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Abstract: Uniform sampling of binary matrix with fixed margins is an im-
portant and difficult problem in statistics, computer science, ecology and
so on. The well-known swap algorithm would be inefficient when the size
of the matrix becomes large or when the matrix is too sparse/dense. Here
we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo
algorithm to sample binary matrices with fixed margins uniformly. Theo-
retically the Rectangle Loop algorithm is better than the swap algorithm in
Peskun’s order. Empirically studies also demonstrates the Rectangle Loop
algorithm is remarkablely more efficient than the swap algorithm.
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Table 1

Occurrence Matrix occurrence matrix of the finches on the Galapagos islands.

Island
Finch A B C D E F G H I J K L M N O P Q

1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
4 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1
5 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0
6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
7 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
9 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
10 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0
11 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
12 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. Introduction

The problem of sampling binary matrices with fixed row and column sums
has attracted much attention in numerical ecology. In ecological studies, the
binary matrix is called occurrence matrix. Rows usually correspond to species,
the columns, to locations. For example, the binary matrix shown on Table 1 is
known as “Darwin’s Finch” dataset, which comes from Darwin’s studies of the
finches on the Galapagos islands (an archipelago in the East Pacific). The matrix
represents the presence/absence of 13 species of finches in 17 islands. A “1” or
“0” in entry (i, j) indicates the presence or absence of species i at island j. It is
clear from Table 1 that some pairs of species tend to occur together (for example,
species 9 and 10) while some other pairs tend to be disjoint. Therefore, it is of
our interest to investigate whether the cooperation/competition influences the
distribution of species on islands, or the patterns found are just by chance.

Assuming different species have independent distributions on islands, then
the observed binary matrix is simply a random sample from the uniform distri-
bution of all the binary matrices with fixed margins. Table 2 gives an example
of all configurations of 3× 3 binary matrices with [1, 2, 1] as both row and col-
umn sums. Ideally, if we could list all the binary matrices with arbitrary size,
then we could compare the pattern found in the observed matrix with others, to
conclude whether the observed matrix is simply by chance. However, enumer-
ating matrices with fixed margins is often impractical both theoretically and
computationally for larger matrices. Therefore, sampling such random matrices
becomes the natural choice.

The problem of sampling such matrices also occurs in many other fields, with
different names. For example, an equivalent formulation is uniformly sampling
undirected bipartite graphs with given vertex degrees. A bipartite graph G =
(U, V,E) is a graph whose vertices are divided into two disjointed sets, denoted
by U = {u1, · · · , um}, V = {v1, · · · , vn}. E is called the edge set where every
edge connects one vertex in U to one in V . The binary matrix M = (mi,j)m×n
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Table 2

All possible 3× 3 binary matrices with [1, 2, 1] as both row and column sums

A B C D E

⎡
⎢⎢⎢⎣
0 1 0

1 0 1

0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
0 1 0

1 1 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1 0 0

0 1 1

0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
0 1 0

0 1 1

1 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
0 0 1

1 1 0

0 1 0

⎤
⎥⎥⎥⎦

is often called the bi-adjacency matrix of G and is defined by

mi,j =

{
1, if there is an edge connecting ui and vj ,

0, otherwise.

Bipartite graphs are often used in network studies to model the interaction
between two objects, for example, customers and products. It is often required
to sample graphs with preserved degree sequence in network analysis uniformly.
Throughout this paper, we will use ‘binary matrix’ instead of ‘bipartite graph’
to avoid confusion, although they are equivalent.

The algorithms of sampling binary matrices with fixed margins are divided
into two classes. The first class of algorithms relies on the rejection sampling or
importance sampling techniques, see [16], [10], [3], [7] [8] for examples. Impor-
tance sampling usually generates non-uniform distribution, but it can be used to
construct estimators to estimate the quantities of interest, such as the number
of binary matrices with given margins. Chen et al. [3] introduced a sequential
importance sampling (SIS) scheme to test the hypothesis we mentioned at the
beginning of this paper on the “Darwin’s Finch” dataset.

The second class falls into the Markov Chain Monte Carlo (MCMC) category
and will be our main focus in this paper. The well-known “swap algorithm” has
been used for decades. To the author’s best knowledge, it is first introduced by
Besag and Clifford [1] in 1989 to solve a statistical testing problem. The swap
algorithm has been formally proposed and analyzed by Rao et al. [12] and [9]
in the 1990s. A similar question is to sample matrices with nonnegative integer
entries, fixed row and column sums. Diaconis and Gangolli have proposed a
random walk Metropolis algorithm [4]. Many variations and extensions of this
algorithm are described in Diaconis and Sturmfels [5].

The swap method attempts to make a single swap in each iteration, but
when the matrix is large or is mostly filled (or unfilled), the efficiency of the
swap algorithm can be relatively low. In 2008, Verhelst [18] proposed a new
MCMC algorithm based on the idea of performing multiple swaps per iteration.
In 2014, Strona et al. [17] introduced the “Curveball algorithm”, which uses
a ‘fair trade’ operation to replace the ‘swap’ operation in the swap algorithm,
aiming for a faster mixing. The mathematical formulation of the Curveball al-
gorithm is equivalent to Verhelst’s algorithm, but with different implementation
and reasoning. A nice survey and numerical comparisons of the existing algo-
rithms can be found in a recent dissertation [13]. The class of ‘multiple swaps’
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algorithms tends to improve the mixing time empirically. However, each step
of the ‘multiple swaps’ algorithm is slower than the classical swap algorithm.
Meanwhile, it is hard to compare the ‘multiple swaps’ algorithms and classical
swap algorithm theoretically, as the corresponding Markov-chains have compli-
cated behaviors and are therefore hard to analyze mathematically. The only
existing result can be found in [2].

In this paper, we introduce a novel algorithm called Rectangle Loop algo-
rithm. The algorithm is based on the classical swap algorithm, with a careful
utilization of the matrix structure given by margins. We have also proved the
resulting Markov Chain dominates the classical chain used in the swap algo-
rithm in the sense of Peskun’s partial ordering [11] and is easy to implement.
Section 2 gives a review of the swap algorithm and Curveball algorithm, includ-
ing the details of both algorithms and a discussion. In Section 3 we introduce
our new algorithm – Rectangle Loop algorithm. Section 4 proves the theoretical
properties of Rectangle Loop algorithm. Section 5 gives numerical results.

2. Existing methods

2.1. Swap algorithm

The swap algorithm, or equivalently, swap chain is based on the idea of swapping
checkerboard units. Here a checkerboard unit is a two by two matrix with one
of the following forms: (

1 0
0 1

)
,

(
0 1
1 0

)
.

A swap means changing one checkerboard unit to the other.
Starting from an initial matrix, one chooses two rows and two columns uni-

formly at random among all rows and columns. If the resulting 2× 2 submatrix
with entries in the intersection of these rows and columns is a checkerboard
unit, it is swapped, otherwise, do nothing.

Algorithm 1 Swap Algorithm
Input: initial binary matrix A0, number of iterations T

1: for t = 1, · · ·T do
2: Choose two distinct rows and two distinct columns uniformly at random
3: If the corresponding 2× 2 submatrix of At−1 is a checkerboard unit, i.e.(

1 0
0 1

)
or

(
0 1
1 0

)
,

swap the submatrix

(
1 0
0 1

)
to

(
0 1
1 0

)
or vice versa.

Otherwise At ← At−1

4: end for

The swap algorithm is a Metropolis-type Markov chain Monte Carlo which
converges to the uniform distribution.
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2.2. Curveball algorithm

The swap algorithm can often be inefficient, taking Darwin’s Finch data as an
example, there are

(
13
2

)(
17
2

)
= 10608 submatrices with size 2× 2, however, only

about 3% of them are swappable. This means it requires a very large T (the
number of iterations) to ensure the generated matrices are close to be uniformly
distributed. The Curveball algorithm provides another solution.

Algorithm 2 Curveball Algorithm
Input: initial binary matrix A0, number of iterations T

1: for t = 0, · · ·T − 1 do
2: Choose two distinct rows ra, rb uniformly at random
3: Determine two disjoint sets

Sa−b
.
= {k : At(a, k) = 1, At(b, k) = 0}

Sb−a
.
= {l : At(a, l) = 0, At(b, l) = 1},

where At(i, j) is the (i, j)-th entry of matrix At. Here we assume |Si−j | ≤ |Sj−i|
4: Choose a subset V ⊂ Sj−i uniformly at random
5: Set At+1 = At except for row a, b.

For row a:

At+1(a, l) =

⎧⎪⎨
⎪⎩
1 if l ∈ V

0 if l ∈ Sa−b ∪ Sb−a \ V

A(a, l) otherwise

For row b

At+1(b, k) =

⎧⎪⎨
⎪⎩
1 if k ∈ Sa−b ∪ Sb−a \ V

0 if k ∈ V

A(b, k) otherwise

6: end for

The Curveball algorithm uses ‘trade’ instead of ‘swap’ operation in each
iteration. Steps 3-5 in Algorithm 2 gives an illustration of trading, it trades
elements in column V with elements in column Sa−b for row a and row b,
preserving their row and column sums. Though seemingly complicated, there is
a very intuitive explanation of the Curveball algorithm. We refer the readers to
[17] for detailed illustrations.

3. Rectangle loop algorithm

The swap algorithm is proven to converge to the uniform distribution. However,
getting stuck at the same configuration is inefficient and thus the convergence
could be very slow. For example, numerical experiments suggest that one would
expect more than 30 iterations before each successful swap using ‘Darwin’s
Finch’ dataset. Assuming the randomly chosen row is mostly filled, such as row
1 in Table 1, the two randomly chosen entries in this row would most likely
be [1, 1] but the row of a ‘checkerboard unit’ has to be either [1, 0] or [0, 1].
Therefore swapping rarely happens when the chosen row/column is mostly filled
(or equivalently, mostly unfilled).
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Fig 1. An illustration of Rectangle Loop algorithm.

The Rectangle Loop algorithm is designed to increase the chance of swapping.
The idea is illustrated in Figure 1. In this example the target matrix is of size
5×5, with row names R1, · · · , R5 and column names C1, · · · , C5. In each step, we
choose one row and one column uniformly at random (Step A). Suppose R2 and
C2 is chosen, with corresponding entry 1, the red number in the top middle plot
of Figure 1. Then we randomly choose a 0 among all the 0s in R2 (Step B). Since
there is only one 0 in R2, which is at location C4, this is our only choice. Again,
we scan through all the entries in the same column with the 0 just chosen (C4)
and randomly choose a 1 among all 1s (Step C). In our example, the 1s of C4 are
located at R1 and R4. Suppose we have chosen (R4, C4). Now the three locations
(R2, C2), (R2, C4), (R4, C4) altogether give us the fourth one (R4, C2), making
the four entries a rectangle (Step D). If the fourth entry equals 0, then we swap
the submatrix as we did in the swap method (Step E). Otherwise, the fourth
entries equals 1 and the original matrix is not changed. After Step A-E is iterated
many times, the resulting randomized matrices are used as representatives of
uniformly distributed matrix with fixed margins.

The main difference between the Rectangle Loop algorithm and the swap
algorithm is the sampling scheme. The Rectangle Loop algorithm is performing
‘conditional sampling’, making it more efficient than the swap method, which
is doing ‘unconditional choosing’. For example, suppose both the swap method
and Rectangle Loop algorithm have chosen R2 and C2, an entry with a value
1. Then R2 has only one 0 which is in column 4. For the swap algorithm,
the probability of correctly choosing C4 is only 1

4 , as it is uniformly choosing
among all columns. The Rectangle Loop algorithm, however, as the mechanism
guarantees we only sample from the zero entries, chooses C4 with probability 1.
Therefore it significantly increases the swapping probability, leading to a faster
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convergence than the swap chain.

The details of the Rectangle Loop algorithm are described in Algorithm 3.
Noteworthy, when finding a 0 entry, we sample 1 with the same column as the
0. When finding a 1, we sample 0 with the same row as the 1. This ‘symmetric’
design ensures the algorithm converges to the correct distribution, as will be
proved in Section 4. The paths of sampled entries in each iteration always form
a rectangle, that is where the name ‘Rectangle Loop algorithm’ comes from.

Algorithm 3 Rectangle Loop Algorithm
Input: initial binary matrix A0, number of iterations T

1: for t = 1, · · ·T do
2: Choose one row and one column (r1, c1) uniformly at random
3: if At−1(r1, c1) = 1 then
4: Choose one column c2 at random among all the 0 entries in r1
5: Choose one row r2 at random among all the 1 entries in c2
6: else At−1(r1, c1) = 0
7: Choose one row r2 at random among all the 1 entries in c1
8: Choose one column c2 at random among all the 0 entries in r2
9: end if
10: if the submatrix extracted from r1, r2, c1, c2 is a ‘checkerboard unit’ then
11: Swap the submatrix
12: else At ← At−1

13: end if
14: end for

4. Theoretical results

Given row sums r = (r1, r2, · · · , rm) and column sums c = (c1, c2, · · · , cn), we
define Σr,c be the set of all matrices with row sums r and column sums c. The
suffcient and necessary condition for Σr,c not being zero is given by Gale [6],
Ryser [15] in 1957. We call two matrices A, B ‘swappable’ if one can transform
to the other via one step swap algorithm. Equivalently, A and B only differs
in a 2× 2 ‘checkerboard unit’. For the sake of simplicity, we assume henceforth
0 < ri < n, 0 < cj < m for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, as otherwise we could
simply delete that degenerate row/column. The following theorem characterizes
the limit distribution and transition probability of the swap chain.

Theorem 1. Given r, c and an initial matrix A0 ∈ Σr,c, the swap algorithm
defines a Metropolis-type Markov chain with stationary distribution Unif(Σr,c),
transition kernel:

P(A,B) =

⎧⎪⎪⎨
⎪⎪⎩

1

(m2 )(
n
2)

If A and B are swappable,

1− s(A)

(m2 )(
n
2)

If B = A, s(A)
.
= #{C: C and A are swappable}

0 Otherwise

and acceptance probability 1.
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Proof. When A and B are swappable, there exists two rows i1, i2 and two
columns j1, j2 such that A and B only differs in the 2× 2 submatrix extracted
by row i1, i2 and column j1, j2. Therefore the probability of swapping A to B
equals

1(
m
2

)(
n
2

) .
Recall that in the setting of Metropolis-Hastings, the acceptance probability
from A to B is given by

min{1, π(B)P(B,A)

π(A)P(A,B)
, }

notice here the stationary distribution π is designed to be Unif(Σr,c), P(A,B) =
P(B,A) = 1

(m2 )(
n
2)
. Hence it is clear that the swap algorithm is a Metropolis-

type Markov chain with Unif(Σr,c) as stationary distribtuion and acceptance
probability 1, which justifies the correctness of the swap algorithm.

The key point in swap algorithm is symmetry. When two different states A,B
are swappable, the associated transition probability is symmetric, i.e.,

P(A,B) = P(B,A),

this ensures the chain has acceptance probability 1.
To compare the efficiency of different Markov kernels with the same distri-

bution, Peskun [11] first introduced the following partial-ordering.
Let P1, P2 be two Markov transition kernels on the same state space S with

same stationary distribution π, then P1 dominates P2 off the diagonal, P1 � P2,
if

P1(x,A) ≥ P2(x,A)

for all x ∈ S and A measurable with x /∈ A.
When the state space is finite, as in our case, P1 � P2 iff all the off-diagonal

entries of P1 are greater than or equal to the corresponding off-diagonal entries
of P2. This indicates P1 has lower probability to get stuck in the same state,
and is exploring the state space in a more efficient way. The following theorem
shows the rectangale loop algorithm also has uniform distribution as stationary
distribution, and the corresponding chain dominates the swap chain off the
diagonal. For simplicity, we will use Ps and Pr to denote transition kernel for
the swap chain and rectangle loop chain, respectively, omitting its dependency
on r, c,Unif(Σr,c).

Theorem 2. Given r, c and an initial matrix A0 ∈ Σr,c, the Rectangale loop
algorithm defines a Metropolis-type Markov chain with stationary distribution
Unif(Σr,c). The transition kernel Pr dominates Ps off the diagonal.

Proof. Given any two swappable configurations A and B, we are aiming to show
Pr(A,B) = Pr(B,A) ≥ Ps(A,B).
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Fig 2. An illustration of calculating Pr(A,B) for a single path, starting from vertex (i1, j1).

As A,B are swappable, there exists two rows i1, i2 and two columns j1, j2
such that A and B only differs in the 2 × 2 submatrix extracted by row i1, i2
and column j1, j2. Without loss of generality, we assume the checkerboard unit

corresponding to A has the form

[
1 0
0 1

]
, as shown in Figure 2. Notice that there

are four vertices of the 2×2 submatrix and the Rectangle Loop algorithm chooses
one arbitrary row and column at its first step. This suggests the probability
of transforming A to B equals the summation of four probabilities, each one
corresponds to choosing one specific vertex of the ‘checkerboard unit’.

Figure 2 illustrates the calculation of one path, starting from the vertex
(i1, j1). The possibility of choosing row i1 and column j1 is 1

mn . Then one
chooses a 0 among all the 0s in row i1, and there are n− ri1 of them. Therefore
the possibility of choosing column j2 equals 1

n−ri1
. Similarly, after choosing

j2, one chooses a 1 among all 1s in column j2, and there are cj2 of them.
Hence the possibility of choosing row i2 equals 1

cj2
. The fourth entry is fixed

after determining the first three entries thus the last step has probability 1.
Multipling the possibilities above altogether, the possibility of transforming A
to B, starting with (i1, j1), equals

1

mn
· 1

n− ri1
· 1

cj2
.
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Fig 3. An illustration of calculating Pr(B,A) for a single path, starting from vertex (i1, j1).

The probability of transforming A to B with other starting vertex can be cal-
culated accordingly. It turns out Pr(A,B) can be written as the following sum-
mation:

Pr(A,B) =
1

mn

(
1

n− ri1
· 1

cj2
+

1

cj2
· 1

n− ri2
+

1

n− ri2
· 1

cj1
+

1

cj1
· 1

n− ri1

)
.

Following the same strategy, Pr(B,A) can also be calculated below. Figure 3
illustrates the calculation of Pr(B,A) starting from (i1, j1).

Pr(B,A) =
1

mn

(
1

cj1
· 1

n− ri2
+

1

n− ri2
· 1

cj2
+

1

cj2
· 1

n− ri1
+

1

n− ri1
· 1

cj1

)
.

After matching all the terms of Pr(B,A) with Pr(A,B), we conclude that
Pr(B,A) = Pr(A,B), which justifies the Rectangle Loop algorithm has
Unif(Σr,c) as stationary distribution.

To show Pr(A,B) ≥ Ps(A,B), notice that

Ps(A,B) =
1(

m
2

)(
n
2

) =
4

m(m− 1)n(n− 1)
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and

Pr(A,B) =
1

mn
· 1

n− ri1
· 1

cj2
+

1

mn
· 1

cj2
· 1

n− ri2
+

1

mn
· 1

n− ri2
· 1

cj1
+

1

mn
· 1

cj1
· 1

n− ri1
.

It is clear that Pr(A,B) can be written as the summation of four terms. Each
term in the summation is greater than or equal to 1

m(m−1)n(n−1) . Therefore

we conclude that Pr(A,B) ≥ Ps(A,B) for any swappable A,B. This indicates
Pr � Ps, the Rectangle Loop algorithm is exploring the state space in a more
efficient way than the swap algorithm.

5. Simulation results and applications

5.1. A concrete example

Now we use the example used in [17] and [10] to compare the existing algo-
rithms and the Rectangle Loop algorithm. The example below is concrete. The
transition matrix can be calculated explicitly and convergence can be assessed
analytically.

The five matrices shown in Table 2 are all possible configurations of 3 × 3
binary matrices with [1, 2, 1] as both row and column sums. The transition
matrices for swap algorithm, Curveball algorithm, and Rectangle loop algorithm
are shown in Table 3.

Table 3

Transition matrices for swap algorithm (left), Curveball algorithm (middle), Rectangle Loop
algorithm (right)

Swap Curveball Rectangle Loop

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
9

1
9

1
9

1
9

1
9

1
9

2
3

0 1
9

1
9

1
9

0 2
3

1
9

1
9

1
9

1
9

1
9

2
3

0

1
9

1
9

1
9

0 2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
6

1
6

1
6

1
6

1
6

1
3

0 1
6

1
3

1
6

0 1
3

1
3

1
6

1
6

1
6

1
3

1
3

0

1
6

1
3

1
6

0 1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
4

1
4

1
4

1
4

1
4

1
4

0 1
3

1
6

1
4

0 1
4

1
6

1
3

1
4

1
3

1
6

1
4

0

1
4

1
6

1
3

0 1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 4 shows the comparison of the three algorithms. Here we measure the
distance between transition kernel P and the stationary distribution π by total
variation distance:

max
A∈Σr,c

‖Pk(A, ·)− π‖TV =
1

2
max

A∈Σr,c

∑
B∈Σr,c

|Pk(A,B)− π(B)|,

where k denotes the power. It is clear that all the algorithms converges, but
Rectangle Loop algorithm converges faster than the swap algorithm and Curve-
ball algorithm.
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Fig 4. Comparison between swap algorithm, Curveball algorithm, and Rectangle Loop al-
gorithm. Top: relationship between total variation distance and the power of the transition
matrix. Bottom: relationship between the logarithm of total variation distance and the power
of transition matrix.
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5.2. Experiments on empirical mixing time

For larger matrices, it is infeasible to calculate the transition matrix theo-
retically. To provide empirical justification for the advantage of the Rectan-
gle Loop algorithm. We have designed the experiment as follows. For each
p = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, a 100 × 100 binary matrix is generated for
which each entry has probability p to be 1. We ran each algorithm for 10000
iterations and collected the corresponding number of swaps, as shown in Table
4. When the filled portion p is small, the Rectangle Loop algorithm is extremely
efficient, producing more than 73 times more swaps than the swap algorithm.
For large p, the advantage of Rectangle Loop algorithm is reduced, but still very
significant. For p = 0.5, the Rectangle Loop still produces 4 times more swaps
than the swap algorithm. Noteworthy, the zeros and ones play the symmetric
rule in a binary matrix, therefore it is not necessary to generate the random
matrix for p > 0.5.

Table 4

The comparison between swap algorithm and Rectangle Loop algorithm. Each algorithm is
implemented 10000 iterations on 100× 100 matrices with different filled portions. The third
column records the number of successful swaps among the 10000 iterations, the last column

records the average time per swap, respectively.

Method Filled portion Number of swaps Time per swap (/s)
Rectangle Loop

1%
586 1.18× 10−5

Swap 8 3.67× 10−4

Rectangle Loop
5%

977 5.30× 10−6

Swap 42 3.52× 10−5

Rectangle Loop
10%

1838 3.23× 10−6

Swap 156 1.25× 10−5

Rectangle Loop
20%

3271 2.64× 10−6

Swap 509 5.68× 10−6

Rectangle Loop
30%

4222 2.10× 10−6

Swap 803 5.06× 10−6

Rectangle Loop
40%

4794 1.27× 10−6

Swap 1160 4.98× 10−6

Rectangle Loop
50%

5080 1.37× 10−6

Swap 1271 5.36× 10−6

The result above justifies our theoretical result that the Rectangle Loop algo-
rithm converges faster than the swap algorithm. However, the above experiments
did not consider the running time for each iteration. In fact, one iteration of
the Rectangle Loop algorithm is computationally more expensive than that of
the swap algorithm. To investigate this issue, we also record the time per swap
for both algorithms, as shown in the last column of Table 4. It turns out that
the Rectangle Loop algorithm still has a significant advantage than the swap
algorithm after the running time issue is taken into account. For p = 0.01, the
Rectangle Loop is about 31 times more efficient than the swap algorithm. Even
for p = 0.5, the Rectangle Loop algorithm is still about 4 times more efficient
than the swap algorithm.

We have also used the pertubation score suggested by Strona et al. [17] to ac-
cess convergence for both algorithm. Pertubation score of a matrix is defined by



Rectangle loop algorithm 1703

the fraction of cells differing from the corresponding ones of the initial matrix.
It takes several iterations for each algorithm to stabilize around its expecta-
tion. It is shown in Figure 5 that it takes less iterations and less time for the
Rectangle Loop algorithm to stabilize, suggesting a faster mixing than the swap
algorithm.

Fig 5. Comparison between swap algorithm and Rectangle Loop algorithm in mixing 100×100
matrices. The left two subplots are the relationship between time and pertubation score for dif-
ferent filled portions. The right two subplots are the relationship between (every 100) iterations
and pertubation score for different filled portions. Rectangle Loop algorithm is represented by
blue curves and swap algorithm is represented by red curves.

5.3. Finch data applications

Going back to ‘Darwin’s Finch’ dataset, we use the test statistics S̄2 suggested
by Roberts and Stone [14] to compare the three algorithms. S̄2 is defined by

S̄2(A) =
1

m(m− 1)

∑
i �=j

s2ij ,
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where m is the number of rows of matrix A, S = (sij) = AAT . For the finch
data, S̄2 = 45.03. Suppose this number is too large or too small, comparing
with its expectation over all the matrices having the same margins as finch data.
We would like to conclude that the cooperation/competition do influence the
distribution of species. To investigate this, we implemented the swap algorithm,
Curveball algorithm and Rectangle Loop algorithm on the same data for 20000
iterations, using its average as an estimator for E(S̄2). The results are shown
in Figure 6. After 20000 iterations, Rectangle Loop algorithm gives an estimate
of 42.135 with standard deviation 0.537, swap algorithm gives an estimate of
42.126 with standard deviation 0.509, Curveball algorithm gives an estimate of
42.191, with standard deviation 0.590. Therefore the observed data falls outside
the three standard deviation boundaries for all three algorithms, suggesting
strong evidence that the observed occurrence matrix is not just by chance.
Meanwhile, both the swap algorithm and the Rectangle algorithm gives similar
estimations and lower standard deviations, which seem to be more accurate than
the Curveball algorithm. Lastly, there is a significant pattern in Figure 6 that
for both S̄2 and standard deviation estimation, the Rectangle Loop algorithm
becomes stabilized much earlier than the swap algorithm, indicating a faster
mixing.

Fig 6. Comparison between swap algorithm, Curveball algorithm, and Rectangle Loop al-
gorithm. The left subplot is the relationship between the average of S̄2 with the number of
iterations. The right subplot is the relationship between the standard deviation of S̄2 with
the number of iterations. Blue, red and green curves represent Rectangle Loop, swap and
Curveball algorithms respectively.

6. Discussion

There is a growing tendency to study the behavior of binary matrices with fixed
margins in numerous scientific fields, ranging from mathematics to natural sci-
ence to szocial science. For example, mathematicians and computer scientists are
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interested in the total number of configurations of given margin sums. Ecologists
use the so-called occurence matrix to model the presence/absence of species in
different locations. Biologists use the binary matrix to model neuronal networks.
Social scientists use the binary matrix for studying social network features.

One of the central and difficult problems is uniformly sampling binary matri-
ces with given margins. In this article, we have developed the Rectangle Loop
algorithm which is efficient, intuitive and easy to implement. Theoretically, the
algorithm is superior to the classical swap algorithm in Peskun’s order. In prac-
tice, the Rectangle Loop algorithm is notably more efficient than the swap ap-
proach. For a fixed number of iterations, the Rectangle Loop algorithm produces
4–73 times more successful swaps than the swap algorithm. For a fixed amount
of time, the Rectangle Loop algorithm still produces 4–31 times more successful
swaps than the swap algorithm. This suggests the Rectangle Loop algorithm is
efficient both statistically and computationally.

Many other problems remain. From a theoretical point of view, it is impor-
tant to give sharp bounds on the convergence speed of a given Markov chain.
However, giving a useful running time estimate is often challenging in practical
problems. It would be very interesting if the swap algorithm, Curveball algo-
rithm, and the Rectangle Loop algorithm can be investigated analytically. From
an applied point of view, many factors influence the performance of algorithms,
such as running time per step (swap algorithm is the fastest, while Curveball
algorithm is the slowest), initialization of the matrix, size of the matrix, the ra-
tio between row number and column numbers, filled proportions. Our empirical
studies suggest that all the factors have a significant impact on the convergence
speed for all the algorithms. It would be beneficial if more numerical experiments
are carried out, yielding a complete and comprehensive comparison between all
the existing algorithms.
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