2(t) | t ≥ 0} be two random
cumulative hazards as in (15) with associated infinitely active crms μ̃i, with
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Lévy intensity νi, and kernel ki that satisfy (10), for i = 1, 2. If the cumulative

kernels Ki(t | y) =
∫ t

0
ki(u | y)du satisfy (13) with k = Ki, the Wasserstein

distance between the marginal cumulative hazards is finite and for every t ≥ 0,

g�(t) ≤ W(H̃1(t), H̃2(t)) ≤ gu(t),

where

g�(t) =

∣∣∣∣
∫
R+×X

K1(t | y) s ν1(ds, dy)−K2(t | y) s ν2(ds, dy)
∣∣∣∣,

gu(t) =

∫ +∞

0

∣∣∣∣
∫
(u,+∞)×X

1

K1(t | y)
ν1

(
d

s

K1(t | y)
, dy

)

− 1

K2(t | y)
ν2

(
d

s

K2(t | y)
, dy

)∣∣∣∣ du.
In particular, if there exists a dominating measure η such that the Radon–
Nikodym derivatives ν1(s, y), ν2(s, y) satisfy, for i 
= j in {1, 2},

1

Ki(t | y)
νi

( s

Ki(t | y)
, y

)
≤ 1

Kj(t | y)
νj

( s

Kj(t | y)
, y

)

for all s, y ∈ R
+ × X , then

W(H̃1(t), H̃2(t)) =

∣∣∣∣
∫
R+×X

K1(t | y) s ν1(ds, dy)−
∫
R+×X

K2(t | y) s ν2(ds, dy)
∣∣∣∣.

The bounds for the distance between cumulative hazards in Theorem 8 are
also useful to identify a similar result for the survival function process S̃ =
{S̃(t) | t ≥ 0} defined by

t 
→ S̃(t) = e−H̃(t) = exp

{
−

∫
X

K(t | y) μ̃(dy)
}
. (16)

Theorem 9. Let H̃1 and H̃2 be as in Theorem 8 with survival process S̃i as
in (16), for i = 1, 2. Then for every t ≥ 0,

g�(t) ≤ W(S̃1(t), S̃2(t)) ≤ gu,1(t) ∧ gu,2(t),

where

g�(t) =
∣∣E(

e−H̃1(t)
)
− E

(
e−H̃2(t)

)∣∣, gu,1(t) = 1− e−W(H̃1(t),H̃2(t)),

gu,2(t) = E
(
e−H̃1(t)

)
+ E

(
e−H̃2(t)

)
−

(
e−E(H̃1(t)) + e−E(H̃2(t))

)
e−W(H̃1(t),H̃2(t)).

4.3. Examples

We now apply these results on kernels of the type of Dykstra and Laud [17],
k(t|y) = β(y)1[0,t](y), which is a popular choice when one wants to model in-
creasing hazards. In this setting X = [0,+∞). For simplicity we will restrict our



Approximation of Bayesian models for time-to-event data 3379

attention to constant functions β(s) = β, which is a common choice in applica-
tions [17, 34], and gamma crms with the same base measure α. In this scenario α
may also be an infinite measure, though it must be boundedly finite. We will con-
sider the Lebesgue measure on the positive real axis, Leb+(ds) = 1[0,+∞)(s) ds,
which is the base measure proposed in the original paper of Dykstra and Laud
[17] and meets the conditions of Theorem 7.

Example 3. Let μ̃i ∼ Ga(bi,Leb
+) and let ki(t | y) = βi1[0,t](y), with bi, βi > 0,

for i = 1, 2. If h̃1 and h̃2 are the corresponding hazard rate mixtures, then

W(h̃1(t), h̃2(t)) = t

∣∣∣∣β1

b1
− β2

b2

∣∣∣∣.
Proof. The general expression for νk(t|·) was derived in Example 2. With our
choices,

1

ki(t | y)
νi

(
d

s

ki(t | y)
, dy

)
=

e
− s bi

βi

s
1(0,+∞)(s) 1[0,t](y) ds dy, (17)

which corresponds to the Lévy intensity of a gamma crm of parameter bi/βi

and the restriction of Leb+ to [0, t] as base measure. Since the Lebesgue measure
on a bounded set is finite, as observed in Proposition 4, (17) is infinitely active
and has finite mean. Thus condition (13) holds. In order to check condition (10)
on the expected cumulative hazards we first observe that for every t > 0,

E(h̃i(t)) =

∫
R+×R+

βi e
−s bi 1[0,t](y) ds dy = t

βi

bi
.

Thus
∫ t

0
E(h̃i(s)) ds = t2 βi

2 bi
diverges as t → +∞, and condition (10) holds.

The results in Theorem 7 apply and since the densities of (17) are ordered, we
easily derive the expression for W(h̃1(t), h̃2(t)) from the expression of E(h̃i(t)),
in accordance with the results in Proposition 4 for gamma crms.

The choice of the kernel allows for great flexibility and usually depends on the
type of experiment one is considering. For example, if we are dealing with the
failure of objects whose material wears out in time, the assumption of increasing
hazard rates appears to be the most plausible. Besides the kernel of Dykstra
and Laud [17], which leads to almost surely increasing hazard rates, one can
resort to other options such as:

(a) Rectangular kernel with threshold τ : k(t |x) = 1[t−τ,t+τ ](x);
(b) Bathtub or U-shaped kernel with minimum η > 0: k(t |x) = 1[0,|t−η|](x);

(c) Ornstein-Uhlenbeck kernel with g > 0: k(t |x) =
√
2g e−g(t−x)1[0,t](x);

(d) Exponential kernel: k(t |x) = e−tx.

More details can be found in Lo and Weng [37], James [31], De Blasi, Peccati
and Prünster [12]. The choice of the kernel is typically driven by the type of
data one is examining. As for the choice of the random measure, this may be
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dictated by specific inferential properties but it is usually motivated by analyti-
cal tractability and prior flexibility. In this regards, the gamma crm is a popular
alternative. We thus pick one of the kernels above and focus on gamma kernel
mixtures. One is, then, left with the choice of the parameter b, which heuris-
tically quantifies the prior belief on the steepness of the hazard. Given these
specifications, one may be interested in quantifying the discrepancy induced by
it on the corresponding hazards. Before proceeding, we underline how the same
reasoning could be applied to the base measure, but for simplicity we consider
gamma crms with a given shared base measure. We point out that in all cases
we achieve the exact expression for the Wasserstein distance between the hazard
rates.

Example 4. Let μ̃i ∼ Ga(bi,Leb
+), with bi > 0, for i = 1, 2. Let k1 = k2 = k

be one of the kernels (a)–(d) above. Then the Wasserstein distances between
the corresponding hazard rates mixtures equal

(a′) W(h̃1(t), h̃2(t)) = (2τ − (τ − t)+) |b−1
1 − b−1

2 |;
(b′) W(h̃1(t), h̃2(t)) = |t− η| |b−1

1 − b−1
2 |;

(c′) W(h̃1(t), h̃2(t)) = g
√
2g(1− e−gt) |b−1

1 − b−1
2 |;

(d′) W(h̃1(t), h̃2(t)) = t−1(1− e−t2) |b−1
1 − b−1

2 |,
where f+ = max(f, 0) for any measurable function f with values in R.

Proof. Kernel (a) is very similar to the one in Example 3. The Lévy intensity

1

ki(t | y)
νi

(
d

s

ki(t | y)
, dy

)
=

e−s bi

s
1(0,+∞)(s) 1[0∧(t−τ),t+τ ](y) ds dy

is the one of a gamma crm with parameter b and Lebesgue base measure on
[0 ∧ (t − τ), t + τ ]. Since the corresponding densities are ordered, the exact
Wasserstein distance is available and coincides with (a′). The same is true for
kernel (b). With kernel (c) one has

1

ki(t | y)
νi

(
d

s

ki(t | y)
, dy

)
=

1

s
exp

{
− sbi√

2g
eg(t−y)

}
1(0,+∞)(s) 1[0,t](y) dy ds.

The corresponding densities are ordered, thus if the conditions of Theorem 7
hold we only need to evaluate the expected value of the hazards to derive the
exact Wasserstein distance:

E(h̃i(t)) =

∫
R+×R

√
2g e−g(t−y)e−bis 1[0,t](y) dy ds

=

∫ t

0

−
√
2g

bi
e−g(t−y)dy =

√
2

g
(1− egt)

1

bi
.

This also proves the finite mean condition (13). Since
∫ t

0
(1− egs)ds = 1−egt

g + t

diverges as t → +∞, also condition (10) holds.
Finally for kernel (d),

1

ki(t | y)
νi

(
d

s

ki(t | y)
, dy

)
=

1

s
exp

{
− sbety

}
1(0,+∞)(s) 1[0,t](y) dy ds.
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The mean hazard rates are

E(h̃i(t)) =

∫ t

0

e−ty

bi
dy =

1− e−t2

bit
,

and thus condition (13) holds. Moreover,

∫ t

0

1− e−s2

s
ds =

γ

2
+

E1(t
2)

2
+ log(t),

where γ is the Euler gamma constant. This quantity diverges as log(t) for t →
+∞ and thus condition (10) holds. We conclude as in the previous cases.

Next, we apply the bounds on cumulative hazards and survival functions of
Theorem 8 and Theorem 9 to the case where mixtures of gamma crms are used,
as in Example 3.

Example 5. Consider the prior specification in Example 3. Denote by H̃i the
corresponding cumulative process (15) and by S̃i the corresponding survival
process (16), for i = 1, 2. Then for every t ≥ 0,

W(H̃1(t), H̃2(t)) =
t2

2

∣∣∣∣β1

b1
− β2

b2

∣∣∣∣, (18)

g�(b, t) ≤ W(S̃1(t), S̃2(t)) ≤ gu,1(b, t) ∧ gu,2(b, t), (19)

where

g�(b, t) = et
∣∣∣∣
( b1
b1 + β1t

) b1+β1t
β1 −

( b2
b2 + β2t

) b2+β2t
β2

∣∣∣∣,
gu,1(b, t) = 1− e−

t2

2

∣∣ β1
b1

− β2
b2

∣∣
,

gu,2(b, t) = et
(( b1

b1 + β1t

) b1+β1t
β1

+
( b2
b2 + β2t

) b2+β2t
β2

)

−
(
e−

t2β1
2b1 + e−

t2β2
2b2

)
e−

t2

2

∣∣ β1
b1

− β2
b2

∣∣
.

Proof. Since the Lévy densities of

1

Ki(t | y)
νi

(
d

s

Ki(t | y)
, dy

)
=

1

s
exp

{
− sbi

t− y

}
1(0,+∞)(s) 1[0,t](y) dy ds

are ordered, if the conditions of Theorem 8 hold the expression for the Wasser-
stein distance between the cumulative hazards easily derives from

E(H̃i(t)) =

∫
R+×[0,+∞)

Ki(t | y) s νi(ds, dy) =
∫
R+

∫ t

0

βi(t−y) e−sbids dy =
t2βi

2bi
.

(20)
Now, condition (10) on the kernels has already been checked in Example 3.
Moreover, (20) proves condition (13) on the finite mean.
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Fig 2. Theoretical upper and lower bounds for the Wasserstein distance between marginals of
the random survival functions in Example 5 with b1 = 1, β1 = 1, b2 = 2 and β2 = 1.

As for the Wasserstein distance between the survival functions, in order to
apply Theorem 9 it suffices to evaluate the mean of the survival functions. This
is easily done thanks to the properties of the Laplace functional of a crm (3).
Specifically, E

(
e−

∫
R
K(t | y) μ̃i(dy)

)
is equal to

exp

{
−

∫
R+×[0,+∞)

(
1− esKi(t | y)) νi(ds, dy)

}
=

( bi
bi + βit

) bi+βit

βi
.

In Figure 2 a graphical representation of the upper and lower bounds for the
Wasserstein distance between the corresponding survival functions is given. In
particular, the distance between the survival functions lies in the gray area in
the figure. The first upper bound gu,1 appears to be tighter for small times,
while the second gu,2 is more informative as time increases. This depends on

the fact that in the first case we are using the bound e−H̃1(t)∧H̃2(t) ≤ 1, which is
effective for small values of the cumulative hazard function, i.e. for small times,

while in the second one we are using e−H̃1(t)∧H̃1(t) ≤ e−H̃1(t) + e−H̃2(t), which
is effective for large values of the cumulative hazard function, i.e. for large t.
Moreover, we point out that the Wasserstein distance between survival functions
is considerably smaller than the one between the hazard rates, which is what
we expect from a modeling perspective.

5. Posterior sampling scheme

The techniques we have developed in the previous sections may be fruitfully
applied to evaluate approximation errors in posterior sampling schemes. In this
section we focus on the gamma kernel mixture by Dykstra and Laud [17] and
rely on the posterior analysis by James [32]. Even when the prior hazards are
modeled as a gamma process (i.e. constant β), conditionally on the data and a set
of latent variables, the non-atomic part of the posterior hazards is an extended
gamma process. There are many available methods in the literature to sample
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from an extended gamma process, as the finite dimensional approximation by
Ishwaran and James [30], the inverse Lévy methods of Ferguson and Klass [18]
and Wolpert and Ickstadt [52], and the series representation of Bondesson [4],
which serves as a basis for the algorithm in Laud, Smith and Damien [34]. Other
available series representations can be found in Rosiński [47]. Recently, Al Masry,
Mercier and Verdier [1] proposed a new algorithm based on a discretization of the
scale function: in such case the extended gamma process can be approximated
by a sum of gamma random increments. The construction of the discretization is
not always simple but, when possible, it allows for a precise quantification of the
approximation error. In Al Masry, Mercier and Verdier [1] the error is quantified
through a bound on the L2 distance. Here, we build the discrete approximation
of the scale function of the posterior hazards corresponding to a gamma process
prior and use the Wasserstein distance to quantify the approximation error
between the induced hazard rates. Moreover, since one is usually interested in
the cumulative hazards or in the survival function, we provide an estimate for
their approximations as well, which yields a novel and meaningful guide for
fixing the approximation error in the algorithm.

We first recall the posterior characterization of mixture hazard rates models,
with censored data, as achieved by James [32]. This result is suited to our
case, since it concerns crm-driven mixtures under a multiplicative intensity
model. In order to provide a summary description of the posterior distribution,
henceforth T1, . . . , Tn are random elements from an exchangeable sequence as
in (9) with Π being the law of a random probability measure with hazard rate h̃
as in (11). Furthermore, if ne =

∑n
i=1 Δi is the number of exact observations in

the sample, we may assume without loss of generality that Δ1 = · · · = Δne = 1
and, hence, the last n−ne observations are censored. The data are, then, given
by {(xj ,Δj)}nj=1. A representation of the likelihood function that is convenient
for Bayesian computations is obtained by relying on a suitable augmentation
that involves a collection of latent variables Y1, . . . , Yne corresponding to the
exact observations. Hence, the augmented likelihood is given by

L(μ̃;x,y) = e−
∫
X
Kn(y)μ̃(dy)

ne∏
j=1

μ̃(dyj)k(xj | yj)

= e−
∫
X
Kn(y)μ̃(dy)

k∏
h=1

μ̃(dy∗h)
nh

∏
i∈Ch

k(xi | y∗h),

where x = (x1, . . . , xn), y∗1 , · · · , y∗k are the k ≤ ne distinct values in y =
(y1, . . . , yne), Cj = {r : yr = y∗j } and nj = card(Cj). The function Kn is
interpretable as a kernel for the cumlative hazards and, in general, accounts for
different forms of censoring. For simplicity we henceforth focus on the case of
right-censored observations and this yields

Kn(y) =

n∑
j=1

∫ xj

0

k(u | y) du. (21)

The posterior characterization we rely on is as follows.
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Theorem 10 (James [32]). Let T1, . . . , Tn be random elements from an ex-
changeable sequence as in (9), with Π being the law of a random probabil-
ity measure with hazard rate h̃ as in (11). Conditional on the observed data
x = (x1, · · · , xn) and latent variables y = (y1, · · · , yne), μ̃ equals in distribution

μ̃∗ d
= μ̃∗

c +

k∑
h=1

Jhδy∗
h
, (22)

where μ̃∗
c is a crm without fixed jump points and with intensity

ν∗(ds, dy) = e−sKn(y)ν(ds, dy) = e−sKn(y)ρy(ds) η(dy),

while J1, · · · , Jk are mutually independent and independent from μ̃∗
c . For h =

1, . . . , k, the generic h-th jump Jh has distribution

Gh(ds) ∝ snhe−sKn(y
∗
h) ρy∗

h
(ds). (23)

In the rest of the section we focus on the case X = R, k(t|y) = β1[0,t](y) and
μ̃ gamma crm with rate parameter b and base measure α, which is a typical
choice in applications. Thus the non-atomic posterior crm μ̃∗

c has Lévy intensity

ν∗(ds, dy) =
e−s(b+β

∑n
i=1(y−xi)

+)

s
1(0,+∞)(s) dsα(dy).

It follows that μ̃∗
c is an extended gamma crm with base measure α and scale

function 1/(b + β
∑n

i=1(y − xi)
+). The non-atomic posterior hazards are an

extended gamma process and can thus be written as

h̃∗(t)
d
=

∫ t

0

β∗(s) μ̃(ds), (24)

where β∗(y) = β/(b+β
∑n

i=1(y−xi)
+) and μ̃ is a gamma crm with parameter

1 and base measure α.
Consider an interval of interest [0, T ], which can be thought of as the initial

and final time of the study, so that 0 < x1 ≤ · · · ≤ xn < T . The algorithm
proposed by Al Masry, Mercier and Verdier [1] to sample from {h̃∗(t) | t ∈ [0, T ]}
is based on a piecewise constant approximation of β∗ on the interval [0, T ]. If

βε(y) =
∑n(ε)

h=0 βh1(th,th+1](y), then for every t ≥ 0,

h̃ε(t) =

∫ t

0

βε(s) μ̃(ds) =

nt∑
h=1

βh μ̃(th, th+1] + βnt+1 μ̃(tnt , t], (25)

where nt is such that tnt ≤ t ≤ tnt+1. The increments δh = βh μ̃(th, th+1]
have a gamma distribution with scale βh and shape α(th, th+1). If the points
{th |h = 1, . . . , n(ε)} are dense in the interval [0, T ] as n(ε) → +∞, one samples
directly from a sum of gamma random variables

∑
th≤t δh.

In order to apply this algorithm we need to build an approximating strictly
positive piecewise constant function βε : [0, T ] → (0,+∞) and find a reasonable
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Fig 3. Piecewise constant approximation γε of the function γ on the interval [0, T ].

criterion to fix the approximation error. We will build βε by discretizing the
reciprocal of β∗, namely γ(y) = b β−1 +

∑n
i=1(y − xi)

+. Consider the points
t0 ≤ t1 ≤ · · · ≤ tn(ε)−1 = xn ≤ tn(ε) = T defined by

tj+
∑ j−1

i=0 [ε
−1(n−i)(xi+1−xi)]+k = xj +

k ε

n− j
,

for every j = 0, . . . , n− 1 and k = 0, . . . ,
[
(n− j)(xj+1 − xj)ε

−1
]
, where x0 = 0

and [x] denotes the integer part of x ≥ 0, so that n(ε) = n + 1 +
∑n−1

i=0

[
(n −

i)(xi+1 − xi)ε
−1

]
. We observe that

γ
(
tj+

∑ j−1
i=0 [ε

−1(n−i)(xi+1−xi)]+k

)
=

b

β
+

n∑
i=j+1

xi − (n− j)xj − k ε.

Next we set γh = γ(th+1) and define

γε(y) =

n(ε)∑
h=0

γi1(th,th+1](y). (26)

Theorem 11. The function defined in (26) is piecewise constant and satisfies

sup
y∈([0,T ]

|γ(y)− γε(y)| ≤ ε.

Moreover, γε(y) ≥ γ(y) for every y ∈ [0, T ].

From this theorem one deduces a very simple uniform bound for the discrep-
ancy between βε and β∗.
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Corollary 12. If βε(y) = 1
γε(y) =

∑n(ε)
h=0

1
γh

1(th,th+1](y), then one has

sup
y∈(0,T ]

|β∗(y)− βε(y)| ≤ β2

b2
ε. (27)

For a given ε, these results provide a constructive rule for determining an ap-
proximation of β∗, and hence an approximating hazard h̃ε. One may then wonder
which value of ε should be specified to achieve a prescribed error of approxima-
tion for the posterior hazards and survivals. This is achieved in Corollary 13,
where we propose three different rules based on the Wasserstein distance be-
tween the hazards, cumulative hazards and the survival functions respectively.
The result is stated for the hypotheses of Example 3, α = Leb+, but can be
easily adapted to any base measure.

Corollary 13. Consider the hypotheses of Theorem 10 with k(y|t) = β1(0,t](y)

and μ̃ ∼ Ga(b,Leb+). Let h̃∗ = {h̃∗(t) | t ∈ [0, T ]} be the non-atomic poste-
rior hazard rates process (24), and let h̃ε = {h̃ε(t) | t ∈ [0, T ]} be its approxi-
mation (25). If H̃, H̃ε, S̃, S̃ε denote their respective cumulative hazards and
survival functions processes, then

sup
t∈(0,T ]

W(h̃∗(t), h̃ε(t)) ≤ ε
β2

b2
T,

sup
t∈(0,T ]

W(H̃∗(t), H̃ε(t)) ≤ ε
β2

2b2
T 2,

sup
t∈(0,T ]

W(S̃∗(t), S̃ε(t)) ≤ 1− exp

{
− ε

β2

2b2
T 2

}
.

6. Proofs

6.1. Proof of Theorem 1

First of all we state a technical lemma.

Lemma 14. Let μ̃ be a crm with Lévy intensity ν and finite mean (6). Then
for every A ∈ X ,

lim
ε→0+

ε ν([ε,+∞)×A) = 0.

Proof. For every δ > 0 consider ε > 0 such that ε < δ. Then

ε ν([ε,+∞)×A) = ε

∫ δ

ε

∫
A

ν(ds, dy) + ε

∫ +∞

δ

∫
A

ν(ds, dy).

The second integral is finite by (2), thus ε
∫ +∞
δ

∫
A
ν(ds, dy) → 0 as ε → 0. As

for the first one, this can be bounded by

ε

∫ δ

ε

∫
A

ν(ds, dy) ≤
∫ δ

ε

∫
A

s ν(ds, dy).
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Since the integrand is integrable in [0, δ] thanks to the finite mean condition (6),
by the dominated convergence theorem,

lim sup
ε→0

ε

∫ δ

ε

∫
A

ν(ds, dy) ≤
∫ δ

0

∫
A

s ν(ds, dy).

Since this is true for every δ > 0, by the absolute continuity of the integral
ε ν([ε,+∞)×A) → 0 as ε → 0.

We now prove the results in Theorem 1. The lower bound g�(A) is easily
achieved by (5) and by Campbell’s Theorem applied to the underlying Poisson
random measures with respect to the measurable function f(s, x) = s1A(x),
similarly to (6). We thus concentrate on the upper bound.

Since the Lévy intensities are diffuse and infinitely active, for every A ∈ X
and r > 0 there exists εi,r,A > 0 such that

νi([εi,r,A,+∞)×A) = r, (28)

for i = 1, 2. By denoting with Ni the Poisson random measure underlying μ̃i as
in (1),

μ̃i(A)
d
=

∫ εi,r,A

0

∫
A

sNi(ds, dy) +

∫ +∞

εi,r,A

∫
A

sNi(ds, dy).

We use the notation JS
i,r,A =

∫ εi,r,A
0

∫
A
sNi(ds, dy) for the small jumps and

JB
i,r,A =

∫ ∞
εi,r

∫
A
sNi(ds, dy) for the big jumps. The independence of the incre-

ments of a Poisson random measure ensures that JS
i,r,A and JB

i,r,A are indepen-
dent, thus by (8)

W(μ̃1(A), μ̃2(A)) ≤ W(JS
1,r,A, J

S
2,r,A) +W(JB

1,r,A, J
B
2,r,A).

We first show that the small jumps do not play any role in the final bound.
By (5),

W(JS
1,r,A, J

S
2,r,A) ≤ E(JS

1,r,A) + E(JS
2,r,A).

The means E(JS
i,r,A) =

∫ εi,r,A
0

s νi(ds× A) are finite by (2) and thus go to zero
as r → +∞ by the absolute continuity of the integral. We now focus on the big
jumps. By (2), these are integrals of Poisson random measures with finite mean
measure, νi(ds, dy) 1[εi,r,A,+∞)(s). Proposition 19.5 in Sato [48] then ensures

that JB
i,r,A has a compound Poisson distribution, so that

JB
i,r,A

d
=

Ni,r,A∑
h=1

ξh,

where Ni,r,A is a Poisson random variable with intensity r = νi([εi,r,A,+∞) ×
A) and (ξh)h are independent and identically distributed random variables,
independent from Ni,r,A, with distribution

ρi,r,A(ds) =
1

r

∫
A

νi(ds, dy) 1[εi,r,A,+∞)(s). (29)
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Theorem 10 in Mariucci and Reiß [39] deals with the Wasserstein distance
between compound Poisson distributions. Since JB

1,r,A and JB
2,r,A have the same

total intensity measure r but different jump distribution ρi,r,A, an immediate
adaptation of their result yields

W(JB
1,r,A, J

B
2,r,A) ≤ rW(ρ1,r,A, ρ2,r,A).

By (7), W(ρ1,r,A, ρ2,r,A) =
∫ +∞
−∞ |F1,r,A(u) − F2,r,A(u)| du, where Fi,r,A(u) is

equal to

1

r
νi([εi,r,A, u]×A) 1[εi,r,A,+∞)(u) =

(
1− 1

r
νi((u,+∞)×A)

)
1[εi,r,A,+∞)(u).

Define min ∈ {1, 2} such that εmin = εmin,r,A = ε1,r,A ∧ ε2,r,A and similarly
max ∈ {1, 2}. Then

W(ρ1,r,A, ρ2,r,A) =

∫ εmax

εmin

Fmin,r,A(u) du+

∫ +∞

εmax

|F1,r,A(u)− F2,r,A(u)| du.

Now, r
∫ εmax

εmin
Fmin,r,A(u) du =

∫ εmax

εmin
νmin([εmin, u) × A) dy ≤ (εmax − εmin) r,

which can be rewritten as εmaxνmax,x([εmax,+∞))−εminνmin,x([εmin,+∞)). Thus
by Lemma 14 it converges to zero as r goes to +∞. On the other hand,

r

∫ +∞

εmax

|F1,r,A(u)−F2,r,A(u)| du =

∫ +∞

εmax

|ν1((u,+∞)×A)−ν2((u,+∞)×A)| du,

which attains the expression for gu(A) as r goes to +∞.

6.2. Proof of Corollary 2

For every u ∈ R
+, νi((u,+∞) × A) ≤ νj((u,+∞) × A) because the Radon–

Nikodym derivatives are ordered. Thus gu(A) is equal to∣∣∣∣
∫ +∞

0

(ν1((u,+∞)×A)− ν2((u,+∞)×A)) du

∣∣∣∣
=

∣∣∣∣
∫ +∞

0

∫ +∞

u

(ν1(ds×A)− ν2(ds×A)) du

∣∣∣∣.
By interchanging the integrals this is equal to the lower bound in Theorem 1.

6.3. Proof of Corollary 3

Without loss of generality we assume α1(A) ≤ α2(A). Then by taking η(ds) =
1(0,+∞)(s) ds,

ν1(s×A) = α1(A) ρ(s) ≤ α2(A) ρ(s) = ν2(s×A),

for every s ∈ R
+. Thus W(μ̃1(A), μ̃2(A)) = |α1(A) − α2(A)|

∫
R+ s ρ(s) ds by

Corollary 2. We conclude by taking the supremum over A ∈ X .
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6.4. Proof of Proposition 4

Let μ̃i ∼ Ga(bi, αi), for i = 1, 2. Without loss of generality we assume 0 < b1 ≤
b2. Thus for every A ∈ X ,

E(μ̃i(A)) =

∫
R+×A

s νi(ds, dy) =
αi(A)

bi
.

This implies that the crm has finite mean. Since e−sbi

s is not integrable near
zero, the random measures are infinitely active. Thus Theorem 1 holds and from
the expression of E(μ̃i(A)) above we derive the lower bound in Proposition 4.
We now focus on the upper bound. For every u ∈ R

+,

νi((u,+∞)×A) = αi(A)

∫ +∞

u

e−sbi

s
ds = αi(A)E1(biu),

where E1(x) =
∫ ∞
x

e−y

y dy. Thus,

W(μ̃1(A), μ̃2(A) ≤
∫ +∞

0

|α1(A)E1(b1u)− α2(A)E1(b2u)| du.

The fundamental theorem of line integral ensures that

∫ +∞

0

|α1(A)E1(b1u)− α2(A)E1(b2u)| du =

∫ +∞

0

∣∣∣
∫
C

∇ψu(a, b) · ds
∣∣∣du,

where∇ denotes the gradient of a function, ψu(a, b) = aE1(by), and C is the seg-
ment in R

2 connecting (α1(A), b1) to (α2(A), b2). We consider the parametriza-
tion s(t) = (α1(A) + t(α2(A) − α1(A)), b1 + t(b2 − b1)). Since ∇ψu(a, b) =
(E1(by),−a

b e
−by), this is equal to

∫ +∞

0

∣∣∣
∫ 1

0

(
E1(s2(t)u) s

′
1(t)−

s1(t)

s2(t)
e−s2(t)u s′2(t)

)
dt

∣∣∣ du
≤

∫ +∞

0

∫ 1

0

∣∣∣E1((b1 + t(b2 − b1))u) (α2(A)− α1(A))−

α1(A) + t(α2(A)− α1(A))

b1 + t(b2 − b1)
e−(b1+t(b2−b1))u (b2 − b1)

∣∣∣dt du.

Since we have assumed w.l.o.g. that b1 ≤ b2,

≤
∫ +∞

0

∫ 1

0

(
E1((b1 + t(b2 − b1))u) |α2(A)− α1(A)|+

α1(A) + t(α2(A)− α1(A))

b1 + t(b2 − b1)
e−(b1+t(b2−b1))u (b2 − b1)

)
dt du.
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We invert the integrals thanks to Fubini’s Theorem and use the fact that∫ +∞
0

E1(ax)dx = 1
a , which is a standard result on exponential integrals [22].

Thus,

≤
∫ 1

0

( 1

b1 + t(b2 − b1)
|α2(A)− α1(A)|+

α1(A) + t(α2(A)− α1(A))

(b1 + t(b2 − b1))2
(b2 − b1)

)
dt.

By standard integration techniques, this amounts to

=
α1(A)

b1
− α2(A)

b2
+ 1(0,+∞)(α2(A)− α1(A)) 2

α2(A)− α1(A)

b2 − b1
log

b2
b1
.

6.5. Proof of Proposition 5

When c1 = c2 the result is immediate once we observe that E(μ̃(A)) = α(A) for
every μ̃ ∼ Be(c, α). We focus on the case α1 = α2, 0 < c1 ≤ c2. By reasoning as
in the proof of Proposition 4, W(μ̃1(A), μ̃2(A) is upper bounded by

α(A)

∫ 1

0

∫ s

0

∫ c2

c1

∣∣∣∣ ddc
(
c (1− s)c−1

s

)∣∣∣∣ dc du ds

the derivative
(
(c (1 − s)c−1) s−1

)′
= (1 − s)c−1 (1 + c log(1 − s))s−1 ≤ (1 −

s)c−1 (1− c log(1−s))s−1 for s ∈ (0, 1). Thus by Fubini’s Theorem the previous
integral is upper bounded by

α(A)

∫ c2

c1

∫ 1

0

(1− s)c−1 (1− c log(1− s)) ds dc = 2α(A) log

(
c2
c1

)
,

by standard integration techniques.

6.6. Proof of Lemma 6

Let {A1, · · ·An} in X be disjoint sets. Then for i = 1, . . . , n the random vari-
ables μ̃f (Ai) =

∫
Ai

f(x)μ̃(dx) are independent since f is deterministic and

μ̃(A1), · · · μ̃(An) are independent. This proves that μ̃f is a crm. In order to
find its Lévy intensity νf , we consider the Laplace functional transform (3):

E
(
e−

∫
R
g(y)μ̃f (dy)

)
= exp

{
−

∫
R+×R

[1− e−s g(y)f(y)] ν(ds, dy)
}
=

= exp
{
−

∫
R+×R

[1− e−s g(y)] (pf # ν)(ds, dy)},

where pf (s, y) = (sf(y), y).
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6.7. Proof of Theorem 9

The lower bound follows immediately from (5). As for the upper bounds, first
of all we observe that for any x, y ∈ R

+,

|e−x − e−y| = e−x∧y(1− e−|x−y|). (30)

In order to derive the function gu,1 in the upper bound, we observe that since

e−x∧y ≤ 1, the following upper bound holds for W(S̃1(t), S̃2(t)):

inf
c(H̃1(t),H̃2(t))

E
(∣∣e−H̃1(t) − e−H̃2(t)

∣∣) ≤ inf
c(H̃1(t),H̃2(t))

E
(
1− e−|H̃1(t)−H̃2(t)|).

Since 1−e−x is a concave function, by using Jensen’s Inequality, W(S̃1(t), S̃2(t))
is upper bounded by

inf
c(H̃1(t),H̃2(t))

{
1− e−E(|H̃1(t)−H̃2(t)|)

}
= 1− e− infc(H̃1(t),H̃2(t)) E(|H̃1(t)−H̃2(t)|).

As for gu,2, combining (30) with e−x∧y ≤ e−x+ e−y and by Jensen’s Inequality,

E
(∣∣e−H̃1(t) − e−H̃2(t)

∣∣)
≤ E

(
e−H̃1(t) + e−H̃2(t) − e−(H̃1(t)+|H̃1(t)−H̃2(t)|) − e−(H̃2(t)+|H̃1(t)−H̃2(t)|))

≤ E
(
e−H̃1(t)

)
+ E

(
e−H̃2(t)

)
− e−E(H̃1(t)+|H̃1(t)−H̃2(t)|) − e−E(H̃2(t)+|H̃1(t)−H̃2(t)|)

≤ E
(
e−H̃1(t)

)
+ E

(
e−H̃2(t)

)
−

(
e−E(H̃1(t)) + e−E(H̃2(t))

)
e−E|H̃1(t)−H̃2(t)|.

By taking the infimum over all couplings in c(H̃1(t), H̃2(t)) we derive gu,2.

6.8. Proof of Theorem 11

The proof relies on γ(y) being a decreasing continuous piecewise linear function.
We first include x1, . . . , xn in the set {th |h = 1, . . . , n(ε)}. Then, for every i =
1, . . . n we iteratively include all points t ∈ (xi, xi+1) such that the counterimage
γ−1(t) is at distance ε from the previous point. We easily conclude by observing
that on (xi, xi+1] the function γ is linear with coefficient equal to −(n− i). See
Figure 3.

6.9. Proof of Corollary 13

The proof is based on observing that h̃1 = h̃∗ and h̃2 = h̃ε are two kernel mixture
hazards with k1(y|t) = k2(y|t) = 1[0,t](y) and μ̃i extended gamma crms with
scale function β1(y) = β∗(y) and β2(y) = βε(y) and Lebesgue base measure on
the positive axis, i.e.

νi(ds, dy) =
exp

{
− s

βi(y)

}
s

1[0,+∞)(y) ds dy.
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These kernel and Lévy intensities satisfy both the conditions of Theorem 7 and
of Theorem 8. Since by construction βε(y) ≤ β∗(y) for every y ∈ [0,+∞), the
Lévy densities of the hazards and of the cumulative hazards are ordered. Thus
the Wasserstein distance reduces to the absolute difference of their means:

W(h̃∗(t), h̃ε(t)) =

∣∣∣∣
∫ t

0

β∗(y)− βε(y) dy

∣∣∣∣ ≤
∫ t

0

|β∗(y)− βε(y)| dy ≤ ε
β2

b2
t,

by (27). Similarly,

W(H̃∗(t), H̃ε(t)) =

∣∣∣∣
∫ t

0

(t−y)(β∗(y)−βε(y)) dy

∣∣∣∣ ≤ ε
β2

b2

∫ t

0

(t−y)dy = ε
β2

2b2
t2.

Finally, the bound for the survival function derives directly from the one on the
cumulative hazards, as in Theorem 9.
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