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Abstract: We propose a general maximum likelihood empirical Bayes
(GMLEB) method for the heteroscedastic normal means estimation with
known variances. The idea is to plug the generalized maximum likelihood
estimator in the oracle Bayes rule. From the point of view of restricted em-
pirical Bayes, the general empirical Bayes aims at a benchmark risk smaller
than the linear empirical Bayes methods when the unknown means are i.i.d.
variables. We prove an oracle inequality which states that under mild con-
ditions, the regret of the GMLEB is of smaller order than (log n)5/n. The
proof is based on a large deviation inequality for the generalized maximum
likelihood estimator. The oracle inequality leads to the property that the
GMLEB is adaptive minimax in Lp balls when the order of the norm of
the ball is larger than ((logn)5/2/

√
n)1/(p∧2). We demonstrate the superb

risk performance of the GMLEB through simulation experiments.
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1. Introduction

In this paper we consider empirical Bayes for heteroscedastic data:

Xi|(θi, σ2
i )

ind∼ N(θi, σ
2
i ), i = 1, . . . , n, (1.1)

where σ2
i are known. The problem is to estimate θ = (θ1, . . . , θn) under the

average squared loss

Ln(θ, θ̂) = n−1‖θ̂ − θ‖2 = n−1
n∑

i=1

(θ̂i − θi)
2. (1.2)

This problem has been considered by many in the literature, including recent
studies by [18] and [17]. However, while the existing studies are typically based
on the shrinkage approach, our focus is on the general empirical Bayes [13, 15],
or equivalently nonparametric empirical Bayes [12].

In general empirical Bayes, the unknowns θi are typically treated as constants
in the compound approach [13]. In a homoscedastic compound decision problem,
the average risk is written as

1

n

n∑
i=1

Eθi,σ

(
t(Xi)− θi

)2
=

∫ [ ∫ (
t(x)− θ

)2
f(x|θ, σ)dx

]
dGn(θ), (1.3)

where f(x|θ, σ) is the density of N(θ, σ2), and Gn is the empirical distribution of
θi. Robbins [13, 14] observed that the optimal solution of the above problem is
the Bayes rule t∗Gn,σ

(x) = EGn(θ|X = x, σ). This can be viewed as fundamental
theorem of compound decisions as it connects the compound problem to the
Bayes approach. The idea is to plug-in estimated Gn to mimic the Bayes rule
or its performance. In the presence of heteroscedasticity, the same calculation
as in (1.3) will not go through as Xi − θi do not have the same distribution. In
the heteroscedastic case with known σi, we may write

1

n

n∑
i=1

Eθi,σi

(
t(Xi, σi)− θi

)2
=

∫ [ ∫ (
t(x, σ)− θ

)2
f(x|θ, σ)dx

]
dGn(θ, σ),

(1.4)
where Gn is the empirical distribution of (θi, σi). This still connects the com-
pound problem to Bayes. However, the fundamental theorem fails in the presence
of heteroscedasticity with observable σi in general as the meaning and impli-
cation of putting a known quantity in the prior Gn is unclear. Moreover, there
may not be sufficient sample size at each σ-value to allow sufficiently accurate
estimation of a nonparametric unknown prior.

One plausible way is to take empirical Bayes view that θi are i.i.d. variables
with an unknown common prior G. Empirical Bayes methods can be understood
from the point of view of restricted empirical Bayes. Given a class of decision
functions D , with oracular knowledge of G, the oracle benchmark is RD(G) =
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inft∈D n−1
EG

∑n
i=1(t(Xi, σi)− θi)

2. The regret of an estimator t̂n is

rG,D(t̂n) =
1

n
EG

n∑
i=1

(
t̂n(Xi, σi)− θi

)2 −RD(G). (1.5)

The aim of restricted empirical Bayes is to seek t̂n ∈ D satisfying the asymptotic
optimality

rG,D(t̂n) → 0, as n → ∞. (1.6)

Let G be a normal distribution with mean μ and variance τ2. With D being the
class of all linear estimators, the optimal estimator in D is t∗D(x) = μ + (1 −
B)(x − μ) where B = σ2/(σ2 + τ2). In the homoscedastic case, σ2

i ≡ σ2, the

James-Stein estimator θ̂JSi = X̄+(1−Bn)(Xi−X̄) with Bn = (n−3)σ2/
∑

i(Xi−
X̄)2 approximates the optimal linear rule t∗D(x) in the sense of (1.6). In the
heteroscedastic case, Xie, Kou and Brown [18] proposed to select an estimator
from the class

{
τ2Xi/(σ

2
i +τ2)+σ2

i μ/(σ
2
i +τ2) : μ ∈ R, τ2 > 0

}
. The parameters

μ and τ2 are estimated by minimizing a Stein’s unbiased risk estimate (SURE)
function. Xie, Kou and Brown [18] also suggested a semiparametric shrinkage
estimator of the form (1 − bi)Xi + biμ where bi is nondecreasing in σ2

i . Both
SURE estimators satisfy the asymptotic optimality (1.6). Since σ2

i /(σ
2
i + τ2)

is monotone increasing in σ2
i , any estimator of the previous form is also of the

latter form. Hence, the semiparametric SURE aims at a smaller benchmark risk
than the parametric SURE.

Denote the density of the normal location mixture by distribution G with
scale σ by

fG,σ(x) =

∫
1

σ
ϕ
(x− u

σ

)
dG(u), (1.7)

where ϕ(x) is the standard normal density. It is well known that for any prior
G, the Bayes rule is given by Tweedie’s formula [14, 1, 4]

t∗G(Xi, σi) = EG(θi|Xi, σi) = Xi + σ2
i

f ′
G,σi

(Xi)

fG,σi(Xi)
, (1.8)

where fG,σ(x) is as in (1.7). The Bayes risk under (1.2) is

R∗
n(G) = n−1

n∑
i=1

R∗
σi
(G), (1.9)

where R∗
σ(G) = σ2

{
1 − σ2

∫
(f ′

G,σ/fG,σ)
2fG,σ

}
is the Bayes risk for univari-

ate estimation. The general empirical Bayes approach assumes no knowledge
about the unknown prior G but still aims to mimic the Bayes rule t∗G(·, σi) in
(1.8) or approximately achieve the risk benchmark R∗

n(G). Compared with the
parametric and semiparametric methods, the general empirical Bayes is greed-
ier since it aims at the optimal estimator among all the rules. There are two
main strategies to approximate the Bayes rule in (1.8): modeling on the θ space,
called “g-modeling”, and modeling on the x space, called “f -modeling”. Efron
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[5] provided examples and summarized some advantages of both strategies. As
demonstrated in [7] and [10], compound decision problem is a favorable case for
nonparametric g-modeling. Nonparametric g-modeling refers to estimating the
unknown prior by the generalized MLE [10]

Ĝn = argmax
G∈G

n∏
i=1

fG,σi(Xi), (1.10)

where fG,σ(x) is the mixture density as in (1.7) and G is the family of all dis-
tribution functions. The calculation of the generalized MLE is usually difficult.
Recently, Koenker and Mizera [10] proposed a convex optimization approach to
computing the generalized MLE, which is proven to be efficient and accurate.
The heteroscedastic option in the REBayes package [9] facilitates our research.
Fu, James and Sun [6] also considered the general empirical Bayes method for
the heteroscedastic normal mean problem (1.1)–(1.2) with i.i.d. θi. They sug-
gested an f -modeling procedure to mimic the Bayes rule in (1.8) and proved its
optimality in the sense (1.6). Still, the heart of the question is whether the gain
by aiming at the smaller benchmark risk is large enough to offset the additional
cost of the nonparametric estimation. Our results affirm that when θi are drawn
from a common prior G, the proposed general maximum likelihood empirical
Bayes (GMLEB) estimator realizes risk reduction over linear methods.

The rest of this paper is organized as follows. In Section 2 we provide an
oracle inequality that gives non-asymptotic upper bounds for the regret of the
GMLEB. Some implications are given. In Section 3 we prove a large deviation
inequality for the generalized MLE under the average Hellinger distance, which
is a key element for the oracle inequality. Other elements leading to the oracle
inequality are provided in Section 4. In Section 5 we present some simulation
results. Mathematical proofs of theorems and lemmas are given either right after
their statements or in Section 6.

2. Main results

In the remaining part of the paper, the unknown prior where θi are drawn from
is denoted by G∗

n. We assume that the variances are uniformly bounded, i.e.,
there exist constants σl and σu such that σl ≤ infn mini σi ≤ supn maxi σi ≤ σu.
In our analyses, we allow approximate solutions to (1.10). For definiteness and
notation simplicity, the generalized MLE is any solution of

n∏
i=1

fĜn,σi
(Xi) ≥ qn sup

G∈G

n∏
i=1

fG,σi(Xi), (2.1)

where qn = (e
√
2π/n2) ∧ 1. The GMLEB estimator is defined as

θ̂i = t∗
Ĝn

(Xi, σi) = Xi + σ2
i

f ′
Ĝn,σi

(Xi)

fĜn,σi
(Xi)

, i = 1, . . . , n, (2.2)
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where Ĝn is any approximate generalized MLE (2.1) for prior G∗
n and fG,σ(x)

is as in (1.7).

2.1. An oracle inequality for the GMLEB

Let μp(G) =
{ ∫

|u|pdG(u)
}1/p

be the p-th absolute moment of a distribution
function G. The convergence rate εn, as a function of the sample size n, the
mixing distribution G, and the power p of the absolute moment, is defined as

ε(n,G, p) = max

{√
2 logn,

{
n1/p

√
lognμp(G)

}p/(2+2p)
}√

log n

n
. (2.3)

Theorem 1. Suppose that under PG∗
n
, θ1, . . . , θn are i.i.d. random variables

from a distribution G∗
n, and given θi’s, Xi ∼ N(θi, σ

2
i ) are independent obser-

vations with known variances. Let θ̂i = t∗
Ĝn

(Xi, σi) be the GMLEB estimator

in (2.2) with an approximate generalized MLE Ĝn satisfying (2.1). Then, there
exists a universal constant M0 such that for all logn > 1/p,{

1

n
EG∗

n

n∑
i=1

(
t∗
Ĝn

(Xi, σi)− θi
)2}1/2

−
{
R∗

n(G
∗
n)
}1/2 ≤ M0εn(logn)

3/2, (2.4)

where R∗
n(G

∗
n) is the Bayes risk as in (1.9), and εn = ε(n,G∗

n, p) is as in (2.3).

Here is an outline of the proof of Theorem 1. First of all, one problem with
analyzing the GMLEB is that the denominator fĜn,σi

in definition (2.2) could
be arbitrarily small. In order to rule out that possibility, we define a regularized
rule t∗

Ĝn
(Xi, σi; ρn) which replaces this denominator with fĜn,σi

∨ (ρn/σi), and

in Theorem 5 we show that this rule relates to the GMLEB as

n∑
i=1

(
t∗
Ĝn

(Xi, σi)− θi
)2

=

n∑
i=1

(
t∗
Ĝn

(Xi, σi; ρn)− θi
)2
, ρn =

qn√
2πen

. (2.5)

Let An =
{
d(Ĝn, G

∗
n) ≤ (x∗ ∨ 1)εn

}
where x∗ is the constant as in Theorem 4,

and d(·, ·) is the average Hellinger distance defined in (3.2). The large deviation
inequality in Theorem 4 and the analytical properties of the regularized Bayes
rule in Lemma 2 provides an upper bound for EG∗

n
ζ21n where

ζ1n =
{ n∑

i=1

(
t∗
Ĝn

(Xi, σi; ρn)− θi
)2
IAc

n

}1/2

. (2.6)

Because the generalized MLE is based on the same data, θ̂i = t∗
Ĝn

(Xi, σi; ρn) is

not separable. We use the following strategy. Let
{
(t∗Hj

(·, σ1; ρn), . . . , t
∗
Hj

(·, σn;

ρn)), j ≤ N
}
be a set of approximated regularized Bayes rules in the sense that

it is a (2η∗)-net of{(
t∗G(·, σ1; ρn), . . . , t

∗
G(·, σn; ρn)

)
: d(G,G∗

n) ≤ x∗εn
}

(2.7)
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under ‖ · ‖∞,M , where η∗ will be manifested in Theorem 7. By the entropy
bound in Theorem 7, there exists a collection of distributions {Hj , j ≤ N} of
manageable size N such that

ζ2n =

∣∣∣∣{ n∑
i=1

(
t∗
Ĝn

(Xi, σi; ρn)− θi
)2
IAn

}1/2

−max
j≤N

{ n∑
i=1

(
t∗Hj

(Xi, σi; ρn)− θi
)2}1/2

∣∣∣∣ (2.8)

is small. Since the collection {Hj , j ≤ N} is of manageable size, a Gaussian
isoperimetric inequality yields that

ζ3n = max
j≤N

{{ n∑
i=1

(
t∗Hj

(Xi, σi; ρn)− θi
)2}1/2

−EG∗
n

{ n∑
i=1

(
t∗Hj

(Xi, σi; ρn)− θi
)2}1/2

}
+

(2.9)

is small. Finally, Theorem 6 provides an upper bound of the regret due to the
lack of the knowledge of G∗

n, which implies that

ζ4n = max
j≤N

{
EG∗

n

n∑
i=1

(
t∗Hj

(Xi, σi; ρn)− θi
)2}1/2

−
{
nR∗

n(G
∗
n)
}1/2

(2.10)

is small. These upper bounds for individual pieces EG∗
n
ζ2jn are put together via{

EG∗
n

n∑
i=1

(
t∗
Ĝn

(Xi, σi)− θi
)2}1/2

≤
{
nR∗

n(G
∗
n)
}1/2

+

4∑
j=1

(
EG∗

n
ζ2jn
)1/2

. (2.11)

2.2. Consequences of the oracle inequality

Theorem 2. Suppose that under PG∗
n
, θ1, . . . , θn are i.i.d. random variables

from a distribution G∗
n, and given θi’s, Xi ∼ N(θi, σ

2
i ) are independent obser-

vations with known variances. Let θ̂i = t∗
Ĝn

(Xi, σi) be the GMLEB estimator in

(2.2) with an approximate generalized MLE Ĝn satisfying (2.1). Then,

lim sup
n→∞

EG∗
n

∑n
i=1

(
t∗
Ĝn

(Xi, σi)− θi
)2
/n

R∗
n(G

∗
n)

= 1, (2.12)

provided that μ∞(G∗
n) = O(

√
log n) and nR∗

n(G
∗
n)/(log n)

5 → ∞.

For a class of distributions G , the minimax risk for the average squared loss
(1.2) is

Rn(G ) = inf
t

sup
G∈G

EG
1

n

n∑
i=1

(
t(Xi, σi)− θi

)2
, (2.13)
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where the infimum is taken over all bivariate Borel functions. An estimator is
adaptive minimax if

supG∈Gn
EG

∑n
i=1(θ̂i − θi)

2/n

Rn(Gn)
→ 1 (2.14)

holds uniformly for a range of sequences {Gn, n ≥ 1} of distribution classes. For
positive p and C, the Lp balls of distribution functions are defined as

Gp,C =
{
G :

∫
|u|pdG(u) ≤ Cp

}
. (2.15)

Theorem 3. Suppose that under PG∗
n
, θ1, . . . , θn are i.i.d. random variables

from a distribution G∗
n, and given θi’s, Xi ∼ N(θi, σ

2
i ) are independent obser-

vations with known variances. Let θ̂i = t∗
Ĝn

(Xi, σi) be the GMLEB estimator in

(2.2) with an approximate generalized MLE Ĝn satisfying (2.1). Then, the adap-
tive minimaxity (2.14) holds in Lp balls Gp,Cn in (2.15), provided that Cn → 0
and

√
nCp∧2

n /(logn)5/2 → ∞.

Proof of Theorem 3. By definition of minimax risk in (2.13), we have

Rn(Gp,Cn) ≥ sup
G∈Gp,Cn

inf
t
EG

1

n

n∑
i=1

(
t(Xi, σi)− θi

)2
= sup

G∈Gp,Cn

EG
1

n

n∑
i=1

(
t∗G(Xi, σi)− θi

)2
= sup

G∈Gp,Cn

R∗
n(G). (2.16)

By Theorem 1, (2.16) and
√
nCp∧2

n /(log n)5/2 → ∞, there exists a universal
constant M1 such that

sup
G∈Gp,Cn

EG
1

n

n∑
i=1

(
t∗
Ĝn

(Xi, σi)− θi
)2 ≤ sup

G∈Gp,Cn

R∗
n(G) +M1(log n)

5/2/
√
n

≤ Rn(Gp,Cn) + o(1)Cp∧2
n . (2.17)

Donoho and Johnstone [3] proved that as Cn → 0,

Rn(Gp,Cn) = O(1)Cp∧2
n

{
2 log(1/Cp

n)
}(1−p/2)+

. (2.18)

Thus, (2.17) and (2.18) lead to that

sup
G∈Gp,Cn

EG
1

n

n∑
i=1

(
t∗
Ĝn

(Xi, σi)− θi
)2 ≤

(
1 + o(1)

)
Rn(Gp,Cn).

This is the adaptive minimaxity in Gp,Cn .
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3. A large deviation inequality for the generalized MLE

In [7], the analysis of risk is divided into two parts. One is outside a Hellinger
neighborhood

{
d(fĜn

, fG∗
n
) ≤ xεn

}
, the other is inside this neighborhood. An

essential ingredient is a large deviation inequality for d(fĜn
, fG∗

n
). In the het-

eroscedastic case, it seems that certain omnibus distance between fĜn,σi
and

fG∗
n,σi should be used. We use the average Hellinger distance d(Ĝn, G

∗
n) as de-

fined in (3.2) below. We provide a large deviation inequality for d(Ĝn, G
∗
n). This

result plays a crucial role in the oracle inequality stated in Theorem 1.
Define the collection of n-dimensional vectors of marginal densities as

Fn =
{(

fG,σ1(x), . . . , fG,σn(x)
)
, G ∈ G

}
, (3.1)

where G is the family of all distribution functions. For two vectors (fG,σ1(x), . . . ,
fG,σn(x)), (fH,σ1(x), . . . , fH,σn(x)) ∈ Fn, define the average Hellinger distance

d(G,H) =

{
1

n

n∑
i=1

d2(fG,σi , fH,σi)

}1/2

, (3.2)

where d2(f, g) = (1/2)
∫
(
√
f − √

g)2 is the square of the Hellinger distance
between probability densities f and g. Define the supreme norm in bounded
intervals,

‖h‖∞,M = max
i≤n

∥∥hi‖∞,M = max
i≤n

sup
|x|≤M

∣∣hi(x)
∣∣, (3.3)

where h = (h1(x), . . . , hn(x)) is an n-dimensional vector of functions.

Theorem 4. Suppose that under PG∗
n
, θ1, . . . , θn are i.i.d. random variables

from a distribution G∗
n, and given θi’s, Xi ∼ N(θi, σ

2
i ) are independent ob-

servations with known variances. Let fG,σ be as in (1.7). Let Ĝn be certain
approximate generalized MLE satisfying (2.1). Then, there exists a universal
constant x∗ such that for all t ≥ x∗ and logn > 1/p,

PG∗
n

{
d(Ĝn, G

∗
n) ≥ tεn

}
≤ exp

(
− t2nε2n

2 logn

)
≤ e−t2 logn, (3.4)

where εn = ε(n,G∗
n, p) is as in (2.3) and d(G,H) is the average Hellinger dis-

tance (3.2).

Proof of Theorem 4. Let η = 1/n2 and M = 2σunε
2
n/(logn)

3/2. Define

h∗(x) = ηI
{
|x| ≤ M

}
+

ηM2

x2
I
{
|x| > M

}
. (3.5)

We consider any approximate generalized MLE satisfying

n∏
i=1

fĜn,σi
(Xi)

fG∗
n,σi(Xi)

≥ e−4t2nε2n/15. (3.6)
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Let
{
(fHj ,σ1(x), . . . , fHj ,σn(x)), j ≤ N

}
be an η-net of Fn under the semi-

norm ‖·‖∞,M , with N = N(η,Fn, ‖·‖∞,M ). Let H0,j be distributions satisfying

d(H0,j , G
∗
n) ≥ tεn, max

i≤n

∥∥fH0,j ,σi − fHj ,σi

∥∥
∞,M

≤ η, (3.7)

if they exist, and J = {j ≤ N : H0,j exists}. For any distribution G with
d(G,G∗

n) ≥ tεn, there exists j ∈ J such that for i = 1, . . . , n,

fG,σi(x) ≤
{

fH0,j ,σi(x) + 2η = fH0,j ,σi(x) + 2h∗(x), |x| < M,

1/(
√
2πσi), |x| ≥ M.

It follows that when d(Ĝn, G
∗
n) ≥ tεn,

n∏
i=1

fĜn,σi
(Xi)

fG∗
n,σi(Xi)

=
∏

|Xi|<M

fĜn,σi
(Xi)

fG∗
n,σi(Xi)

∏
|Xi|≥M

fĜn,σi
(Xi)

fG∗
n,σi(Xi)

≤ sup
j∈J

∏
|Xi|<M

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

∏
|Xi|≥M

1/(
√
2πσi)

fG∗
n,σi(Xi)

≤ sup
j∈J

n∏
i=1

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

∏
|Xi|≥M

1/(
√
2πσi)

2h∗(Xi)
.

Thus, by (3.6),

PG∗
n

{
d(Ĝn, G

∗
n) ≥ tεn

}
≤ PG∗

n

{
sup
j∈J

n∏
i=1

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

∏
|Xi|≥M

1/(
√
2πσi)

2h∗(Xi)
≥ e−4t2nε2n/15

}

≤ PG∗
n

{
sup
j∈J

n∏
i=1

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

≥ e−8t2nε2n/5

}

+PG∗
n

{ ∏
|Xi|≥M

1/(
√
2πσi)

2h∗(Xi)
≥ e4t

2nε2n/3

}
. (3.8)

We derive large deviation inequalities for the right hind side of (3.8). For
j ∈ J in the first term,

PG∗
n

{ n∏
i=1

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

≥ e−8t2nε2n/5

}

≤ exp
(
4t2nε2n/5

) n∏
i=1

∫ √
fH0,j ,σi + 2h∗

√
fG∗

n,σi

≤ exp

{
4t2nε2n

5
+

n∑
i=1

(∫ √
fH0,j ,σi + 2h∗

√
fG∗

n,σi − 1
)}

. (3.9)
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By Jensen’s inequality, d(H0,j , G
∗
n) ≥ tεn and

∫
h∗ = 4ηM ,

n∑
i=1

(∫ √
fH0,j ,σi + 2h∗

√
fG∗

n,σi − 1
)

≤
n∑

i=1

(
− d2(fH0,j ,σi , fG∗

n,σi) +
(
2

∫
h∗)1/2)

≤ −t2nε2n + n
√

8ηM. (3.10)

Since |J | ≤ N , (3.9) and (3.10) yield

PG∗
n

{
sup
j∈J

n∏
i=1

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

≥ e−8t2nε2n/5

}
≤ exp

{
logN − t2nε2n

5
+ n
√

8ηM
}
. (3.11)

Since η = 1/n2 and M = 2σunε
2
n/(logn)

3/2 ≥ 4σu

√
logn, by Lemma 4,

logN + n
√
8ηM ≤ C(2 logn)2 max

( M√
2 logn

, 1
)
+
√
8M

≤
{ (t∗)2

20

}
M(log n)3/2 ≤ t2nε2n

10

for t∗ ≤ t. Thus, by (3.11),

PG∗
n

{
sup
j∈J

n∏
i=1

fH0,j ,σi(Xi) + 2h∗(Xi)

fG∗
n,σi(Xi)

≥ e−8t2nε2n/5

}
≤ e−t2nε2n/10. (3.12)

By (3.5), 1/h∗(x) = x2/(ηM2) = (nx/M)2 for |x| ≥ M . So that

PG∗
n

{ ∏
|Xi|≥M

1/(
√
2πσi)

2h∗(Xi)
≥ e4t

2nε2n/3

}

≤ exp
(
− 2t2nε2n

3 logn

)
EG∗

n

{ ∏
|Xi|≥M

∣∣∣ nXi√
σiM

∣∣∣}1/ logn

. (3.13)

Since M = 2σunε
2
n/(logn)

3/2 ≥ 4σu

√
logn, Lemma 5 is applicable with ai =

n/(
√
σiM) and λ = 1/ logn < 1. Because ai ≤ n/(

√
σlM),

EG∗
n

{ ∏
|Xi|≥M

∣∣∣ nXi√
σlM

∣∣∣}1/ logn

≤ exp

{(
e/σ

1/(2 logn)
l

)( 1√
2π logn

+ n
(2μp(G

∗
n)

M

)p)}
. (3.14)
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By the definition of εn,

nε2n/ logn

n
(
2μp(G∗

n)/M
)p ≥ 1.

Therefore, (3.13) and (3.14) give

PG∗
n

{ ∏
|Xi|≥M

1/(
√
2πσi)

2h∗(Xi)
≥ e4t

2nε2n/3

}

≤ exp

{
−
(2t2

3
− e/σ

1/(2 logn)
l

) nε2n
logn

+
e/σ

1/(2 logn)
l√
2π log n

}
. (3.15)

Inserting (3.12) and (3.15) into (3.8), we find that for large n and t ≥ x∗,

PG∗
n

{
d(Ĝn, G

∗
n) ≥ tεn

}
≤ exp

(
− t2nε2n

2 log n

)
≤ e−t2 logn = n−t2 .

This completes the proof of Theorem 4.

4. Other elements of the oracle inequality

In this section we provide other elements of the oracle inequality in Theorem
1. We divide this section into four subsections to study: (1) the connection
between the GMLEB and the regularized rule, (2) some analytical properties
of the regularized Bayes estimator, (3) regret of a regularized Bayes estima-
tor with a misspecified prior, and (4) an entropy bound for regularized Bayes
rules.

For the Bayes rule t∗G(x, σ) = x+ σ2f ′
G,σ(x)/fG,σ(x), we may want to avoid

dividing by a near-zero quantity. Define regularized Bayes rule as

t∗G(x, σ; ρ) = x+
σ2f ′

G,σ(x)

(ρ/σ) ∨ fG,σ(x)
. (4.1)

Denote t∗G(x) = x + f ′
G(x)/fG(x) and t∗G(x) = x + f ′

G(x)/(ρ ∨ fG(x)) as the
Bayes and regularized Bayes rules for the unit-variance normal mean problem
with prior G respectively, where fG(x) =

∫
ϕ(x − u)dG(u). Let F be a scale

change of G: ∫
h(u)dF (u) =

∫
h(u/σ)dG(u). (4.2)

With y = x/σ, by the condition on F , we have t∗G(x, σ)/σ = t∗F (y) and

t∗G(x, σ; ρ)

σ
= y +

f ′
F (y)

ρ ∨ fF (y)
= t∗F (y; ρ). (4.3)

This is a scale invariance of the Bayes and regularized Bayes rules.
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4.1. Connection between the GMLEB and the regularized rule

The connection between the GMLEB estimator (2.2) and the regularized Bayes
rule in (4.1) is provided by

t∗
Ĝn

(Xi, σi) = t∗
Ĝn

(Xi, σi; ρn), ρn = qn/(
√
2πen), (4.4)

where 0 < qn ≤ 1. This is consequence of the following theorem.

Theorem 5. Let Ĝn be an approximate generalized MLE satisfying

n∏
i=1

fĜn,σi
(Xi) ≥ qn sup

G

n∏
i=1

fG,σi(Xi) (4.5)

for certain 0 < qn ≤ 1. Then, for all j = 1, . . . , n,

fĜn,σj
(Xj) ≥

qn√
2πenσj

. (4.6)

Proof of Theorem 5. Define Ĝn,j = (1− ε)Ĝn+ εδXj , where δu is the unit mass

at u. Since fĜn,j ,σi
(Xi) ≥ (1 − ε)fĜn,σi

(Xi) and fĜn,j ,σj
(Xj) ≥ ε/(

√
2πσj), so

that

n∏
i=1

fĜn,σi
(Xi) ≥ qn

n∏
i=1

fĜn,j ,σi
(Xi) ≥ qn(1− ε)n−1

(
ε/(

√
2πσj)

)∏
i 
=j

fĜn,σi
(Xi).

Thus, fĜn,σj
(Xj) ≥ qn(1− ε)n−1ε/(

√
2πσj) after the cancelation of fĜn,σi

(Xi)

for i 
= j. The conclusion follows by taking ε = 1/n.

Remark 3. In the proof of Theorem 1, for notation simplicity, we set qn =
(e
√
2π/n2) ∧ 1 so that ρn = 1/n3.

4.2. Some properties of the regularized Bayes estimator

In this subsection we give some analytical properties of the regularized Bayes
estimator. Denote the inverse function of y = ϕ(x) by

L̃(y) =
√
− log(2πy2), y ≥ 0. (4.7)

Since maxi≤n |Xi − θi| ≤ σu

√
2 log n with large probability, we expect that

maxi≤n |t∗G(x, σ; ρ)− x| ≤ c0
√
logn for some constant c0. This is established in

the following lemmas.

Lemma 1. Let fG,σ(x) be as in (1.7) and L̃(y) =
√
− log(2πy2). Then,(f ′

G,σ(x)

fG,σ(x)

)2
≤

f ′′
G,σ(x)

fG,σ(x)
+

1

σ2
≤ 1

σ2
L̃2(σfG,σ(x)) =

1

σ2
log
( 1

2πσ2f2
G,σ(x)

)
.

(4.8)
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Proof of Lemma 1. Let Y |ξ ∼ N(ξ, σ2) and ξ ∼ G under PG. Then,

EG

[ξ − Y

σ2

∣∣∣Y = x
]
=

f ′
G,σ(x)

fG,σ(x)
, EG

[ (ξ − Y )2

σ4

∣∣∣Y = x
]
=

f ′′
G,σ(x)

fG,σ(x)
+

1

σ2
.

This gives the first inequality of (4.8). Let h(x) = eσ
2x/2. The second inequality

of (4.8) follows from Jensen’s inequality,

h
(f ′′

G,σ(x)

fG,σ(x)
+

1

σ2

)
≤ EG

[
h
( (ξ − Y )2

σ4

)∣∣∣Y = x
]
=

1√
2πσfG,σ(x)

.

This completes the proof.

Lemma 2. Let t∗G(x, σ; ρ) be the regularized Bayes estimator in (4.1). Let

L̃(y) =
√
− log(2πy2) be the inverse of y = ϕ(x) as in (4.7). Then, for all

x ∈ R, {∣∣t∗G(x, σ; ρ)− x
∣∣ ≤ σL̃(ρ), 0 < ρ < (2πe)−1/2,

0 ≤ (∂/∂x)t∗G(x, σ; ρ) ≤ L̃2(ρ), 0 < ρ < (2πe3)−1/2.
(4.9)

Proof of Lemma 2. By Lemma 1,

∣∣t∗G(x, σ; ρ)− x
∣∣ = σ2 fG,σ(x)

(ρ/σ) ∨ fG,σ(x)

∣∣∣f ′
G,σ(x)

fG,σ(x)

∣∣∣
≤ σ

fG,σ(x)

(ρ/σ) ∨ fG,σ(x)
L̃
(
σfG,σ(x)

)
. (4.10)

If fG,σ(x) ≥ ρ/σ, since L̃(y) is decreasing in y > 0, |t∗G(x, σ; ρ) − x| ≤ σL̃(ρ)

by (4.10). If fG,σ(x) < ρ/σ, since yL̃(y) is increasing in 0 < y ≤ (2πe)−1/2,

|t∗G(x, σ; ρ)− x| ≤ σL̃(ρ). This is the first line of (4.9).

By the definition of t∗G(x, σ; ρ),

∂t∗G(x, σ; ρ)

∂x
=

⎧⎨⎩1 + σ2 f ′′
G,σ(x)

fG,σ(x)
− σ2

( f ′
G,σ(x)

fG,σ(x)

)2
, fG,σ(x) ≥ ρ/σ,

1 + σ2 f ′′
G,σ(x)

ρ/σ , fG,σ(x) < ρ/σ.
(4.11)

If fG,σ(x) ≥ ρ/σ, by (4.11) and Lemma 1,

∂t∗G(x, σ; ρ)

∂x
≤ 1 + σ2

f ′′
G,σ(x)

fG,σ(x)
≤ L̃2(σfG,σ(x)) ≤ L̃2(ρ).

If fG,σ(x) < ρ/σ, by Lemma 1,

0 ≤ 1− fG,σ(x)

ρ/σ
≤ 1 + σ2

f ′′
G,σ(x)

ρ/σ
≤ 1 +

fG,σ(x)

ρ/σ

(
L̃2(σfG,σ(x))− 1

)
. (4.12)
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Because y(L̃2(y) − 1) is increasing in 0 ≤ y ≤ (2πe3)−1/2, for σfG,σ(x) ≤ ρ ≤
(2πe3)−1/2,

σfG,σ(x)
(
L̃2(σfG,σ(x))− 1

)
≤ ρ
(
L̃2(ρ)− 1

)
. (4.13)

Putting (4.12) and (4.13) together, we have

0 ≤ 1 + σ2
f ′′
G,σ(x)

ρ/σ
≤ L̃2(ρ).

This gives the second line of (4.9).

4.3. Regret of a regularized Bayes estimator with a misspecified
prior

Let Fi and F ∗
i be scale changes of G and G∗

n under parameter σi according to
(4.2), respectively. Let Yi = Xi/σi and ξi = θi/σi. It follows from (4.3) that

EG∗
n

(
t∗G(Xi, σi; ρ)− θi

)2
/σ2

i − EG∗
n

(
t∗G∗

n
(Xi, σi)− θi

)2
/σ2

i

= EF∗
i

(
t∗Fi

(Yi; ρ)− ξi
)2 − EF∗

i

(
t∗F∗

i
(Yi)− ξi

)2
. (4.14)

Then, by Theorem 3 of [7] and Lemma 6.1 of [19], for all 0 < ρ ≤ (2πe2)−1/2

and x0 > 0,

EF∗
i

(
t∗Fi

(Yi; ρ)− ξi
)2 − EF∗

i

(
t∗F∗

i
(Yi)− ξi

)2
≤ M0 max

{
| log ρ|3, | log d(fFi , fF∗

i
)|
}
d2(fFi , fF∗

i
)

+2
{
PF∗

i

{
|ξi| > x0

}
+ 2x0ρL̃

2(ρ) + 2ρ
(
L̃2(ρ) + 2

)1/2}
,

where M0 is a universal constant. Note that the Hellinger distance is invariant
under scale change: d(fFi , fF∗

i
) = d(fG,σi , fG∗

n,σi). Thus we have the following
risk bound for the regularized Bayes rule for misspecified prior, which will be
used to bound ζ24n in (2.10).

Theorem 6. For any 0 < ρ ≤ (2πe2)−1/2 and x0 > 0,

1

n
EG∗

n

n∑
i=1

(
t∗G(Xi, σi; ρ)− θi

)2 −R∗
n(G

∗
n)

≤ M0

n

n∑
i=1

σ2
i max

{
| log ρ|3, | log d(fG,σi , fG∗

n,σi)|
}
d2(fG,σi , fG∗

n,σi)

+
2

n

n∑
i=1

σ2
i

{
PG∗

n

{
|θi/σi| > x0

}
+ 2x0ρL̃

2(ρ)

+2ρ
(
L̃2(ρ) + 2

)1/2}
. (4.15)
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Table 1

Average of
∑

i(θ̂i − θi)
2 based on 100 replications: n = 1000, σi ∼ Unif(0.5, 1.5),

θi ∈ {0, μ}, #{i : θi �= 0} = 5, 50 or 500.

#{θi �= 0} 5 50 500
μ 1.5 2 2.5 3 1.5 2 2.5 3 1.5 2 2.5 3

James-Stein 13 23 33 46 101 168 242 318 387 538 665 744
SURE-M 13 22 32 44 97 157 221 287 349 482 601 681
SURE-SG 16 25 35 45 99 159 220 284 357 492 615 695

Group-linear 27 37 46 57 110 170 232 293 364 494 611 690
NEST 119 123 133 130 182 213 238 248 400 499 563 559

GMLEB 13 21 26 28 87 121 141 144 333 425 473 454
Oracle 10 16 21 24 82 117 136 138 326 418 468 448

4.4. An entropy bound for regularized Bayes rules

We now provide an entropy bound for collections of regularized Bayes rules. It
is used to bound EG∗

n
ζ23n in (2.9) with a Gaussian isoperimetric inequality. For

any family H of functions and semi-distance d, the η-covering number is

N(η,H , d) ≡ inf
{
N : H ⊆ ∪N

j=1Ball(hj , η, d)
}

with Ball(h, ε, d) ≡
{
f : d(f, h) < η

}
. For each fixed ρ > 0 define the collection

of the regularized Bayes rules t∗G(x; ρ) in (4.1) as

Tρ =
{(

t∗G(·, σ1; ρ), . . . , t
∗
G(·, σn; ρ)

)
: G ∈ G

}
. (4.16)

where G is the family of all distribution functions. The following theorem pro-
vides an entropy bound for (4.16) under the seminorm ‖ · ‖∞,M defined in (3.3).

Theorem 7. Let L̃(y) =
√

− log(2πy2) be the inverse of y = ϕ(x). Then, for
all 0 < η ≤ σlρ ≤ (2πe)−1/2,

logN(η∗,Tρ, ‖ · ‖∞,M )

≤
{
4
(
6L̃2(η) + 1

)(
2M/L̃(η) + 3

)
+ 2
}
| log η|, (4.17)

where

η∗ =
η

ρ

{
L̃(η)

(σ2
u

σl
+

σ3
u

σ2
l

+
σ2
u√

2πeσ2
l

+
σ2
u√

2πσl

)
+

2σ3
u√

12πσ2
l

+
σu√
12π

+
2σ3

u√
2πe3/2σ3

l

+
σ3
u√

2πeσ2
l

}
. (4.18)

5. Numerical studies

In order to investigate the adaptivity of the GMLEB to different heteroscedastic
mean vectors, we carries out a simulation study. In Table 1, θi are drawn from
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Table 2

Average of
∑

i(θ̂i − θi)
2 based on 100 replications: n = 1000, σi ∼ Unif(0.5, 1.5),

θi ∼ (1− p)δ0 + pN(3, τ2).

τ2 0.1 1 10
p 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

James-Stein 640 749 750 651 669 782 801 748 846 935 967 982
SURE-M 578 683 687 588 606 718 739 686 782 890 931 946
SURE-SG 583 696 701 595 608 729 751 695 769 890 935 950

Group-linear 587 693 696 597 613 725 746 694 781 892 934 949
NEST 459 576 588 492 458 618 689 673 446 650 811 919

GMLEB 355 481 499 407 374 557 646 649 372 607 790 915
Oracle 349 474 493 401 366 549 638 640 360 595 775 898

two points: 0 or μ. The number of nonzero θi is 5, 50 or 500. The values of μ are
1.5, 2, 2.5 and 3. The scales are generated by σi ∼ Unif(0.5, 1.5) independently.

We report the sum of squared loss
∑

i(θ̂i − θi)
2 for n = 1000 based on average

of 100 replications. We display our simulation results for five estimators: the
extended James-Stein [2], the shrinkage estimator SURE-M and the semipara-
metric shrinkage estimator SURE-SG [18], the group-linear method [17], the
NEST [6] and the GMLEB. We also display Oracle as the risk of the oracle
Bayes rule t∗G∗

n
(·, σi) in (1.8). In each column, boldface entry represents the best

performer. The sum of squared loss of the GMLEB happens to be the smallest
among the reported estimators and tracks the oracle risk very well. Indeed, here
the oracle Bayes rule in (1.8) is nonlinear.

In Table 2, we report another simulation for independent θi and σ2
i . The

means are generated by θi ∼ (1 − p)δ0 + pN(3, τ2) where δu is the degenerate
distribution at u. We set p = 0.2 to 0.8 with an increment of 0.2, and τ2 = 0.1,
1 or 10. The GMLEB is the best throughout all combinations.

6. Proofs

Proof of Theorem 1. We use M0 to denote a universal real constant which may
take a different value on each occurrence. For simplicity, we take qn =
(e
√
2π/n2) ∧ 1 in (4.5) so that (4.4) holds with ρn = 1/n3. Let εn and x∗

be as in Theorem 4 and L̃(ρ) =
√
− log(2πρ2) be as in (4.7). Let η∗ be as in

(4.18) and

η =
ρn
n

=
1

n4
, M =

2σunε
2
n

(logn)3/2
. (6.1)

Let x∗ = max(x∗, 1) and
{
(t∗Hj

(·, σ1; ρn), . . . , t
∗
Hj

(·, σn; ρn)), j ≤ N
}
be a (2η∗)-

net of (2.7) under ‖ · ‖∞,M .

As we have described in the outline, we divide the proof into four steps.

Step 1. Let An =
{
d(Ĝn, G

∗
n) ≤ x∗εn

}
with x∗ = max(x∗, 1) and ζ1n

be as in (2.6). Since x∗ ≥ 1 and nε2n ≥ 2(logn)2 by (2.3), it follows from
Theorem 4 that PG∗

n
{Ac

n} ≤ exp
{
− (x∗)2nε2n/(2 logn)

}
≤ 1/n. Thus, since
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L̃2(ρn) = − log(2π/n6) ≤ M0 logn, Lemma 2 gives

EG∗
n
ζ21n = EG∗

n

n∑
i=1

{(
t∗
Ĝn

(Xi, σi; ρn)−Xi

)
+
(
Xi − θi

)}2

IAc
n

≤ 2

n∑
i=1

σ2
i L̃

2(ρn)PG∗
n

{
Ac

n

}
+ 2EG∗

n

n∑
i=1

(Xi − θi)
2IAc

n

≤ M0 log n+ 2

n∑
i=1

∫ ∞

0

min
(
P
{
|N(0, σ2

i )| > x
}
, 1/n

)
dx2. (6.2)

Since P{N(0, 1) > x} ≤ e−x2/2, we have

n∑
i=1

∫ ∞

0

min
(
P
{
|N(0, σ2

i )| > x
}
, 1/n

)
dx2

≤
∫ ∞

0

min
(
2ne−x2/(2σ2

u), 1
)
dx2 = 2σ2

u + 2σ2
u log(2n). (6.3)

By (6.2) and (6.3),
EG∗

n
ζ21n ≤ M0 logn ≤ M0nε

2
n. (6.4)

Step 2. In this step, we bound EG∗
n
ζ22n. Since

{
(t∗Hj

(·, σ1; ρn), . . . , t
∗
Hj

(·, σn;

ρn)), j ≤ N
}
form a (2η∗)-net of (2.7) under ‖ · ‖∞,M , it follows from Lemma 2

and (2.8) that

ζ22n ≤ min
j≤N

n∑
i=1

(
t∗
Ĝn

(Xi, σi; ρn)− t∗Hj
(Xi, σi; ρn)

)2
IAn

≤ (2η∗)2#
{
i : |Xi| ≤ M

}
+
{
2σuL̃(ρn)

}2
#
{
i : |Xi| > M

}
.

By (2.3), (nε2n/ logn)
p+1 ≥ n

{√
lognμp(G

∗
n)
}p

, so that by (6.1),∫
|u|≥M/2

dG∗
n(u) ≤

(μp(G
∗
n)

M/2

)p
≤
( 2nε2n
M(log n)3/2

)p ε2n
logn

=
( 1

σu

)p ε2n
logn

. (6.5)

Thus, since η∗ = n−1
{
c1L̃(n

−4) + c2
}
by (4.18) and M ≥ 4σu

√
logn by (6.1)

and (2.3),

EG∗
n
ζ22n ≤ n(2η∗)2 + 4σ2

uL̃
2(n−3)EG∗

n
#
{
i : |Xi| > M

}
≤ M0(logn)

( 1
n
+ n

∫
|u|≥M/2

dGn(u) +
n∑

i=1

P
{
|N(0, σ2

i )| > 2σu

√
logn

})
≤ M0(logn)

( 1
n
+

nε2n
logn

+

n∑
i=1

P
{
|N(0, 1)| > 2

√
logn

})
≤ M0(logn)

( 1
n
+

nε2n
logn

+
2

n

)
.
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Since nε2n ≥ 2(logn)2, we find

EG∗
n
ζ22n ≤ M0nε

2
n. (6.6)

Step 3. In this step, we bound EG∗
n
ζ23n. Let h(x) =

(∑n
i=1(t

∗
Ĝn

(xi, σi; ρ) −
θi)

2
)1/2

. It follows from Lemma 2 that for 0 < ρ ≤ (2πe3)−1/2,

|h(x)− h(y)| ≤
{ n∑

i=1

(
t∗G(xi, σi; ρ)− t∗G(yi, σi; ρ)

)2}1/2

≤ ‖x− y‖max
i≤n

sup
x

|(∂/∂x)t∗G(x, σi; ρ)|

≤ L̃2(ρ)‖x− y‖.

Thus, h(x)/L̃2(ρ) has the unit Lipschitz norm. The Gaussian isoperimetric in-
equality (e.g., [16]) gives that for any deterministic distribution G and x > 0,

PG∗
n

{( n∑
i=1

(
t∗G(Xi, σi; ρ)− θi

)2)1/2 ≥ EG∗
n

( n∑
i=1

(
t∗G(Xi, σi; ρ)− θi

)2)1/2
+ x

}
≤ exp

(
− x2

2L̃4(ρ)

)
.

This and (2.9) imply that

EG∗
n
ζ23n =

∫ ∞

0

PG∗
n

{
ζ3n > x

}
dx2

≤
∫ ∞

0

min
{
1, N exp

(
− x2/(2L̃4(ρn))

)}
dx2

= 2L̃4(ρn)(1 + logN). (6.7)

The entropy bound for regularized Bayes rules in Theorem 7 and (6.1) give that

logN ≤ M0(log n)
3/2M/2 ≤ M0nε

2
n. (6.8)

Hence by (6.7) and (6.8),

EG∗
n
ζ23n ≤ M0nε

2
n(logn)

2. (6.9)

Step 4. In this step, we bound EG∗
n
ζ24n. First of all, it follows from (2.10)

that

ζ24n ≤ max
j≤N

{
EG∗

n

n∑
i=1

(
t∗Hj

(Xi, σi; ρn)− θi
)2 − nR∗

n(G
∗
n)
}
. (6.10)
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By Theorem 6, for any 0 < ρn ≤ (2πe2)−1/2 and x0 > 0,

EG∗
n

n∑
i=1

(
t∗Hj

(Xi, σi; ρn)− θi
)2 − nR∗

n(G
∗
n)

≤ M0

n∑
i=1

σ2
i max

{
| log ρn|3, | log d(fHj ,σi , fG∗

n,σi)|
}
d2(fHj ,σi , fG∗

n,σi)

+2
n∑

i=1

σ2
i

{
PG∗

n

{
|θi/σi| > x0

}
+ 2x0ρnL̃

2(ρn)

+2ρn
(
L̃2(ρn) + 2

)1/2}
. (6.11)

Let x0 = M/(2σl) and ε0 = x∗εn ≥ d(Hj , G
∗
n). It follows from (6.5) that

PG∗
n

{
|θi/σi| > x0

}
| log ρn|3(x∗εn)2

≤
∫
|u|≥M/2

dG∗
n(u)

| log ρn|3(x∗εn)2
≤ (1/σu)

p(ε2n/ logn)

(logn)3ε2n
≤ M0. (6.12)

Since M = 2σunε
2
n/(log n)

3/2 and L̃2(ρn) ≤ M0 logn,

2(M/(2σl) + 1)ρnL̃
2(ρn)

(log ρn)3(x∗εn)2
≤ M0(nε

2
n/(log n)

3/2 + 1)/n3

(logn)2ε2n

≤ M0

n2(logn)7/2
≤ M0. (6.13)

Thus, by (6.10)–(6.13),

ζ24n ≤ M0n|(log ρn)/3|3ε2n = M0nε
2
n(logn)

3. (6.14)

Adding (6.4), (6.6), (6.9) and (6.14) together, we have

4∑
j=1

(
EG∗

n
ζ2jn
)1/2 ≤ M0n

1/2εn(log n)
3/2.

This and (2.11) complete the proof.

Lemma 3. Let a > 0, η = ϕ(aσl/σu) and M > 0. Given any mixing distribution
G, there exists a discrete mixing distribution Gm with support [−M − aσl,M +
aσl] and at most m = (2�6a2�+ 1)�2M/(aσl) + 2�+ 1 atoms, such that

max
i≤n

∥∥fG,σi − fGm,σi

∥∥
∞,M

≤
(
1 +

1√
2π

) η

σl
. (6.15)

Proof of Lemma 3. Let j∗ = �2M/(aσl) + 2� and k∗ = �6a2�. Let

Ij =
(
−M + (j − 2)aσl, (−M + (j − 1)aσl) ∧ (M + aσl)

]
, j = 1, . . . , j∗,
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be a partition of (−M − aσl,M + aσl]. It follows from the Carathéodory’s
theorem (e.g., [11]) that for each distribution function G there exists a discrete
distribution function Gm with support [−M − aσl,M + aσl] and no more than
m = (2k∗ + 1)j∗ + 1 support points such that∫

Ij

ukdG(u) =

∫
Ij

ukdGm(u), k = 0, 1, . . . , 2k∗, j = 1, . . . , j∗.

Since the Taylor expansion of e−t2/2 has alternating signs, for t2/2 ≤ k∗ + 2,

0 ≤ Rem(t) =

∣∣∣∣∣ϕ(t)−
k∗∑
k=0

(−t2/2)k√
2πk!

∣∣∣∣∣ ≤ (t2/2)k
∗+1

√
2π(k∗ + 1)!

.

Thus, since k∗ + 1 ≥ 6a2, for x ∈ Ij ∩ [−M,M ], the Stirling formula yields

∣∣fG,σi(x)− fGm,σi(x)
∣∣ ≤

∣∣∣∣ ∫
(Ij−1∪Ij∪Ij+1)c

1

σi
ϕ
(x− u

σi

)
d
(
G(u)−Gm(u)

)∣∣∣∣
+

∣∣∣∣ ∫
Ij−1∪Ij∪Ij+1

1

σi
Rem

(x− u

σi

)
d
(
G(u)−Gm(u)

)∣∣∣∣
≤ 1

σl
ϕ
(aσl

σu

)
+

((2a)2/2)k
∗+1

σl

√
2π(k∗ + 1)!

≤ 1

σl
ϕ
(aσl

σu

)
+

(e/3)k
∗+1

σl2π(k∗ + 1)1/2
. (6.16)

Furthermore, since (e/3)6 ≤ e−1/2 and k∗ + 1 ≥ 6a2 ≥ 6(aσl/σu)
2, we have

(e/3)k
∗+1 ≤ e−(aσl/σu)

2/2. Hence (6.15) follows from (6.16), (e/3)k
∗+1 ≤

e−(aσl/σu)
2/2 and η = ϕ(aσl/σu).

Lemma 4. There exists a universal constant C such that

logN(η,Fn, ‖ · ‖∞,M ) ≤ C| log η|2 max
( M√

| log η|
, 1
)
, (6.17)

for all 0 < η ≤ (2π)−1/2 and M > 0.

Proof of Lemma 4. Let a be the value such that η = ϕ(aσl/σu) and

m = (2�6a2�+ 1)�2M/(aσl) + 2�+ 1 ≤ C| log η|max
( M√

| log η|
, 1
)
. (6.18)

It follows from Lemma 3 that there exists a discrete distribution Gm with sup-
port [−M − aσl,M + aσl] and at most m atoms such that

max
i≤n

∥∥fG,σi − fGm,σi

∥∥
∞,M

≤
(
1 +

1√
2π

) η

σl
. (6.19)
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The next step is to approximate the fGm,σi in (6.19) by fGm,η,σi where Gm,η

is supported in a lattice and has no more than m atoms. Let ξ ∼ Gm and
ξη = η sgn(ξ)�|ξ|/η�. Define Gm,η as the distribution of ξη. The support of Gm,η

is in the grid Ωη,M = {0,±η,±2η, . . .}∩ [−M −aσl,M +aσl]. Since |ξ− ξη| ≤ η
and supx(∂/∂x)|(1/σi)ϕ(x/σi)| = 1/(

√
2πeσ2

i ),

max
i≤n

∥∥fGm,σi − fGm,η,σi

∥∥
∞ ≤ 1√

2πeσ2
l

η. (6.20)

The last step is to bound the covering number of the collection of all fGm,η,σi .
Let Pm be the set of all vectors w = (w1, . . . , wm) satisfying wj ≥ 0 and∑m

j=1 wj = 1. Let Pm,η be an η-net of Pm:

inf
wm,η∈Pm,η

∥∥w −wm,η
∥∥
1
≤ η, ∀ w ∈ Pm,

with N(η,Pm, ‖ · ‖1) elements. Let {uj , j = 1, . . . ,m} be the support of Gm,η

andwm,η be a probability vector in Pm,η satisfying
∑m

j=1 |Gm,η({uj})−wm,η
j | ≤

η. Denote G̃m,η =
∑m

j=1 w
m,η
j δuj . Then,

max
i≤n

∥∥fGm,η,σi − fG̃m,η,σi

∥∥
∞ ≤ 1√

2πσl

η, (6.21)

since supx |(1/σi)ϕ(x/σi)| = 1/(
√
2πσi).

Summing (6.19), (6.20) and (6.21) together, we have

max
i≤n

∥∥fG,σi − fG̃m,η,σi

∥∥
∞,M

≤
(
1 +

1√
2π

+
1√

2πeσl

+
1√
2π

) η

σl

≡ η∗∗. (6.22)

The support of G̃m,η is also in Ωη,M . Counting the number of ways to realize
{uj} and wm,η, we find

N(η∗∗,Fn, ‖ · ‖∞,M ) ≤
(
|Ωη,M |
m

)
N(η,Pm, ‖ · ‖1), (6.23)

with m satisfying (6.18) and |Ωη,M | = 1 + 2�(M + aσl)/η�.
Since Pm is in the �1 unit-sphere of Rm, N(η,Pm, ‖ · ‖1) is no greater than

the maximum number of disjoint Ball(vj , η/2, ‖ · ‖1) with ‖vj‖ = 1. Here is the
argument. Suppose there exists w ∈ Pm such that w 
∈ ∪jBall(vj , η, ‖ · ‖1).
Then Ball(w, η/2, ‖ · ‖1) ∩ Ball(vj , η/2, ‖ · ‖1) = ∅, ∀j. This is a contradiction
with the maximum number of disjoint balls. Hence Pm ⊂ ∪jBall(vj , η, ‖ · ‖1).

Since all these disjoint Ball(vj , η/2, ‖ · ‖1) are inside the (1 + η/2) �1-ball,
volume comparison yieldsN(η,Pm, ‖·‖1) ≤ (2/η+1)m. This, (6.23) and another
application of the Stirling formula yield

N(η∗∗,Fn, ‖ · ‖∞,M )

≤ (2/η + 1)m|Ωη,M |m
m!
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≤
{(

1 +
2

η

)(
1 +

2(M + aσl)

η

)}m(
mm+1/2e−m

√
2π
)−1

≤
{
(η + 2)

(
η + 2(M + aσl)

)
e

m

}m

η−2m(2πm)−1/2. (6.24)

For η = o(1), a → ∞, so that m ≥ (1+o(1))24a(M/σl+a) → ∞ and (η+2)(η+
2(M+aσl))e = (1+o(1))4e(M+aσl) ≤ m. Hence, N(η∗∗,Fn, ‖·‖∞,M ) ≤ η−2m

by (6.24). This and the definition of η∗∗ in (6.22) give (6.17).

Lemma 5. Suppose that under PG∗
n
, θ1, . . . , θn are i.i.d. random variables from

a distribution G∗
n, and given θi’s, Xi ∼ N(θi, σ

2
i ) are independent observa-

tions with known variances. Then for all constants M ≥ σu

√
8 logn, 0 < λ <

min(1, p), and a1, . . . , an > 0,

EG∗
n

{ n∏
i=1

|aiXi|I{|Xi|≥M}
}λ

≤ exp

{ n∑
i=1

(aiM)λ
(

4σu

Mn
√
2π

+
(2μp(G

∗
n)

M

)p)}
.

Proof of Lemma 5. It follows that

EG∗
n

{ n∏
i=1

|aiXi|I{|Xi|≥M}
}λ

≤
n∏

i=1

(
1 + aλi E|Xi|λI

{
|Xi| ≥ M

})
≤ exp

{ n∑
i=1

aλi

∫
|x|≥M

|x|λfG∗
n,σi(x)dx

}
. (6.25)

Let Z ∼ N(0, σ2
i ) and θ ∼ G∗

n. Since Z + θ ∼ fG∗
n,σi and 0 < λ ≤ 1,∫

|x|≥M

|x|λfG∗
n,σi(x)dx

= E|Z + θ|λI
{
|Z + θ| ≥ M

}
≤ E|2Z|λI

{
|Z| ≥ M

2

}
+ E|2θ|λI

{
|θ| ≥ M

2

}
≤ 2Mλ−1E|Z|I

{
|Z| ≥ M

2

}
+

∫
|x|≥M

2

(2|x|)λdG∗
n(x). (6.26)

Since λ < p, it follows from the Hölder and Markov inequalities that∫
|x|≥M

2

(2|x|)λdG∗
n(x) ≤ 2λμλ

p(G
∗
n)
(
PG∗

n

{
|x| ≥ M/2

})1−λ/p

≤ Mλ
(2μp(G

∗
n)

M

)p
.

Moreover, since M ≥ σu

√
8 logn,

2Mλ−1E|Z|I
{
|Z| ≥ M

2

}
≤ 2Mλ−1σuE|Z/σi|I

{
|Z/σi| ≥

M

2σu

}
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= 4Mλ−1σu

∫ ∞

M
2σu

xϕ(x)dx

≤ 4Mλσu

Mn
√
2π

.

Inserting the above inequalities into (6.26) yields∫
|x|≥M

|x|λfG∗
n
(x)dx ≤ Mλ

{
4σu

Mn
√
2π

+
(2μp(G

∗
n)

M

)p}
.

This and (6.25) imply the conclusion.

Proof of Theorem 7. It follows from (4.1) and Lemma 2 that∣∣t∗G(x, σi; ρ)− t∗H(x, σi; ρ)
∣∣

≤ σ3
i

ρ

∣∣f ′
G,σi

(x)− f ′
H,σi

(x)
∣∣+ σ2

i L̃(ρ)

ρ

∣∣fG,σi(x)− fH,σi(x)
∣∣. (6.27)

Let a satisfying η = ϕ(aσl/σu) so that aσl/σu = L̃(η). Let j∗ = �2M/(aσl)+
2� and k∗ = �6a2�. Let

Ij =
(
−M + (j − 2)aσl, (−M + (j − 1)aσl) ∧ (M + aσl)

]
, j = 1, . . . , j∗,

be a partition of (−M−aσl,M+aσl]. It follows from the Carathéodory’s theorem
that for each distribution function G there exists a discrete distribution function
Gm with support [−M − aσl,M + aσl] and no more than m = (2k∗ + 2)j∗ + 1
support points such that∫

Ij

ukdG(u) =

∫
Ij

ukdGm(u), k = 0, 1, . . . , 2k∗ + 1, j = 1, . . . , j∗.

Since the Taylor expansion of e−t2/2 has alternating signs, for t2/2 ≤ k∗ + 2,

0 ≤ Rem(t) =

∣∣∣∣∣ϕ(t)−
k∗∑
k=0

(−t2/2)k√
2πk!

∣∣∣∣∣ ≤ (t2/2)k
∗+1

√
2π(k∗ + 1)!

.

Thus, since k∗ + 1 ≥ 6a2 and aσl/σu ≥ 1, for x ∈ Ij ∩ [−M,M ], the Stirling
formula yields ∣∣f ′

G,σi
(x)− f ′

Gm,σi
(x)
∣∣

≤
∣∣∣∣ ∫

(Ij−1∪Ij∪Ij+1)c

(u− x

σ3
i

)
ϕ
(x− u

σi

)
d
(
G(u)−Gm(u)

)∣∣∣∣
+

∣∣∣∣ ∫
Ij−1∪Ij∪Ij+1

(u− x

σ3
i

)
Rem

(x− u

σi

)
d
(
G(u)−Gm(u)

)∣∣∣∣
≤ 1

σ2
l

max
t≥aσl/σu

tϕ(t) +
2a
(
(2a)2/2

)k∗+1

σ2
l

√
2π(k∗ + 1)!
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≤ 1

σ2
l

ηL̃(η) +
2a(e/3)k

∗+1

σ2
l 2π(k

∗ + 1)1/2
. (6.28)

Similarly, for |x| ≤ M ,

∣∣fG,σi(x)− fGm,σi(x)
∣∣ ≤ η

σl
+

(e/3)k
∗+1

σl2π(k∗ + 1)1/2
. (6.29)

Furthermore, since (e/3)6 ≤ e−1/2 and k∗ + 1 ≥ 6a2 ≥ 6(aσl/σu)
2, we have

(e/3)k
∗+1 ≤ e−(aσl/σu)

2/2. So by (6.27), (6.28) and (6.29),

max
i≤n

∥∥t∗G(·, σi; ρ)− t∗Gm
(·, σi; ρ)

∥∥
∞,M

≤ σ3
u

σ2
l ρ

(
ηL̃(η) +

2ae−(aσl/σu)
2/2

2π
√
6a2

)
+

σ2
uL̃(ρ)

σlρ

(
η +

e−(aσl/σu)
2/2

2π
√
6a2

)
≤ η

ρ

{
L̃(η)

(σ2
u

σl
+

σ3
u

σ2
l

)
+

2σ3
u√

12πσ2
l

+
σu√
12π

}
. (6.30)

Let ξ ∼ Gm, ξη = η sgn(ξ)�|ξ|/η� and Gm,η ∼ ξη. Since
supx(∂/∂x)|(1/σi)ϕ(x/σi)| = 1/(

√
2πeσ2

i ) and supx(∂
2/∂x2)|(1/σi)ϕ(x/σi)| =√

2/π/(e3/2σ3
i ) and |ξ − ξη| ≤ η,

∥∥fGm,σi − fGm,η,σi

∥∥
∞ ≤ 1√

2πeσ2
l

η,
∥∥f ′

Gm,σi
− f ′

Gm,η,σi

∥∥
∞ ≤ 2√

2πe3/2σ3
l

η.

This and (6.27) imply

max
i≤n

∥∥t∗Gm
(·, σi; ρ)− t∗Gm,η

(·, σi; ρ)
∥∥
∞ ≤ η

ρ

{
2σ3

u√
2πe3/2σ3

l

+
σ2
uL̃(η)√
2πeσ2

l

}
. (6.31)

Moreover, Gm,η has at most m support points.
Let Pm be the set of all vectors w = (w1, . . . , wm) satisfying wj ≥ 0 and∑m
j=1 wj = 1. Let Pm,η be an η-net of N(η,Pm, ‖ · ‖1) elements in Pm:

inf
wm,η∈Pm,η

∥∥w −wm,η
∥∥
1
≤ η, ∀ w ∈ Pm.

Let {uj , j = 1, . . . ,m} be the support of Gm,η and wm,η be a probability vector

in Pm,η with
∑m

j=1 |Gm,η({uj})−wm,η
j | ≤ η. Set G̃m,η =

∑m
j=1 w

m,η
j δuj . Then,∥∥fGm,η,σi − fG̃m,η,σi

∥∥
∞ ≤ 1√

2πσl

η,
∥∥f ′

Gm,η
− f ′

G̃m,η

∥∥
∞ ≤ 1√

2πeσ2
l

η,

since supx |(1/σi)ϕ(x/σi)| = 1/(
√
2πσi). This and (6.27) imply

max
i≤n

∥∥t∗Gm,η
(·, σi; ρ)− t∗

G̃m,η
(·, σi; ρ)

∥∥
∞ ≤ η

ρ

{
σ3
u√

2πeσ2
l

+
σ2
uL̃(η)√
2πσl

}
. (6.32)
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The support of Gm,η and G̃m,η is Ωη,M = {0,±η,±2η, . . .}∩[−M−aσl,M+aσl].

Summing (6.30), (6.31) and (6.32) together, we find∥∥∥t∗G(·, σi; ρ)− t∗
G̃m,η

(·, σi; ρ)
∥∥∥
∞,M

≤ η∗,

where η∗ is as in (4.18). Counting the number of ways to realize {uj} and wm,η,
we find

N(η∗,Tρ, ‖ · ‖∞,M ) ≤
(
|Ωη,M |
m

)
N(η,Pm, ‖ · ‖1), (6.33)

with m = (2k∗ + 2)j∗ + 1, |Ωη,M | = 1 + 2�(M + aσl)/η�, η = ϕ(aσl/σu),
j∗ = �2M/(aσl) + 2� and k∗ = �6a2�.

The rest of the proofs follow the same line in Lemma 4. The bound is
N(η∗,Tρ, ‖ · ‖∞,M ) ≤ η−2m where m ≤ 2(6a2 + 1)(2M/(aσl) + 3) + 1.
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