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Abstract: We study a non-linear statistical inverse problem, where we ob-
serve the noisy image of a quantity through a non-linear operator at some
random design points. We consider the widely used Tikhonov regulariza-
tion (or method of regularization) approach to estimate the quantity for
the non-linear ill-posed inverse problem. The estimator is defined as the
minimizer of a Tikhonov functional, which is the sum of a data misfit term
and a quadratic penalty term. We develop a theoretical analysis for the
minimizer of the Tikhonov regularization scheme using the concept of re-
producing kernel Hilbert spaces. We discuss optimal rates of convergence
for the proposed scheme, uniformly over classes of admissible solutions,
defined through appropriate source conditions.
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1. Introduction

Within the classical setup of supervised learning we are given random sam-
ples z = {(xi, yi)}mi=1 ∈ (X × Y )m, where the elements yi, i = 1, . . . ,m are
noisy observations of g(xi), i = 1, . . . ,m at random points xi, i = 1, . . . ,m of
the form

yi := g(xi) + εi for i = 1, . . . ,m. (1.1)

In this introduction, we will assume implicitly that Y = R, though in the main
body of the paper the more general setting where Y is a Hilbert space will be
considered. We assume that the random observations of z are independently
and identically distributed according to some unknown joint probability distri-
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bution ρ on the sample space Z = X × Y . Further, we assume that the joint
probability measure ρ can be described as ρ(x, y) = ρ(y|x)ν(x), where ρ(y|x)
is the conditional distribution of y given x and ν is the marginal distribution
on X. The noise terms (εi)

m
i=1 are independent centered random variables sat-

isfying
∫
Y
εidρ(yi|xi) = 0, so that g(x) =

∫
Y
ydρ(y|x). The cardinality m of the

samples z is called sample size. The goal is to learn the functional relationship g:
this may be viewed as a direct problem. In the nonparametric regression litera-
ture, it is most often assumed either that the design is fixed on a grid, or, in the
case of random design as above, that the X-marginal (denoted hereafter by ν)
used for sampling is known, or at least closely comparable (e.g. having upper
and lower bounded density) to a known reference measure such as Lebesgue.
A crucial difference in the point of view of statistical learning is that no such
assumptions are made; the marginal distribution ν is unknown to the user and
can be quite arbitrary. This is the point of view adopted in the present work.

It is often assumed that the function g belongs to some reproducing kernel
Hilbert space, say H2, so that pointwise function evaluations are well-defined
and continuous. There is vast literature for this specific setup, originating in
works on nonparametric regression using spline methods [39], and having known
a resurgence in statistical learning [2, 5]. Since pointwise evaluations can be
represented by scalar products in a reproducing kernel Hilbert space, a math-
ematically equivalent setup consists of assuming that the input x takes values
in a Hilbert space and the function g is linear; this appears in functional data
analysis [6, 12, 20].

We shall contrast this with the inverse problem, given in terms of some, in
general, non-linear mapping A : D(A) ⊆ H1 → H2, acting between the real
separable Hilbert spaces H1 and H2, and with A(f) = g. Thus, the goal is
to learn the implicitly given element f ∈ H1, still from the finite samples z.
Formally we assume the model

yi := g(xi) + εi for i = 1, . . . ,m, where A(f) = g. (1.2)

In the case of random observations, the literature is much scarcer than for the
classical setup. For linear mappings A : H1 → H2, this was analyzed in [3, 7],
under the assumption that the norm in L 2(X, ν;Y ) is accessible to the user (at
least up to a multiplicative constant); again, this is an unrealistic assumption if
the only information on ν is available through the sample points (x1, . . . , xm).
In the case of general random design with unknown marginal distribution ν,
this was analyzed in [4].

For non-linear mappings A, some structural assumptions on the nature of
the non-linearity must be assumed. In the present study we shall use the most
classical non-linearity assumption, first assumed in [33], and presented in de-
tail in the monograph [11]. Roughly speaking, the mapping A is assumed to be
Fréchet differentiable at the true solution, and the Fréchet derivative obeys some
Lipschitz property, see Assumption 5 for the precise requirements. Such non-
linear inverse problems occur in many situations, and examples are given in the
seminal monograph [11]. Of special importance are problems of parameter iden-
tification in partial differential equations, and we mention the monograph [16,
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Chapt. 1], and the more recent [34]. In such settings, the model we consider with
random sampling and unknown sampling distribution ν (“learning” model) is
particularly relevant if we have a good “physical” knowledge of a complex sys-
tem (the known operator A), but with many unknown parameters, furthermore
this system is only observed “in the wild”, without the possibility for the user
to choose or even know precisely the design distribution. This is typically of
interest in fields such as economics, medicine, etc.

A widely used approach to stabilizing the estimation problem (1.1) is the
Tikhonov regularization or regularized least-squares algorithm or method of
regularization. The estimate of the solution of (1.1) is obtained by minimizing an
objective function consisting of an error term measuring the fit to the data plus a
smoothness term measuring the complexity of the quantity f . For the non-linear
statistical inverse problem (1.2), and hence with g = A(f), the corresponding
regularization scheme over the hypothesis space H1 can be described as

fz,λ = argmin
f∈D(A)⊂H1

{
1

m

m∑
i=1

‖A(f)(xi)− yi‖2Y + λ
∥∥f − f̄

∥∥2
H1

}
. (1.3)

Here f̄ ∈ H1 denotes some initial guess of the true solution, which offers the
possibility to incorporate a-priori information. The regularization parameter λ
is positive and controls the trade-off between the error term measuring the
fitness of data and the complexity of the solution measured in the norm in H1.

The objective of this paper is to analyze the theoretical properties of the reg-
ularized least-squares estimator fz,λ, in particular, the asymptotic performance
of the regularization scheme is evaluated by the bounds and the rates of con-
vergence of the regularized least-squares estimator fz,λ. Precisely, we develop
a non-asymptotic analysis of Tikhonov regularization (1.3) for the non-linear
statistical inverse problems based on the tools that have been developed for the
modern mathematical study of reproducing kernel methods. The challenges spe-
cific to the studied problem are that the considered model is an inverse problem
(rather than a pure prediction problem) and non-linear. The upper rate of con-
vergence for the regularized least-squares estimator fz,λ to the true solution is
described in the probabilistic sense by exponential tail inequalities. For sample
size m and the confidence level 0 < η < 1, we establish the bounds of the form

Pz∈Zm

{
‖fz,λ − f‖H1

≤ ε(m) log

(
1

η

)}
≥ 1− η.

Here the function m �→ ε(m) is a positive decreasing function and describes
the rate of convergence as m → ∞. The upper rate of convergence is comple-
mented by a minimax lower bound for any learning algorithm for the considered
non-linear statistical inverse problem. The lower rate result shows that the error
rate attained by the Tikhonov regularization scheme for a suitable choice of the
regularization parameter is optimal on a suitable class of probability measures.

Now we review previous results concerning regularization algorithms on dif-
ferent learning schemes which are directly comparable to our results: Caponnetto
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Table 1

Convergence rates of the regularization schemes on different learning schemes: the
parameter r refers to the smoothness of true solution in source conditions and b > 1 refers

to the rate of eigenvalue decay of the covariance operators.

Learning
problem

Regular-
ization

‖fz,λ − f‖H1
Smoothness

General
source
condi-
tion

Opti-
mal
rates

Caponnetto
et al. [5]

Tikhonov
√

Rastogi et
al. [29]

Direct General m
− br

2br+b+1 0 ≤ r ≤ 1
√ √

Lin et al.
[18]

General
√ √

Blanchard
et al. [4]

Linear
inverse

General m
− br

2br+b+1 0 ≤ r ≤ 1
√

Our Results

Non-
linear
inverse

Tikhonov m
− br

2br+b+1 1
2
≤ r ≤ 1

√ √

et al. [5], Rastogi et al. [29], Lin et al. [18] and Blanchard et al. [4]. For conve-
nience, we tried to present the most essential points in a unified way in Table 1.

In this table, the parameter r corresponds to a (Hölder type) smoothness
assumption for the unknown true solution, and the parameter b > 1 corresponds
to the decay rate of the eigenvalues of the covariance operator, both to be
introduced below in Assumption 6, and Assumption 7, respectively.

The model (1.2) covers nonparametric regression under random design (which
we also call the direct problem, i.e., A = I), and the linear statistical inverse
problem. Thus, introducing a general non-linear operator A gives a unified ap-
proach to different learning problems. In the direct learning setting, Caponnetto
et al. [5] established the minimax optimal rates of convergence for Tikhonov
regularization under a Hölder source condition. Rastogi et al. [29] generalized
these bounds for general regularization and under a general source condition.
Lin et al. [18] obtained the error estimates in interpolation norms for general
regularization in Hilbert space which particularly gives the optimal rates for
general regularization in the reproducing kernel Hilbert space (RKHS). These
results cover the case when the minimizer of the expected risk does not belong
to the RKHS. Blanchard et al. [4] considered general regularization methods for
the linear statistical inverse problem. They generalized the convergence analysis
of the direct learning scheme to the inverse learning setting and achieved the
minimax optimal rates of convergence for general regularization under a Hölder
source condition. They considered that the image of the operator A is a repro-
ducing kernel Hilbert space which can be seen as a special case of our general
assumption that Im(A) is contained in a reproducing kernel Hilbert space in
the linear setting (when A is the linear operator). Here, we consider Tikhonov
regularization for the non-linear statistical inverse problem. We obtain minimax
optimal rates of convergence under a general source condition. The assumptions
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on the non-linear operator A (see Assumption 5, and the condition (4.5), be-
low) allow us to estimate the error bounds for the source condition under some
additional constraint, which for Hölder source condition (φ(t) = tr) corresponds
to the range 1

2 ≤ r ≤ 1.
In this nonlinear setup, other works include the milestone work [26] which

considers asymptotic analysis for the generalized Tikhonov regularization
for (1.2) using the linearization technique. The reference [3] considers a 2-step
approach, in which, first an approximate gδ of g in (1.2) is estimated using the
observations {(xi, yi)}mi=1. Then, the regularization schemes are used to stably
approximate the quantity f in (1.2). Again, the norm in L 2(X, ν;Y ) needs to
be known.

The references [1] and [15, 40] consider respectively a Gauss-Newton algo-
rithm and the method of regularization (Tikhonov regularization) for certain
non-linear inverse problems, in the idealized setting where the noise is a (possibly
weak) Gaussian element in a Hilbert space. In this, the noise ξ is a Hilbert space
process on H2, such that the random variable ξ(g) = 〈ξ, g〉 satisfies E (ξ(g)) =
0, V ar (ξ(g)) < ∞ for any vector g ∈ H2, and E (ξ(g1)ξ(g2)) = 〈Cg1, g2〉 for
all g1, g2 ∈ H2 and a bounded self-adjoint nonnegative operator C. The white
noise setting is when C = I (in that case ξ �∈ H2 but ξ(g) = 〈ξ, g〉 holds in a
weak sense), otherwise the setting is dubbed colored noise. This type of noise can
cover random design sampling effects, but the output space of the operator is
then taken to be L 2(X, ν;Y ) in such an approach; thus there again it is implic-
itly required that L 2(X, ν;Y ) is known for the construction of the considered
methods. Loubes et al. [21] consider (1.2) under a fixed design and concentrate
on the problem of model selection. Finally, the recent work [30] analyzes rates of
convergence in a model where observations are of the form h(Kf)(x) perturbed
by noise, but only in a white noise model and for specific, uni-variate non-linear
link functions h, and linear operator K.

Hence, the statistical inverse problems are considered with (most often Gaus-
sian) white or colored noise in general. The 2-step approaches are well-studied
to obtain the approximate solution of the inverse problems. In the present paper
we make the following contributions:

• We consider the nonlinear statistical inverse problem with random design
and random observation noise. The observation noise can be non-Gaussian
(satisfying a Berstein-type moment assumption), and the random design
distribution is unknown, which generally precludes approaches based on
directly modeling the observation error as a Gaussian noise in a fixed,
known Hilbert space.

• To directly approximate the quantity f in (1.2) from the observations,
we consider the (1-step) non-linear Tikhonov regularization rather than
2-step approaches for inverse problems. Furthermore, we establish rates of
convergence in terms of sample size, as the sample size tends to ∞.

The structure of the paper is as follows. In Section 2, we introduce the basic
setup and notation for supervised learning problems in a reproducing kernel
Hilbert space framework. In Sections 3 and 4, we discuss the main results of
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this paper on consistency and error bounds of the regularized least-squares so-
lution fz,λ under certain assumptions on the (unknown) joint probability mea-
sure ρ, and the (non-linear) mapping A. We establish minimax rates of conver-
gence over the regularity classes defined through appropriate source conditions
by using the concept of the effective dimension. In Section 5, we present a con-
cluding discussion on some further aspects of the results. In the appendix, we
establish the concentration inequalities, perturbation results and the proofs of
consistency results, upper error bounds, and lower error bounds.

2. Setup and basic definitions

In this section, we discuss the mathematical concepts and definitions used in
our analysis. We start with a brief description of the reproducing kernel Hilbert
spaces since our approximation schemes will be built in such spaces. The vector-
valued reproducing kernel Hilbert spaces are the extension of real-valued repro-
ducing kernel Hilbert spaces, see e.g. [25].

Definition 2.1. Let X be a non-empty set, (Y, 〈·, ·〉Y ) be a real separable Hilbert
space and H be a Hilbert space of functions from X to Y . If the linear func-
tional Fx,y : H → R, defined by

Fx,y(f) = 〈y, f(x)〉Y ∀f ∈ H,

is continuous for every x ∈ X and y ∈ Y , then H is called vector-valued repro-
ducing kernel Hilbert space.

For the Banach space L(Y ) of bounded linear operators Y → Y , a func-
tion K : X ×X → L(Y ) is said to be an operator-valued positive semi-definite
kernel if for each pair (x, z) ∈ X ×X, K(x, z)∗ = K(z, x), and for every finite
set of points {xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y ,

N∑
i,j=1

〈yi,K(xi, xj)yj〉Y ≥ 0.

For every operator-valued positive semi-definite kernel, K : X ×X → L(Y ),
there exists a unique vector-valued reproducing kernel Hilbert space (H, 〈·, ·〉H)
of functions from X to Y satisfying the following conditions:

(i) For all x ∈ X and y ∈ Y , the function Kxy = K(·, x)y, defined by

z ∈ X �→ (Kxy)(z) = K(z, x)y ∈ Y,

belongs to H; this allows us to define the linear mapping Kx : Y → H :
y �→ Kxy.

(ii) The span of the set {Kxy : x ∈ X, y ∈ Y } is dense in H.
(iii) For all f ∈ H, x ∈ X and y ∈ Y , 〈f(x), y〉Y = 〈f,Kxy〉H, in other

words f(x) = K∗
xf (reproducing property).
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Moreover, there is a one-to-one correspondence between operator-valued pos-
itive semi-definite kernels and vector-valued reproducing kernel Hilbert spaces
[25]. In special case, when Y is a bounded subset of R, the reproducing ker-
nel Hilbert space is said to be real-valued reproducing kernel Hilbert space. In
this case, the operator-valued positive semi-definite kernel becomes the sym-
metric, positive semi-definite kernel K : X × X → R and each reproducing
kernel Hilbert space H can be described as the completion of the span of the
set {Kx ∈ H : x ∈ X} for Kx : X → R : t �→ Kx(t) = K(x, t). Moreover,
for every function f in the reproducing kernel Hilbert space H, the reproducing
property can be described as f(x) = 〈f,Kx〉H.

We assume that the input space X be a Polish space, and the output space
(Y, 〈·, ·〉Y ) be a real separable Hilbert space (both endowed with their Borel σ-
algebras). Under these assumptions the conditional distribution ρ(y|x) exists,
see for example [37, Section A.3.2].

We specify the abstract framework for the present study. We consider that
random observations {(xi, yi)}mi=1 follow the model y = A(f)(x) + ε with the
centered noise ε = y − A(fρ)(x) (i.e.,

∫
Y
εdρ(y|x) = 0). The operator A is

assumed to be one-to-one.

Assumption 1 (True solution fρ). Given ρ, there exists fρ ∈ int(D(A)) ⊂ H1

such that ∫
Y

ydρ(y|x) = A(fρ)(x), for all x ∈ X.

The element fρ is the true solution which we aim at estimating.

Assumption 2 (Noise condition). There exist some constants M,Σ such that
for almost all x ∈ X,∫

Y

(
e‖ε‖Y /M − ‖ε‖Y

M
− 1

)
dρ(y|x) ≤ Σ2

2M2
.

This Assumption is usually referred to as a Bernstein-type assumption. The
assumption implies the bounds of the noise in the second and higher-order mo-
ments as follows: ∫

Y

‖ε‖nY dρ(y|x) ≤ n!

2
Σ2Mn−2, ∀n ≥ 2.

Concerning the Hilbert space H2, we assume the following throughout the
paper.

Assumption 3 (Vector valued reproducing kernel Hilbert space H2). We as-
sume H2 to be a separable vector-valued reproducing kernel Hilbert space of
functions f : X → Y corresponding to the kernel K : X ×X → L(Y ) such that

(i) For all x ∈ X, Kx : Y → H2 is a Hilbert-Schmidt operator, and

κ2 := sup
x∈X

‖Kx‖2HS = sup
x∈X

tr(K∗
xKx) < ∞,

implying in particular that H2 ⊂ L 2(X, ν;Y ).
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(ii) The real-valued function ς : X ×X → R, defined by

ς(x, t) = 〈Ktv,Kxw〉H2 ,

is measurable ∀v, w ∈ Y .

Note that the separability assumption on H2 is in particular satisfied if the
kernel K is continuous, see [37, Lemma 4.33], but this is not necessary.

Example 2.2 (Sobolev space). Certain Sobolev spaces satisfy the above as-
sumptions, and the kernel K is completely explicit.

Let W k,2(Rd) be the Sobolev space of differential order k (based on the space
L 2(Rd, ν;R)), for the integer k > d

2 , which is defined as the completion of
C∞

c (Rd) with respect to the norm given by:

‖f‖2H = ‖f‖2Wk,2(Rd) =

k∑
ν=0

∑
α∈Zd

+,|α|≤ν

ν!

α!

(
k

ν

)∫
Rd

∣∣∣∣∂νf(x)

∂xν

∣∣∣∣2 dx.
The Sobolev space W k,2(Rd) is a reproducing kernel Hilbert space with the re-
producing kernel K, given by (see [32, Sec. 1.3.5])

K(x, y) =
1

(2π)d

∫
Rd

exp(i〈x− y, ξ〉)
(1 + ‖ξ‖2)k

dξ, x, y ∈ R
d,

where ‖·‖ is the Euclidean norm in R
d.

It satisfies Assumption 3 with κ2 := (2π)−d
∫
Rd(1 + ‖ξ‖2)−kdξ < ∞.

Note that in the case of real-valued functions (Y ⊂ R) we get Kx ∈ H2

and Assumption 3 simplifies to the condition that the kernel is measurable
and κ2 := supx∈X ‖Kx‖2H2

= supx∈X K(x, x) < ∞.

The operator IK denotes the canonical injection map H2 → L 2(X, ν;Y ),
that

‖IKg‖2L 2(X,ν;Y ) =

∫
X

‖g(x)‖2Y dν(x) =

∫
X

‖K∗
xg‖

2
Y dν(x) ≤ κ2 ‖g‖2H2

.

We denote LK := I∗KIK : H2 → H2 the corresponding covariance operator.

3. Consistency

We establish consistency in expectation and almost surely of the Tikhonov reg-
ularization in the sense that ‖fz,λ − fρ‖H1 → 0 as |z| = m → ∞. For this, we
need weak assumptions on the operator.

Assumption 4 (Lipschitz continuity). We suppose that D(A) is weakly closed
with the nonempty interior and A : D(A) ⊂ H1 → H2 is Lipschitz continuous,
one-to-one.
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The inequality ‖IKg‖L 2(X,ν;Y ) ≤ κ ‖g‖H2
for g ∈ H2 and the continuity

of the operator A : D(A) ⊂ H1 → H2 implies that IKA : D(A) → H2 ↪→
L 2(X, ν;Y ) is also continuous. Since D(A) is weakly closed, the mapping IKA
is weakly sequentially closed1. For the continuous and weakly sequentially closed
operator A, there exists a global minimizer of the functional in (1.3). But it is
not necessarily unique since A is non-linear (see [34, Section 4.1.1]).

The proofs of Theorems 3.1, 3.4 will be given in Appendix B.

Theorem 3.1. Suppose that Assumptions 1, 3, 4 hold true and

σ2
ρ :=

∫
Z

‖y −A(fρ)(x)‖2Y dρ(x, y) < ∞.

Assume additionally that IK is injective. Let fz,λ denote a (not necessarily
unique) solution to the minimization problem (1.3) and assume that the reg-
ularization parameter λ(m) > 0 is chosen such that

λ → 0,
1

λ
√
m

→ 0 as m → ∞. (3.1)

Then we have that

Ez

(
‖fz,λ − fρ‖2H1

)
→ 0 as |z| = m → ∞. (3.2)

Remark 3.2. As can be seen from the proof, the existence of arbitrary moments,
as required in Assumption 2 is not needed. Instead, only the existence of second
moments is used, as seen from the introduction of σρ.

Remark 3.3. A sufficient condition to ensure that IK is injective is that the
marginal ρX has full support on the Polish space X (this is also a necessary
condition) and that the kernel K is continuous (see [37, Exercise 4.6]).

The previous result can be strengthened as follows.

Theorem 3.4. Suppose that Assumptions 1–4 hold true, and assume addition-
ally that IK is injective. Let fz,λ denote a (not necessarily unique) solution
to the minimization problem (1.3) and assume that the regularization parame-
ter λ(m) > 0 is chosen such that

λ → 0,
logm

λ
√
m

→ 0 as m → ∞. (3.3)

Then we have that

‖fz,λ − fρ‖H1 → 0 almost surely as m → ∞. (3.4)

1i.e., if a sequence (fm)m∈N ⊂ D(A) converges weakly to some f ∈ H1 and if the se-
quence (A(fm))m∈N ⊂ L 2(X, ν;Y ) converges weakly to some g ∈ L 2(X, ν;Y ), then f ∈
D(A) and A(f) = g.
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4. Convergence rates

To derive rates of convergence additional assumptions are made on operator A.
We need to introduce the corresponding notion of smoothness of the true solu-
tion fρ from Assumption 1. We discuss the class of probability measures defined
through the appropriate source condition which describes the smoothness of the
true solution.

Following the work of Engl et al. [11, Chapt. 10] on ‘classical’ non-linear
inverse problems, we consider the following assumption:

Assumption 5 (Non-linearity of the operator). We assume that D(A) is con-
vex with nonempty interior, A : D(A) ⊂ H1 → H2 ↪→ L 2(X, ν;Y ) is weakly
sequentially closed and one-to-one. Furthermore, we assume that

(i) A is Fréchet differentiable,
(ii) the Fréchet derivative A′(f) of A at f is bounded in a ball Bd(fρ) of ra-

dius d := 4
∥∥fρ − f̄

∥∥
H1

, i.e., there exists L < ∞ such that

‖A′(f)‖H1→H2
≤ L ∀ f ∈ Bd(fρ) ∩ D(A) ⊂ H1,

and
(iii) there exists γ ≥ 0 such that for all f ∈ Bd(fρ) ∩ D(A) ⊂ H1 we have,

‖IK {A(f)−A(fρ)−A′(fρ)(f − fρ)}‖L 2(X,ν;Y ) ≤
γ

2
‖f − fρ‖2H1

.

Remark 4.1. The condition (iii) also holds true under the stronger assumption
that A′ is Lipschitz for the operator norm (see [11, Chapt. 10]), i.e.,

‖IK {A′(f)−A′(fρ)}‖H1→L 2(X,ν;Y ) ≤ γ ‖f − fρ‖H1
.

A sufficient condition for weak sequential closedness is that D(A) is weakly closed
(e.g. closed and convex) and A is weakly continuous. Note that under the Fréchet
differentiability of A : D(A) ⊂ H1 → H2 (Assumption 5 (ii)), the operator A is
Lipschitz continuous in a ball Bd(fρ) with Lipschitz constant L.

The nonlinearity assumption imposed on the operator A is standard, and
its applicability for nonlinear illposed problems has been verified for several
examples, see e.g. [17, Chapt. 4], [14] and also [31, Chapt. 7].

To illustrate the general setting, we also consider the following examples
for nonlinear operators on Sobolev spaces as in Example 2.2. We shall assume
that H1 = H2 = H is the Sobolev space W k,2(R).

Example 4.2. For H = W k,2(R) described in Example 2.2, we consider the
non-linear operator A : H → H given by:

[A(f)](x) =

∫
Rd

ϑ(x, s)(f(s))2dμ(s), x ∈ R
d, f ∈ D(A) ⊂ H,

where ϑ : Rd×R
d → R is k-times differentiable. It can be checked that A(f) ∈ H,

with
‖A(f)‖H ≤ Ck(ϑ) ‖f‖2∞ ≤ κ2Ck(ϑ) ‖f‖2H ,
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where κ is as in Example 2.2, and

Ck(ϑ) :=

∥∥∥∥∫
Rd

ϑ(·, s)dμ(s)
∥∥∥∥
H

(assumed to be finite).
The Fréchet derivative of A at f is given by

[A′(f)g](x) = 2

∫
Rn

ϑ(x, s)f(s)g(s)dμ(s).

Then we have

‖A′(fρ)g‖H ≤ 2Ck(ϑ) ‖fρ‖∞ ‖g‖∞ ≤ 2κ2Ck(ϑ) ‖fρ‖H ‖g‖H ,

and

‖IK {A′(f)g −A′(fρ)g}‖L 2(Rd,ν;R)

≤‖A′(f)g −A′(fρ)g‖∞ ≤ κ ‖A′(f)g −A′(fρ)g‖H
≤2κ3Ck(ϑ) ‖f − fρ‖H ‖g‖H ,

so that Assumption 5 is satisfied.

Example 4.3. Assume that Ω is of class C1, a nonempty, bounded, open subset
of Rd. For H = W k,2(R), we consider the non-linear operator A : H → H of
the form:

A(f)(x) = G(x, f(x)), (4.1)

where G : Ω × R → R, G ∈ Ck+1(Ω × R). Such non-linear mappings are often
called superposition operators.

From [38, Theorem 3.1], we observe that the operator A is continuous and
from Theorem 4.1 ibid., the Fréchet derivative of A at f is given by

[A′(f)g](x) = g(x)DyG(x, f(x)),

where Dy denotes the derivative of G with respect to the second coordinate.
Further, the Fréchet derivative is Lipschitz continuous, so that Assumption 5 is
satisfied.

Under the above non-linearity assumption on operator A we now introduce
the related operators, which will turn out to be useful in the analysis of regu-
larization schemes.

We recall that IK denotes the canonical injection map H2 → L 2(X, ν;Y ),
and A′(fρ) the Fréchet derivative of A at fρ. We define the operator B : H1 →
L 2(X, ν;Y ) given by

f �→ Bf := (IK ◦ (A′(fρ)))(f) = IK(A′(fρ)f).

We denote T := B∗B : H1 → H1 the corresponding covariance operator.
The operators LK from Section 2, and T are positive, self-adjoint and compact
operators, even trace-class operators.
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Observe that the operator B depends on IK and fρ, thus on the joint prob-
ability measure ρ itself. It is bounded and satisfies ‖B‖H1→L 2(X,ν;Y ) ≤ κL.

The consistency results as established in Section 3, yield convergence of the
minimizers fz,λ, as |z| = m tends to infinity, and the parameter λ is chosen
appropriately. However, the rates of convergence may be arbitrarily slow. This
phenomenon is known as the no free lunch theorem [10]. Therefore, we need
some prior assumptions on the probability measure ρ to achieve uniform rates
of convergence for learning algorithms.

Definition 4.4 (Index function). A function φ : R+ → R
+ is said to be an

index function if it is continuous and strictly increasing with φ(0) = 0.

Assumption 6 (General source condition). The true solution fρ belongs to the
class Ω(ρ, φ,R) with

Ω(ρ, φ,R) :=
{
f ∈ H1 : f − f̄ = φ(T )v and ‖v‖H1

≤ R
}
,

where φ is an index function defined on the interval [0, κ2L2].

The general source condition fρ ∈ Ω(ρ, φ,R), by allowing for the index func-
tions φ, cover a wide range of source conditions, such as Hölder source con-
dition φ(t) = tr with r ≥ 0, and logarithmic-type source condition φ(t) =
tp log−ν

(
1
t

)
with p ∈ N, ν ∈ [0, 1]. The source sets Ω(ρ, φ,R) are precompact

sets in H1, since the operator T is compact. Observe that in contrast with
the linear case, in the equation fρ − f̄ = φ(T )v from Assumption 6, the true
solution fρ appears on both sides, since the operator T itself depends on it
(through A′(fρ)). This condition is more easily interpreted as a condition on
the “initial guess” f̄ , so that the initial error (f̄ − fρ) should satisfy a source
condition with respect to the operator linearized at the true solution. Assump-
tion 6 is usually referred to as a general source condition, see e.g. [24], which
is a measure of regularity of the true solution fρ. This is inspired, on the one
hand, by the approach considered in previous works on statistical learning us-
ing kernels, and, on the other hand, by the “classical” literature on non-linear
inverse problems. The true solution fρ is represented in terms of the marginal
probability distribution ν over the input space X, and of the linearized operator
at the true solution, respectively. Both aspects enter into Assumption 6.

Assumption 7 (Eigenvalue decay condition). The eigenvalues (tn)n∈N of the
covariance operator LK follow a polynomial decay, i.e., for fixed positive con-
stants β and b > 1,

tn ≤ βn−b ∀n ∈ N.

Now under Assumption 5 (ii) using the relation for singular values sj(UV ) ≤
‖U‖ sj(V ) for j ∈ N (see Chapter 11 [27]) we obtain,

sj(T ) ≤ ‖A′(fρ)‖2H1→H2
sj(LK) ≤ L2sj(LK).

Hence the polynomial decay condition on eigenvalues of the operator LK implies
that the eigenvalues of T also follows the polynomial decay.
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Following the concept of Bauer et al. [2], and Blanchard et al. [4], we consider
the classes of probability measures Pφ and Pφ,b.

Definition 4.5 (Pφ and Pφ,b). The class of probability measures Pφ consists
of ρ such that

(i) The conditional distribution ρ(y|x) satisfies the Assumptions 1, 2.
(ii) The true solution fρ, that corresponds to ρ, cf. Assumption 1, obeys the

smoothness assumption 6.

Further, we define the set of probability measures Pφ,b ⊂ Pφ consisting of
those ρ ∈ Pφ such that the sampling distribution ρX satisfies the eigenvalue
decay assumption 7.

Both the classes Pφ, Pφ,b depend on the observation noise distribution (re-
flected in the parameters M > 0, Σ > 0) and the smoothness properties of the
true solution fρ (reflected in the parameters R > 0, φ > 0). The class Pφ,b also
depends on the properties of the covariance operator LK (reflected in terms of
the eigenvalue decay parameter b).

We achieve optimal minimax rates of convergence using the concept of effec-
tive dimension of the operator LK . For the trace class operator LK , the effective
dimension is defined as

N (λ) = NLK
(λ) := tr

(
(LK + λI)−1LK

)
, for λ > 0.

For the infinite-dimensional operator LK , the effective dimension is a contin-
uously decreasing function of λ from ∞ to 0. For further discussion on the
effective dimension, we refer to the literature [19, 22].

Under Assumptions 3, 5 (ii), the effective dimension N (λ) can trivially be
estimated as follows,

N (λ) ≤
∥∥(LK + λI)−1

∥∥
L(H2)

tr (LK) ≤ κ2

λ
, λ > 0. (4.2)

However, we know from [5, Prop. 3] that, under Assumption 7, we have the
improved bound

N (λ) ≤ Cβ,bλ
−1/b, (4.3)

where Cβ,b is a positive constant depends on the parameters β and b.

4.1. Upper rates of convergence

In Theorems 4.6–4.7, we present the upper error bounds for the regularized least-
squares solution fz,λ over the class of probability measures Pφ. We establish the
error bounds for both the direct learning setting in the sense of the L 2(X, ν;Y )-
norm reconstruction error ‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) and the inverse

problem setting in the sense of the H1-norm reconstruction error ‖fz,λ − fρ‖H1
.

Since the explicit expression of fz,λ is not known, we use the definition (1.3) of
the regularized least-squares solution fz,λ to derive the error bounds. We use the
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linearization techniques for the operator A in the neighborhood of the true solu-
tion fρ under the (Fréchet) differentiability of A. We estimate the error bounds
for the regularized least-squares estimator by measuring the complexity of the
true solution fρ and the effect of random sampling. The rates of convergence are
governed by the noise condition (Assumption 2), the general source condition
(Assumption 6) and the ill-posedness of the problem, as measured by an as-
sumed power decay (Assumption 7) of the eigenvalues of T with exponent b > 1.
The effect of random sampling and the complexity of fρ are measured through
Assumption 2 and Assumption 6 in Proposition A.3 and Proposition C.1, re-
spectively. In addition to this, we briefly discuss two additional assumptions
considered in the analysis.

The error bound discussed in the following theorem holds non-asymptotically,
but this holds with sufficiently small regularization parameter λ and sufficiently
large sample size m. Given the parameters κ, L, M , Σ, d (from Assumptions 2–
3, 5), for fixed η and λ, we can choose sufficiently large sample size m such
that

8κ2 max

(
1,

L(M +Σ)

κd

)
log

(
4

η

)
≤

√
mλ. (4.4)

The condition (4.4) says that as the regularization parameter λ decreases, the
sample size must increase. This condition will be automatically satisfied under
the parameter choice considered later in Theorem 4.8.

Under the source condition fρ − f̄ = φ(T )v for φ(t) =
√
tψ(t), we have

that fρ − f̄ = T 1/2ψ(T )v = T 1/2w for ψ(T )v = w. We assume that

2γ ‖w‖H1
< 1. (4.5)

The additional assumption (4.5) is a “smallness” condition that imposes a
constraint between ‖w‖H1

and the non-linearity as measured by the parame-
ter γ in Assumption 5 (iii). This condition ensures that the initial guess is close
enough to the true solution and the residual error on linearizing the nonlinear
operator A at the true solution is small enough in order to achieve the rates of
convergence. This fact will be clear from the proofs of Theorem 4.6 and Theo-
rem 4.7. For the latter norm to be finite for any function satisfying the source
condition fρ ∈ Ω(ρ, φ,R), it requires that φ(t)/

√
t remains bounded near 0, in

particular, if φ(t) = tr, that r ≥ 1
2 .

The proofs of Theorems 4.6–4.8 will be given in Appendix C.

Theorem 4.6. Let z be i.i.d. samples drawn according to the probability mea-
sure ρ ∈ Pφ where φ(t) =

√
t. Suppose Assumptions 1–3, 5–6 and the condi-

tions (4.4), (4.5) hold true. Then, for all 0 < η < 1, for the regularized least-
squares estimator fz,λ (not necessarily unique) in (1.3) with the confidence 1−η
the following upper bound holds:

‖fz,λ − fρ‖H1 ≤ C1

{
R
√
λ+

κM

mλ
+

√
Σ2N (λ)

mλ

}
log

(
4

η

)
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and

‖IK{A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) ≤ C2

√
λ

{
R
√
λ+

κM

mλ
+

√
Σ2N (λ)

mλ

}
log

(
4

η

)
,

where C1 and C2 depend on the parameters γ, L, R.

In the above theorem we discussed the error bounds for the Hölder source
condition (Assumption 6) with φ(t) =

√
t. In the following theorem, we discuss

the error bound for the general source condition with the suitable assumptions
on the function φ.

Theorem 4.7. Let z be i.i.d. samples drawn according to the probability mea-
sure ρ ∈ Pφ where φ(t) =

√
tψ(t) is an index function satisfying the conditions

that ψ(t) and
√
t/ψ(t) are nondecreasing functions. Suppose Assumptions 1–

3, 5–6 and the conditions (4.4), (4.5) hold true. Then, for all 0 < η < 1, for the
regularized least-squares estimator fz,λ (not necessarily unique) in (1.3) with
the confidence 1− η the following upper bound holds:

‖fz,λ − fρ‖H1 ≤ C

{
Rφ(λ) +

κM

mλ
+

√
Σ2N (λ)

mλ

}
log

(
4

η

)
,

where C depends on the parameters γ, L, ‖w‖H1
.

Note that error bounds for ‖fz,λ − fρ‖H1
in both Theorem 4.6 and Theo-

rem 4.7 are the same up to a constant factor which depends on the parame-
ters γ, L, ‖w‖H1

.
In Theorems 4.6–4.7, the error estimates reveal the interesting fact that the

error terms consist of increasing and decreasing functions of λ which led to pro-
pose a choice of regularization parameter by balancing the error terms. We derive
the rates of convergence for the regularized least-squares estimator based on a
data-independent (a-priori) parameter choice of λ for the classes of probability
measures Pφ and Pφ,b. The effective dimension plays a crucial role in the error
analysis of the regularized least-squares learning algorithm. In Theorem 4.8, we
derive the rate of convergence for the regularized least-squares solution fz,λ un-
der the general source condition fρ ∈ Ω(ρ, φ,R) for the parameter choice rule
for λ based on the index function φ and the sample size m. For the class of
probability measures Pφ,b, the polynomial decay condition (Assumption 7) on
the spectrum of the operator T also enters into the picture and the parameter b
enters in the parameter choice by the estimate (4.3) of the effective dimension.
For this class, we derive the minimax optimal rate of convergence in terms of
the index function φ, the sample size m, and the parameter b.

Theorem 4.8. Under the same assumptions of Theorem 4.7, the convergence
of the regularized least-squares estimator fz,λ in (1.3) to the true solution fρ
can be described as:

(i) For the class of probability measures Pφ with the parameter choice λ =
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Θ−1
(
m−1/2

)
where Θ(t) = tφ(t), we have

Pz∈Zm

{
‖fz,λ − fρ‖H1 ≤ C ′φ

(
Θ−1

(
m−1/2

))
log

(
4

η

)}
≥ 1− η,

where C ′ depends on the parameters γ, L, ‖w‖H1
, R, κ, M , Σ and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ

Pz∈Zm

{
‖fz,λ − fρ‖H1 > τφ

(
Θ−1

(
m−1/2

))}
= 0.

(ii) For the class of probability measures Pφ,b under Assumption 7 and the

parameter choice λ = Ψ−1
(
m−1/2

)
where Ψ(t) = t

1
2+

1
2bφ(t), we have

Pz∈Zm

{
‖fz,λ − fρ‖H1 ≤ C ′′φ

(
Ψ−1

(
m−1/2

))
log

(
4

η

)}
≥ 1− η,

where C ′′ depends on the parameters γ, L, ‖w‖H1
, R, κ, M , Σ, b, β and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Pz∈Zm

{
‖fz,λ − fρ‖H1 > τφ

(
Ψ−1

(
m−1/2

))}
= 0.

Notice that the rates given for the class Pφ are worse than the one for the
(smaller) class Pφ,b, which is easily seen from the fact that t1/2+1/(2b) ≥ t for b >
1, and hence Ψ(t) ≥ Θ(t) for t ∈ [0, 1].

We obtain the following corollary as a consequence of Theorem 4.8.

Corollary 4.9. Under the same assumptions of Theorem 4.7 with the Hölder’s
source condition fρ ∈ Ω(ρ, φ,R), φ(t) = tr, the convergence of the regularized
least-squares estimator fz,λ in (1.3) to the true solution fρ can be described as:

(i) For the class of probability measures Pφ with the parameter choice λ =

m− 1
2r+2 , for all 0 < η < 1, we have with the confidence 1− η,

‖fz,λ − fρ‖H1 ≤ C ′m− r
2r+2 log

(
4

η

)
for

1

2
≤ r ≤ 1.

(ii) For the class of probability measures Pφ,b with the parameter choice λ =

m− b
2br+b+1 , for all 0 < η < 1, we have with the confidence 1− η,

‖fz,λ − fρ‖H1 ≤ C ′′m− br
2br+b+1 log

(
4

η

)
for

1

2
≤ r ≤ 1.

We obtain the following corollary as a consequence of Theorem 4.6.

Corollary 4.10. Under the same assumptions of Theorem 4.6 with the Hölder’s
source condition fρ ∈ Ω(ρ, φ,R), φ(t) = t1/2, the convergence of the regularized
least-squares estimator fz,λ in (1.3) to the true solution fρ can be described as:



2814 A. Rastogi et al.

(i) For the class of probability measures Pφ with the parameter choice λ =

m− 1
3 , for all 0 < η < 1, we have with the confidence 1− η,

‖fz,λ − fρ‖H1 ≤ C ′
1m

− 1
6 log

(
4

η

)
and

‖IK {A(fz,λ)−A(fρ)} ‖L 2(X,ν;Y ) ≤ C ′
2m

− 1
3 log

(
4

η

)
,

where C ′
1 and C ′

2 depends on the parameters γ, L, ‖w‖H1
, κ, M , Σ.

(ii) For the class of probability measures Pφ,b with the parameter choice λ =

m− b
2b+1 , for all 0 < η < 1, we have with the confidence 1− η,

‖fz,λ − fρ‖H1 ≤ C ′′
1m

− b
4b+2 log

(
4

η

)
and

‖IK {A(fz,λ)−A(fρ)} ‖L 2(X,ν;Y ) ≤ C ′′
2m

− b
2b+1 log

(
4

η

)
,

where C ′′
1 and C ′′

2 depends on the parameters γ, L, ‖w‖H1
, κ, M , Σ, b, β.

Now we compare the error bounds established for direct learning setting in the
sense of L 2(X, ν;Y )-norm reconstruction error ‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y )

and the inverse problem setting in the sense of the H1-norm reconstruction er-
ror ‖fz,λ − fρ‖H1

. Since under the condition (4.4) from (B.13) we have that fz,λ ∈
Bd(fρ) ∩ D(A) ⊂ H1 with confidence 1− η/2, therefore with Assumption 5 lin-
earizing the operator A at fρ (i.e., A(fz,λ) = A(fρ)+A′(fρ)(fz,λ−fρ)+r(fz,λ))
we conclude that

‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) (4.6)

= ‖IK {A′(fρ)(fz,λ − fρ) + r(fz,λ)}‖L 2(X,ν;Y )

≤‖B(fz,λ − fρ)‖L 2(X,ν;Y ) + ‖IKr(fz,λ)‖L 2(X,ν;Y )

≤
∥∥∥T 1/2(fz,λ − fρ)

∥∥∥
H1

+
γ

2
‖fz,λ − fρ‖2H1

.

Thus bounding the prediction norm ‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) cor-

responds to learning bound in which the first norm consists of some target
function T 1/2fρ which has additional smoothness 1/2, on the other hand, the
second term is square of the reconstruction error in H1-norm, therefore this
might result in a higher rate. Indeed, this heuristics is validated from Theo-
rem 4.6 and Corollary 4.10, where we observe that the prediction norm has a
faster convergence rate than the reconstruction error in H1-norm.

The assumptions on the non-linear operator A (see Assumption 5, and the
condition (4.5)) allow us to estimate the reconstruction error bounds inH1-norm
for Hölder source condition (φ(t) = tr) corresponds to the range 1

2 ≤ r. It is well-
known that Tikhonov regularization has the saturation effect at r = 1 (since
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it has qualification 1), therefore we cannot improve the rates of convergence
beyond r = 1. From (4.6) we observe that for the prediction error we have
additional smoothness 1/2 in the bound on the right-hand side, therefore we
only estimate the prediction error for r = 1

2 . For the higher smoothness ( 12 ≤ r),
the rates for the prediction error cannot be improved.

4.2. Lower rates of convergence

In this section, we discuss the lower rates of convergence for non-linear sta-
tistical inverse problems over a subclass of the probability measures Pφ,b. The
Kullback-Leibler information and Fano inequalities are the main ingredients in
the analysis of the estimates for the minimum possible error. The Kullback-
Leibler divergence between two probability measures ρ1 and ρ2 is defined as

K(ρ1, ρ2) :=

∫
Z

log(g(z))dρ1(z),

where g is the density of ρ1 with respect to ρ2, that is, ρ1(E) =
∫
E
g(z)dρ2(z)

for all measurable sets E.
To obtain the lower bound, we define a family of probability measures ρf

parameterized by suitable vectors f ∈ D(A) ⊂ H1. We assume that Y is finite-
dimensional space with a basis {vj}dj=1. Then for each f ∈ D(A) ⊂ H1, we
associate the probability measure on the sample space Z:

ρf (x, y) :=
1

2dJ

d∑
j=1

(
aj(x)δy+dJvj + bj(x)δy−dJvj

)
ν(x), (4.7)

where aj(x) = J−〈A(f),Kxvj〉H2 , bj(x) = J+〈A(f),Kxvj〉H2 , J = 4κ‖A(f)‖H2

and δy−ξ denotes the Dirac measure on Y with unit mass at y = ξ.
Following the analysis of Caponnetto et al. [5] and DeVore et al. [9] we

establish the lower rates of convergence for the non-linear statistical inverse
problems that can be attained by any learning algorithm. The main steps are
the following. To obtain the lower rates of convergence for learning algorithms,
we generate Nε-vectors (f1, . . . , fNε) depending on ε < ε0 for some ε0 > 0,
with Nε → ∞ as ε → 0 such that any two of these vectors are separated
by constant times ε with respect to the norm in Hilbert space H1 (Proposi-
tion D.2 (i)). Then we construct the probability measures ρi = ρfi from (4.7),
parameterized by fi’s (1 ≤ i ≤ Nε) with small Kullback-Leibler divergence to
each other (Proposition D.2 (ii)) and are therefore statistically close. Finally,
we obtain the lower rates of convergence on applying [9, Lemma 3.3] using the
Kullback-Leibler information.

Assumption 8. For the lower rates of convergence, we assume the following
conditions on the non-linear operator A:

(i) A is Fréchet differentiable.
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(ii) At the initial guess f̄ , we denote

‖A′(f̄)‖H1→H2 =: L.

(iii) There exists γ ≥ 0 such that for all f, f̃ ∈ D(A) ⊂ H1 in a sufficiently
large ball around f̄ we have,∥∥∥IK {

A′(f̃)−A′(f)
}∥∥∥

HS
≤ γ‖f̃ − f‖H1 .

(iv) The function φ is a continuous increasing function with φ(0)= 0 and θ(t) =
φ(t2) is Lipschitz continuous with the constant Lθ. For the operators T =
A′(f)∗I∗KIKA′(f) and T = A′(f̄)∗I∗KIKA′(f̄):

φ(T ) = Rfφ(T ) and ‖Rf − I‖L(H1)
≤ ζ

∥∥f − f̄
∥∥
H1

,

where f belongs to the sufficiently large ball, Rf : H1 → H1 is a family of
bounded linear operators and ζ is a positive constant.

(v) The eigenvalues (tn)n∈N of the operator T = A′(f̄)∗I∗KIKA′(f̄) follow the
polynomial decay: For fixed positive constants α, β, and b > 1,

αn−b ≤ tn ≤ βn−b ∀n ∈ N.

In contrast to upper rates of convergence for Tikhonov regularization, we
require the additional assumption (iv) on A for the lower rates. This condition
is the generalization of the following condition used in [13] for the Landweber
iteration:

A′(f) = RfA
′(f̄) and ‖Rf − I‖L(H1)

≤ ζ
∥∥f − f̄

∥∥
H1

, f ∈ Bd(f̄),

which implies that the Fréchet derivative of A is Lipschitz continuous in Bd(f̄).
Note that in the linear case Rf ≡ I; therefore, Assumption 8 (iv) may be
interpreted as a further restriction on the “non-linearity” of A.

The proof of the following theorem will be given in Appendix D.

Theorem 4.11. Let z be i.i.d. samples drawn according to the probability mea-
sure ρ ∈ Pφ,b under the hypothesis dim(Y ) = d < ∞. Then under Assump-

tions 3, 8 for Ψ(t) = t
1
2+

1
2bφ(t), the estimator f l

z corresponding to any learning
algorithm l (z → f l

z ∈ H1) converges with the following lower rate:

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Pz∈Zm

{
‖f l

z − fρ‖H1 > τφ
(
Ψ−1

(
m−1/2

))}
= 1,

where A denotes the set of all learning algorithms l : z → f l
z.

We obtain the following corollary as a consequence of Theorem 4.11.

Corollary 4.12. Under the same assumptions of Theorem 4.11, for any learn-
ing algorithm with Hölder’s source condition fρ ∈ Ω(ρ, φ,R), φ(t) = tr, the
lower rates of convergence can be described as

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Pz∈Zm

{
‖f l

z − fρ‖H1 > τm− br
2br+b+1

}
= 1.
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The choice of parameter λ(m) is said to be optimal if, for this choice of
the parameter, the upper rate of convergence coincides with the minimax lower
rate. For the class of probability measures Pφ,b with the parameter choice λ =
Ψ−1(m−1/2), Theorem 4.8 shares the upper rate of convergence with the lower
rate of convergence in Theorem 4.11. Therefore the choice of the parameter is
optimal.

5. Discussion

Our analysis guarantees the consistency of the Tikhonov regularization algo-
rithm and provides a finite sample bound for non-linear statistical inverse prob-
lems in vector-valued setting, therefore the results can be applied to the multi-
task learning problem. We also discussed the asymptotic worst-case analysis for
any learning algorithm in this setting, showing optimality in the minimax sense
on a suitable class of priors. The rates of convergence presented in Section 4
are asymptotic in nature, i.e., all parameters are fixed as m → ∞. This pro-
vides a mathematical foundation for nonlinear inverse problems in the statistical
learning framework. The considered framework generalizes previously proposed
settings for different learning schemes: direct, linear inverse learning problem.

Impact of the effective dimension

The upper rates were represented in terms of the index function φ from As-
sumption 6, and the effective dimension N (λ) of the governing operator LK .
This is seen from the basic probabilistic bound, given in Proposition A.3, and
this holds regardless of the fact that λ → N (λ) decays at a polynomial rate.
However, the construction for the lower bounds makes use of this constraint.
Also, the Corollaries 4.9 and 4.10 can be given a handy representation of the
upper bounds under power type decay.

Saturation effect

In Theorem 4.6 we highlighted the upper rates, both for the errors ‖fz,λ − fρ‖H1
,

and ‖IK {A(fz,λ)−A(fρ)} ‖L 2(X,ν;Y ) in the limiting case when smoothness is

given through the index function φ(t) =
√
t; and these differ by a factor

√
λ. We

emphasize that for higher smoothness φ(t) =
√
ψ(t) with an additional index

function ψ this cannot be expected to remain valid. This is known from the
linear case and is due to the saturation effect of Tikhonov regularization.

Relation to classical regularization theory

Within the present study, the smoothness assumption 6 is based on the com-
posed operator B = IK ◦ [A′(fρ)] through T = B∗B. This is in contrast to clas-
sical regularization theory, when the corresponding operator is [A′(fρ)]

∗
A′(fρ).
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By assuming an appropriate link condition between the operators [A′(fρ)]
∗
A′(fρ)

and T , one can transfer the obtained rates results from the present context to
the standard ones and we refer to the corresponding calculus established in [23].

Parameter choice

The a-priori parameter choice considered in our analysis depends on the smooth-
ness parameters b, φ. In practice, a posteriori parameter choice rule (data-
dependent) for the regularization parameter λ such as the discrepancy principle,
balancing principle, quasi-optimality principle with theoretical justification is re-
quired, so that we can turn our results to data-dependent minimax adaptivity
even in the absence of a-priori knowledge of the regularity parameters.

Approximate solution of Tikhonov regularization

For non-linear mappings, the solution of the Tikhonov regularization scheme (1.3)
is not explicitly given. Therefore, in practice, we need to find an approximate
solution of the considered scheme. Suppose H1 is a reproducing kernel Hilbert
space corresponding the kernel K1, then the general representer theorem (see,
e.g. [35, Theorem 16.1]) holds for the scheme (1.3). By this theorem, the solution
of the scheme is given by

fz,λ =
m∑
i=1

K(·, xi)ci, xi ∈ X, ci ∈ Y.

Thus, in this case, by using this representation, the infinite dimensional mini-
mization problem (1.3) reduces to a finite dimensional minimization problem.
Hence, we only need to approximate the coefficients {ci}mi=1. To this end, we
can apply the gradient descent or stochastic gradient approach to approximate
the solution of (1.3), being understood that the theoretical convergence of such
schemes remains a challenging point due to the potential existence of local min-
ima.

Appendix A: Notation and probabilistic estimates

Here we introduce some relevant operators.

Definition A.1 (Sampling operator). For a discrete ordered set x = (xi)
m
i=1,

the sampling operator Sx : H2 → Y m is defined as

Sx(g) := (g(x1), . . . , g(xm)).

We equip the product Hilbert space Y m with the scalar product〈(yi)mi=1,

(y′i)
m
i=1〉 = 1

m

∑m
i=1 〈yi, y′i〉, and denote the associated Hilbert norm ‖y‖2m =
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1
m

∑m
i=1 ‖yi‖

2
Y for y = (y1, . . . , ym). Then the adjoint S∗

x : Y m → H2 is given
by

S∗
xc =

1

m

m∑
i=1

Kxici, ∀c = (c1, . . . , cm) ∈ Y m.

Under Assumption 3, the sampling operator is bounded by κ, since

‖Sxg‖2m =
1

m

m∑
i=1

‖g(xi)‖2Y =
1

m

m∑
i=1

∥∥K∗
xi
g
∥∥2
Y
≤ κ2 ‖g‖2H2

.

The sampling versions are the operators Bx := Sx ◦ (A′(fρ)) and Tx :=
B∗

xBx. The operator Tx is positive and self-adjoint. Under Assumptions 3, 5
(ii), the operator Bx is bounded and satisfies ‖Bx‖H1→Y m ≤ κL. We also recall

that LK = I∗KIK for the canonical injection map IK : H2 → L 2(X, ν;Y )
and T = B∗B for B = IK ◦ [A′(fρ)]. These operators will be used in our
analysis.

The following inequality is based on the results of Pinelis and Sakhanenko
[28].

Proposition A.2. Let H be a real separable Hilbert space and ξ be a random
variable on (Ω, ρ) with values in H. If there exist two constant Q and S satisfying

Eω {‖ξ(ω)− Eω(ξ)‖nH} ≤ 1

2
n!S2Qn−2 ∀n ≥ 2,

then for any 0 < η < 1 and for all m ∈ N,

P

{
(ω1, . . . , ωm) ∈ Ωm :

∥∥∥∥∥ 1

m

m∑
i=1

ξ(ωi)− Eω(ξ)

∥∥∥∥∥
H

≤ 2

(
Q

m
+

S√
m

)
log

(
2

η

)}
≥ 1− η.

In the following proposition, we measure the effect of random sampling using
Assumption 2. The quantities describe the probabilistic estimates of the pertur-
bation measure due to random sampling. These bounds are standard in learning
theory, and can be found in [4, Proposition 5.2, 5.5].

Proposition A.3. Let z be i.i.d. random samples with Assumptions 1–3, then
for m ∈ N and 0 < η < 1, each of the following estimates holds with the
confidence 1− η, ∥∥∥∥∥ 1

m

m∑
i=1

(LK + λI)−1/2Kxi(yi −A(fρ)(xi))

∥∥∥∥∥
H2

≤2

(
κM

m
√
λ
+

√
Σ2N (λ)

m

)
log

(
2

η

)
,

∥∥∥∥∥ 1

m

m∑
i=1

Kxi(yi −A(fρ)(xi))

∥∥∥∥∥
H2

≤ 2

(
κM

m
+

κΣ√
m

)
log

(
2

η

)
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and

‖S∗
xSx − LK‖L2(H2) ≤ 2

(
κ2

m
+

κ2

√
m

)
log

(
2

η

)
.

Proposition A.4. For m ∈ N and 0 < η < 1, under Assumptions 3, the
following estimates hold with the confidence 1− η/2,

‖S∗
xSx − LK‖L2(H2) ≤

λ

2
,

‖(S∗
xSx + λI)−1(LK + λI)‖L2(H2) ≤ 2

and

‖(S∗
xSx + λI)−1/2(LK + λI)1/2‖L2(H2) ≤

√
2

provided that

8κ2 log(4/η) ≤
√
mλ. (A.1)

The proofs of the first and second expressions are the content of [29, The-
orem 3.1]. The third expression is obtained from the second using the Cordes
inequality [4, Prop. 5.7].

Appendix B: Proof of the consistency results

Throughout the analysis we use the following identity in the real Hilbert spaceH:

‖f − h‖2H − ‖f − g‖2H = ‖g − h‖2H − 2 〈f − g, h− g〉H f, g, h ∈ H.

Proof of Theorem 3.1. By the definition of fz,λ as a solution to the minimization
problem (1.3), we get the inequality

‖SxA(fz,λ)− y‖2m + λ‖fz,λ − f̄‖2H1
≤ ‖SxA(fρ)− y‖2m + λ‖fρ − f̄‖2H1

.

It follows that

‖Sx {A(fz,λ)−A(fρ)}‖2m + λ‖fz,λ − f̄‖2H1
(B.1)

≤2 〈Sx {A(fρ)−A(fz,λ)} , SxA(fρ)− y〉m + λ‖fρ − f̄‖2H1
.

Consequently, we get

‖IK {A(fz,λ)−A(fρ)}‖2L 2(X,ν;Y ) + λ‖fz,λ − f̄‖2H1
(B.2)

≤2 〈A(fρ)−A(fz,λ), S
∗
x{SxA(fρ)− y}〉H2

+ λ‖fρ − f̄‖2H1

+ 〈(LK − S∗
xSx) {A(fz,λ)−A(fρ)} , A(fz,λ)−A(fρ)〉H2

and

‖fz,λ − f̄‖2H1
≤ 2

λ
‖A(fz,λ)−A(fρ)‖H2‖S∗

x{SxA(fρ)− y}‖H2 + ‖fρ − f̄‖2H1
.
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Under the Lipschitz continuity of the operator A (Assumption 4) (i.e.,
‖A(f)−A(fρ)‖H2

≤ L ‖f − fρ‖H1
for f ∈ H1) and triangle inequality we get,

‖fz,λ − f̄‖2H1

≤2L

λ
(‖fz,λ − f̄‖H1 + ‖f̄ − fρ‖H1)‖S∗

x{SxA(fρ)− y}‖H2 + ‖fρ − f̄‖2H1

which implies (
‖fz,λ − f̄‖H1 −

L

λ
‖S∗

x{SxA(fρ)− y}‖H2

)2

≤
(
‖fρ − f̄‖H1 +

L

λ
‖S∗

x{SxA(fρ)− y}‖H2

)2

.

Then it gives

‖fz,λ − f̄‖H1 ≤ 2L

λ
‖S∗

x{SxA(fρ)− y}‖H2 +
∥∥fρ − f̄

∥∥
H1

. (B.3)

Using the triangle inequality ‖fz,λ − fρ‖H1
−
∥∥f̄ − fρ

∥∥
H1

≤
∥∥fz,λ − f̄

∥∥
H1

we
get

‖fz,λ − fρ‖H1 ≤ 2L

λ
‖S∗

x{SxA(fρ)− y}‖H2 + 2
∥∥fρ − f̄

∥∥
H1

.

Now squaring both sides and taking expectation with respect to z we obtain,

Ez

(
‖fz,λ − fρ‖2H1

)
≤ 8L2

λ2
Ez

(
‖S∗

x{SxA(fρ)− y}‖2H2

)
+ 8

∥∥fρ − f̄
∥∥2
H1

. (B.4)

Under Assumptions 1, 3 and σ2
ρ = Ez

(
‖y −A(fρ)(x)‖2Y

)
< ∞ we have that

Ez

(
‖S∗

x{SxA(fρ)− y}‖2H2

)
(B.5)

=
1

m2
Ez

⎛⎝ m∑
i,j=1

〈
Kxi {yi −A(fρ)(xi)} ,Kxj {yj −A(fρ)(xj)}

〉
H2

⎞⎠
=

1

m2
Ez

(
m∑
i=1

‖Kxi {yi −A(fρ)(xi)}‖2H2

)

≤ κ2

m2
Ez

(
m∑
i=1

‖yi −A(fρ)(xi)‖2Y

)
=

κ2σ2
ρ

m
,

and from [36, Lemma 1] we have,

Ex

(
‖S∗

xSx − LK‖2L(H2)

)
≤ κ2

m
. (B.6)

Using (B.5) in (B.4) we get,

Ez

(
‖fz,λ − fρ‖2H1

)
≤

8κ2σ2
ρL

2

λ2m
+ 8‖fρ − f̄‖2H1

(B.7)
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from which with the parameter choice rule (3.1) we deduce that

lim sup
m→∞

Ez

(
‖fz,λ − fρ‖2H1

)
≤ 8‖fρ − f̄‖2H1

. (B.8)

Hence, we observe that a2 := sup
m∈N

Ez

(
‖fz,λ − fρ‖2H1

)
< ∞. Now, we show

that there exists a subsequence of (fz,λ)m∈N, denoted by (fz(k),λ)k∈N, such that

Ez(k)

(〈
fz(k),λ − fρ, f

〉
H1

)
→

〈
f̃ , f

〉
H1

as k → ∞ (B.9)

for some f̃ ∈ H1 and for all f ∈ H1.
We define the sequence (ξm) of random variables ξm = fz,λ − fρ ∈ H1.

Since Ez(‖ξm‖2H1
) ≤ a2, Banach-Alaoglu-Bourbaki theorem and the fact thatH1

is a Hilbert space imply that, possible passing to a subsequence ξk = fz(k),λ −
fρ ∈ H1, there exists ξ∗ ∈ H1 such that

lim
k→∞

Ez(k)

(
〈ξk, ξ〉H1

)
= Ez(k)

(
〈ξ∗, ξ〉H1

)
, ∀ξ ∈ H1.

Define f̃ = Ez(k)(ξ
∗) ∈ H1 and, given f ∈ H1, choose ξ = f be the constant

random variable, then, since the scalar product commutes with expectation,

lim
k→∞

Ez(k)

(〈
fz(k),λ − fρ, f

〉
H1

)
=
〈
f̃ , f

〉
H1

which is (B.9).
From inequality (B.2) we get:

Ez

(
‖IK{A(fz,λ)−A(fρ)}‖2L 2(X,ν;Y )

)
+ λEz

(
‖fz,λ − f̄‖2H1

)
≤2Ez (‖S∗

x{SxA(fρ)− y}‖H2‖A(fz,λ)−A(fρ)‖H2)

+ Ez

(
‖S∗

xSx − LK‖L(H2)‖A(fz,λ)−A(fρ)‖2H2

)
+ λ‖fρ − f̄‖2H1

≤2
[
Ez

(
‖S∗

x{SxA(fρ)− y}‖2H2

)]1/2 [
Ez

(
‖A(fz,λ)−A(fρ)‖2H2

)]1/2
+
[
Ez

(
‖S∗

xSx −LK‖2L(H2)

)]1/2[
Ez

(
‖A(fz,λ)−A(fρ)‖4H2

)]1/2
+λ‖fρ − f̄‖2H1

.

Under the Lipschitz continuity of A, from (B.5), (B.6), (B.8) with the pa-
rameter choice rule (3.1), we obtain

Ez

(
‖IK{A(fz,λ)−A(fρ)}‖2L 2(X,ν;Y )

)
→ 0 as m → ∞. (B.10)

We have D(A) is weakly closed and A : H1 → H2 is Lipschitz continuous,
this implies that IKA : H1 → L 2(X, ν;Y ) is weakly sequentially closed.

Now from (B.9), (B.10) we obtain a subsequence again denoted by (fz(k),λ)k∈N

such that
〈
fz(k),λ − fρ, f

〉
H1

→
〈
f̃ , f

〉
H1

for some f̃ ∈ H1, for all f ∈ H1

and ‖IK{A(fz(k),λ) − A(fρ)}‖L 2(X,ν;Y ) → 0 as k → ∞ almost surely. The
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assumed injectivity of the mappings IK and A yields the injectivity of the com-
position IK ◦A. Therefore the weak closedness of IK ◦A implies that f̃ = 0.

Our next aim is to prove the convergence (3.2). By contradiction, assume
that there exists an ε > 0 and a subsequence (fz(k),λ)k∈N such that

Ez(k)

(
‖fz(k),λ − fρ‖2H1

)
≥ ε for all k ∈ N. (B.11)

We have the identity

‖fz(k),λ−fρ‖2H1
= ‖fz(k),λ− f̄‖2H1

+‖fρ− f̄‖2H1
+2〈f̄−fz(k),λ, fρ− f̄〉H1 . (B.12)

Using the same arguments as above, we can again find a further subse-
quence (fz(k),λ)k∈N such that Ez

〈
fz(k),λ − fρ, f

〉
→ 0 for all f ∈ H1 as k → ∞.

Hence from the inequalities (B.8) and (B.12), we obtain

lim sup
k→∞

Ez(k)

(
‖fz(k),λ − fρ‖2H1

)
≤2‖fρ − f̄‖2H1

+ 2 lim sup
k→∞

Ez(k)

(
〈f̄ − fz(k),λ, fρ − f̄〉H1

)
=2 lim sup

k→∞
Ez(k)

(
〈fρ − fz(k),λ, fρ − f̄〉H1

)
= 0,

which contradicts (B.11). This completes the proof of the desired result (3.2).

Proof of Theorem 3.4. From the inequality (B.3) and Proposition A.3 under
Assumptions 1–4, the following inequality holds with the confidence 1− η/2:

‖fz,λ − f̄‖H1 ≤ 4κ(M +Σ)L

λ
√
m

log

(
4

η

)
+ ‖fρ − f̄‖H1 . (B.13)

Choosing the parameter η(m) = 4/m2, we obtain

Pz∈Zm

{
Em :

∥∥fz,λ − f̄
∥∥
H1

> 8κL(M +Σ)
logm

λ
√
m

+
∥∥fρ − f̄

∥∥
H1

}
≤ 2

m2
.

Therefore, the sum of the probabilities of the events Em is finite:

∞∑
m=1

Pz∈Zm (Em) ≤
∞∑

m=1

2

m2
< ∞.

Hence applying the Borel-Cantelli lemma we get,

Pz

(
lim sup
m→∞

Em

)
= 0

from which with the parameter choice rule (3.3) we deduce that

lim sup
m→∞

‖fz,λ − f̄‖H1 ≤ ‖fρ − f̄‖H1 (B.14)
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almost surely. Note that fz,λ is finite almost surely due to (B.14). Hence, there

exists a subsequence of (fz,λ)m∈N which weakly converges to some f̃ . We denote

the subsequence by (fz(k),λ)k∈N, i.e., fz(k),λ ⇀ f̃ . The next step of the proof is

to show that f̃ = fρ.
From inequality (B.2) and Proposition A.3 under Assumptions 1–3, the fol-

lowing inequality holds with confidence 1− η,

‖IK{A(fz,λ)−A(fρ)}‖2L 2(X,ν;Y )

≤4κ(M +Σ)√
m

‖A(fz,λ)−A(fρ)‖H2 log

(
4

η

)
+

4κ2

√
m
‖A(fz,λ)−A(fρ)‖2H2

log

(
4

η

)
+ λ‖fρ − f̄‖2H1

.

Using the arguments similar to above, with the parameter choice rule (3.3)
we obtain ‖IK{A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) → 0 almost surely. Now fz(k),λ ⇀ f̃
in H1 and ‖IK{A(fz(k),λ) − A(fρ)}‖L 2(X,ν;Y ) → 0 as k → ∞ almost surely,
hence the weak closedness and one-to-one assumption on assumption on IKA
imply that f̃ = fρ.

Our next aim is to prove the convergence (3.4). By contradiction, assume
that there exists an ε > 0 and a subsequence (fz(k),λ)k∈N such that

‖fz(k),λ − fρ‖2H1
≥ ε. (B.15)

We have the identity

‖fz(k),λ−fρ‖2H1
= ‖fz(k),λ− f̄‖2H1

+‖fρ− f̄‖2H1
+2〈f̄−fz(k),λ, fρ− f̄〉H1 . (B.16)

Using the same arguments as above, we can again find a further subse-
quence (fz(k),λ)k∈N which weakly converges to fρ. Hence from the inequali-
ties (B.14) and (B.16), we obtain almost surely,

lim sup
m→∞

‖fz(k),λ − fρ‖2H1
≤ 2‖fρ − f̄‖2H1

+ 2 lim sup
m→∞

〈f̄ − fz(k),λ, fρ − f̄〉H1

= 2 lim sup
m→∞

〈fρ − fz(k),λ, fρ − f̄〉H1 = 0,

which contradicts (B.15). This completes the proof of the desired result (3.4).

Appendix C: Proof of upper rates

Regularization schemes given by an explicit regularization formula for direct
and linear inverse learning problems are well-studied in the reproducing ker-
nel Hilbert space setting [29, 4]. Optimal convergence rates were established for
these kernel methods. In contrast, the main difficulty for the problem considered
here arises from the nonlinearity of the operator A. Because of this, the mini-
mizer in the Tikhonov regularization scheme is not explicit, and in the proofs we
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have to rely only on optimality properties of the variational formulation (1.3).
For classical nonlinear inverse problems [11] the convergence analysis is devel-
oped for 2-step approaches. The approach in this study finds its difficulty due
to the random sampling and then the empirical error based on the samples.
To achieve the optimal convergence rates, the error bound should be bounded
in terms of Se =

∥∥(LK + λI)−1/2S∗
x(SxA(fρ)− y)

∥∥
H2

which then yields error
bounds in terms of effective dimension, allowing us to achieve optimal conver-
gence rates.

We introduce the operator Ξ := Sx(S
∗
xSx + λI)−1S∗

x and the element Δ :=
SxA(fρ)− y.

Proof of Theorem 4.6. By the definition of fz,λ as a solution to the minimization
problem (1.3), the inequality holds true:

‖SxA(fz,λ)− y‖2m + λ
∥∥fz,λ − f̄

∥∥2
H1

≤ ‖SxA(fρ)− y‖2m + λ
∥∥fρ − f̄

∥∥2
H1

which implies

‖Sx {A(fz,λ)−A(fρ)}‖2m + λ ‖fz,λ − fρ‖2H1

≤2λ
〈
fρ − f̄ , fρ − fz,λ

〉
H1

+ 2 〈A(fρ)−A(fz,λ), S
∗
xΔ〉H2

.

Under the conditions (i) and (iii) of Assumption 5, for f ∈ Bd(fρ) we get

A(f) = A(fρ) +A′(fρ)(f − fρ) + r(f) (C.1)

holds with
‖IKr(f)‖L 2(X,ν;Y ) ≤

γ

2
‖f − fρ‖2H1

(C.2)

and

‖r(f)‖H2
= ‖A(f)−A(fρ)−A′(fρ)(f − fρ)‖H2

(C.3)

=

∥∥∥∥∫ 1

0

{A′ (fρ + t(f − fρ))−A′(fρ)} (f − fρ) dt

∥∥∥∥
H2

≤
∫ 1

0

‖{A′ (fρ + t(f − fρ))−A′(fρ)}‖H1→H2
‖f − fρ‖H1

dt ≤ 2L ‖f − fρ‖H1
.

Note that under condition (4.4), from inequality (B.13) we get fz,λ ∈ Bd(fρ)
with confidence 1 − η/2 for d = 4

∥∥fρ − f̄
∥∥
H1

, therefore using the linearization

of the non-linear operator A in (C.1) at fz,λ and under Assumption 6 we obtain,

‖IK {A(fz,λ)−A(fρ)}‖2L 2(X,ν;Y ) + λ ‖fz,λ − fρ‖2H1

≤2λ
〈
T 1/2v, fρ − fz,λ

〉
H1

+ 2
〈
A(fρ)−A(fz,λ), LK(LK + λI)−1S∗

xΔ
〉
H2

+ 2λ
〈
A(fρ)−A(fz,λ), (LK + λI)−1S∗

xΔ
〉
H2

+ 〈(LK − S∗
xSx) {A(fz,λ)−A(fρ)} , A(fz,λ)−A(fρ)〉H2



2826 A. Rastogi et al.

≤2λ
〈
v, T 1/2(fρ − fz,λ)

〉
H1

+ 2Se ‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y )

+ 2
√
λLSe ‖fz,λ − fρ‖H1

+ I1 ‖A(fz,λ)−A(fρ)‖2H2

≤2λR ‖IK {A(fρ)−A(fz,λ) + r(fz,λ)}‖L 2(X,ν;Y )

+ 2Se ‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y )

+ 2
√
λLSe ‖fz,λ − fρ‖H1

+ L2I1 ‖fz,λ − fρ‖2H1

≤2 (λR+ Se) ‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) + 2
√
λLSe ‖fz,λ − fρ‖H1

+ L2I1 ‖fz,λ − fρ‖2H1
+ λγR ‖fz,λ − fρ‖2H1

,

where I1 = ‖S∗
xSx − LK‖L(H2)

and Se =
∥∥(LK + λI)−1/2S∗

x(SxA(fρ)− y)
∥∥
H2

.

It gives (
‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) − λR− Se

)2

+

(√
λγ1 ‖fz,λ − fρ‖H1

− L
√
γ1

Se

)2

≤ (λR+ Se)
2
+

L2

γ1
S2
e

where γ1 = 1− γR− L2I1/λ. This implies

‖IK {A(fz,λ)−A(fρ)}‖L 2(X,ν;Y ) ≤ 2Rλ+

(
2 +

L
√
γ1

)
Se

and

‖fz,λ − fρ‖H1
≤ 1

√
γ1

R
√
λ+

(
1

√
γ1

+
2L

γ1

)
Se√
λ
.

Now under Assumptions 1–3 using the estimates of Proposition A.3, the
inequality (4.4) and (4.5), we obtain that γ1 = 1/2 − γR > 0 and with the
probability 1− η,

‖IK {A(fz,λ)−A(fρ)} ‖L 2(X,ν;Y )

≤2Rλ+
2(L+ 2

√
γ1)√

γ1

(
κM

m
√
λ
+

√
Σ2N (λ)

m

)
log

(
4

η

)

and

‖fz,λ − fρ‖H1 ≤ 1
√
γ1

R
√
λ+

2(2L+
√
γ1)

γ1

(
κM

mλ
+

√
Σ2N (λ)

mλ

)
log

(
4

η

)
.

which implies the desired result.
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For the analysis of Tikhonov regularization under general source condition, we
consider the linearized and population version (i.e. using theoretical expectation
under ρ) of the regularization scheme (1.3):

f l
λ := argmin

f∈H1

{∫
Z

‖A(fρ)(x) +A′(fρ)(f − fρ)(x)− y‖2Y dρ(x, y) + λ‖f − f̄‖2H1

}
.

Under Assumption 1, using the fact E(f) :=
∫
Z
‖A(fρ)(x) + A′(fρ)(f −

fρ)(x)− y‖2Y dρ(x, y) = ‖T 1/2(f − fρ)‖2H1
+ E(fρ), we get

f l
λ = (T + λI)−1(Tfρ + λf̄). (C.4)

In the following proposition, we estimate the error bound of approximation
error f l

λ − fρ which describes the complexity of the true solution fρ. The ap-
proximation error is independent of the samples z.

Proposition C.1. Suppose Assumptions 1, 6 holds true. Then under the as-
sumption that φ(t) and t/φ(t) are non-decreasing functions, we have∥∥f l

λ − fρ
∥∥
H1

≤ Rφ(λ).

Proof. From the definition of f l
λ in (C.4) and Assumption 6 we get,

fρ − f l
λ = λ(T + λI)−1φ(T )v.

Under the assumption that φ(t) and t/φ(t) are non-decreasing functions, we
obtain, ∥∥f l

λ − fρ
∥∥
H1

≤ Rφ(λ).

Under Assumption 6 from Proposition C.1, we observe that f l
λ ∈ D(A) ∩

Bd(fρ), provided λ is sufficiently small.
In the following theorem, we estimate the quantity f l

λ − fz,λ and use the
bound of the approximation error from the above proposition to find the error
bound for fρ − fz,λ.

Proof of Theorem 4.7. The main idea of the proof is to compare fz,λ and f l
λ.

From the definition of fz,λ in (1.3), we have

‖SxA(fz,λ)− y‖2m + λ‖fz,λ − f̄‖2H1
≤
∥∥SxA(f

l
λ)− y

∥∥2
m
+ λ‖f l

λ − f̄‖2H1
. (C.5)

Using the linearization of operator A in (C.1) we reexpress the inequal-
ity (C.5) as follows,

‖fz,λ − f l
λ‖2H1

≤ 2〈f l
λ − fz,λ, f

l
λ − f̄〉H1 +

1

λ

{
‖Bx(f

l
λ − fρ) + Δ + Sx(r(f

l
λ))‖2m

−‖Bx(fz,λ − fρ) + Δ + Sx(r(fz,λ))‖2m
}
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Now we decompose the second and third term in the right-hand side as fol-
lows:

‖fz,λ − f l
λ‖2H1

≤2〈f l
λ − fz,λ, f

l
λ − f̄〉H1 +

1

λ

{
‖ΞΔ+ Sx(r(f

l
λ))‖2m

+2〈ΞΔ+ Sx(r(f
l
λ)), Bx(f

l
λ − fρ) + (I − Ξ)Δ〉m

−‖Bx(fz,λ − f l
λ) + ΞΔ+ Sx(r(fz,λ))‖2m

−2〈Bx(fz,λ − f l
λ) + ΞΔ+ Sx(r(fz,λ)), Bx(f

l
λ − fρ) + (I − Ξ)Δ〉m

}
.

The fourth term in the right-hand side is negative, therefore it can be ignored,
leading to:

‖fz,λ − f l
λ‖2H1

(C.6)

≤ 1

λ

{
2〈f l

λ − fz,λ, λ(f
l
λ − f̄) + Tx(f

l
λ − fρ) +B∗

x(I − Ξ)Δ〉H1

+ 2〈r(f l
λ)− r(fz,λ), S

∗
xBx(f

l
λ − fρ) + S∗

x(I − Ξ)Δ〉H2

+ ‖ΞΔ+ Sx(r(f
l
λ))‖2m}.

The definition of f l
λ in (C.4) implies that

λ(f l
λ − f̄) = T (fρ − f l

λ). (C.7)

Therefore, from inequality (C.6), using Assumption 5 (ii) and (C.7) we get:

‖fz,λ − f l
λ‖2H1

≤ 1

λ

{
2〈f l

λ − fz,λ, (Tx − T )(f l
λ − fρ) +B∗

x(I − Ξ)Δ〉H1 (C.8)

+ 2〈r(f l
λ)− r(fz,λ), S

∗
xBx(f

l
λ − fρ) + S∗

x(I − Ξ)Δ〉H2

+ 2‖ΞΔ‖2m + 2‖Sx(r(f
l
λ))‖2m}

≤ 2

λ

{
〈f l

λ − fz,λ, (Tx − T )(f l
λ − fρ)

+ λA′(fρ)
∗(S∗

xSx + λI)−1S∗
xΔ〉H1

+ 〈r(f l
λ)− r(fz,λ), (S

∗
xSx − LK)A′(fρ)(f

l
λ − fρ)

+ λ(S∗
xSx + λI)−1S∗

xΔ〉H2

+ 〈IK{r(f l
λ)− r(fz,λ)}, B(f l

λ − fρ)〉L 2(X,ν;Y ) + ‖ΞΔ‖2m
+ ‖IKr(f l

λ)‖2L 2(X,ν;Y ) + 〈(S∗
xSx − LK)r(f l

λ), r(f
l
λ)〉H2}

≤ 2

λ

{∥∥fz,λ − f l
λ

∥∥
H1

(
L2I1Ae +

√
λLI2Se

)
+
∥∥r(f l

λ)− r(fz,λ)
∥∥
H2

(
LI1Ae +

√
λI2Se

)
+ ‖IK{r(f l

λ)− r(fz,λ)}‖L 2(X,ν;Y )‖B(f l
λ − fρ)‖L 2(X,ν;Y )

+I22S2
e + ‖IKr(f l

λ)‖2L 2(X,ν;Y ) + I1‖r(f l
λ)‖2H2

}
,
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where Ae =
∥∥f l

λ − fρ
∥∥
H1

, Se =
∥∥(LK + λI)−1/2S∗

x(SxA(fρ)− y)
∥∥
H2

, I1 =

‖S∗
xSx − LK‖L(H2) and I2 = ‖(S∗

xSx + λI)−1/2(LK + λI)1/2‖L(H2).

We have ‖Bf‖L 2(X,ν;Y ) ≤
∥∥(T + λI)1/2f

∥∥
H1

, f ∈ D(A) ⊂ H1, therefore we
obtain,∥∥B(fρ − f l

λ)
∥∥

L 2(X,ν;Y )
= λ

∥∥∥B(T + λI)−1T 1/2w
∥∥∥

L 2(X,ν;Y )
≤ λ ‖w‖H1

.

(C.9)
Using the inequalities (C.2), (C.3), (C.9) in (C.8) we obtain,

‖fz,λ − f l
λ‖2H1

≤ 2

λ

{
λγ ‖w‖H1

∥∥fz,λ − f l
λ

∥∥2
H1

+ δ1‖fz,λ − f l
λ‖H1 + δ2

}
,

where δ1 = 3L2I1Ae + 3
√
λLI2Se and δ2 = I22S2

e + 4
√
λLI2AeSe + γ2A4

e/4 +
3γλ ‖w‖H1

A2
e/2 + 8L2I1A2

e.
Under the condition (4.5) we have,

‖fz,λ − f l
λ‖2H1

≤ 2

γ2λ

{
δ1‖fz,λ − f l

λ‖H1 + δ2
}
,

where γ2 = 1− 2γ ‖w‖H1
.

We have, (
‖fz,λ − f l

λ‖H1 −
δ1
λγ2

)2

≤ δ21
λ2γ2

2

+
2δ2
λγ2

,

which implies

‖fz,λ − f l
λ‖H1 ≤ 2δ1

λγ2
+

√
2δ2
λγ2

.

Using the triangle inequality ‖fz,λ − fρ‖H1
≤
∥∥fz,λ − f l

λ

∥∥
H1

+
∥∥f l

λ − fρ
∥∥
H1

we obtain,

‖fz,λ − fρ‖H1

≤
{
c1 + c2

2I1
λ

+ c3

√
2I1
λ

+ c4

√
I2
2

}
Ae +

{
c5

I2√
2
+ c6

√
I2
2

}(
Se

2
√
λ

)
,

where c1 = 1 + γ ‖w‖H1
/
√
2γ2 +

√
3γ ‖w‖H1

/γ2, c2 = 3L2/γ2, c3 =
√
8L2/γ2,

c4 =
√
4L/γ2, c5 = 2

√
2/γ2 + 12

√
2L/γ2 and c6 = 2

√
4L/γ2.

Now using the estimate of Proposition A.4 with the inequality (4.4), we get
with the probability 1− η/2,

‖fz,λ − fρ‖H1 ≤ (c1 + c2 + c3 + c4)Ae + (c5 + c6)

(
Se

2
√
λ

)
.

Under Assumptions 1–3, 6 from Proposition A.3, C.1, we obtain with the
confidence 1− η,

‖fz,λ−fρ‖H1 ≤ (c1+c2+c3+c4)Rφ(λ)+(c5+c6)

(
κM

mλ
+

√
Σ2N (λ)

mλ

)
log

(
4

η

)
.
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which implies the desired result.

Proof of Theorem 4.8. (i) Under the parameter choice λ = Θ−1
(
m−1/2

)
we

have
1

mλ
≤ φ(λ)√

m
.

From Theorem 4.7 and the bound (4.2), it follows that with the confi-
dence 1− η,

‖fz,λ − fρ‖H1 ≤ C ′φ
(
Θ−1

(
m−1/2

))
log

(
4

η

)
. (C.10)

where C ′ := (c1 + c2 + c3 + c4 + c5 + c6)(R+ κM + κLΣ).

Now defining τ := C ′ log
(

4
η

)
gives

η = ητ = 4e−τ/C′
.

The estimate (C.10) can be reexpressed as

Pz∈Zm

{
‖fz,λ − fρ‖H1 > τRφ

(
Θ−1

(
m−1/2

))}
≤ ητ . (C.11)

(ii) From the condition (4.4) we have 8κ2 ≤ √
mλ. This together with the

parameter choice λ = Ψ−1
(
m−1/2

)
implies that

1

mλ
=

λ− 1
2+

1
2bφ(λ)√
m

≤ λ
1
2+

1
2bφ(λ)

8κ2
.

Now for λ ≥ 1 and b > 1 we have λ− 1
2+

1
2b ≤ 1, therefore 1

mλ ≤ φ(λ).

On the other hand, for λ ≤ 1 we have λ
1
2+

1
2b ≤ 1, therefore 1

mλ ≤ φ(λ)
8κ2 .

Hence, from Theorem 4.7 and the inequality (4.3), it follows that with the
confidence 1− η,

‖fz,λ − fρ‖H1 ≤ C ′′φ
(
Ψ−1

(
m−1/2

))
log

(
4

η

)
, (C.12)

where C ′′ := (c1 + c2 + c3 + c4 + c5 + c6)(R+ κM max(1, 1
8κ2 ) +Σ

√
Cβ,b).

Now defining τ := C ′′ log
(

4
η

)
gives

η = ητ = 4e−τ/C′′
.

The estimate (C.12) can be reexpressed as

Pz∈Zm

{
‖fz,λ − fρ‖H1 > τRφ

(
Ψ−1

(
m−1/2

))}
≤ ητ . (C.13)

Then from (C.11) and (C.13), our conclusions follow.
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Appendix D: Proof of lower rates

The following proposition is a variant of Proposition 4 [5] for the non-linear
statistical inverse problem.

Proposition D.1. For the probability measure ρf , defined in (4.7), parameter-
ized by f ∈ D(A) ⊂ H1:

(i) The solution fρ for the probability measure ρ = ρf is f .
(ii) The probability measure ρf satisfies Assumption 2 provided that

dJ + J/4 ≤ M and 2dJ ≤ Σ. (D.1)

Proof. The first point can be easily observed. Now we check the condition on
the probability measure ρf for the second point.

Under the condition (D.1) for the conditional probability measure ρf (y|x) we
have, ∫

Y

(
e‖y−A(f)(x)‖Y /M − ‖y −A(f)(x)‖Y

M
− 1

)
dρf (y|x)

≤
∫
Y

‖y −A(f)(x)‖2Y dρf (y|x)
∞∑
i=2

(dJ + ‖A(f)(x)‖Y )i−2

M ii!

≤2d2J2
∞∑
i=2

(dJ + ‖A(f)(x)‖Y )i−2

M ii!
≤ Σ2

2M2

which implies that for the solution fρ = f the probability measure ρf satisfies
Assumption 2.

Proposition D.2. Under Assumptions 3, 8, there is an ε0 > 0 such that for
all 0 < ε ≤ ε0, there exists Nε ∈ N and each f1, . . . , fNε ∈ H1 (depending on ε)
satisfying:

(i) For i = 1, . . . , Nε, fi ∈ Ω(ρfi , φ, R) and for any i, j = 1, . . . , Nε with i �= j,

ευ ≤ ‖fi − fj‖H1 ,

where υ = 1− ‖I −Rfi‖L(H1) − ‖I −Rfj‖L(H1) is positive for sufficiently
small ε and Rfi are defined in Assumption 8 (iv).

(ii) Let ρi := ρfi , ρj := ρfj be given by (4.7) for fi ∈ Ω(ρi, φ, R) and fj ∈
Ω(ρj , φ, R), i, j = 1, . . . , Nε, then Kullback-Leibler information K(ρfi , ρfj )
fulfills the inequality:

K(ρfi , ρfj ) ≤
16

15dJ2
‖IK{A(fi)−A(fj)}‖2L 2(X,ν;Y ). (D.2)

Further, it holds

K(ρi, ρj) ≤ C̃

(
ε2

�bε
+ ε4

)
, (D.3)

where Nε ≥ e�ε/24 for �ε =

⌊
1
2

(
α

φ−1(ε/R)

)1/b
⌋
and C̃ = 16c′′

15dJ2 .
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(iii) The eigenvalues (tin)n∈N of the operators Ti = A′(fi)
∗I∗KIKA′(fi) follow

the polynomial decay for the each fi (1 ≤ i ≤ Nε): For fixed positive
constants αi, βi and b > 1,

αin
−b ≤ tin ≤ βin

−b ∀n ∈ N.

Proof. For the initial guess f̄ of the solution of the functional (1.3), let (en)n∈N

be an orthonormal basis of the Hilbert space H1 of eigenvectors of the op-
erator T = A′(f̄)∗I∗KIKA′(f̄) corresponding to the eigenvalues (tn)n∈N. For
given ε > 0, we define

v =

2�∑
n=�+1

επn−�en√
�φ(tn)

,

where π = (π1, . . . , π�) ∈ {−1,+1}�.
Under the polynomial decay condition α ≤ nbtn on the eigenvalues of the

operator T , we get

‖v‖2H1
=

2�∑
n=�+1

ε2

�φ2(tn)
≤

2�∑
n=�+1

ε2

�φ2
(

α
nb

) ≤ ε2

φ2
(

α
2b�b

) ≤ R2,

for

� = �ε =

⌊
1

2

(
α

φ−1(ε/R)

)1/b
⌋
, (D.4)

where �x� is the greatest integer less than or equal to x.
We choose ε◦ such that �ε◦ > 16. Then from Proposition 6 [5], for every

positive ε < ε◦ (�ε > �ε◦) there exists an integer Nε ∈ N and π1, . . . , πNε ∈
{−1,+1}�ε such that for all 1 ≤ i, j ≤ Nε, i �= j it holds

�ε∑
n=1

(πn
i − πn

j )
2 ≥ �ε (D.5)

and

log(Nε) ≥ �ε/24. (D.6)

Now we construct Nε-vectors satisfying the source condition (Assumption 6).
For ε such that 0 < ε < ε◦, we define

vi =

2�ε∑
n=�ε+1

επn−�ε
i en√
�εφ(tn)

, (D.7)

where πi = (π1
i , . . . , π

�ε
i ) ∈ {−1,+1}�ε for i = 1, . . . , Nε. Hence from (D.4), we

observe that ‖vi‖H1
≤ R.

Suppose F (f) = φ(T )v + f̄ for B = IKA′(f), T = B∗B and some v ∈ H1,
then from Assumptions 3, 8 (iv) for the Lipschitz continuous function θ(t) =
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φ(t2) from Propositions D.4, D.5 under the Lipschitz continuity of the Fréchet
derivative of the operator A we obtain,∥∥∥F (f̃)− F (f)

∥∥∥
H1

≤
∥∥∥{φ(T̃ )− φ(T )}v

∥∥∥
H1

≤
∥∥∥{θ(T̃ 1/2)− θ(T 1/2)}v

∥∥∥
H1

≤‖v‖H1

∥∥∥θ(T̃ 1/2)− θ(T 1/2)
∥∥∥
L(H1)

≤ ‖v‖H1

∥∥∥θ(T̃ 1/2)− θ(T 1/2)
∥∥∥
HS

≤Lθ ‖v‖H1

∥∥∥T̃ 1/2 − T 1/2
∥∥∥
HS

≤
√
2Lθ ‖v‖H1

∥∥∥B̃ −B
∥∥∥
HS

≤
√
2Lθ ‖v‖H1

∥∥∥IK {
A′(f̃)−A′(f)

}∥∥∥
HS

≤ γ
√
2Lθ ‖v‖H1

∥∥∥f̃ − f
∥∥∥
H1

,

where B̃ = IKA′(f̃) and T̃ = B̃∗B̃.
If γ

√
2Lθ ‖v‖H1

< 1, then F is a contraction map. Hence, there exists a fixed
point f∗ ∈ H1 such that

f∗ = F (f∗) = φ(T∗)v + f̄ , (D.8)

where T∗ = (IKA′(f∗))
∗IKA′(f∗).

Hence for each vi defined in (D.7) from (D.8) there exist fi (1 ≤ i ≤ Nε)
such that

fi − f̄ = φ(Ti)vi,

where Bi = IKA′(fi) and Ti = B∗
i Bi, i.e., fi ∈ Ω(ρfi , φ, R) provided that

γ
√
2Lθ ‖vi‖H1

< 1 for 1 ≤ i ≤ Nε which can be satisfied by making the quan-
tity ‖vi‖H1

arbitrarily small as ε → 0.
Under Assumption 8 (iv) from eqn. (D.7) for all 1 ≤ i, j ≤ Nε, we get,

fi − f̄ = φ(Ti)vi = Rfiφ(T )vi = {I − (I −Rfi)}
2�ε∑

n=�ε+1

επn−�ε
i en√
�ε

and

fi − fj =

2�ε∑
n=�ε+1

ε(πn−�ε
i − πn−�ε

j )en√
�ε

− (I −Rfi)

2�ε∑
n=�ε+1

επn−�ε
i en√
�ε

(D.9)

+ (I −Rfj )

2�ε∑
n=�ε+1

επn−�ε
j en√
�ε

which implies from (D.5) that

‖fi − f̄‖H1 ≤ ε(1 + ‖I −Rfi‖L(H1)) (D.10)

and
ευ ≤ ‖fi − fj‖H1 (D.11)
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where υ = 1− ‖I −Rfi‖L(H1) − ‖I −Rfj‖L(H1).
Then under Assumption 8 (iv) and (D.10) we have,

‖I −Rf‖L(H1) ≤ ζ
∥∥f − f̄

∥∥
H1

≤ ζε(1 + ‖I −Rf‖L(H1))

which implies that

‖I −Rf‖L(H1) ≤
ζε

1− ζε
.

From Assumptions 3, 8 (ii) and (D.9) we get,

‖B(fi − fj)‖L 2(X,ν;Y )

≤‖Bφ(T )(vi − vj)‖L 2(X,ν;Y ) + εκL(‖I −Rfi‖L(H1) + ‖I −Rfj‖L(H1)),

where B = IK ◦ (A′(f̄)).
Now from Assumptions 8 (iv), (v) and (D.10) we get,

‖B(fi − fj)‖L 2(X,ν;Y ) (D.12)

≤

⎛⎜⎝ 2�ε∑
n=�ε+1

tnε
2
(
πn−�ε
i − πn−�ε

j

)2

�ε

⎞⎟⎠
1/2

+ εκLζ(‖fi − f̄‖H1 + ‖fj − f̄‖H1)

≤

⎛⎜⎝ 2�ε∑
n=�ε+1

βε2
(
πn−�ε
i − πn−�ε

j

)2

�εnb

⎞⎟⎠
1/2

+ cε2

≤
(

2�ε∑
n=�ε+1

4βε2

�εnb

)1/2

+ cε2 ≤
(
4βε2

�ε

∫ 2�ε

�ε

1

xb
dx

)1/2

+ cε2 ≤ c′
ε

�
b/2
ε

+ cε2,

where c = κLζ(2+‖I−Rfi‖L(H1)+‖I−Rfj‖L(H1)) and c′ =
(

4β
(b−1)

(
1− 1

2b−1

))1/2
.

Note that the Lipschitz continuity of the Fréchet derivative of the operator A
(Assumption 8 (iii)) imply that

A(fi) = A(f̄) +A′(f̄)(fi − f̄) + r(fi)

holds with

‖IKr(fi)‖L 2(X,ν;Y ) ≤
γ

2
‖fi − f̄‖2H1

.

Hence, for 1 ≤ i, j ≤ Nε, from the inequality (D.10), (D.12) we have,

‖IK{A(fi)−A(fj)}‖2L 2(X,ν;Y ) (D.13)

=
{
‖B(fi − fj)‖L 2(X,ν;Y ) + ‖IK{r(fi)− r(fj)}‖L 2(X,ν;Y )

}2
≤2‖B(fi − fj)‖2L 2(X,ν;Y ) + 2‖IK {r(fi)− r(fj)} ‖2L 2(X,ν;Y )

≤2‖B(fi − fj)‖2L 2(X,ν;Y ) + γ2‖fi − f̄‖4H1
+ γ2‖fj − f̄‖4H1
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≤c′′
(
ε2

�bε
+ ε4

)
,

where c′′ = 4c2 + 4c′ 2 + γ2{(1 + ‖I −Rfi‖L(H1))
4 + (1 + ‖I −Rfj‖L(H1))

4}.
Under Assumption 8 (iv), if

∥∥f − f̄
∥∥
H1

< 1/ζ, then from Neumann series,

we have that
∥∥∥R−1

f

∥∥∥
L(H1)

< ∞. Therefore,

φ(T ) = Rfφ(T∗) and φ(T∗) = R−1
f φ(T ).

Now using the relation for singular values sj(AB) ≤ ‖A‖ sj(B) for j ∈ N (see
Chapter 11 [27]) we obtain,

φ(sj(T )) = sj(φ(T )) ≤ ‖Rf‖L(H1)
sj(φ(T∗)) = ‖Rf‖L(H1)

φ(sj(T∗)) (D.14)

and

φ(sj(T∗)) = sj(φ(T∗)) ≤
∥∥∥R−1

f

∥∥∥
L(H1)

sj(φ(T )) =
∥∥∥R−1

f

∥∥∥
L(H1)

sj(φ(T )) (D.15)

Consequently, for small enough
∥∥fi − f̄

∥∥
H1

corresponding to small ε, the
eigenvalues of Ti and T∗ decay in the same order, hence in the polynomial
order.

The inequality (D.2) can be proved similar to Proposition 4 [5]. We obtain
the desired results from the inequalities (D.6), (D.11), (D.13), (D.14), (D.15)
with (D.2).

The following theorem is a restatement of Theorem 3.1 of [9] in the non-linear
statistical inverse problem setting.

Proposition D.3. For any learning algorithm (z → fz ∈ H1) under the hy-
pothesis dim(Y ) = d < ∞, Assumption 8 and the condition (D.1), there exists
a probability measure ρ∗ ∈ Pφ,b and fρ∗ ∈ H1 such that for all 0 < ε < ε◦, fz
can be approximated as

Pz∈Zm {‖fz − fρ∗‖H1 > ευ/2} ≥ min

{
1

1 + e−�ε/24
, ϑe

(
�ε
48− C̃mε2

�bε
−C̃mε4

)}

where ϑ = e−3/e and �ε =

⌊
1
2

(
α

φ−1(ε/R)

)1/b
⌋
.

Proof. Let ε ≤ ε0 and f1, . . . , fNε be as in Proposition D.2. Then we define the
sets,

Ai =
{
z ∈ Zm : ‖fz − fi‖H1 <

ευ

2

}
, for 1 ≤ i ≤ Nε.

It is clear from (D.11) that Ai ∩ Aj = ∅ if i �= j. On applying Lemma 3.3 [9]
with the probability measures ρmfi , 1 ≤ i ≤ Nε, we obtain that either

p := max
1≤i≤Nε

ρmfi(A
c
i ) ≥

Nε

Nε + 1
(D.16)
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or

min
1≤j≤Nε

1

Nε

Nε∑
i=1,i �=j

K(ρmfi , ρ
m
fj ) ≥ ΨNε(p), (D.17)

where ΨNε(p) = log(Nε) + (1− p) log
(

1−p
p

)
− p log

(
Nε−p

p

)
. Further,

ΨNε(p) ≥(1− p) log(Nε) + (1− p) log(1− p)− log(p) + 2p log(p) (D.18)

≥− log(p) + log(
√

Nε)− 3/e.

Since minimum value of x log(x) is −1/e on [0, 1].
For the joint probability measures ρmfi , ρ

m
fj

(ρfi , ρfj ∈ Pφ,b, 1 ≤ i, j ≤ Nε)

from the inequality (D.3) we get,

K(ρmfi , ρ
m
fj ) = mK(ρfi , ρfj ) ≤ C̃m

(
ε2

�bε
+ ε4

)
. (D.19)

Therefore the inequalities (D.16), (D.17), together with (D.18) and (D.19)
implies

p := max
1≤i≤Nε

(
P

{
z ∈ Zm : ‖fz − fi‖H1 >

υε

2

})
≥min

{
Nε

Nε + 1
,
√
Nεe

− 3
e−C̃m

(
ε2

�bε
+ε4

)}
.

From the estimate (D.6) for the probability measure ρ∗ such that p = ρm∗ (Ac
i )

the desired result follows.

Proof of Theorem 4.11. From Proposition D.3 for some probability measure ρ∗ ∈
Pφ,b with 0 < ε < ε0 we get,

Pz∈Zm

{
‖fz − fρ∗‖H1 >

υε

2

}
≥min

{
1

1 + e−�ε/24
, ϑe−

1
48 e

{
1
96

(
α

φ−1(ε/R)

)1/b
−C̃mε2

(
22b−1φ−1(ε/R)

α−22b−1φ−1(ε/R)

)
−C̃mε4

}}
,

where ϑ = e−3/e and �ε =

⌊
1
2

(
α

φ−1(ε/R)

)1/b
⌋
.

Given τ > 0 for all m ∈ N, we choose εm = τRφ
(
Ψ−1

(
m−1/2

))
. Since εm

tends to 0 when m tends to +∞, therefore for m large enough εm ≤ ε0. So
Proposition D.3 applies to ensure,

Pz∈Zm

{
‖fz − fρ∗‖H1 >

τυR

2
φ
(
Ψ−1

(
m−1/2

))}
≥min

{
1

1 + e−�ε/24
, ϑe−

1
48 ec(m)

}
,
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where

c(m) =
(
Ψ−1

(
m−1/2

))−1/b
{
α1/b

96
− C̃τ2R222b−1

α− 22b−1Ψ−1
(
m−1/2

)
−C̃τ4R4

(
φ2
(
Ψ−1

(
m−1/2

))
Ψ−1

(
m−1/2

) )}
.

Now as m tends to ∞, ε → 0 and �ε → ∞. Therefore, we conclude that

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Pz∈Zm

{
‖f l

z − fρ‖H1 >
τυR

2
φ
(
Ψ−1

(
m−1/2

))}
= 1.

Proposition D.4. [8, Lemma 7] Let F, F̃ : H → H be the self-adjoint, Hilbert-
Schmidt operators over the separable Hilbert space H. If θ(t) is Lipschitz con-
tinuous with Lipschitz constant Lθ ≥ 0, then θ is also operator Lipschitz in
Hilbert-Schmidt norm:∥∥∥θ(F )− θ(F̃ )

∥∥∥
HS

≤ Lθ

∥∥∥F − F̃
∥∥∥
HS

.

Proposition D.5. Let B, B̃ : H1 → H2 be the Hilbert-Schmidt operators over
the arbitrary separable Hilbert spaces H1, H2 and T = B∗B, T̃ = B̃∗B̃. Then∥∥∥T 1/2 − T̃ 1/2

∥∥∥
HS

≤
√
2
∥∥∥B − B̃

∥∥∥
HS

.

Proof. Let (ei, fi, μi)i∈N and (ẽi, f̃i, μ̃i)i∈N be the singular value decompositions

of the operators B and B̃, i.e., B =
∞∑
i=1

μi〈·, ei〉H1fi and B̃ =
∞∑
i=1

μ̃i〈·, ẽi〉H1 f̃i.

The values (μi)i∈N and (μ̃i)i∈N are the singular values of the operators B and B̃,
respectively. The vectors (ei)i∈N and (ẽi)i∈N are the orthonormal basis of the

Hilbert space H1 and the eigenvectors of the operators T = B∗B and T̃ =
B̃∗B̃, respectively. The vectors (fi)i∈N and (f̃i)i∈N are the orthonormal basis

of the Hilbert space H2 and the eigenvectors of the operators BB∗ and B̃B̃∗,
respectively.

We have∥∥∥{T 1/2 − T̃ 1/2}ej
∥∥∥2
H1

=〈ej , T ej〉H1 + 〈ej , T̃ ej〉H1 − 2〈T 1/2ej , T̃
1/2ej〉H1

(D.20)

= ‖Bej‖2H2
+
∥∥∥B̃ej

∥∥∥2
H2

− 2μj

∞∑
i=1

μ̃i〈ej , ẽi〉2H1

and∥∥∥{B − B̃}ej
∥∥∥2
H2

= ‖Bej‖2H2
+
∥∥∥B̃ej

∥∥∥2
H2

− 2〈Bej , B̃ej〉H2 (D.21)
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= ‖Bej‖2H2
+
∥∥∥B̃ej

∥∥∥2
H2

− 2μj

∞∑
i=1

μ̃i〈ej , ẽi〉H1〈fj , f̃i〉H2

≥‖Bej‖2H2
+
∥∥∥B̃ej

∥∥∥2
H2

− μj

∞∑
i=1

μ̃i

(
〈ej , ẽi〉2H1

+ 〈fj , f̃i〉2H2

)
.

Similarly,

∥∥∥{B∗ − B̃∗}fj
∥∥∥2
H1

≥ ‖B∗fj‖2H1
+
∥∥∥B̃∗fj

∥∥∥2
H1

−μj

∞∑
i=1

μ̃i

(
〈ej , ẽi〉2H1

+ 〈fj , f̃i〉2H2

)
(D.22)

and∥∥∥{(BB∗)1/2 − (B̃B̃∗)1/2}fj
∥∥∥2
H1

= ‖B∗fj‖2H1
+
∥∥∥B̃∗fj

∥∥∥2
H1

−2μj

∞∑
i=1

μ̃i〈fj , f̃i〉2H2
.

(D.23)
From (D.20), (D.21), (D.22), (D.23) we obtain,∥∥∥{T 1/2 − T̃ 1/2}ej

∥∥∥2
H1

+
∥∥∥{(BB∗)1/2 − (B̃B̃∗)1/2}fj

∥∥∥2
H1

≤
∥∥∥{B − B̃}ej

∥∥∥2
H2

+
∥∥∥{B∗ − B̃∗}fj

∥∥∥2
H1

which implies∥∥∥T 1/2 − T̃ 1/2
∥∥∥2
HS

+
∥∥∥(BB∗)1/2 − (B̃B̃∗)1/2

∥∥∥2
HS

≤
∥∥∥B − B̃

∥∥∥2
HS

+
∥∥∥B∗ − B̃∗

∥∥∥2
HS

.

Hence, ∥∥∥T 1/2 − T̃ 1/2
∥∥∥2
HS

≤ 2
∥∥∥B − B̃

∥∥∥2
HS

.
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