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Abstract: A weakly dependent time series regression model with multi-
variate covariates and univariate observations is considered, for which we
develop a procedure to detect whether the nonparametric conditional mean
function is stable in time against change point alternatives. Our proposal is
based on a modified CUSUM type test procedure, which uses a sequential
marked empirical process of residuals. We show weak convergence of the
considered process to a centered Gaussian process under the null hypothe-
sis of no change in the mean function and a stationarity assumption. This
requires some sophisticated arguments for sequential empirical processes
of weakly dependent variables. As a consequence we obtain convergence
of Kolmogorov-Smirnov and Cramér-von Mises type test statistics. The
proposed procedure acquires a very simple limiting distribution and nice
consistency properties, features from which related tests are lacking. We
moreover suggest a bootstrap version of the procedure and discuss its ap-
plicability in the case of unstable variances.
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1. Introduction

Assume a finite sequence (Xt, Yt), t = 1, . . . , n, of a weakly dependent Rd × R-
valued time series has been observed. Here, we interpretXt as a covariate (which
may contain past values of the process) and it is assumed that the conditional
expectation of the observation Yt, given Xt and all past values of the time series,
does only depend on the covariate Xt, and thus is a function mt(Xt). We do
not impose any parametric structure on the regression function. For inference
on the time series it is of importance whether the regression function is time
dependent or not, i.e. the hypothesis

H0 : mt(Xt) = m(Xt) a.s. for all t = 1, . . . , n

(for some not further specified function m) should be tested against structural
changes over time such as change point alternatives.
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Literature on such tests for nonparametric regression functions is rare in the
time series context. Both Hidalgo (1995) and Honda (1997) suggested CUSUM
tests for change points in the regression function in nonparametric time series
regression models with strictly stationary and absolutely regular data. Su and
Xiao (2008) extended these tests to strongly mixing and not necessarily sta-
tionary processes, allowing for heteroscedasticity, while Su and White (2010)
proposed change point tests in partially linear time series models. Vogt (2015)
constructed a kernel-based L2-test for structural change in the regression func-
tion in time-varying nonparametric regression models with locally stationary
regressors.

We will combine the CUSUM approach as considered by Hidalgo (1995),
Honda (1997), and Su and Xiao (2008) with a marked empirical process ap-
proach. Marked empirical processes have been suggested in a seminal paper
by Stute (1997) for lack-of-fit testing in nonparametric regression models with
i.i.d. data. Since then they have been widely used for hypothesis testing in re-
gression models, see Koul and Stute (1999) and Delgado and Manteiga (2001),
among many others. A marked empirical process approach has been applied
by Burke and Bewa (2013) for change point detection in an i.i.d. setting. In
contrast to our approach they use a process of observations instead of residuals
with a very complicated limit distribution, whereas we obtain a simple limit
distribution and even asymptotically distribution-free tests in the case of one-
dimensional covariates. To this end we show weak convergence of a sequential
marked empirical process of residuals under the null hypothesis. We further
demonstrate consistency under fixed alternatives of one structural break in the
regression function at some time point �ns0� for n → ∞.

Moreover we suggest a wild bootstrap version of our test that can be applied
to detect changes in the mean function in the case of stable variances (as alterna-
tive to using the asymptotic distribution, e.g. for multivariate covariates) as well
as in the case of non-stable variances. Wild bootstrap was first introduced by Wu
(1986) and Liu (1988) for linear regression with heteroscedasticity. It was used
in time series context by Kreiß (1997) and Hafner and Herwartz (2000), among
others. The bootstrap version of our test can detect changes in the conditional
mean function, even when the conditional variance function is also not stable,
but – as desired – the test does not react sensitive to the unstable variance. If
no change in the mean function is detected, a test for change in the variance
function can be applied, which assumes a stable mean function. The latter ap-
proach will be considered in detail in a forthcoming manuscript. Most literature
assumes stationary variances of the error terms (unconditional or conditional)
when testing for changes in regression. However, as Wu (2016) pointed out,
non-stationary variances can occur and will most likely result in misleading in-
ferences when not taken into account. Although this is a legitimate concern, not
many results are available that deal with non-stationary variances. The CUSUM
test by Su and Xiao (2008) allows for breaks in the conditional variance func-
tion. But their procedure does only seem to work for fixed breaks in the variance
function that do not depend on the sample size, whereas we consider changes of
the variance in some �nt0� for n → ∞. There are some approaches for testing
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for parameter stability in parametric time series models that consider unstable
variances, see Pitarakis (2004), Perron and Zhou (2008), Kristensen (2012), Cai
(2007), Xu (2015) and Wu (2016). But all the settings considered do not fit
into our framework as they either do not allow for autoregression models, by
assuming stationarity of the regressor variables under the null, or they do not
cover heteroscedastic effects. More precisely if heteroscedasticity is considered,
variance instabilities are not modeled in the conditional variance function but
as a time-varying constant.

The paper is organized as follows. In section 2 we present the model and
the sequential marked empirical process, on which the test statistics are based.
Further the assumptions are listed. In section 3 we consider the limit distribution
under the null hypothesis as well as consistency under the fixed alternative of
one change point. The wild bootstrap version of the procedure is discussed
in section 4, whereas simulations and a real data example are presented in
section 5. Section 6 contains concluding remarks, whereas proofs are presented
in the appendix.

2. The model and test statistic

Let (Yt,Xt)t∈Z be a strongly mixing stochastic process in R×R
d following the

regression model
Yt = mt(Xt) + Ut, t ∈ Z.

The covariate Xt may include finitely many lagged values of Yt, for instance
Xt = (Yt−1, . . . , Yt−d) such that the model includes nonparametric autoregres-
sion. The unobservable innovations (Ut)t∈Z are assumed to fulfill E[Ut|F t] = 0
almost surely for the sigma-field F t = σ(Uj−1,Xj : j ≤ t). Our assumptions
on the innovations are rather weak; in particular heteroscedastic models will be
covered. To derive asymptotic critical values for the test statistic defined below
we will assume strict stationarity under the following null hypothesis. Assuming
(Y1,X1), . . . , (Yn,Xn) have been observed, our aim is to test the null hypothesis

H0 : mt(·) = m(·), t = 1, . . . , n,

for the conditional mean function E[Yt|Xt = x] = mt(x), t ∈ Z, and some not
specified function m : Rd → R not depending on the time of observation t. To
test H0, we define the sequential marked empirical process of residuals as

T̂n(s, z) =
1√
n

�ns�∑
i=1

(Yi − m̂n(Xi))ωn(Xi)I{Xi ≤ z}, (2.1)

for s ∈ [0, 1] and z ∈ R
d, where ωn(·) = I{· ∈ Jn} with Jn from assumption

(J) below. Throughout I{·} denotes the indicator function, x ≤ y is short for
xj ≤ yj , ∀ j = 1, . . . , d, and we use the notations �x� = max{k ∈ Z : k ≤ x} for
x ∈ R and x ∧ y = (min{x1, y1}, . . . ,min{xd, yd}) as well as

∫
(−∞,x]

g(u)du =∫ xd

−∞ . . .
∫ x1

−∞ g(u1, . . . , ud)du1 . . . dud.
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The regression function m is estimated by the Nadaraya-Watson estimator
m̂n, where

m̂n(x) =

∑n
j=1 K

(
x−Xj

hn

)
Yj∑n

j=1 K
(

x−Xj

hn

) (2.2)

with kernel function K and bandwidth hn as considered in the assumptions
below.

The proposed test is a modification of the CUSUM test in Su and Xiao (2008).
They consider the process

1√
n

�ns�∑
i=1

(Yi − m̂n(Xi))f̂n(Xi)w(Xi),

where w : Rd → R is a weighting function and f̂n is the kernel density esti-
mator. While the factor f̂n has technical reasons as small random values in the
denominator of m̂n can be avoided, the weighting function w plays a crucial
role for the power of their test (see remarks to Theorem 3.2 in Su and Xiao
(2008)). Depending on the alternative, w needs to be chosen appropriately for
the rejection probability to converge to one. Hence, their test (in contrast to
the one based on the sequential marked process) is for fixed w not consistent
against all alternatives.

Under the null hypothesisH0 we formulate the following assumptions in order
to derive the limiting distribution of T̂n and corresponding test statistics in the
next section.

(G) Let (Yt,Xt)t∈Z be strictly stationary and α-mixing with mixing coefficient
α(·) such that α(t) = O(a−t) for some a ∈ (1,∞).

(U) For some γ > 0 and some even Q > (d + 1)(2 + γ) let E[Ut|F t] = 0,

E[U2
t |Xt] = σ2(Xt) and E[|Ut|Q

2+γ
2 |Xt] ≤ c(Xt)

Q a.s. for all t ∈ Z,
for some c, σ2 : Rd → R with

∫
c̄(u)dF (u) ≤ M for some M < ∞ and

c̄(u) = max
{
σ2(u), c(u)2, . . . , c(u)Q

}
, where F t = σ(Uj−1,Xj : j ≤ t).

(M) For some b > 2 let E[|Y1|b] < ∞ and X1 be absolutely continuous with
density f : Rd → R such that supx∈Rd E[|Y1|b|X0 = x]f(x) < ∞ and
supx∈Rd f(x) < ∞. Let supx1,xj

E[|Y1Yj ||X1 = x1,Xj = xj ]f1j(x1,xj)
< ∞ for all j ≥ j∗ and some j∗ < ∞, where f1j is the density of (X1,Xj).

(J) Let (cn)n∈N be a positive sequence of real valued numbers with cn → ∞
and cn = O((log n)1/d) and let Jn = [−cn, cn]

d.
(F1) Denote In = [−cn − Chn, cn + Chn]

d for some C < ∞ and cn from
assumption (J) and let for all n ∈ N, δ−1

n = infx∈Jn f(x) > 0 and

pn = max
k∈N

d
0

1≤|k|≤l+1+r

sup
x∈In

|Dkf(x)| < ∞

0 < qn = max
k∈N

d
0

0≤|k|≤l+1+r

sup
x∈In

|Dkm(x)| < ∞,



2242 M. Mohr and N. Neumeyer

for some r, l ∈ N, where for i = (i1, . . . , id) ∈ N
d
0, |i| =

∑d
j=1 ij and

Di = ∂|i|

∂x
i1
1 ...∂x

id
d

.

(F2) For qn from assumption (F1), cn from assumption (J) and C from as-
sumption (K), let supx∈[−cn−2hnC,cn+2hnC]d

∣∣Dkm(x)
∣∣ = O(qn) for all

k ∈ N
d
0 with |k| = 2.

(K) LetK : Rd → R be symmetric in each component, l+1 times differentiable
with

∫
Rd K(z)dz = 1 and compact support [−C,C]d. Additionally, let

r ≥ 2 and
∫
Rd K(z)zkdz = 0 for all k ∈ N

d
0 with 1 ≤ |k| ≤ r − 1, where

zk = zk1
1 · · · zkd

d . For all L ∈ {K} ∪ {DkK : k ∈ N
d
0 with 1 ≤ |k| ≤ l + 1}

let |L(u)| < ∞ for all u ∈ R
d and |L(u)−L(u′)| ≤ Λ‖u−u′‖ for some Λ <

∞ and for all u,u′ ∈ R
d. (Here, r, l and C are from assumption (F1).)

(B1) For δn, pn, qn and r, l from assumption (F1) let(√
logn

nh
d+2(l+1)
n

+ hr
npn

)
pl+1
n δl+2

n = O(1),

and for some η ∈ (0, 1) let(√
logn

nh
d+2(l+1)
n

+ hr
npn

)
pl+η
n qnδ

l+1+η
n = o(1).

(B2) For l, pn, qn, δn from assumption (F1) and η from assumption (B1), let
hn satisfy the following conditions

(logn)3+
d

l+η√
n1− d

l+η hd
n

q2nδ
2
n = o(1),

log hn√
nhd

n

= o(1)

and √
nhr

npnqn = o(1), (logn)3hnq
2
n = o(1).

Remark 2.1. Under assumption (G) it is not needed that the innovations {Ut}t
are i.i.d., e.g. one can obtain a strictly stationary, but non-i.i.d., white noise
by defining Ut = σ2

t (e
2
t − 1), where {σtet}t forms a strictly stationary GARCH

process, see Kreiß and Neuhaus (2006), 14.2.
Under aforementioned assumptions, consistency properties hold for m̂n uni-

formly on Jn from assumption (J) which will be shown in section A.1 of the ap-
pendix. The key tool here is an application of Theorem 2 in Hansen (2008). As-
sumption (G) implies polynomial mixing rates of the underlying process needed
in Hansen (2008). Moreover, together with the first bandwidth condition in (B2)
the bandwidth constraints in Hansen (2008) are also fulfilled. Assumptions (M)
and parts of (K) are reproduced from aforementioned paper.

In order to satisfy the first bandwidth condition in (B2), a necessary condi-
tion on the smoothness of f and m then is l + η > d, meaning that for higher
dimensional covariate Xt, the existence of higher order partial derivatives of f
and m is needed. In order to satisfy both the first and third bandwidth condition
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in (B2) at the same time, the order of the kernel needs to be large, in particular
r > d

2
l+η

l+η−d . The second bandwidth condition in (B2) is implied by the first one,

if the bandwidth hn has a polynomial rate of decay in n (or slower), meaning
if there exists a k ∈ (0,∞) such that hn = O(n−k). Note that k < 1

d − 1
l+η is

necessary then. Note, however, that rates of convergence that are known to be
MSE-optimal for estimation, namely O(n−1/(d+2r)), can not fulfill the third con-
dition from (B2) as r/(d+2r) < 1/2. However, it is common that for hypothesis
testing different bandwidth rates are needed than for estimation.

3. Asymptotic results

To derive the asymptotic distribution of test statistics built from the sequential
marked empirical process T̂n defined in (2.1), we apply the following expansion,
which uses Yi = m(Xi) + Ui for all i = 1, . . . , n under the null hypothesis,

T̂n(s, z) = An2(s, z) +An1(s, z)

with

An1(s, z) :=
1√
n

�ns�∑
i=1

(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z} (3.1)

An2(s, z) :=
1√
n

�ns�∑
i=1

Uiωn(Xi)I{Xi ≤ z}. (3.2)

Lemma A.3 in the appendix shows that An2(s, z) = Tn(s, z) + oP (1) uniformly
in s ∈ [0, 1] and z ∈ R

d with the process

Tn(s, z) =
1√
n

�ns�∑
i=1

UiI{Xi ≤ z}, s ∈ [0, 1], z ∈ R
d. (3.3)

Further, Lemma A.2 in the appendix shows that

An1(s, z) = s
√
n

∫
Rd

(m(x)− m̂n(x))ωn(x)I{x ≤ z}f(x)dx+ oP (1)

holds uniformly in s ∈ [0, 1] and z ∈ R
d. Inserting the definition of m̂n from

(2.2) one obtains one term of the form

s√
n

n∑
i=1

∫
(−∞,z]

(m(y)−m(Xi))Khn(y −Xi)ωn(y)
f(y)

f̂n(y)
dy,

which is negligible by Lemma A.4 and one term of the form

− s√
n

n∑
i=1

Ui

∫
(−∞,z]

Khn(y −Xi)ωn(y)
f(y)

f̂n(y)
dy
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which can further be expanded applying Lemmata A.5 and A.3 such that one
obtains

An1(s, z) = −sTn(1, z) + oP (1)

uniformly in s ∈ [0, 1] and z ∈ R
d. From this the expansion given in the first

part of Theorem 3.1 below follows. In the second part of the theorem weak
convergence of Tn from (3.3) is stated.

Theorem 3.1. (i) Suppose that (G), (U), (M), (J), (F1), (F2), (K), (B1)
and (B2) are satisfied. Then under H0

T̂n(s, z) = Tn(s, z)− sTn(1, z) + oP (1),

holds uniformly in s ∈ [0, 1] and z ∈ R
d.

(ii) Suppose that the assumptions (G) and (U) are satisfied. Then under
H0 the process Tn converges weakly in �∞([0, 1] × R

d) to a centered Gaussian
process G with

Cov
(
G(s1, z1), G(s2, z2)

)
= (s1 ∧ s2)Σ(z1 ∧ z2)

and Σ : Rd → R,x �→
∫
(−∞,x]

σ2(u)f(u)du.

The proof of the first part follows from the considerations above applying
Lemmata A.2–A.5 in the appendix, while the proof of the second part is given
in section A.2 of the appendix. The proof of the second part in particular makes
use of a recent result on weak convergence of sequential empirical processes
indexed in function classes that can be applied for strongly mixing sequences,
see Mohr (2019). Note that Koul and Stute (1999) show a weak convergence
result applicable to the non-sequential process {Tn(1, z) : z ∈ R} under less
restrictive assumptions on the dependence structure and moments (see Lemma
3.1 in aforementioned reference). From Theorem 3.1 and the continuous mapping
theorem one directly obtains the limit distribution of T̂n.

Corollary 3.2. Suppose that the assumptions of Theorem 3.1(i) are satisfied.
Then under H0 the process T̂n converges weakly in �∞([0, 1]×R

d) to a centered
Gaussian process G0 with

Cov
(
G0(s1, z1), G0(s2, z2)

)
= (s1 ∧ s2 − s1s2)Σ(z1 ∧ z2)

and Σ as in Theorem 3.1(ii).

Remark 3.3. There is an asymptotic effect from estimating m. If m was known,
one sees by setting m̂n = m in the above formulas that T̂n(s, z) = Tn(s, z)+oP (1)
and therefore the following weak convergence holds,

{T̂n(s, z) : s ∈ [0, 1], z ∈ R
d} → {G(s, z) : s ∈ [0, 1], z ∈ R

d},

where G is the centered Gaussian process from Theorem 3.1 (ii).
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Continuous functionals of the process T̂n can be used as test statistics for
H0. We consider the following Kolmogorov-Smirnov and Cramér-von Mises type
statistics and combinations of both,

Tn1 = sup
s∈[0,1],z∈Rd

∣∣∣T̂n(s, z)
∣∣∣ , Tn2 = sup

z∈Rd

∫ 1

0

∣∣∣T̂n(s, z)
∣∣∣2 ds,

Tn3 = sup
s∈[0,1]

∫
Rd

∣∣∣T̂n(s, z)
∣∣∣2 v(z)dz, Tn4 =

∫ 1

0

∫
Rd

∣∣∣T̂n(s, z)
∣∣∣2 v(z)dzds,

where v : R
d → R is some integrable weighting function. Applying Corol-

lary 3.2 and the continuous mapping theorem gives convergence in distribu-
tion of those test statistics. One can obtain distribution-free tests in the case
of dimension d = 1 as follows. Denote by {K0(s, t) : s ∈ [0, 1], t ∈ R} a
Kiefer-Müller process, i.e. a centered Gaussian process with covariance function
Cov(K0(s1, t1),K0(s2, t2)) = (s1 ∧ s2 − s1s2)(t1 ∧ t2). Then K0(·,Σ(·)) has the
same distribution asG0(·, ·). Let further σ(·) be continuous and consider the con-
sistent estimator ĉn = n−1

∑n
i=1(Yi − m̂n(Xi))

2ωn(Xi) for c =
∫
σ2(u)f(u)du.

Applying a scaling property of the process K0 in its second component and
substitution in the integrals it is easy to derive convergence in distribution as
follows,

Tn1

ĉ
1/2
n

D→
n→∞

sup
s∈[0,1],t∈[0,1]

|K0(s, t)| ,
Tn2

ĉn

D→
n→∞

sup
t∈[0,1]

∫ 1

0

|K0(s, t)|2 ds,

Tn3

ĉ2n

D→
n→∞

sup
s∈[0,1]

∫ 1

0

|K0(s, t)|2 dt,
Tn4

ĉ2n

D→
n→∞

∫ 1

0

∫ 1

0

|K0(s, t)|2 dtds.

For the latter two tests however the unknown weight function v = σ2f needs to
be chosen to obtain the limit as stated above. To obtain feasible asymptotically
distribution-free tests, Tn3 and Tn4 should be replaced by

T̃n3 = sup
s∈[0,1]

1

n

n∑
k=1

∣∣∣T̂n(s,Xk)
∣∣∣2 σ̂2

n(Xk), T̃n4 =

∫ 1

0

1

n

n∑
k=1

∣∣∣T̂n(s,Xk)
∣∣∣2 σ̂2

n(Xk)ds

applying a nonparametric estimator for the variance function such as

σ̂2
n(x) =

∑n
j=1 K

(
x−Xj

hn

)
(Yj − m̂n(x))

2

∑n
j=1 K

(
x−Xj

hn

) .

To conclude the section we will have a closer look at the alternative of one
change point. For simplicity reasons we will only consider the test based on Tn1.
To model the alternative we assume a triangular array

Yn,t = mn,t(Xn,t) + Un,t, t = 1, . . . , n,
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and validity of the alternative of one change point, i.e.

H1 : ∃s0 ∈ (0, 1) : mn,t(·) =
{
m(1)(·), t = 1, . . . , �ns0�
m(2)(·), t = �ns0�+ 1, . . . , n

(3.4)

for some not further specified functions m(1) �≡ m(2). Let fn,t denote the density

of Xn,t and assume that for all s ∈ (0, 1] there exists a function f̄ (s) : Rd → R

such that

lim
n→∞

1

n

�ns�∑
t=1

fn,t(x) = f̄ (s)(x), ∀ x ∈ R
d. (3.5)

Even though assumption (3.5) is rather difficult to varify in practise, we refer
the reader to the following example, Yt = at · Yt−1 + εt with standard normally
distributed innovations (εt)t and at = a ∈ (−1, 1) for t ≤ �ns0�, at = b ∈ (−1, 1)
for t > �ns0�, a �= b (see section 4 in Mohr and Selk (2020)).

Under some regularity conditions it can be shown by applying Kristensen’s
(2009) results that

sup
x∈Jn

|m̂n(x)− m̄n(x)| = oP (1), (3.6)

where m̄n(x) =
∑n

i=1 fn,i(x)mn,i(x)/
∑n

i=1 fn,i(x) converges to the mixture

m(1)(x)
f̄ (s0)(x)

f̄ (1)(x)
+

(
1− f̄ (s0)(x)

f̄ (1)(x)

)
m(2)(x) (3.7)

of the regression functions before and after the change (for details see Theorem
2.3 in Mohr (2018)). Now for fixed z ∈ R

d and s ∈ (0, 1) with s ≤ s0, it holds
that

T̂n(s, z) =
√
nΔ(s, z) + oP (

√
n),

where

Δ(s, z) =

∫
(−∞,z]

(m(1)(u)−m(2)(u))

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
f̄ (s)(u)du.

As under H1 this integral is non-zero for s = s0 and some z, convergence of Tn1

to infinity in probability and thus the test is consistent. For a rigorous proof we
refer the reader to Theorem 3.4 in Mohr (2018).

Remark 3.4. Consider the non-marked CUSUM process T̂n(s,∞) which is
analogous to Su and Xiao’s (2008) procedure. Considerations as above for the
fixed alternative H1 of one change point in �ns0� leads for s ≤ s0 to

Δ(s,∞) =

∫
(m(1)(u)−m(2)(u))

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
f̄ (s)(u)du

The integral can be zero even if m(1) �= m(2). Then tests based on the CUSUM
process will not be consistent, while tests based on the marked CUSUM process
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are. We will consider some examples in section 5. Note that the above integral
equals

s(1− s0)

∫
(m(1)(u)−m(2)(u))f(u)du,

in case of a stationary covariate process.

4. A bootstrap procedure and the case of non-stationary variances

As alternative to the asymptotic test considered in section 3, in this section
we will suggest a wild bootstrap approach. This resampling procedure can in
particular be applied in the case of multivariate covariates, where the critical
values for the asymptotic tests based on Corollary 3.2 have to be estimated.
Moreover, the bootstrap approach can be applied to obtain a test that detects
changes in the conditional mean function, even when the conditional variance
function is not stable. As desired, the test does not react sensitive to the unstable
variance. In contrast to the bootstrap approach, the limiting distribution from
section 3 cannot be applied in the case of changes in the variance.

We consider the model

Yn,t = mn,t(Xn,t) + Un,t, t = 1, . . . , n,

with E[Un,t|F t
n] = 0 and E[U2

n,t|Xn,t] = σ2
n,t(Xn,t) a.s. for some functions σ2

n,t :

R
d → R and F t

n := σ(Un,j−1,Xn,j : j ≤ t). We assume Xn,t to be absolutely
continuous with density function fn,t. The model considered in section 2 and the
first part of section 3 is the special case where fn,t(·) = f(·) and σ2

n,t(·) = σ2(·)
for all t = 1, . . . , n and for some f, σ2 : Rd → R not depending on t and n. Both
models allow for heteroscedasticity, but the more general model also allows for
possible changes in σ2

n,t, which should not effect the rejection probability of the
test for

H0 : mn,t(·) = m(·), t = 1, . . . , n,

(for some m not depending on t and n). We again consider the procedure

T̂n(s, z) =
1√
n

�ns�∑
i=1

Ûn,iωn(Xn,i)I{Xn,i ≤ z}

with residuals Ûn,i = Yn,i − m̂n(Xn,i). Here m̂n is defined as in (2.2), but
replacing (Xj , Yj) by (Xn,j , Yn,j), j = 1, . . . , n.

First define the wild bootstrap innovations as U∗
n,t = Ûn,tηt, where {ηt}

are i.i.d. random variables, independent of the original sample with E[η0] = 0,
E[η20 ] = 1 and E[η40 ] < ∞. Then the bootstrap data fulfilling the null hypothesis
are generated by

Y ∗
n,t = m̂n(Xn,t) + U∗

n,t.

Note that if the original data follow an autoregression model, say d = 1 and
Xn,t = Yn,t−1, by the above choice the resulting bootstrap data does not follow
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the same structure. As was pointed out by Kreiß and Lahiri (2012) this boot-
strap data generation is still a reasonable choice in particular if the dependence
structure of the underlying process does not show up in the asymptotic distri-
bution. Another possibility might be a dependent wild bootstrap as suggested
in Shao (2010).

The bootstrap residuals are defined as Û∗
n,t = Y ∗

n,t − m̂∗
n(Xn,t), where m̂∗

n is
defined as m̂n in (2.2), but replacing (Xj , Yj) by (Xn,j , Y

∗
n,j), j = 1, . . . , n. The

bootstrap process is defined as

T̂ ∗
n(s, z) =

1√
n

�ns�∑
i=1

Û∗
n,iωn(Xn,i)I{Xn,i ≤ z}.

Bootstrap versions T ∗
n�, � = 1, . . . , 4, are defined analogous to the test statistics

Tn�, � = 1, . . . , 4, but based on T̂ ∗
n instead of T̂n. Then H0 is rejected if Tn� is

larger than the (1−α)-quantile of the conditional distribution of T ∗
n�, given the

original data.
To motivate that we obtain a valid procedure (which holds the level asymptot-

ically and is consistent) even in the case of changing variances, we will consider
the limiting process G0 of the original process T̂n and the conditional limiting
process G∗

0 of the bootstrap version T̂ ∗
n in subsections 4.1 and 4.2 below. We

will see that the processes G0 and G∗
0 coincide under the null hypothesis. Note

that some steps of the derivation can be proven rigorously, see Mohr (2018) for
details, but deriving the weak convergence (see assumption (ii) in the next para-
graph) would require a limit theorem for sequential empirical processes indexed
in function classes for weakly dependent non-stationary triangular arrays. Such
a result is, to the best of our knowledge, not yet available in the literature and
thus a rigorous proof is beyond the scope of the paper (see Mohr (2019) for a
related limit theorem that requires stationarity).

4.1. Asymptotics for non-homogeneous variances

Heuristically under H0 one can proceed as in the proof of the first part of
Theorem 3.1 in the beginning of section 3. Under some regularity assumptions
similar to those in section 2 and the assumption that the limit f̄ (s) as in (3.5)
exists one obtains the expansion

T̂n(s, z) = Γn(s, 1, z)− Γn(1, s, z) + oP (1)

with the process

Γn(s, t, z) :=
1√
n

�ns�∑
i=1

Un,iḡ
(t)(Xn,i)ωn(Xi)I{Xn,i ≤ z} : s, t ∈ [0, 1], z ∈ R

d,

where ḡ(t) := f̄ (t)/f̄ (1). Now assume that

(i) the limit h̄(s)(·) := limn→∞ n−1
∑�ns�

i=1 σ2
n,i(·)fn,i(·) exists for all s ∈ (0, 1],
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(ii) the process Γn converges weakly to a centered Gaussian process Γ.

The limiting covariance then is

E[Γ(s1, t1, z1)Γ(s2, t2, z2)] =

∫
(−∞,z1∧z2]

h̄(s1∧s2)(u)ḡ(t1)(u)ḡ(t2)(u)du.

Then with the continuous mapping theorem the weak convergence of T̂n to a
centered Gaussian process {G0(s, z) : s ∈ [0, 1], z ∈ R

d} follows with covariances

Cov(G0(s1, z1), G0(s2, z2)) =

∫
(−∞,z1∧z2]

(
h̄(s1∧s2)(u)− h̄(s1)(u)ḡ(s2)(u)

−h̄(s2)(u)ḡ(s1)(u) + h̄(1)(u)ḡ(s1)(u)ḡ(s2)(u)
)
du.

Note that this is consistent with the stationary case as then h̄(s)(·) = sσ2(·)f(·)
and ḡ(s)(·) = s and the same covariance function as in Corollary 3.2 is obtained.
The convergence of the test statistics Tn�, � = 1, . . . , 4, in distribution follows
again from the continuous mapping theorem.

Under the change point alternative H1 from (3.4) with m(1) �≡ m(2), anal-
ogous to the considerations in section 3 it holds that the test statistic Tn1

converges to infinity in probability.

4.2. Derivations for the bootstrap process

Concerning the weak convergence of the bootstrap process T̂ ∗
n , conditionally on

the sample, we have again a look at the expansion in the beginning of section 3
for the derivation of the first part of the proof of Theorem 3.1. In what follows let
P ∗ denote the conditional probability and E∗ the conditional expectation, given
the observations. Further let Zn = oP∗(1) be short for P ∗(|Zn| > ε) = oP (1) for
all ε > 0. Here we obtain

T̂n(s, z) = A∗
n2(s, z) +A∗

n1(s, z)

with

A∗
n2(s, z) :=

1√
n

�ns�∑
i=1

U∗
n,iωn(Xn,i)I{Xn,i ≤ z}

and (similar to Lemma A.2 in the appendix)

A∗
n1(s, z) :=

1√
n

�ns�∑
i=1

(m̂n(Xn,i)− m̂∗
n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
√
n

∫
(−∞,z]

(m̂n(x)− m̂∗
n(x))ωn(x)f̄

(s)(x)dx+ oP∗(1)
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with f̄ (s) as in (3.5). Inserting the definition of m̂∗
n this leads to a term (similar

to Lemma A.4) of the form

1√
n

n∑
j=1

∫
(−∞,z]

(m̂n(x)− m̂n(Xn,j))Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx,

which is negligible, and a term (similar to Lemma A.5) of the form

− 1√
n

n∑
j=1

U∗
n,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx

= − 1√
n

n∑
j=1

U∗
n,jωn(Xn,j)

f̄ (s)(Xn,j)

f̄ (1)(Xn,j)
I{Xn,j ≤ z}+ oP∗(1).

Thus one obtains (under suitable regularity conditions) the expansion

T̂ ∗
n(s, z) = Γ∗

n(s, 1, z)− Γ∗
n(1, s, z) + oP∗(1),

where

Γ∗
n(s, t, z) :=

1√
n

�ns�∑
i=1

U∗
n,iωn(Xn,i)ḡ

(t)(Xn,i)I{Xn,i ≤ z}, s, t ∈ [0, 1], z ∈ R
d,

and ḡ(t) is defined as in section 4.1. In what follows we will assume that the pro-
cess Γ∗

n, conditionally on the sample, converges weakly to a centered Gaussian
process, in probability. Then, by the continuous mapping theorem, T̂ ∗

n , condi-
tionally converges weakly to a centered Gaussian process, say G∗

0. We will calcu-
late the asymptotic variances in order to show that underH0 those coincide with
the covariances of G0 as in section 4.1. First note E∗[U∗

n,iU
∗
n,j ] = Û2

n,iI{i = j}
holds almost surely. Under H0 it holds that Ûn,t = m(Xn,t)− m̂n(Xn,t) + Un,t

and m̂n consistently estimates m, and thus

E∗ [Γ∗
n(s1, t1, z1)Γ

∗
n(s2, t2, z2)]

=
1

n

�ns1�∧�ns2�∑
i=1

Û2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

�ns1�∧�ns2�∑
i=1

U2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}+ oP (1)

= E [Γ(s1, t1, z1)Γ(s2, t2, z2)] + oP (1)

under H0, where Γ is the limiting distribution of Γn in section 4.1. Thus, under
H0, T̂

∗
n indeed (presumably) converges weakly to G0 in probability, and thus

the test statistic T ∗
n� converges conditionally in distribution, to the same limits

as Tn� (respectively for � = 1, . . . , 4).
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Under the alternative H1 as in (3.4), Ûn,i = mn,i(Xn,i) − m̂n(Xn,i) + Un,i

and thus it holds that

E∗ [Γ∗
n(s1, t1, z1)Γ

∗
n(s2, t2, z2)]

=
1

n

�ns1�∧�ns2�∑
i=1

Û2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

�ns1�∧�ns2�∑
i=1

U2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

+ rn1 + rn2

for fixed s1, s2, t1, t2 ∈ [0, 1] and z1, z2 ∈ R
d. The first term again converges in

probability to E [Γ(s1, t1, z1)Γ(s2, t2, z2)]. It can further be shown that

rn1 =
2

n

�ns1�∧�ns2�∑
i=1

Un,i(mn,i(Xn,i)− m̂n(Xn,i))ωn(Xn,i)

· ḡ(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

converges to zero in probability. However,

rn2 =
1

n

�ns1�∧�ns2�∑
i=1

(mn,i(Xn,i)− m̂n(Xn,i))
2ωn(Xn,i)

· ḡ(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

�ns1�∧�ns2�∑
i=1

(mn,i(Xn,i)− m̄n(Xn,i))
2ωn(Xn,i)

· ḡ(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

+ oP (1),

with the same m̄n as in (3.6), which converges to

(m(1)(x)−m(2)(x))ḡ
(s0)(x) +m(2)(x)

(see (3.7)). Thus, it can be shown that

rn2 =
1

n

�ns1�∧�ns2�∧�ns0�∑
i=1

(
m(1)(Xn,i)−m(2)(Xn,i)

)2
ωn(Xn,i)

(
1− ḡ(s0)(Xn,i)

)2
· ḡ(t1)(Xn,i)ḡ

(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

+
1

n

�ns1�∧�ns2�∑
i=�ns1�∧�ns2�∧�ns0�+1

(
m(1)(Xn,i)−m(2)(Xn,i)

)2
ωn(Xn,i)ḡ

(s0)(Xn,i)
2

· ḡ(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}
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+ oP (1).

It can be seen that these terms do not vanish but converge to some limit
in probability. Thus the limiting distribution G∗

0 under H1 is not equal to G0

and in particular depends on the changepoint s0. As seen before under H1 the
original test statistic Tn1 converges in probability to infinity. On the other hand,
the bootstrap test statistic T ∗

n1 conditionally converges in distribution to some
non-degenerated limit, in probability. Thus the bootstrap test is consistent.

5. Finite sample properties

A small Monte Carlo study is conducted in order to compare the results for Tn1

and Tn2 from section 3 with those of the traditional CUSUM versions denoted by
KS := sups∈[0,1] |T̂n(s,∞)| and CM :=

∫
|T̂n(s,∞)|2ds. Note that the results

for T̃n3 and T̃n4 are similar and omitted for reasons of brevity. Asymptotic tests
are applied to data satisfying models 1 and 2, while the bootstrap versions are
applied to model 3 and 4 explained below. All simulations are carried out with a
level of 5%, 500 replications and 200 bootstrap replications and for sample sizes
n ∈ {100, 300, 500}. For the nonparametric estimators we use a fourth order
Epanechnikov kernel (and the corresponding product kernel in model 4 below)
and the bandwidth is chosen by the cross validation method. For simplicity we
set ωn ≡ 1. The data is simulated from the following models.

(model 1) Yt = mt(Xt) +
√

1 + 0.5X2
t εt, εt ∼ N (0, 1),

mt(x) =

{
0.5x, t = 1, . . . , �n/2�
(0.5 + Δ0e

−0.8x2

)x, t = �n/2�+ 1, . . . , n
,

where Xi is an exogenous variable following the AR(1) model Xt = 0.4Xt−1+ξt
with ξi being i.i.d. ∼ N (0, 1) and Δ0 ∈ {0, 0.5, 1, 1.5, 1.5, 2, 2.5, 3, 3.5, 4}.

(model 2) Yt = mt(Yt−1) + σ(Yt−1)εt, εt ∼ N (0, 1),

mt(x) =

{
−0.9x, t = 1, . . . , �n/2�
(−0.9 + Δ0)x, t = �n/2�+ 1, . . . , n

,

with Δ0 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}. Consider the homoscedastic
case, where σ2(x) = 1 and the heteroscedastic case, where σ2(x) = 1 + 0.1x2.

(model 3) Yt = mt(Yt−1) + σt(Yt−1)εt, εt ∼ N (0, 1),

σ2
t (x) =

{
1 + 0.1x2, t = 1, . . . , �nt0�
1 + 0.8x2, t = �nt0�+ 1, . . . , n

,

mt(x) =

{
0.9x, t = 1, . . . , �n/2�
(0.9−Δ0)x, t = �n/2�+ 1, . . . , n

,
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with Δ0 ∈ {0, 1.3} and t0 ∈ {0.25, 0.5, 0.75}.

(model 4) Yt = mt(Yt−1, Yt−2) + σ(Yt−1, Yt−2)εt, εt ∼ N (0, 1),

mt(x1, x2) =

{
0.9x1 − 0.4x2, t = 1, . . . , �n/2�
(0.9−Δ0)x1 − 0.4x2, t = �n/2�+ 1, . . . , n

,

with Δ0 ∈ {0, 1.3}. We consider three different choices for the conditional vari-
ance function, namely σ2(x1, x2) = 1 for an AR(2) model, σ2(x1, x2) = 1+0.4x2

1

for an AR(2)-ARCH(1) model and σ2(x1, x2) = 1+0.2x2
1+0.2x2

2 for an AR(2)-
ARCH(2) model.

Model 1 is a regression model with autoregressive covariables. In model 2 we
consider both a homoscedastic and heteroscedastic autoregression model, while
model 3 is a heteroscedastic autoregression with non-homogeneous variances.
In model 4 we consider both homoscedastic and heteroscedastic second order
autoregression models. All models fulfill H0 for Δ0 = 0 and H1 for Δ0 �= 0
with a change in regression function occurring in �n/2�. Further, note that
for model 1 the covariate process {Xt} fulfills the required stationarity and
mixing conditions (see 2.6.1 (iii) in Fan and Yao (2003)) which are inherited
to {Yt} under H0. Model 2 also fulfills the stationarity and mixing conditions
under the null (see 2.6.1 (iii) in Fan and Yao (2003) and Theorem 1 in Lu
(1998) for σ2(x) = 1 and σ2(x) = 1 + 0.1x2, respectively). Note that model
3 is not stationary as one change occurs in the conditional variance function
under both H0 and H1. For model 4 the limiting distribution from Corollary 3.2
does not result in an asymptotically distribution-free test as the covariate is
multivariate. Thus for both model 3 and 4 we apply the bootstrap procedure
from section 4.

Figures 1, 2 and 3 are visualizations of the performance of Tn1 and Tn2, as
well as KS and CM in model 1 and 2. Under the null the rejection frequencies
for all tests are near the nominal level. For model 1 the CUSUM tests are
not consistent against H1, while the tests based on the marked process are.
In model 2 the rejection frequencies of all tests increase with increasing break
size. Note however that the increase is much faster for Tn1 and Tn2 than for
the CUSUM tests. Also note that the influence of the conditional variance is
rather small resulting in a similar performance in both the homoscedastic and
heteroscedastic case.

Table 1 shows the rejection frequencies of the bootstrap procedure for model
3 using T ∗

n1 and T ∗
n2, as well as the bootstrap version of the CUSUM tests KS

and CM under both the null and the alternative hypothesis. The level sim-
ulations show that all tests perform reasonably well under H0, approximately
holding the level indicating that the bootstrap test is – as desired – not sensitive
to changes in the conditional variance function. Furthermore, it can be seen that
for all models and all tests the rejection frequency under H1 exceeds the level,
indicating that the change point is detected. With increasing sample size, the
number of rejections increases rapidly for T ∗

n1 and T ∗
n2, while it stays approxi-

mately constant for the bootstrap versions of KS and CM . This is presumably
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due to the fact that the test statistics based on T̂n(s,∞) estimate some inte-
gral that might be small under H1. As was pointed out in subsection 4.2, this
integral not vanishing is essential for the consistency property for the bootstrap
tests.

Table 2 shows the rejection frequencies for model 4 in all three cases of
variance function, when using the tests based on T ∗

n1 and T ∗
n2, as well as the

bootstrap versions of KS and CM under both H0 and H1. It can be seen that
under H0 the tests reject a little more often than in the models considered
in section 5, overestimating the level of 5% sometimes for finite sample sizes.
Under the alternative the number of rejections increases rapidly for T ∗

n1 and T ∗
n2

with increasing n, while it stays relatively low for KS and CM . In summary,
the bootstrap tests perform reasonably well and are therefore an acceptable
alternative to the tests using critical values of the limiting distribution, which
are here not known due to multidimensional covariates. Furthermore in these
models, they outperform the bootstrap versions of the CUSUM tests.

Fig 1. Rejection frequencies in model 1

Fig 2. Rejection frequencies in model 2 with σ2(x) = 1

Finally, we apply the asymptotic test based on Tn1 to 36 measurements of
the annual flow volume of the small Czech river Ráztoka recorded between 1954
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Fig 3. Rejection frequencies in model 2 with σ2(x) = 1 + 0.1x2

Table 1

Rejection frequencies in model 3 (α = 0.05)

under H0 under H1

t0 n T ∗
n1 T ∗

n2 KS CM T ∗
n1 T ∗

n2 KS CM

0.25 100 0.030 0.046 0.030 0.054 0.286 0.270 0.192 0.168
300 0.068 0.064 0.080 0.052 0.652 0.644 0.248 0.172
500 0.060 0.052 0.058 0.046 0.878 0.868 0.264 0.194

0.50 100 0.068 0.048 0.068 0.056 0.420 0.438 0.316 0.256
300 0.066 0.050 0.056 0.046 0.868 0.894 0.378 0.292
500 0.046 0.040 0.058 0.040 0.994 0.996 0.434 0.324

0.75 100 0.060 0.056 0.072 0.070 0.404 0.388 0.332 0.266
300 0.048 0.048 0.050 0.056 0.830 0.848 0.382 0.250
500 0.034 0.040 0.046 0.056 0.986 0.988 0.350 0.202

Table 2

Rejection frequencies in model 4 (α = 0.05)

under H0 under H1

model n T ∗
n1 T ∗

n2 KS CM T ∗
n1 T ∗

n2 KS CM

AR(2) 100 0.082 0.068 0.082 0.074 0.124 0.110 0.080 0.070
300 0.064 0.070 0.054 0.048 0.284 0.308 0.096 0.070
500 0.076 0.058 0.068 0.060 0.480 0.532 0.098 0.070

AR(2)- 100 0.076 0.060 0.094 0.068 0.098 0.106 0.070 0.058
ARCH(1) 300 0.084 0.098 0.086 0.096 0.252 0.282 0.088 0.074

500 0.098 0.078 0.080 0.074 0.476 0.484 0.120 0.078

AR(2)- 100 0.076 0.064 0.064 0.044 0.096 0.104 0.072 0.050
ARCH(2) 300 0.100 0.082 0.092 0.076 0.226 0.236 0.108 0.074

500 0.082 0.068 0.076 0.056 0.392 0.420 0.094 0.068

and 1989. It was considered by Hušková and Antoch (2003). We set Xt as the
annual rainfall and Yt as the annual flow volume. The asymptotic test clearly
rejects H0 with a p-value of 0.0006. The possible change point is estimated by
ŝn from section 6 and suggests a change in 1979. Note that this is consistent
with the literature. As was pointed out by Hušková and Antoch (2003) defor-
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estation had started around that time, which is a possible explanation. Figure 4
shows on the left-hand side the scatterplot Xt against Yt using dots for the
observations after the estimated change and crosses for the observations before
the estimated change. On the right-hand side the figure shows the cumulative
sum, supz∈R |T̂n(·, z)|, as well as the critical value (red horizontal line) and the
estimated change (green vertical line).

Fig 4. Ráztoka data: scatterplot (left) and CUSUM (right)

6. Concluding remarks

We suggested a new test for structural breaks in the regression function in
nonparametric time series (auto-)regression. Our approach combines CUSUM
statistics with the marked empirical process approach from goodness-of-fit test-
ing. The considered model is rather general. It requires strict stationarity un-
der the null, but no independence of the innovations, nor homoscedasticity.
We show favorable asymptotic properties and demonstrate that the new test-
ing procedures are consistent against fixed alternatives, while the traditional
CUSUM tests are not. An estimator for the change point is given by ŝn :=
argmaxs∈[0,1] supz∈Rd |T̂n(s, z)|. Asymptotic properties of this estimator will be
considered in future research.

Moreover we have suggested a bootstrap version that can also be applied to
detect changes in the regression function in the presence of changing variance
functions. In a forthcoming paper we will consider testing for changes in the
variance function.

Appendix A: Proofs and derivations

In subsection A.1 we give some auxiliary results for the proof of Theorem 3.1.
The proof of the first part of the theorem was given in the main text, while the
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proof of the second part can be found in subsection A.2. Lemmata are proved
in subsection A.3, while more detailed proofs can also be found in Mohr (2018).

A.1. Auxiliary results

The following assumptions are formulated for the first lemma that gives uni-
form rates of convergence for the regression estimator m̂n from (2.2) and its
derivatives. They hold under the assumptions of Theorem 3.1.

(P) Let (Yt,Xt)t∈Z be a strictly stationary and strongly mixing process with
mixing coefficient α(·). For some b > 2 let α(t) = O(t−β) for t → ∞ with
some β > (1 + (b− 1) (1 + d))/(b− 2).

(B3) With b and β from assumption (P) let (logn)/(nθhd
n) = o(1) hold for

θ = (β − 1− d− (1 + β)/(b− 1))/(β + 3− d− (1 + β)/(b− 1)).

Lemma A.1. Under the assumptions (P), (M), (J), (F1), (K), (B1) and
(B3) the following rates of convergence can be obtained for the Nadaraya-
Watson estimator m̂n,

(a) sup
x∈Jn

|m̂n(x)−m(x)| = OP

((√
log (n)
nhd

n
+ hr

npn

)
qnδn

)
,

(b) sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣ = OP

((√
log (n)

nh
d+2|k|
n

+ hr
npn

)
p
|k|
n qnδ

|k|+1
n

)
for

all k ∈ N
d
0 with 1 ≤ |k| ≤ l + 1,

(c) sup
x,y∈Jn
x 
=y

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η = oP (1) for all k ∈

N
d
0 with |k| = l.

The proof of Lemma A.1 is analogous to the proof of Theorem 8 of Hansen
(2008) and omitted for the sake of brevity. The proofs of the following lemmata
are given in subsection A.3.

Lemma A.2. Under the assumptions of Theorem 3.1 (i) and under H0 we have
for An1 from (3.1)

An1(s, z) = s
√
n

∫
Rd

(m(x)− m̂n(x))ωn(x)I{x ≤ z}f(x)dx+ oP (1)

uniformly in s ∈ [0, 1] and z ∈ R
d.

Lemma A.3. Under the assumptions of Theorem 3.1 (i) and under H0 we have
for An2 from (3.2) and Tn from (3.3)

An2(s, z) = Tn(s, z) + oP (1),

uniformly in s ∈ [0, 1] and z ∈ R
d.
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Lemma A.4. Under the assumptions of Theorem 3.1 (i) and under H0

1√
n

n∑
i=1

∫
(−∞,z]

(m(y)−m(Xi))Khn(y −Xi)ωn(y)
f(y)

f̂n(y)
dy = oP (1)

holds uniformly in z ∈ R
d.

Lemma A.5. Under the assumptions of Theorem 3.1 (i) and under H0

1√
n

n∑
i=1

Ui

(∫
(−∞,z]

Khn(y −Xi)ωn(y)
f(y)

f̂n(y)
dy − ωn(Xi)I{Xi ≤ z}

)
= oP (1)

holds uniformly in z ∈ R
d.

A.2. Proof of Theorem 3.1(ii)

For the proof of the second part of Theorem 3.1 we use a recent result on weak
convergence of sequential empirical processes indexed in function classes that
can be applied for strongly mixing sequences, see Mohr (2019). It is stated in
Lemma A.7 and uses the following notion of bracketing number.

Definition A.6 (Bracketing number). Let X be a measure space, F some class
of functions X → R and ρ some semi norm on F . For all ε > 0, let N = N(ε),
be the smallest integer, for which there exist a class of functions X → R, denoted
by B and called bounding class and a function class A ⊂ F called approximating
class such that |B| = |A| = N , ρ(b) < ε, ∀ b ∈ B and for all ϕ ∈ F there exist
a∗ ∈ A and b∗ ∈ B such that |ϕ − a∗| ≤ b∗. Then N(ε) is called the bracketing
number and denoted by Ñ[ ](ε,F , ρ).

Note that the usual notion for bracketing number (as in Definition 2.1.6 in
van der Vaart and Wellner (1996)) will be referred to as N[ ](ε,F , ρ).

Lemma A.7 (Corollary 2.7 in Mohr (2019)). Let {Xt : t ∈ Z} be a strictly
stationary sequence of random variables with values in some measure space X .
Let F be a class of measurable functions X → R. Let furthermore the following
assumptions hold.

(A1) Let {Xt : t ∈ Z} be strongly mixing, such that
∑∞

t=1 t
Q−2α(t)γ/(2+γ) < ∞

for some γ > 0 and even Q > 2.

(A2) Let
∫ 1

0
x−γ/(2+γ)(Ñ[ ](x,F , ‖ · ‖L2(P )))

1/Qdx < ∞ for Q and γ from as-
sumption (A1), where X1 ∼ P . Furthermore, assume that each ε > 0 al-

lows for a choice of bounding class B, such that E
[
|b(X1)|i(2+γ)/2

]1/2 ≤ ε
for all b ∈ B and for all i = 2, . . . , Q.

(A3) Let F possess an envelope function F , with E[|F (X1)|Q] < ∞ and let
there exist a constant L < ∞, such that supϕ∈F E

[
|ϕ(X1)|Q(2+γ)/2

]
≤ L.

Furthermore, let for all K ∈ N and all finite collections ϕk ∈ F , sk ∈ [0, 1],

k = 1, . . . ,K, (Gn(sk, ϕk))k=1,...,K
D→ (G(sk, ϕk))k=1,...,K , where we denote
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Gn(s, ϕ) = n−1/2
∑�ns�

i=1 (ϕ(Xi) − E[ϕ(Xi)]) for s ∈ [0, 1], ϕ ∈ F and where
G = {G(s, ϕ) : s ∈ [0, 1], ϕ ∈ F} is a centered Gaussian process.

Then {Gn(s, ϕ) : s ∈ [0, 1], ϕ ∈ F} converges weakly to G in �∞([0, 1]×F).

Proof of Theorem 3.1(ii). First notice that due to assumption (G) and under
the null hypothesis (Ut,Xt)t∈Z is a strictly stationary sequence of random vari-
ables with values in R×R

d. Denote by P the common marginal distribution of
(U1,X1) and define F := {(u,x) �→ uI{x ≤ z} : z ∈ R

d}. The convergence of
Tn is then implied by the weak convergence of

Gn :=
{
Gn(s, ϕ) :=

1√
n

�ns�∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)
: s ∈ [0, 1], ϕ ∈ F

}

in �∞([0, 1] × F). We apply Lemma A.7. Condition (A1) on the mixing coef-
ficient of (Ut,Xt)t∈Z is implied by assumption (G) on the mixing coefficient
of (Yt,Xt)t∈Z and the null hypothesis as measurable functions maintain mix-
ing properties. To show condition (A2) on the function class F , the choice of
approximating functions and bounding functions, as in Definition A.6, will be
discussed in more detail. Denote with c̄ from assumption (U), h(x) = c̄(x)f(x)
and H(x) =

∫
(−∞,x]

h(t)dt for x ∈ R
d and for all i = 1, . . . , d and x ∈ R,

hi(x) =

∫
. . .

∫
h(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd

and Hi(x) =
∫ x

−∞ hi(t)dt. Let ε > 0 and choose for all i = 1, . . . , d some
Ni = Ni(ε) ∈ N and −∞ = z0,i < · · · < zNi,i = ∞, such that

Hi (zji,i)−Hi (zji−1,i) ≤
ε2

d
, ∀ ji = 1, . . . , Ni, i = 1, . . . , d. (A.1)

Since Hi is continuous and Hi(−∞) = H(−∞) = 0 and Hi(∞) = H(∞) ≤ M
for M < ∞ from assumption (U), Ni can be chosen to be smaller than 2dMε−2

for all i = 1, . . . , d. By using cartesian products, a partition of Rd is obtained. For
simplicity reasons the following notation will be used. For j = (j1, . . . , jd) ∈ N

d

let zj := (zj1,1, . . . , zjd,d), and j − 1 := (j1 − 1, . . . , jd − 1) ∈ N
d. For all

j ∈ ×d
i=1{1, . . . , Ni} define approximating functions

aj(u,x) := uI {x ≤ zj}

and bounding functions

bj(u,x) := |u| (I {x ≤ zj} − I {x ≤ zj−1}) .

Notice that aj ∈ F while bj /∈ F for all j ∈ ×d
i=1{1, . . . , Ni}. For each z ∈ R

d

there exists a j ∈ ×d
i=1{1, . . . , Ni} such that z ∈ (zj−1, zj ]. Therefore for each

ϕ ∈ F there exists a j ∈ ×d
i=1{1, . . . , Ni} such that |ϕ − aj | ≤ bj . Further for

j ∈ ×d
i=1{1, . . . , Ni} it holds that

‖bj‖2L2(P ) = E
[
|Ut|2 (I {Xt ≤ zj} − I {Xt ≤ zj−1})

]



2260 M. Mohr and N. Neumeyer

≤ H(zj)−H(zj−1) ≤
d∑

i=1

(Hi (zji,i)−Hi (zji−1,i)) ≤ ε2

due to (A.1). Furthermore for all i = 2, . . . , Q by Jensen’s inequality and (U),
it holds that

E
[
|Ut|i

2+γ
2 |Xt

]
≤ E

[
|Ut|i

2+γ
2 |Xt

] i
Q ≤ (c(Xt)

Q)
i
Q = c(Xt)

i a.s.,

and thus ∫
|bj |i

2+γ
2 dP = E

[
|Ut|i

2+γ
2 (I {Xt ≤ zj} − I {Xt ≤ zj−1})

]
≤ H(zj)−H(zj−1) ≤ ε2.

Since Ni = O(ε−2) for all i = 1, . . . , d, we have Ñ[ ](ε,F , ‖ · ‖L2(P )) = O
(
ε−2d

)
.

As Q > d(2+γ) holds, assumption (A2) from Lemma A.7 is therefore satisfied.
Assumption (A3) is also satisfied as F̄ : R×R

d → R, (u,x) �→ u is an envelope
function of F such that∫

|F̄ |QdP = E
[
|Ut|Q

]
≤ E

[
|Ut|Q

2+γ
2

] 2
2+γ ≤

(∫
c(u)Qf(u)du

) 2
2+γ

< ∞,

and additionally, it holds that

sup
ϕ∈F

∫
|ϕ|Q

2+γ
2 dP = sup

z∈Rd

E
[
|Ut|Q

2+γ
2 I{Xt ≤ z}

]
≤
∫

c(u)Qf(u)du < ∞.

What is left to show, is the convergence of all finite dimensional distributions
of Tn. To this end we will apply Cramér-Wold’s device. Let λ1, . . . , λK ∈ R\{0}
and consider

K∑
j=1

λjTn(sj , zj) =

n∑
i=1

ξn,i,

where ξn,i := 1√
n
Ui

∑K
j=1 λjI{Xi ≤ zj}I

{
i
n ≤ sj

}
. Now Corollary 1 in Rio

(1995) can be applied, which is a central limit theorem for strongly mixing trian-

gular arrays. Following the notations in Rio (1995) define Vn,l := V ar(
∑l

i=1 ξn,i)
for all l = 1, . . . , n, and n ∈ N. Let furthermore Qn,i be the càdlàg inverse func-
tion of t �→ P (|ξn,i| > t), i.e.

Qn,i(u) := sup{t > 0 : P (|ξn,i| > t) > u}, ∀ u > 0,

with the convention that sup ∅ := 0. Let {α̃n(t) : t ∈ N} be the sequence
of mixing coefficients of {ξn,i : 1 ≤ i ≤ n, n ∈ N}. For t ∈ (0,∞) define
α̃n(t) := α̃n(�t�). Let its càdlàg inverse function be defined by

α̃−1
n (u) := sup{t > 0 : α̃n(t) > u}, ∀ u > 0.
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Condition (a) in Corollary 1 in Rio (1995) is easy to verify. Concerning con-
dition (b) in aforementioned corollary note that by Markov’s inequality, it holds
that for all t > 0 and with q := Q 2+γ

2

P (|ξn,i| > t) ≤ t−qn− q
2 M̃,

where M̃ := (
∑K

j=1 |λj |)qM for M < ∞ from assumption (U). Hence, for

all u > 0 we have Qn,i(u) ≤ u− 1
q n− 1

2 M̃
1
q . By similar arguments, we obtain

α̃−1
n (u) ≤ Ã − loga(u) for all u > 0, where Ã := loga(A). Furthermore, Vn,n

converges to
∑K

j1=1

∑K
j2=1 λj1λj2(sj1 ∧ sj2)Σ(zj1 ∧ zj2) > 0. Putting the results

together, it can be obtained that

V
− 3

2
n,n

n∑
i=1

1∫
0

α̃−1
n

(
x
2

)
Q2

i,n(x) inf
{
α̃−1
n

(
x
2

)
Qi,n(x),

√
Vn,n

}
dx

≤ 1√
n
M̃

2
q V

− 3
2

n,n

1∫
0

(
Ã− loga

(
x
2

))
x− 2

q inf
{(

Ã− loga
(
x
2

))
x− 1

q M̃
1
q ,
√
n
√
Vn,n

}
dx

converges to zero, and thus condition (b) is satisfied.
Applying Corollary 1 in Rio (1995), it holds that

∑n
i=1 ξn,i/(Vn,n)

1/2 con-
verges to the standard normal distribution and thus the assertion follows.

A.3. Proofs of lemmata

Note that within the proofs we will make use of the following notations

(g(·))+ := g(·)I{g(·) ≥ 0}, (g(·))− := g(·)I{g(·) < 0}.

Proof of Lemma A.2. For some l-times differentiable function h : Jn → R define
the norm

‖h‖l+η := max
k∈N

d
0

1≤|k|≤l

sup
x∈Jn

∣∣Dkh(x)
∣∣+ max

k∈N
d
0

|k|=l

sup
x,y∈Jn

x 
=y

∣∣Dkh(x)−Dkh(y)
∣∣

‖x− y‖η

and H := Cl+η
1,n (Jn) := {h : Jn → R : ‖h‖l+η ≤ 1, supx∈Jn

|h(x)| ≤ zn
√
logn}

with zn := qnδn((log n)/(nh
d
n))

1/2. The third bandwidth condition in (B2) im-
plies (√

logn

nhd
n

+ hr
npn

)
qnδn = O

(√
logn

nhd
n

qnδn

)

and thus Lemma A.1 implies that P (ĥn ∈ Cl+η
1,n (Jn)) → 1 as n → ∞ holds for

ĥn(x) = (m(x)−m̂n(x))ωn(x). Let furthermore F := {x �→ I{x ≤ z} : z ∈ R
d}
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and Xt ∼ P . Then the assertion of the lemma follows if we show

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈H

∣∣∣∣∣∣
1√
n

�ns�∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣ = oP (1).

To this end let εn1 = εn2 = n−1/2 and εn3 = n−1/2/(logn) and let fur-
ther 0 = s1 < · · · < sKn = 1 partition [0, 1] in intervals of length 2εn1
such that Kn = O(ε−1

n1 ). Furthermore, let Jn := N[ ]

(
εn2,F , ‖ · ‖L2(P )

)
and

Mn := N[ ] (εn3,H, ‖ · ‖∞), where ‖ · ‖∞ is the supremum norm on Jn. Let

[ϕl
1, ϕ

u
1 ], . . . , [ϕ

l
Jn
, ϕu

Jn
] denote the brackets needed to cover F . Note that they

can be chosen to be indicator functions and therefore non negative. Let further-
more [hl

1, h
u
1 ], . . . , [h

l
Mn

, hu
Mn

] define the brackets needed to cover H. It can be

shown that Jn = O
(
ε−2d
n2

)
and Mn = O(exp(cdnε

−d/(l+η)
n3 )) and further

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈F

∣∣∣∣∣∣
1√
n

�ns�∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣
≤ max

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

sup
ϕ∈[ϕl

j ,ϕ
u
j ]

sup
h∈[hl

m,hu
m]

∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣
+ max

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

sup
s∈[0,1]

|s−sk|≤εn1

sup
ϕ∈[ϕl

j ,ϕ
u
j ]

sup
h∈[hl

m,hu
m]

∣∣∣∣∣ 1√
n

n∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)

·
(
I
{

i
n ≤ s

}
− I
{

i
n ≤ sk

}) ∣∣∣∣∣
≤ max

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

⎧⎨
⎩
∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
(hu

m(Xi))
+ϕu

j (Xi)−
∫

(hu
m)+ϕu

j dP

)∣∣∣∣∣∣

+

∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
(hu

m(Xi))
−ϕl

j(Xi)−
∫
(hu

m)−ϕl
jdP

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
(hl

m(Xi))
+ϕl

j(Xi)−
∫

(hl
m)+ϕl

jdP

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
(hl

m(Xi))
−ϕu

j (Xi)−
∫

(hl
m)−ϕu

j dP

)∣∣∣∣∣∣
⎫⎬
⎭

+ o(1).

In what follows we only consider the first line on the right hand side, while the
other ones can be treated similarly. We apply Theorem 2.1 of Liebscher (1996)
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to the random variable (for m, j, k fixed)

Zi :=

(
(hu

m(Xi))
+ϕu

j (Xi)−
∫
(hu

m)+ϕu
j dP

)
I

{
i

n
≤ sk

}
.

The mixing coefficient of {Zt : 1 ≤ t ≤ n} can be bounded by the mixing
coefficient of {Xt : t ∈ Z} due to Bradley (1985), Section 2, remark (iv). Further,
the variables are centered and have a bound of order O(zn log n). Applying
Theorem 2.1 to

∑n
i=1 Zi yields for all ε > 0 and n ∈ N large enough

P

⎛
⎜⎜⎝ max

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
(hu

m(Xi))
+ϕu

j (Xi)−
∫

(hu
m)+ϕu

j dP

)∣∣∣∣∣∣ > ε

⎞
⎟⎟⎠

≤
∑

1≤k≤Kn
1≤j≤Jn
1≤m≤Mn

P

⎛
⎝
∣∣∣∣∣∣
1√
n

�nsk�∑
i=1

(
(hu

m(Xi))
+ϕu

j (Xi)−
∫
(hu

m)+ϕu
j dP

)∣∣∣∣∣∣ > ε

⎞
⎠

≤ KnJnMn4 exp

(
− nε2

64n
⌊
(nhd

n)
1/2
⌋
z2n log(n) +

8
3

√
nε
⌊
(nhd

n)
1/2
⌋
zn log(n)1/2

)

+KnJnMn4
n⌊

(nhd
n)

1/2
⌋α(⌊(nhd

n)
1/2
⌋)

= o(1),

where the first and second bandwidth constraints in (B2) were used. Details
are omitted for the sake of brevity.

Proof of Lemma A.4. First, using the uniform rates of convergence results in
Lemma A.1 applied to (m(Xt),Xt)t∈Z together with the first and the last
bandwidth condition in assumption (B2) as well as the second condition in
assumption (B1), it can be shown that

sup
z∈Rd

∣∣∣∣ 1√
n

n∑
i=1

∫
(−∞,z]

(m(y)−m(Xi))Khn(y −Xi)ωn(y)

(
f(y)

f̂n(y)
−1

)
dy

∣∣∣∣ = oP (1).

Defining the function class

Fn,1 :=

{
x �→

∫
(−∞,z]

(m(y)−m(x))Khn(y − x)ωn(y)dy : z ∈ R
d

}
,

and imposing Xt ∼ P , the assertion of the lemma follows if we show

sup
ϕ∈Fn,1

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xi)−

∫
ϕdP

)∣∣∣∣∣ = oP (1), (A.2)
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sup
ϕ∈Fn,1

∣∣∣∣
∫

ϕdP

∣∣∣∣ = o
(
n−1/2

)
. (A.3)

For the proof of (A.2) let εn := n−1/2/(logn) and Jn :=N[ ]

(
εn,Fn,1, ‖ · ‖L1(P )

)
.

Then there exists a partition z1, . . . , zJn of Rd such that ‖ϕu
j − ϕl

j‖L1(P ) ≤ εn
for all j ∈ {1, . . . , Jn}, where

ϕu
j (x) :=

∫
(−∞,zj ]

(
(m(y)−m(x))Khn (y − x)

)+
ωn(y)dy

+

∫
(−∞,zj−1]

(
(m(y)−m(x))Khn (y − x)

)−
ωn(y)dy

and

ϕl
j(x) :=

∫
(−∞,zj−1]

(
(m(y)−m(x))Khn (y − x)

)+
ωn(y)dy

+

∫
(−∞,zj ]

(
(m(y)−m(x))Khn (y − x)

)−
ωn(y)dy.

It then holds that Jn = O(ε−d
n ). Using these brackets of Fn,1, it can be shown

that

sup
ϕ∈Fn,1

∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xi)−

∫
ϕdP

)∣∣∣∣
= max

1≤j≤Jn

sup
ϕ∈[ϕl

j ,ϕ
u
j ]

∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xi)−

∫
ϕdP

)∣∣∣∣
≤ max

1≤j≤Jn

max

{∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j (Xi)−

∫
ϕu
j dP

)∣∣∣∣,
∣∣∣∣ 1√

n

n∑
i=1

(
ϕl
j(Xi)−

∫
ϕl
jdP

)∣∣∣∣
}

+ o(1),

where it is sufficient to discuss the proof of

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j (Xi)−

∫
ϕu
j dP

)∣∣∣∣∣ = oP (1)

as the other assertion works analogously. By defining

ϕu
j,1(x) :=

∫
(−∞,zj ]

(
(m(y)−m(x))Khn (y − x)

)+
ωn(y)dy

and

ϕu
j,2(x) :=

∫
(−∞,zj−1]

(
(m(y)−m(x))Khn (y − x)

)−
ωn(y)dy
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it holds that ϕu
j (x) = ϕu

j,1(x) + ϕu
j,2(x). Thus, again the problem is reduced to

showing

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j,1(Xi)−

∫
ϕu
j,1dP

)∣∣∣∣∣ = oP (1),

the other assertion works analogously. Similar to before we apply Theorem 2.1
of Liebscher (1996) to the random variable Zi := ϕu

j,1(Xi)−
∫
ϕu
j,1dP for fixed j.

Note that the mixing properties are the same as the ones of the original process.
Further the variables are centered and posses a bound of order O(hnqn). For all
ε > 0 and n ∈ N large enough it can then be shown that

P

(
max

1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j,1(Xi)−

∫
ϕu
j,1dP

)∣∣∣∣∣ > ε

)

≤
Jn∑
j=1

P

(∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j,1(Xi)−

∫
ϕu
j,1dP

)∣∣∣∣∣ > ε

)

≤ Jn4 exp

(
− nε2

64n(�(log n)2�+ 1)h2
nq

2
n + 8

3

√
nε(�(logn)2�+ 1)hnqn

)

+ Jn4
n

�(logn)2�+ 1
α
(⌊
(logn)2

⌋
+ 1
)

= o(1),

where eventually the last bandwidth condition in assumption (B3) was used.
The assertion in (A.3) can be shown by using Taylor’s expansion for both m
and f up to order r − 1 and the assumptions in (F1). Thus

sup
ϕ∈Fn,1

∣∣∣∣
∫

ϕdP

∣∣∣∣
= sup

z∈Rd

∣∣∣∣
∫
Rd

∫
Rd

(m(y)−m(x))
1

hd
n

K

(
y − x

hn

)
ωn(y)I{y ≤ z}dyf(x)dx

∣∣∣∣
≤
∫
Rd

∣∣∣∣
∫
Rd

(m(y)−m(y − thn))K(t)ωn(y)f(y − thn)dt

∣∣∣∣ dy
= O(hr

npnqn) = o
(
n−1/2

)
,

where the last equality holds by the third condition in (B3).

Proof of Lemma A.5. First, using the uniform rates of convergence results in
Lemma A.1 applied to (Ut,Xt)t∈Z together with assumptions on the bandwidth,
it can be shown that

sup
z∈Rd

∣∣∣∣∣ 1√
n

n∑
i=1

Ui

∫
Rd

Khn(y −Xi)ωn(y)I{y ≤ z}
(

f(y)

f̂n(y)
− 1

)
dy

∣∣∣∣∣ = oP (1).
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Furthermore, it can be shown that uniformly in z ∈ R
d and for q := Q 2+γ

2 > 2

1√
n

n∑
i=1

Ui

(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)

=
1√
n

n∑
i=1

(
UiI{|Ui|≤n1/q}

( ∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)

− E

[
UiI{|Ui|≤n1/q}

( ∫
(−∞,z]

Khn(y −Xi)ωn(y)dy−ωn(Xi)I{Xi≤z}
)])

+ oP (1).

Defining the function class

Fn,2 :=
{
(u,x) �→ uI{|u| ≤ n1/q}

(∫
(−∞,z]

Khn(y − x)ωn(y)dy

− ωn(x)I{x ≤ z}
)
: z ∈ R

d
}
,

and imposing (Ut,Xt) ∼ P , the assertion of the lemma follows if we show

sup
ϕ∈Fn,2

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)∣∣∣∣∣ = oP (1). (A.4)

To this end let εn := n−1/2/(logn) and Jn := N[ ]

(
εn,Fn,2, ‖ · ‖L1(P )

)
. Then

there exists a partition z1, . . . , zJn of Rd such that ‖ϕu
j − ϕl

j‖L1(P ) ≤ εn for all
j ∈ {1, . . . , Jn}, where

ϕu
j (u,x) := ϕu

j,1(u,x) + ϕu
j,2(u,x) + ϕu

j,3(u,x),

where

ϕu
j,1(u,x) := uI{u < 0}I{|u| ≤ n1/q}

(∫
(−∞,zj ]

Khn(y − x)ωn(y)dy

− ωn(x)I{x ≤ zj}
)
,

ϕu
j,2(u,x) := uI{u ≥ 0}I{|u| ≤ n1/q}

(∫
(−∞,zj−1]

Khn(y − x)ωn(y)dy

− ωn(x)I{x ≤ zj−1}
)
,

ϕu
j,3(u,x) := |u|I{|u| ≤ n1/q}

(∫
(−∞,zj ]

(
Khn(y − x)

)+
ωn(y)dy
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−
∫
(−∞,zj−1]

(
Khn(y − x)

)+
ωn(y)dy

)
,

and similarly,

ϕl
j(u,x) := ϕl

j,1(u,x) + ϕl
j,2(u,x) + ϕl

j,3(u,x),

where

ϕl
j,1(u,x) := uI{u ≥ 0}I{|u| ≤ n1/q}

(∫
(−∞,zj ]

Khn(y − x)ωn(y)dy

− ωn(x)I{x ≤ zj}
)
,

ϕl
j,2(u,x) := uI{u < 0}I{|u| ≤ n1/q}

(∫
(−∞,zj−1]

Khn(y − x)ωn(y)dy

− ωn(x)I{x ≤ zj−1}
)
,

ϕl
j,3(u,x) := −|u|I{|u| ≤ n1/q}

(∫
(−∞,zj ]

(
Khn(y − x)

)+
ωn(y)dy

−
∫
(−∞,zj−1]

(
Khn(y − x)

)+
ωn(y)dy

)
.

It then holds that Jn = O(ε−n d). Using these brackets of Fn,2, it can be shown
that

sup
ϕ∈Fn,2

∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)∣∣∣∣
≤ max

1≤j≤Jn

{∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j (Ui,Xi)−

∫
ϕu
j dP

)∣∣∣∣
+

∣∣∣∣ 1√
n

n∑
i=1

(
ϕl
j(Ui,Xi)−

∫
ϕl
jdP

)∣∣∣∣
}
+ o(1).

We will only consider the first term, as the second one is treated analogously.
Similar to before we apply Theorem 2.1 of Liebscher (1996) to the random
variable Zi := ϕu

j,1(Ui,Xi)−
∫
ϕu
j,1dP for fixed j. Note that the mixing properties

are the same as the ones of the original process. Further, the variables are
centered and posses a bound of order O(n1/q). For all ε > 0 and n ∈ N large
enough it can then be shown that

P

(
max

1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j,1(Ui,Xi)−

∫
ϕu
j,1dP

)∣∣∣∣∣ > ε

)
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≤
Jn∑
j=1

P

(∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕu
j,1(Ui,Xi)−

∫
ϕu
j,1dP

)∣∣∣∣∣ > ε

)

≤ Jn4 exp

(
− nε2

64n(�log(n)2�+ 1)hn + 8
3

√
nε(�log(n)2�+ 1)n1/q

)

+ Jn4
n

�log(n)2�+ 1
α
(⌊
log(n)2

⌋
+ 1
)

= o(1),

due to the third bandwidth condition in assumption (B3) and as q > 2.

Proof of Lemma A.3. It will be shown that uniformly in s ∈ [0, 1] and z ∈ R
d,

1√
n

�ns�∑
i=1

UiI{Xi ≤ z}I{Xi /∈ [−cn, cn]
d} = oP (1). (A.5)

To this end define the function class

F :=
{
(u,x) �→ uI{x ≤ z}I{x /∈ [−a, a]d} : z ∈ R

d, a ∈ R+

}
and for s ∈ [0, 1] and ϕ ∈ F

Gn(s, ϕ) :=
1√
n

�ns�∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)
,

where (Ut,Xt) ∼ P and
∫
ϕdP = 0. Similarly to the proof of Theorem 3.1 (ii)

an application of Theorem 2.5 in Mohr (2019) yields for all δn ↘ 0 and with
d(ϕ, ψ) := ‖ϕ− ψ‖L

Q
2+γ
2

(P ),

sup
{s,t∈[0,1],ϕ,ψ∈F :
|s−t|+d(ϕ,ψ)<δn}

|Gn(s, ϕ)−Gn(t, ψ)| = oP (1). (A.6)

Note that Q > (d+1)(2+γ) is needed here as Ñ[ ](ε,F , ‖·‖L2(P )) = O(ε−2(d+1)).

Defining ϕn(u,x) := uI{x ≤ z}I{x /∈ [−cn, cn]
d} for some fixed z ∈ R

d, it
thens holds that ϕn ∈ F for all n ∈ N and

d(ϕn, 0) = ‖ϕn‖L
Q

2+γ
2

(P ) ≤
(∫

c(x)QI{x /∈ [−cn, cn]
d}f(x)dx

) 1
Q

2
2+γ

n→∞−→ 0,

where the convergence holds by the dominated convergence theorem because∫
c(x)Qf(x)dx < ∞. With

(∫
c(x)QI{x /∈ [−cn, cn]

d}f(x)dx
) 1

Q
2

2+γ

=: δn ↘ 0
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it can therefore be concluded that

sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣
1√
n

�ns�∑
i=1

UiI{Xi ≤ z}I{Xi /∈ [−cn, cn]
d}

∣∣∣∣∣∣
≤ sup

{s,t∈[0,1],ϕ,ψ∈F :
|s−t|+d(ϕ,ψ)<δn}

|Gn(s, ϕ)−Gn(t, ψ)| .

With (A.6) the last term is oP (1) which proves the assertion in (A.5) and there-
fore the assertion of the lemma.
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Hušková, M. and Antoch, J. (2003). Detection of structural changes in regres-
sion. Tatra Mt. Math. Publ., 26:201–215. MR2055177

Koul, H. L. and Stute, W. (1999). Nonparametric model checks for time series.
Ann. Statist., 27:204–236. MR1701108

Kreiß, J.-P. (1997). Asymptotic properties of residual bootstrap for au-
toregressions. Technical report, Technical University of Braunschweig,
Germany. https://www.tu-braunschweig.de/Medien-DB/stochastik/

kreiss-1997.pdf.

http://www.ams.org/mathscinet-getitem?mr=0899990
http://www.ams.org/mathscinet-getitem?mr=2328589
http://www.ams.org/mathscinet-getitem?mr=1873339
http://www.ams.org/mathscinet-getitem?mr=1964455
http://www.ams.org/mathscinet-getitem?mr=1820413
http://www.ams.org/mathscinet-getitem?mr=2409261
http://www.ams.org/mathscinet-getitem?mr=1363629
http://www.ams.org/mathscinet-getitem?mr=1463356
http://www.ams.org/mathscinet-getitem?mr=2055177
http://www.ams.org/mathscinet-getitem?mr=1701108
https://www.tu-braunschweig.de/Medien-DB/stochastik/kreiss-1997.pdf
https://www.tu-braunschweig.de/Medien-DB/stochastik/kreiss-1997.pdf


2270 M. Mohr and N. Neumeyer

Kreiß, J.-P. and Lahiri, S. N. (2012). Bootstrap methods for time series. In
T. Subba Rao, S. S. R. and Rao, C., editors, Handbook of Statistics, pages
3–26. Elsevier, Amsterdam. MR3295420

Kreiß, J.-P. and Neuhaus, G. (2006). Einführung in die Zeitreihenanalyse.
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