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Orsay, France

e-mail: christine.keribin@math.u-psud.fr
url: https://www.math.u-psud.fr/~keribin/

and

Mahendra Mariadassou
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Abstract: The Latent Block Model (LBM) is a model-based method to
cluster simultaneously the d columns and n rows of a data matrix. Param-
eter estimation in LBM is a difficult and multifaceted problem. Although
various estimation strategies have been proposed and are now well under-
stood empirically, theoretical guarantees about their asymptotic behavior is
rather sparse and most results are limited to the binary setting. We prove
here theoretical guarantees in the valued settings. We show that under
some mild conditions on the parameter space, and in an asymptotic regime
where log(d)/n and log(n)/d tend to 0 when n and d tend to infinity,
(1) the maximum-likelihood estimate of the complete model (with known
labels) is consistent and (2) the log-likelihood ratios are equivalent under
the complete and observed (with unknown labels) models. This equivalence
allows us to transfer the asymptotic consistency, and under mild conditions,
asymptotic normality, to the maximum likelihood estimate under the ob-
served model. Moreover, the variational estimator is also consistent and,
under the same conditions, asymptotically normal.
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1. Introduction

Co-clustering is an unsupervised method to cluster simultaneously the n rows
and d columns of a rectangular data matrix. The assignments of each row to
one of the row-clusters and of each column to one of the column-clusters are
unknown and the aim is to determine them. Then, rows and columns can be
re-ordered according to their assignments, highlighting the natural structure of
the data with distinct blocks having homogeneous observations. This leads to a
parsimonious data representation, as can be shown on Figure 1.

Fig 1. A binary data matrix before (left) and after (middle) row and column reordering, and
its parsimonious data representation (right).

Co-clustering can be used in numerous applications, and especially ones with
large data sets, such as recommendation systems (to discover a segmentation of
customers with regard to a segmentation of products), genomics (to simultane-
ously define groups of genes having the same expression with regards to groups
of experimental conditions) or text mining (to define simultaneously groups of
texts and groups of words).

Among the co-clustering methods, the Latent Block Model (LBM) defines a
probabilistic model as a mixture model with latent rows and columns assign-
ments. LBM can deal with binary [6], Gaussian [8], categorical [9] or count
[7] data. Due to the complex dependency structure induced by this modeling,
neither the likelihood, nor the distribution of the assignments conditionally to
the observations needed in the E-step of the EM algorithm, traditionnally used
for mixture models, are numerically tractable. Estimation can be however per-
formed either with a variational approximation leading to an approximate value
of the maximum likelihood estimator, or with a Bayesian approach (VBayes al-
gorithm or Gibbs sampler). For example, [9] recommends using a Gibbs sampler
combined with a VBayes algorithm.

The asymptotics of the maximum likelihood (MLE) and variational (VE)
estimators also raise interesting theoretical questions. This topic was first ad-
dressed for the stochastic block model (SBM) [13], where the data is a random
graph encoded by its adjacency binary matrix: the rows and columns represent
the nodes, so that there is only one partition, shared by rows and columns, and
a unique asymptotic direction.

For a binary SBM and under the true parameter value, Theorem 3 of [4]
states that the distribution of the assignments conditionally to the observations
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converges to a Dirac of the real assignments. Moreover, this convergence re-
mains valid under the estimated parameter value, assuming that this estimator
converges at rate at least n−1, where n is the number of nodes (Proposition
3.8). This assumption is not trivial, and it was not established that such an
estimator exists except in some particular cases ([1] for example). [10] presented
a unified frame for LBM and SBM in case of valued observations satisfying a
concentration inequality, and showed the consistency of the conditional distri-
bution of the assignments under all parameter values in a neighborhood of the
true value. [3] and [2] proved the consistency and asymptotic normality of the
MLE for the binary SBM but failed to account for complications induced by
symmetries in the parameter. Building upon the work from [4], they first stud-
ied the asymptotic behavior of the MLE in the complete model (observations
and assignments) with binary observations which is simple to handle; then, they
showed that the complete likelihood and the marginal likelihood have similar
asymptotic behaviors by the use of a Bernstein inequality for bounded observa-
tions.

Following the main ideas of [2], we prove that the observed likelihood ra-
tio and the complete likelihood ratio computed at the true assignments are
asymptotically equivalent, up to a multiplicative term. This term depends on
some model symmetry and was omitted in [2] although it is necessary to prove
the asymptotic results. We then settle the asymptotic normality of the maxi-
mum likelihood and variational estimators. All these results are stated not only
for binary observations, but also more generally for observations coming from
univariate exponential families in canonical form, which is essential regarding
the LBM usages. This leads us to develop a Bernstein-type inequality for sub-
exponential variables as the Hoeffing’s concentration inequality used in [2] is
only relevant for upper-bounded observations.

The paper is organized as follows. The model, main assumptions and no-
tations are introduced in Section 2, where the concept of model symmetry is
also discussed. Section 3 proves the asymptotic normality of the complete like-
lihood estimator, and section 4 studies conditional and profile log-likelihoods.
Our main result showing that the observed likelihood ratio behaves like the
complete likelihood ratio is stated in section 5, and its consequences in terms
of consistency and asymptotic normality of the MLE and variational estimators
are presented in section 6. Most of the proofs are postponed to the appendices
to improve the general readibility: appendix A for properties of conditional and
profile log-likelihoods, B for the steps of the main result, C for concentration
inequalities for specific sub-exponential variables and D for other technical re-
sults.

2. Model, assumptions and definitions

We observe a data matrix X = (xij) with n rows and d columns. The LBM
assumes that there exists a latent structure in the form of the Cartesian product
of a partition of g row-clusters by a partition of m column-clusters with the
following characteristics:
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• the latent row assignments z = (z1, . . . , zn) are independent and identi-
cally distributed with a common multinomial distribution on g categories:

zi ∼ M(1,π = (π1, . . . , πg))

For k = 1, . . . , g, zik = 1 if row i belongs to row-group k, 0 otherwise.
In the same way, the latent column assignments w = (w1, . . . ,wd) are
i.i.d. multinomial variables with m categories:

wj ∼ M(1,ρ = (ρ1, . . . , ρm))

For � = 1, . . . ,m, wj� = 1 if column j belongs to column-group � and 0
otherwise.

• the row and column assignments are independent: p(z,w) = p(z)p(w)
• conditionally to row and column assignments z × w, the observed data

Xij are independent, and their conditional distribution ϕ(., α) belongs to
the same parametric family, which parameter α only depends on the given
block:

Xij |{zikwj� = 1} ∼ ϕ(., αk�).

Hence, the complete parameter set is θ=(π,ρ,α) ∈ Θ, with α=(α11, . . . , αgm)
and Θ the parameter space. Figure 2 summarizes these notations.

Remark 2.1. Group, class and cluster in one hand, label and assignment in the
other hand will be used indistinctly. Moreover, for notation convenience,

∑
i,∑

j ,
∑

k,
∑

� stand for
∑n

i=1,
∑d

j=1,
∑g

k=1,
∑m

�=1.

Fig 2. Notations. Left: Notations for the elements of observed data matrix are in black,
notations for the block clusters are in blue. Right: Notations for the model parameter.

When performing inference from data, we denote θ� = (π�,ρ�,α�) the true
parameter set, i.e. the parameter values used to generate the data, and z�

and w� the true (and usually unobserved) row and column assignments. For
indicator membership variables z and w, we also denote:
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• z+k =
∑

i zik and w+� =
∑

j wj�

• z�+k and w�
+� their counterpart for z� and w�.

The confusion matrix allows one to compare the partitions.

Definition 2.2 (confusion matrices). For given assignments z and z� (resp. w
and w�), we define the confusion matrix between z and z� (resp. w and w�),
denoted Rg(z) (resp. Rm(w)), as follows:

Rg(z)kk′ =
1

n

∑
i

z�ikzik′ and Rm(w)��′ =
1

d

∑
j

w�
j�wj�′

2.1. Likelihood

When the labels are known, the complete log-likelihood is given by:

Lc(z,w;θ) = log p(x, z,w;θ)

= log

⎧⎨⎩
⎛⎝∏

i,k

πzik
k

⎞⎠⎛⎝∏
j,�

ρ
wj�

�

⎞⎠⎛⎝ ∏
i,j,k,�

ϕ (xij ;αk�)
zikwj�

⎞⎠⎫⎬⎭
= log

⎧⎨⎩
(∏

i

πzi

)⎛⎝∏
j

ρwj

⎞⎠⎛⎝∏
i,j

ϕ
(
xij ;αziwj

)⎞⎠⎫⎬⎭ .

(2.1)

In an unsupervised setting, the labels are unobserved and the observed log-
likelihood is obtained by marginalization over all the label configurations:

L(θ) = log p(x;θ) = log

⎛⎝ ∑
z∈Z,w∈W

p(x, z,w;θ)

⎞⎠ .

Due to the double missing data structure z for rows and w for columns, neither
the observed likelihood nor the E-step of the EM algorithm are tractable. Esti-
mation can can nevertheless be performed either by numerical approximation,
or by MCMC methods [see 8, 9].

2.2. Assumptions

We focus here on LBM where ϕ belongs to a regular univariate exponential
family set in canonical form:

ϕ(x, α) = b(x) exp(αx− ψ(α)),

The canonical parameter α belongs to a space A, so that ϕ(·, α) is well
defined for all α ∈ A. Classical properties of exponential families ensure that
ψ is convex, infinitely differentiable on Å, and (ψ′)−1 is well defined on ψ′(Å).
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When Xα ∼ ϕ(., α),

E[Xα] = ψ′(α) and V[Xα] = ψ′′(α).

Notice that the definition of the exponential family used here relies on an
exhaustive statistic that is X itself. This for a simple convenience. Family sets of
the form ϕ(x, α) = b(x) exp(αt(x)−ψ(α)) can also be considered, all the further
developments as Bernstein and concentration inequalities then concerning the
exhaustive statistics t(X).

Moreover, we make the following assumptions on the parameter space:

H1: There exists a positive constant c, and a compact Cα such that

Θ ⊂ [c, 1− c]g × [c, 1− c]m × Cg×m
α with Cα ⊂ Å.

H2: The true parameter θ� = (π�,ρ�,α�) lies in the relative interior of Θ.
H3: The mixture measure of LBM is identifiable: θ� is identifiable up to a

permutation of the row-labels and column-labels (see definition 2.7 of
equivalent parameters).

The previous assumptions are standard. Notice that the following conditions
are necessary for H3 to hold:

H3a: The map α �→ ϕ(·, α) is injective.
H3b: Each row and each column of α� is unique.

[9] gives sufficient conditions for the generic identifiability of the categorical
LBM, i.e. except on a manifold set of null Lebesgue measure in Θ and this
property is easily extended to the case of observations from a univariate expo-
nential family. For binary SBM, [2] added the assumption p ≥ (logn)/n on the
parameter p of the Bernoulli distribution to take into account sparsity.

Assumption H1 ensures that the group proportions πk and ρ� are bounded
away from 0 and 1 so that no group disappears when n and d go to infinity. It
also ensures that α is bounded away from the boundaries of A and that there
exists a positive value κ > 0, such that [α− κ, α+ κ] ⊂ Å for all parameters α
of Cα, which is essential to prove a uniform Bernstein inequality on the X.

Moreover, we define the quantity δ(α) that captures the separation between
row-groups or column-groups: low values of δ(α) mean that two row-classes or
two column-classes are very similar.

Definition 2.3 (class distinctness). For θ = (π,ρ,α) ∈ Θ. We define:

δ(α) = min

{
min
��=�′

max
k

KL(αk�, αk�′),min
k �=k′

max
�

KL(αk�, αk′�)

}
with KL(α, α′) = Eα[log(ϕ(X,α)/ϕ(X,α′))] = ψ′(α)(α−α′)+ψ(α′)−ψ(α) the
Kullback divergence between ϕ(., α) and ϕ(., α′).

Remark 2.4. Since α� has distinct rows and distinct columns (H3), δ(α
�) > 0.
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Remark 2.5. These assumptions are satisfied for many distributions, including
but not limited to:

• Bernoulli, when the proportion p is bounded away from 0 and 1, or natural
parameter α = log(p/(1− p)) bounded away from ±∞;

• Poisson, when the mean λ is bounded away from 0 and +∞, or natural
parameter α = log(λ) bounded away from ±∞;

• Gaussian with known variance when the mean μ, which is also the natural
parameter, is bounded away from ±∞.

In particular, the conditions stating that ψ is twice differentiable and that (ψ′)−1

exists are equivalent to assuming that Xα has positive and finite variance for
all values of α in the parameter space.

2.3. Model symmetry

The LBM is a generalized mixture model and as such is subject to label switch-
ing. Moreover, the study of the asymptotics will involve the complete likelihood
where symmetry properties on the parameter must be taken into account. We
first recall the definition of a permutation in LBM, then define equivalence re-
lationships for assignments and parameter, and discuss model symmetry.

Definition 2.6 (permutation). Let s be a permutation on {1, . . . , g} and t a
permutation on {1, . . . ,m}. If A is a matrix with g columns, we define As as
the matrix obtained by permuting the columns of A according to s, i.e. for any
row i and column k of A, As

ik = Ais(k). If B is a matrix with m columns and

C is a matrix with g rows and m columns, Bt and Cs,t are defined similarly:

As =
(
Ais(k)

)
i,k

Bt =
(
Bjt(�)

)
j,�

Cs,t =
(
Cs(k)t(�)

)
k,�

Definition 2.7 (equivalence). We define the following equivalence relationships:

• Two assignments (z,w) and (z′,w′) are equivalent, denoted ∼, if they
are equal up to label permutation, i.e. there exist two permutations s and
t such that z′ = zs and w′ = wt.

• Two parameters θ and θ′ are equivalent, denoted ∼, if they are equal up
to label permutation, i.e. there exist two permutations s and t such that
(πs,ρt,αs,t) = (π′,ρ′,α′). This is label-switching.

• (θ, z,w) and (θ′, z′,w′) are equivalent, denoted ∼, if they are equal up
to label permutation on α, i.e. there exist two permutations, s and t such
that (αs,t, zs,wt) = (α′, z′,w′).

The last equivalence relationship is not concerned with π and ρ. It is useful
when dealing with the conditional likelihood p(x|z,w;θ) which depends neither
on π nor ρ: in fact, if (θ, z,w) ∼ (θ′, z′,w′), then for all x, we have p(x|z,w;θ) =
p(x|z′,w′;θ′). Note also that z ∼ z� (resp. w ∼ w�) if and only if there exists
a permutation of the rows of the confusion matrix Rg(z) (resp. Rm(w)) leading
to a diagonal matrix.
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Definition 2.8 (symmetry). We say that the parameter θ exhibits symmetry
for the permutations s, t if

(πs,ρt,αs,t) = (π,ρ,α).

θ exhibits symmetry if it exhibits symmetry for any non trivial pair of permu-
tations (s, t). Finally the set of pairs (s, t) for which θ exhibits symmetry is
denoted Sym(θ).

Remark 2.9. The set of parameters that exhibit symmetry is a manifold of
null Lebesgue measure in Θ. This notion of symmetry is subtler than and dif-
ferent from label switching. To emphasize the difference between equivalence
and symmetry, consider the following model: π = (1/2, 1/2), ρ = (1/3, 2/3)
and α = ( α1 α2

α2 α1
) with α1 	= α2. The only permutations of interest here are

s = t = [1 2]. Choose any z and w. Because of label switching, we know that
p(x, zs,wt;θs,t) = p(x, z,w;θ). (zs,wt) and (z,w) have the same likelihood
but under different parameters θ and θs,t. If however, ρ = (1/2, 1/2), then
(s, t) ∈ Sym(θ) and θs,t = θ so that (z,w) and (zs,wt) have the same likelihood
under the same parameter θ. In particular, if (z,w) is a maximum-likelihood
assignment under θ, so is (zs,wt). In other words, if θ exhibits symmetry, the
maximum-likelihood assignment is not unique under the true model and there
are at least #Sym(θ) of them. This has important implications for the asymp-
totics of the observed likelihood ratio.

2.4. Distance and local assignments

We define the distance up to equivalence between two sets of assignments as
follows:

Definition 2.10 (distance). The distance, up to equivalence, between configu-
rations z and z� is defined as

‖z− z�‖0,∼ = inf
z′∼z

‖z′ − z�‖0

where, for all matrix z, ‖·‖0 is the Hamming norm

‖z‖0 =
∑
i,k

1{zik 	= 0}.

A similar definition is set for the distance between w and w�.

This allows us to define a neighborhood of radius r in the assignment space,
taking into account equivalent assignments classes.

Definition 2.11 (Set of local assignments). We denote S(z�,w�, r) the set
of configurations that have a representative (for ∼) within relative radius r of
(z�,w�):

S(z�,w�, r) = {(z,w) : ‖z− z�‖0,∼ ≤ rn and ‖w −w�‖0,∼ ≤ rd}
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3. Asymptotic properties in the complete data model

As stated in the introduction, we first study the asymptotic properties of the
complete data model. Let θ̂c = (π̂, ρ̂, α̂) be the MLE of θ in the complete data
model, where the real assignments z = z� and w = w� are known. We can
derive the following general estimates from Equation (2.1):

π̂k(z) =
z+k

n
ρ̂�(w) =

w+�

d

x̂k�(z,w) =

∑
ij xijzikwj�

z+kw+�
α̂k� = α̂k�(z,w) = (ψ′)−1 (x̂k�(z,w))

(3.1)

Proposition 3.1. The matrices Σπ� = Diag(π�)−π� (π�) T , Σρ� = Diag(ρ�)−
ρ� (ρ�) T are semi-definite positive, of rank g − 1 and m − 1, and π̂ and ρ̂ are
asymptotically normal:

√
n (π̂ (z�)− π�)

D−−−−→
n→∞

N (0,Σπ�) and
√
d (ρ̂ (w�)− ρ�)

D−−−→
d→∞

N (0,Σρ�)

(3.2)
Similarly, let V (α�) be the matrix defined by [V (α�)]k� = 1/ψ′′(α�

k�) and Σα� =
Diag−1(π�)V (α�)Diag−1(ρ�). Then:

√
nd (α̂k� (z

�,w�)− α�
k�)

D−−−−−→
n,d→∞

N (0,Σα�,k�) for all k, �

and the components α̂k,� are independent.

Proof: Since π̂ (z�) = (π̂1 (z
�) , . . . , π̂g (z

�)) (resp. ρ̂ (w�)) is the sample mean
of n (resp. d) i.i.d. multinomial random variables with parameters 1 and π�

(resp. ρ�), a simple application of the central limit theorem (CLT) gives:

Σπ�,kk′ =

{
π�
k(1− π�

k) if k = k′

−π�
kπ

�
k′ if k 	= k′

and Σρ�,��′ =

{
ρ�� (1− ρ�� ) if � = �′

−ρ��ρ
�
�′ if � 	= �′

which proves Equation (3.2) where Σπ� and Σρ� are semi-definite positive of
rank g − 1 and m− 1.

Similarly, ψ′ (α̂k� (z
�,w�)) is the average of z�+kw

�
+� = ndπ̂k (z

�) ρ̂� (w
�) i.i.d.

random variables with mean ψ′ (α�
k�) and variance ψ′′ (α�

k�). ndπ̂k (z
�) ρ̂� (w

�)
is itself random but π̂k (z

�) ρ̂� (w
�) −−−−−−→

n,d→+∞
π�
kρ

�
� almost surely. Therefore, by

Slutsky’s lemma and the CLT for random sums of random variables [12], we
have: √

ndπ�
kρ

�
� (ψ

′ (α̂k� (z
�,w�))− ψ′(α�

k�))

=
√
ndπ�

kρ
�
�

( ∑
ij Xijz

�
ikw

�
j�

ndπ̂k (z�) ρ̂� (w�)
− ψ′(α�

k�)

)
D−−−−−−→

n,d→+∞
N (0, ψ′′(α�

k�))
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The differentiability of (ψ′)−1 and the delta method then gives:

√
nd (α̂k� (z

�,w�)− α�
k�)

D−−−−−−→
n,d→+∞

N
(
0,

1

π�
kρ

�
�ψ

′′(α�
k�)

)
and the independence results from the independence of α̂k� (z

�,w�) and
α̂k′�′ (z

�,w�) as soon as k 	= k′ or � 	= �′, as they involve different sets of
independent variables.

�
Moreover, the complete model is locally asymptotically normal (LAN), as

stated in the following proposition. Note that the unusual condition for s and t

arises from the constraints π
T

1g = ρ
T

1m = 1, where 1g is the vector of size g
filled with 1, which must be satisfied even after perturbing π (resp. ρ) with s
(resp. t).

Proposition 3.2 (Local asymptotic normality). Let L�
c the map defined by θ =

(π,ρ,α) �→ log p (x, z�,w�;θ) and note Iπ� = Diag−1(π�), Iρ� = Diag−1(ρ�)
and Iα� the component-wise inverse of Σα� . For any s, t and u in a compact

set, such that t
T

1g = 0 and s
T

1m = 0, we have:

L�
c

(
π� +

s√
n
,ρ� +

t√
d
,α� +

u√
nd

)
= L�

c (θ
�) + sTYπ� + tTYρ� +Tr(uTYα�)

−
(
1

2
sT Iπ�s+

1

2
tT Iρ�t+

1

2
Tr[(u u)T Iα� ]

)
+ oP (1)

where  denotes the Hadamard product of two matrices (element-wise product),
Yπ� , Yρ� are asymptotically centered Gaussian vectors of sizes g and m with
respective variance matrices I(π�) and I(ρ�) and Yα� is a random matrix of
size g ×m with independent Gaussian components Yα�,kl ∼ N (0, Iα�,kl).

Proof. By Taylor expansion, and with the condition s
T

1g = t
T

1m = 0

L�
c

(
π� +

s√
n
,ρ� +

t√
d
,α� +

u√
nd

)
= L�

c (θ
�) +

1√
n
sT∇L�

cπ (θ�) +
1√
d
tT∇L�

cρ (θ
�) +

1√
nd

Tr
(
uT∇L�

cα (θ�)
)

+
1

n
sTHπ (θ�) s+

1

d
tTHρ (θ

�) t+
1

nd
Tr

(
(u u)THα (θ�)

)
+ oP (1)

where ∇L�
cπ (θ�), ∇L�

cρ (θ
�) and ∇L�

cα (θ�) denote the respective components

of the gradient of L�
c evaluated at θ� and Hπ, Hρ and Hα denotes the condi-

tional hessian of L�
c evaluated at θ�. By inspection, Hπ/n, Hρ/d and Hα/nd

converge in probability to constant matrices and the random vectors
∇L�

cπ (θ�) /
√
n, ∇L�

cρ (θ
�) /

√
d and ∇L�

cα (θ�) /
√
nd converge in distribution

to Gaussian vectors by the central limit theorem.
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4. Profile likelihood

Our main result compares the observed likelihood ratio p(x;θ)/p(x;θ�) with
the complete likelihood p(x, z�,w�;θ)/p(x, z�,w�;θ�). To study the behavior of
these likelihoods, we shall work conditionally to the true configurations (z�,w�)
that have enough observations in each row or column group. We therefore define
in section 4.1 so called regular configurations and prove that they occur with
high probability. We then introduce in section 4.2 conditional and profile log-
likelihood ratios and state some of their properties.

4.1. Regular assignments

Definition 4.1 (c-regular assignments). Let z ∈ Z and w ∈ W. For any c > 0,
we say that z and w are c-regular if

min
k

z+k ≥ cn and min
�

w+� ≥ cd.

In regular configurations, each row-group for example has Ω(n) members,
where un = Ω(n) if there exists two constant a, b > 0 such that for n enough
large an ≤ un ≤ bn. c/2-regular assignments, with c defined in Assumption
H1, have high Pθ� -probability in the space of all assignments, uniformly over all
θ� ∈ Θ, as stated in Proposition 4.2.

Proposition 4.2. Define Z1 and W1 as the subsets of Z and W made of
c/2-regular assignments, with c defined in assumption H1. Denote Ω1 the event
{(z�,w�) ∈ Z1 ×W1}, then:

Pθ�

(
Ω̄1

)
≤ g exp

(
−nc2

2

)
+m exp

(
−dc2

2

)
.

Each z+k is a sum of n i.i.d Bernoulli random variables with parameter πk ≥
πmin ≥ c. The proof is straightforward and stems from a simple Hoeffding bound

Pθ�

(
z+k ≤ n

c

2

)
≤ Pθ�

(
z+k ≤ n

πk

2

)
≤ exp

(
−2n

(πk

2

)2
)

≤ exp

(
−nc2

2

)
and a union bound over g values of k, with similar approach for w+�.

4.2. Conditional and profile log-likelihoods

Introducing the conditional log-likelihood ratio

Fnd(θ, z,w) = log
p(x|z,w;θ)

p(x|z�,w�;θ�)
,

the complete likelihood can be written as follows

p(x, z,w;θ) = p(z,w;θ)p(x|z�,w�;θ�) exp(Fnd(θ, z,w)).

The study of Fnd will be of crucial importance, as well as its maximum over Θ.
After some definitions, we examine some useful properties.
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Definition 4.3. The conditional expectation G of Fnd is defined as:

G(θ, z,w) = Eθ�

[
log

p(x|z,w;θ)

p(x|z�,w�;θ�)

∣∣∣∣ z�,w�

]
= Eθ� [Fnd(θ, z,w)| z�,w�]

Moreover, the profile log-likelihood ratio Λ and its expectation Λ̃ are defined as:

Λ(z,w) = max
θ

Fnd(θ, z,w)

Λ̃(z,w) = max
θ

G(θ, z,w).

Remark 4.4. As Fnd and G only depend on θ through α, we will sometimes
replace θ with α in the expressions of Fnd and G. Replacing Fn,d and G by

their profiled version Λ and Λ̃ allows us to get rid of the continuous argument
α of Fnd and to rely instead only on discrete contrasts Λ and Λ̃.

Now, Proposition 4.5 characterizes which values of α maximize Fnd and G to
reach Λ and Λ̃. Propositions 4.6 and 4.7 in turn describes properties of G and
Λ̃ relative to (z,w).

Proposition 4.5 (maximum of G and Λ̃ in θ). Let θ̂c =(x̂k�(z,w), π̂k(z), ρ̂�(w))
be the maximum likelihood estimator of the complete model, as defined in Equa-
tion 3.1. Conditionally on z�,w�, define the following quantities:

S� = (S�
k�)k� = (ψ′(α�

k�))k�

x̄k�(z,w) = Eθ� [x̂k�(z,w)|z�,w�] =

[
Rg(z)

TS�Rm(w)
]
k�

π̂k(z)ρ̂�(w)

(4.1)

with x̄k�(z,w) = 0 for z and w such that π̂k(z) = 0 or ρ̂�(w) = 0.
Then Fnd(θ, z,w) (resp. G(θ, z,w)) is maximum in α for α = α̂(z,w) (resp.

ᾱ(z,w)) defined by:

α̂(z,w)k� = (ψ′)−1(x̂k�(z,w)) and ᾱ(z,w)k� = (ψ′)−1(x̄k�(z,w)).

Hence,
Λ(z,w) = Fnd(α̂(z,w), z,w)

Λ̃(z,w) = G(ᾱ(z,w), z,w)

Note that although x̄k� = Eθ� [ x̂k�| z�,w�], in general ᾱk� 	= Eθ� [ α̂k�| z�,w�]
by non linearity of (ψ′)−1. Nevertheless, since (ψ′)−1 is Lipschitz over compact
subsets of ψ′(Å), with high probability, |ᾱk� − α̂k�| and |x̂k� − x̄k�| are of the
same order of magnitude.

Proposition 4.6 (maximum of G and Λ̃ in (θ, z,w)). Let KL(α, α′) =
ψ′(α)(α − α′) + ψ(α′) − ψ(α) be the Kullback divergence between ϕ(., α) and
ϕ(., α′) then:

G(θ, z,w) = −nd
∑
k,k′

∑
�,�′

Rg(z)k,k′Rm(w)�,�′ KL(α�
k�, αk′�′) ≤ 0. (4.2)

Conditionally on the set Ω1 of regular assignments and for n, d > 2/c,
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(i) G is maximized at (α�, z�,w�) and its equivalence class.
(ii) Λ̃ is maximized at (z�,w�) and its equivalence class and Λ̃(z�,w�) = 0.

Moreover, the maximum of Λ̃ in (z�,w�) is well separated, in the sense that
there exists a positive gap between Λ̃(z�,w�) and any other Λ̃(z,w) for (z,w)
in a close neighborhood of (z�,w�), as stated in the following proposition:

Proposition 4.7 (Separability for Λ̃). Conditionally upon Ω1, there exists a
positive constant C such that for all (z,w) ∈ S(z�,w�, C):

Λ̃(z,w) ≤ −cδ(α�)

4
(d‖z− z�‖0,∼ + n‖w −w�‖0,∼) (4.3)

Moreover, there exists a positive constant B(C) such that for all (z,w) /∈
S(z�,w�, C)

Λ̃(z,w) ≤ −B(C) nd (4.4)

The proofs of these propositions are reported in Appendix A. Proof of Propo-
sition 4.5 follows from a straightforward calculation, proof of Proposition 4.6
uses the technical Lemma D.1 to characterize the maximum of G and proof
of Proposition 4.7 uses regularity properties of the gradient of Λ̃ to control its
behavior near its maximum.

5. Main result

Our main result matches the asymptotics of complete and observed likelihoods
and is the key to prove the consistency of maximum likelihood and variational
estimators. It is set under the assumptions described in section 2.2 and the
following asymptotics for the number of rows n and columns d:

(H4) : log(d)/n → 0 and log(n)/d → 0.

Theorem 5.1 (complete-observed). Let x be a matrix of n × d observations
of a LBM with true parameter θ� = (π�,ρ�,α�) where the number of row-
groups g and column-groups m are known, which conditional distribution belongs
to a regular univariate exponential family. The true random and unobserved
assignations for rows and columns are denoted z� and w� respectively. Define
#Sym(θ) as the number of pairs of permutations (s, t) for which θ exhibits
symmetry.

If assumptions H1 to H4 are fulfilled, then, the observed likelihood ratio be-
haves like the complete likelihood ratio, up to a bounded multiplicative factor:

p(x;θ)

p(x;θ�)
=

#Sym(θ)

#Sym(θ�)
max
θ′∼θ

p(x, z�,w�;θ′)

p(x, z�,w�;θ�)
(1 + oP (1)) + oP (1)

where both oP are uniform over all θ ∈ Θ.

The maximum over all θ′ that are equivalent to θ stems from the fact that
because of label-switching, θ is only identifiable up to its ∼-equivalence class
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from the observed likelihood, whereas it is completely identifiable from the com-
plete likelihood as in this latter case, the labels are known. The terms #Sym
are needed to take into account cases where θ exhibits symmetry. These were
omitted by [2] for SBM, although they are also needed in this case, see remark
5.3. When no θ ∈ Θ exhibits symmetry, the following corollary is immediately
deduced:

Corollary 5.2. If Θ contains only parameters that do not exhibit symmetry:

p(x;θ)

p (x;θ�)
= max

θ′∼θ

p(x, z�,w�;θ′)

p(x, z�,w�;θ�)
(1 + oP (1)) + oP (1)

where the oP is uniform over all θ ∈ Θ.

General sketch of the proof The proof relies on the following decomposition
of the observed likelihood:

p(x;θ) =
∑
(z,w)

p(x, z,w;θ)

=
∑

(z,w)∼(z�,w�)

p(x, z,w;θ) +
∑

(z,w)�(z�,w�)

p(x, z,w;θ).

where the second term shall be proved to be asymptotically negligible. Its control
stems from the study of the conditional log-likelihood Fnd, see Equation 4.2. In
fact, the contribution of configurations that are not equivalent to (z�,w�) leads
itself to the study of a global control, and a sharper local control of Fnd. Hence,
the proof relies on the examination of the asymptotic behavior of Fnd on three
types of configurations that partition Z ×W :

1. global control for assignations (z,w) sufficiently far from (z�,w�), i.e. such
that Λ̃(z,w) is of order Ω(−nd). Proposition 5.5 gives a large deviation
result for Fnd− Λ̃(z,w) to prove that Fnd is also of order −ΩP (nd). A key
point will be the use of Proposition C.4, establishing a specific concentra-
tion inequality for sub-exponential variables. In turn, those assignments
contribute as a oP (p(x, z

�,w�;θ�)) to the sum (Proposition 5.6).
2. local control : a small deviation result (Proposition 5.7) is needed to show

that the combined contribution of assignments close to but not equivalent
to (z�,w�) is also a oP (p(x, z

�,w�;θ�)) (Proposition 5.8).
3. equivalent assignments: Proposition 5.9 examines which of the remaining

assignments, all equivalent to (z�,w�), contribute to the sum.

Once these propositions proved, the proof is straightforward, as can be seen
below. They are in turn carefully presented and discussed in dedicated sub-
sections as they represents the core arguments and their proofs are themselves
postponed to Appendix B for more readability.

Proof. We work conditionally to Ω1, defined in Proposition 4.2, i.e., the high
probability event that (z�,w�) is a c/2-regular assignment. We choose (z�,w�) ∈
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Z1 ×W1 and a sequence tnd decreasing to 0 but satisfying t2nd � n+d
nd . This is

possible when n → ∞ and d → ∞, and for example with Assumption (H4). We
write:

p(x;θ) =
∑

(z,w)∼(z�,w�)

p(x, z,w;θ)

+
∑

(z,w)/∈S(z�,w�,tnd)

p(x, z,w;θ) +
∑

(z,w)∈S(z�,w�,tnd)
(z,w)�(z�,w�)

p(z,w,x;θ)

According to Proposition 5.6, conditionally to Ω1 and for n, d large enough that
2
√
2ndtnd ≥ gm, the contribution of far away assignments is

sup
θ∈Θ

∑
(z,w)/∈S(z�,w�,tnd)

p(z,w,x;θ) = oP (p(z
�,w�,x;θ�)).

Using the separability of Λ̃ and Assumption (H4), Proposition 5.8 ensures the
existence of C > 0 such that:

sup
θ∈Θ

∑
(z,w)∈S(z�,w�,C)
(z,w)�(z�,w�)

p(z,w,x;θ) = oP (p(z
�,w�,x;θ�))

Since tnd decreases to 0, Proposition 5.8 can be applied for the local configura-
tions belonging to S(tnd), for n, d large enough. Therefore the observed likeli-
hood ratio reduces to:

p(x;θ)

p(x;θ�)
=

∑
(z,w)∼(z�,w�)

p(x, z,w;θ) + p(x; z�,w�,θ�)oP (1)∑
(z,w)∼(z�,w�)

p(x, z,w;θ�) + p(x; z�,w�,θ�)oP (1)

Proposition 5.9 deals with equivalence and symmetry and allows us to conclude

p(x;θ)

p(x;θ�)
=

#Sym(θ)

#Sym(θ�)
max
θ′∼θ

p(x, z�,w�;θ′)

p(x, z�,w�;θ�)
(1 + oP (1)) + oP (1).

Remark 5.3. As already pointed out, if θ exhibits symmetry, the maximum
likelihood assignment is not unique under θ, and #Sym(θ) terms contribute
with the same weight. This was not taken into account by [2], and it is interesting
to see why it should be also present for SBM. Recall that SBM has only one set
of labels z. The proof relies on the the decomposition

p(x;θ) =
∑
z

p(x, z;θ) =
∑
z′∼z�

p(x, z′;θ) +
∑
z′�z�

p(x, z′;θ)

where the second term of the sum is neglectible compared to the first term. Now,
z′ ∼ z� means that there exists a permutation t : [g] → [g] such that z′ = zt
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and p(x, zt;θ) = p(x, z;θt). The first term is written on Page 1941, Equation
(25) in [2] as∑

z′∼z�

p(x, z′;θ) =
∑
θ′∼θ

p(x, z�;θ′) = (1 + o(1))max
θ′∼θ

p(x, z�; θ′)

However, the first equality is not always correct. Actually, we have∑
z′∼z�

p(x, z′;θ) =
∑

t:[g]→[g]

p(x, z�,t;θ) =
∑

t:[g]→[g]

p(x, z�;θt)

Take a special case of symmetry where π = (1/g, . . . , 1/g) and α = (p− q)Ig +
q1g1

T
g . Then we have θt = θ for all t. Thus,∑

z′∼z�

p(x, z′;θ) = g! p(x, z�;θ).

Even for the SBM, we thus have generally:∑
z′∼z�

p(x, z′;θ) = (1 + o(1))#Sym(θ)max
θ′∼θ

p(x, z�;θ′)

5.1. Global control

A large deviation inequality for configurations (z,w) far from (z�,w�) is build
and used to prove that far away configurations make a small contribution to
p(x;θ). Since we restricted α in a bounded subset of Å, there exists two positive
values Mα and κ such that Cα + (−κ, κ) ⊂ [−Mα,Mα] ⊂ Å. Moreover, the
variance of Xα is bounded away from 0 and +∞:

sup
α∈[−Mα,Mα]

V(Xα) = σ̄2 < +∞ and inf
α∈[−Mα,Mα]

V(Xα) = σ2 > 0.

Proposition 5.4. With the previous notations, if α ∈ Cα and Xα ∼ ϕ(., α),
then Xα is sub-exponential with parameters (σ̄2, κ−1).

The latter proposition is a direct consequence of the definition of sub-expo-
nential variables, see Appendix C.

Proposition 5.5 (large deviations of Fnd). Let Diam(Θ) = supθ,θ′ ‖θ− θ′‖∞.
For all εn,d ≤ κσ̄ and n, d

Δ1
nd(εnd)

= P

(
sup
θ,z,w

{
Fnd(θ, z,w)− Λ̃(z,w)

}
≥ σ̄ndDiam(Θ)2

√
2εnd

[
1 +

gm

2
√
2ndεnd

])

≤ gnmd exp

(
−ndε2nd

2

)
(5.1)
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In particular, if n and d are large enough that 2
√
2ndεnd ≥ gm, the previous

inequality ensures that with high probability, Fnd(θ, z,w)−Λ̃(z,w) is no greater
than σ̄ndDiam(Θ)4

√
2εnd.

The concentration inequality used in [2] to prove an analog result for SBM
is not sufficient here, as it can be used only for upper-bounded observations,
which is obviously not the case for all exponential families. We instead develop
a Bernstein-type inequality for sub-exponential variables (Proposition C.4) to
upper bound Fnd(θ, z,w)− Λ̃(z,w). Proposition 5.5 relies heavily on this Bern-
stein inequality. A straightforward consequence of this deviation bound is that
the combined contribution of assignments far away from (z�,w�) to the sum
is negligible, assuming that the numbers n of rows and d of columns grow at
commensurate rates, as stated in the following proposition:

Proposition 5.6 (contribution of far away assignments). Assume n → ∞ and
d → ∞, and choose tnd decreasing to 0 such that t2nd � n+d

nd . Then conditionally

on Ω1 and for n, d large enough that 2
√
2ndtnd ≥ gm, we have:

sup
θ∈Θ

∑
(z,w)/∈S(z�,w�,tnd)

p(z,w,x;θ) = p(z�,w�,x;θ�)oP (1)

where the oP is uniform in probability over all θ ∈ Θ.

5.2. Local control

Proposition 5.5 gives deviations of order OP (
√
nd), which are only useful for

(z,w) such thatG and Λ̃ are large compared to
√
nd. For (z,w) close to (z�,w�),

we need tighter concentration inequalities, of order oP (n+ d), as follows:

Proposition 5.7 (small deviations Fnd). Conditionally upon Ω1, for n and d
satisfying (H4), and for (z,w) ∈ S(z�,w�, c/4) where c > 0 is defined in (H1),
we have: ∑

(z,w)∈S(z�,w�,c/4)
(z,w)�(z�,w�)

Λ(z,w)− Λ̃(z�,w�)

d‖z− z�‖0,∼ + n‖w −w�‖0,∼
= oP (1)

The next proposition uses Propositions 4.6 and 5.7 to show that the combined
contribution to the observed likelihood of assignments close to (z�,w�) is also
a oP of p(z�,w�,x;θ�):

Proposition 5.8 (contribution of local assignments). With the previous nota-
tions and for n and d satisfying Assumption (H4), for any c̃ ≤ min(C, c/4) we
have:

sup
θ∈Θ

∑
(z,w)∈S(z�,w�,c̃)
(z,w)�(z�,w�)

p(z,w,x;θ) = oP (p(z
�,w�,x;θ�))

5.3. Equivalent assignments

It remains to study the contribution of equivalent assignments.
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Proposition 5.9 (contribution of equivalent assignments). For all θ ∈ Θ, we
have ∑

(z,w)∼(z�,w�)

p(x, z,w;θ)

p(x, z�,w�;θ�)
= #Sym(θ)max

θ′∼θ

p(x, z�,w�;θ′)

p(x, z�,w�;θ�)
(1 + oP (1))

where the oP is uniform in θ.

The maximum over θ′ ∼ θ accounts for equivalent configurations whereas
#Sym(θ) is needed when θ exhibits symmetry, as noticed in Remark 5.3.

6. Asymptotics for the Maximum Likelihood (MLE) and Variational
(VE) Estimators

This section is devoted to the asymptotics of the MLE and VE in the incomplete
data model as a consequence of the main result 5.1.

6.1. ML estimator

Theorem 6.1 (Asymptotic behavior of θ̂MLE). Denote θ̂MLE the maximum
likelihood estimator and use the notations of Proposition 3.1. There exist per-
mutations s of {1, . . . , g} and t of {1, . . . ,m} such that

π̂ (z�)− π̂s
MLE = oP

(
n−1/2

)
, ρ̂ (w�)− ρ̂t

MLE = oP

(
d−1/2

)
,

α̂ (z�,w�)− α̂s,t
MLE = oP

(
(nd)

−1/2
)
.

The proof relies on a Taylor expansion of the complete likelihood near its
optimum, like in Proposition 3.2, and on our main theorem.

Proof. Note first that unless Θ is constrained and with high probability, θ̂MLE

and θ̂c(z
�,w�) exhibit no symmetries. Indeed, equalities like x̂k� = x̂k′,�′ have

vanishingly small probabilities of being simultaneously true when Xij is discrete
and null when Xij is continuous.

Note also that L�
c has a unique maximum at θ̂c(z

�,w�). Furthermore, the cur-

vature of L�
c at θ̂c(z

�,w�) with respect to π (resp. ρ, α) converge in probability

to Iπ� (resp. Iρ� , Iα�) defined in Proposition 3.2 by consistency of θ̂c. There-

fore any estimator θ̂ bounded away from θ̂c(z
�,w�) satisfies L�

c(θ̂c(z
�,w�)) −

L�
c(θ̂) > ΩP (1). If ‖θ̂c(z

�,w�) − θ̂‖ = oP (1), a Taylor expansion at θ̂c(z
�,w�)

gives

L�
c(θ̂c(z

�,w�))− L�
c(θ̂)

=
(
n(π̂c (z

�,w�)− π̂)
T

Iπ�(π̂c (z
�,w�)− π̂)

+d(ρ̂c (z
�,w�)− ρ̂)

T

Iρ�(ρ̂c (z
�,w�)− ρ̂)
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+ndTr
[
{(α̂c (z

�,w�)− α̂) (α̂c (z
�,w�)− α̂)}

T

Iα�

])
×(1 + oP (1)) + oP (1)

where the linear term in the expansion vanishes as θ̂c(z
�,w�) is the argmax of L�

c

and the Hessian of L�
c at θ̂c(z

�,w�) were replaced by their limit in probability.
We may now prove the corollary by contradiction. Assume that mins(π̂

s
MLE−

π̂ (w�)) 	= oP
(
n−1/2

)
, mint(ρ̂

t
MLE − ρ̂ (w�)) 	= oP

(
d−1/2

)
or mins,t(α̂

s,t
MLE −

α̂ (z�,w�)) 	= oP
(
nd−1/2

)
where s and t are permutations of {1, . . . , g} and

{1, . . . ,m}. Plugging θ̂
s,t

MLE in the previous expansion shows that:

min
s,t

L�
c

(
θ̂c (z

�,w�)
)
− L�

c

(
θ̂
s,t

MLE

)
= ΩP (1). (6.1)

But, since θ̂c (z
�,w�) and θ̂MLE maximize respectively p(x,z�,w�;θ)

p(x,z�,w�;θ�) and p(x;θ)
p(x;θ�)

and have no symmetries, it follows by Theorem 5.1 that∣∣∣∣∣∣
p
(
x, z�,w�; θ̂c (z

�,w�)
)

p(x, z�,w�;θ�)
−max

s,t

p
(
x, z�,w�; θ̂

s,t

MLE

)
p(x, z�,w�;θ�)

∣∣∣∣∣∣ = oP (1)

which contradicts Equation (6.1) and concludes the proof.

6.2. Variational estimator

Due to the complex dependence structure of the observations, the maximum
likelihood estimator of the LBM is not numerically tractable, even with the
EM-algorithm. In practice, a variational approximation can be used, see for
example [5]: for any joint distribution Q ∈ Q on Z ×W a lower bound of L(θ)
is given by

J (Q,θ) = L(θ)−KL (Q, p (., .;θ,x))

= EQ [Lc (z,w;θ)] +H (Q) .

where H (Q) = −EQ[log(Q)]. Choose Q to be the set of factorized distributions,
such that for all (z,w)

Q (z,w) = Q (z)Q (w) =
∏
i,k

Q (zik = 1)
zik

∏
j,�

Q (wj� = 1)
wj�

allows to obtain tractable expressions of J (Q,θ) as a lower bound of the log-

likelihood. The variational estimate θ̂var of θ is defined as

θ̂var ∈ argmax
θ∈Θ

max
Q∈Q

J (Q,θ) .

The following corollary states that θ̂var has the same asymptotics as θ̂MLE

and θ̂c.
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Theorem 6.2 (Variational estimate). Under the assumptions of Theorem 5.1
there exist permutations s of {1, . . . , g} and t of {1, . . . ,m} such that

π̂ (z�)− π̂s
var = oP

(
n−1/2

)
, ρ̂ (w�)− ρ̂t

var = oP

(
d−1/2

)
,

α̂ (z�,w�)− α̂s,t
var = oP

(
(nd)

−1/2
)
.

Proof. Remark first that for every θ and for every (z,w),

p (x, z,w;θ) ≤ exp [J (δz × δw,θ)] ≤ max
Q∈Q

exp [J (Q,θ)] ≤ p (x;θ)

where δz denotes the dirac mass on z. By dividing by p (x;θ�), we obtain

p (x, z,w;θ)

p (x;θ�)
≤

max
Q∈Q

exp [J (Q,θ)]

p (x;θ�)
≤ p (x;θ)

p (x;θ�)
.

As this inequality is true for every couple (z,w), we have in particular:

max
(z,w)∼(z�,w�)

p (x, z,w;θ)

p (x;θ�)
= max

θ′∼θ

p
(
x, z�,w�;θ′)
p (x;θ�)

≤
max
Q∈Q

exp [J (Q,θ)]

p (x;θ�)
.

Noticing that p (x;θ�) = #Sym(θ�)p (x, z�,w�;θ�) (1 + op(1)), Theorem 5.1
therefore leads to the following bounds:

max
θ′∼θ

p
(
x, z�,w�;θ′)

p (x, z�,w�;θ�)
(1 + oP (1)) ≤

max
Q∈Q

exp [J (Q,θ)]

p (x, z�,w�;θ�)

≤ #Sym(θ)max
θ′∼θ

p
(
x, z�,w�;θ′)

p (x, z�,w�;θ�)
(1 + oP (1)) + oP (1).

Again, unless Θ is constrained, θ̂V AR exhibits no symmetries with high proba-
bility and the same proof by contradiction as in section 6.1 gives the result.

7. Conclusion

The Latent Block Model offers challenging theoretical questions. We solved un-
der mild assumptions the consistency and asymptotic normality of the maximum
likelihood and variational estimators for observations with conditional density
belonging to a univariate exponential family, and for a balanced asymptotic rate
between the number of rows n and the number of columns d: log(d)/n → 0 and
log(n)/d → 0 as n and d tend to infinity. Our results extend those of [2] for binary
SBM not only by managing the double direction of LBM, but also by consider-
ing larger types of observations. That brought us to define specific concentration
inequalities as large and moderate deviations concerning sub-exponential vari-
ables. Moreover, we dealt with specific cases of symmetry that were not taken
into account as of now.

A specific framework of sparsity was studied by [2]. This is especially conve-
nient for SBM, to model reasonable network settings: increasing sparsity (i.e.
number of 0) can be done directly by scaling the Bernoulli parameters pk� with a
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common factor that should decrease no faster than Ω(logδ(n)/n), with δ > 2, to
ensure consistency. This could also be considered for binary LBM. However this
approach fails to model actual observations in the more general valued setting.
The equivalent approach could be to consider the product of a Bernoulli variable
with the actual observation value. Note however, than even without consider-
ing sparsity we recover essentially the same rate: in the sparse-SBM case, each
node should be connected to Ω(logδ(n)) others to ensure consistency whereas
in the dense-LBM case, each of the n-row should should be characterized by
Ω(logδ(n)) columns (and vice-versa) to ensure consistency.

Alternative research direction could be to explore asymptotic settings where
the numbers n of rows and d columns grow at very different rates. Other open
question concern estimation of the number of row and column groups and set-
tings where the number of groups increases with n and d.

Appendix A: Proofs of section 4

A.1. Proof of Proposition 4.5 (maximum of G and Λ̃ in θ)

Proof. Define ν(x, α) = xα − ψ(α). For x fixed, ν(x, α) is maximized at α =
(ψ′)−1(x). Manipulations yield

Fnd(α, z,w) = log p(x; z,w,θ)− log p(x; z�,w�,θ�)

=nd

[∑
k

∑
�

π̂k(z)ρ̂�(w)ν(x̂k�(z,w), αk�)

−
∑
k

∑
�

π̂k(z
�)ρ̂�(w

�)ν(x̂k�(z
�,w�), α�

k�)

]
which is maximized at αk� = (ψ′)−1(x̂k�(z,w)). Similarly

G(α, z,w) =Eθ� [log p(x; z,w,θ)− log p(x; z�,w�,θ�)|z�,w�]

=nd

[∑
k

∑
�

π̂k(z)ρ̂�(w)ν(x̄k�(z,w), αk�)

−
∑
k

∑
�

π̂k(z
�)ρ̂�(w

�)ν(ψ′(α�
k�), α

�
k�)

]
is maximized at αk� = (ψ′)−1(x̄k�(z,w)).

A.2. Proof of Proposition 4.6 (maximum of G and Λ̃ in (θ, z,w))

Proof. We condition on (z�,w�) and prove Equation (4.2):

G(θ, z,w)

= Eθ�

[
log

p(x; z,w,θ)

p(x; z�,w�,θ�)

∣∣∣∣ z�,w�

]
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=
∑
i

∑
j

∑
k,k′

∑
�,�′

Eθ� [xij(αk′�′ − α�
k�)− (ψ(αk′�′)− ψ(α�

k�))] z
�
ikzik′w�

j�wj�′

= nd
∑
k,k′

∑
�,�′

Rg(z)k,k′Rm(w)�,�′ [ψ
′(α�

k�)(αk′�′ − α�
k�) + ψ(α�

k�)− ψ(αk′�′)]

= −nd
∑
k,k′

∑
�,�′

Rg(z)k,k′Rm(w)�,�′ KL(α�
k�, αk′�′)

If (z�,w�) is regular, and for n, d > 2/c, all the rows of Rg(z) and Rm(w)
have at least one positive element and we can apply lemma D.1 (which is an
adaptation for LBM of Lemma 3.2 of [2] for SBM) to characterize the maximum
for G.

The maximality of Λ̃(z�,w�) results from the fact that Λ̃(z,w) =
G(ᾱ(z,w), z,w) where ᾱ(z,w) is a particular value of α, Λ̃ is immediately
maximum at (z,w) ∼ (z�,w�), and for those, we have ᾱ(z,w) ∼ α�.

The separation and local behavior of G around (z�,w�) is a direct conse-
quence of the proposition 4.7.

A.3. Proof of Proposition 4.7 (Local upper bound for Λ̃)

Proof. We work conditionally on (z�,w�). The principle of the proof relies on
the extension of Λ̃ to a continuous subspace of Mg([0, 1])×Mm([0, 1]), in which
confusion matrices are naturally embedded. The regularity assumption allows
us to work on a subspace that is bounded away from the borders of Mg([0, 1])×
Mm([0, 1]). The proof then proceeds by (1) computing the gradient of Λ̃ at and
around its argmax and (2) using those gradients to control the local behavior
of Λ̃ around its argmax. The local behavior allows in turn to show that Λ̃ is
well-separated.

Note that Λ̃ only depends on z and w through Rg(z) and Rm(w). We can
therefore extend it to matrices (U, V ) ∈ Uc×Vc where U is the subset of matrices
Mg([0, 1]) with each row sum higher than c/2 and V is a similar subset of
Mm([0, 1]).

Λ̃(U, V ) = −nd
∑
k,k′

∑
�,�′

Ukk′V��′ KL (α�
k�, ᾱk′�′)

where

ᾱk� = ᾱk�(U, V ) = (ψ′)−1

([
UTS�V

]
k�

[UT1V ]k�

)
and 1 is the g ×m matrix filled with 1. Confusion matrices Rg(z) and Rm(w)
satisfy Rg(z)1 = π̂(z�) and Rm(w)1 = ρ̂(w�), with 1 = (1, . . . , 1)T a vector
only containing 1 values, and are obviously in Uc and Vc as soon as (z�,w�) is
c/2 regular.

The maps fk,� : (U, V ) �→ KL(α�
k�, ᾱk�(U, V )) are twice differentiable with

second derivatives bounded over Uc × Vc and therefore so is Λ̃(U, V ). Tedious



1256 V. Brault et al.

but straightforward computations show that the derivative of Λ̃ at (Dπ, Dρ) :=
(Diag(π̂(z�)),Diag(ρ̂(w�))) is:

Akk′(w�) := − 1

nd

∂Λ̃

∂Ukk′
(Dπ, Dρ) =

∑
�

ρ̂�(w
�)KL (α�

k�, α
�
k′�)

B��′(z
�) := − 1

nd

∂Λ̃

∂V��′
(Dπ, Dρ) =

∑
k

π̂k(z
�)KL (α�

k�, α
�
k�′)

A(w�) and B(z�) are the matrix-derivative of−Λ̃/nd at (Dπ, Dρ). Since (z
�,w�)

is c/2-regular and by definition of δ(α�), A(w�)kk′ ≥ cδ(α�)/2 (resp. B(w�)��′ ≥
cδ(α�)/2) if k 	= k′ (resp. � 	= �′) and A(w�)kk = 0 (resp. B(z�)�� = 0) for all k
(resp. �). By boundedness of the second derivative, there exists C > 0 such that
for all (Dπ, Dρ) and all (H,G) ∈ S(Dπ, Dρ, C), where the definition of the set
of local assignments S is extended to the subset of matrices, we have:

−1

nd

∂Λ̃

∂Ukk′
(H,G)

{
≥ 3cδ(α�)

8 if k 	= k′

≤ cδ(α�)
8 if k = k′

and
−1

nd

∂Λ̃

∂V��′
(H,G)

{
≥ 3cδ(α�)

8 if � 	= �′

≤ cδ(α�)
8 if � = �′

Choose U and V in (Uc × Vc) ∩ S(Dπ, Dρ, C) satisfying U1 = π(z�) and V 1 =
ρ(w�). U − Dπ and V − Dρ have nonnegative off diagonal coefficients and
negative diagonal coefficients. Furthermore, the coefficients of U, V,Dπ, Dρ sum
up to 1 and Tr(Dπ) = Tr(Dρ) = 1. By Taylor expansion, there exists a couple
(H,G) also in (Uc × Vc) ∩ S(Dπ, Dρ, C) such that

−1

nd
Λ̃ (U, V ) =

−1

nd

[
Λ̃ (Dπ, Dρ) + Tr

(
(U −Dπ)

∂Λ̃

∂U
(H,G)

)

+Tr

(
(V −Dρ)

∂Λ̃

∂V
(H,G)

)]

≥ cδ(α�)

8

⎡⎣3 ∑
k �=k′

(U −Dπ)kk′ + 3
∑
��=�′

(V −Dρ)��′

+
∑
k

(U −Dπ)kk +
∑
�

(V −Dρ)��

]

=
cδ(α�)

4
[(1− Tr(U)) + (1− Tr(V ))]

To conclude the proof, assume without loss of generality that (z,w) ∈
S(z�,w�, C) achieves the ‖.‖0,∼ norm (i.e. it is the closest to (z�,w�) in its rep-
resentative class). Then (U, V ) = (Rg(z),Rm(w)) is in (Uc×Vc)∩S(Dπ, Dρ, C)
and satisfy U1 = π(z�) (resp. V 1 = ρ(w�)). We just need to note n(1 −
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Tr(Rg(z))) = ‖z− z�‖0,∼ (resp. d(1− Tr(Rm(w))) = ‖w −w�‖0,∼) to end the
proof.

Appendix B: Proofs of section 5

B.1. Proof of Proposition 5.5 (large deviation for Fnd)

Proof. Conditionally upon (z�,w�),

Fnd(θ, z,w)− Λ̃(z,w) ≤ Fnd(θ, z,w)−G(θ, z,w)

=
∑
i

∑
j

(αziwj − α�
z�
i w

�
j
)
(
xij − ψ′(α�

z�
i w

�
j
)
)

=
∑
kk′

∑
��′

(αk′�′ − α�
k�)Wkk′��′

≤ sup
Γ∈Rg2×m2

‖Γ‖∞≤Diam(Θ)

∑
kk′

∑
��′

Γkk′��′Wkk′��′ := Z

uniformly in θ, where the Wkk′��′ are independent and defined by:

Wkk′��′ =
∑
i

∑
j

z�ikw
�
j�zi,k′wj�′ (xij − ψ′(α�

k�))

is the sum of ndRg(z)kk′Rm(w)��′ sub-exponential variables with parameters
(σ̄2, 1/κ) and is therefore itself sub-exponential with parameters
(ndRg(z)kk′Rm(w)��′ σ̄

2, 1/κ). According to Proposition C.4, Eθ� [Z|z�,w�] ≤
gmDiam(Θ)

√
ndσ̄2 and Z is sub-exponential with parameters

(ndDiam(Θ)2(2
√
2)2σ̄2, 2

√
2Diam(Θ)/κ). In particular, for all εn,d < σ̄κ

Pθ�

(
Z ≥ σ̄gmDiam(Θ)

√
nd

{
1 +

√
8ndεn,d
gm

}∣∣∣∣∣ z�,w�

)
≤ Pθ�

(
Z ≥ Eθ� [Z|z�,w�] + σ̄Diam(Θ)nd2

√
2εn,d

∣∣∣ z�,w�
)

≤ exp

(
−
ndε2n,d

2

)
We can then remove the conditioning and take a union bound to prove Equa-
tion (5.1).

B.2. Proof of Proposition 5.6 (contribution of far away
assignments)

Proof. Conditionally on (z�,w�), we know from proposition 4.6 that Λ̃ is max-
imal in (z�,w�) and its equivalence class. Choose 0 < tnd decreasing to 0 but
satisfying t2nd � n+d

nd . This is possible as n → 0 and d → 0.
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According to equation 4.4, for all (z,w) /∈ S(z�,w�, C)

Λ̃(z,w) ≤ −B(C) nd.

Now, according to Equation 4.3, for all (z,w) ∈ S(z�,w�, C) \ S(z�,w�, tnd)

Λ̃(z,w) ≤ −cδ(α�)

4
(n‖w −w�‖0,∼ + d‖z− z�‖0,∼) ≤ −cδ(α�)

4
ndtnd

since either ‖z−z�‖0,∼ ≥ ntnd or ‖w−w�‖0,∼ ≥ dtnd. Hence, for n and d large
enough for all (z,w) /∈ S(z�,w�, tnd)

Λ̃(z,w) ≤ −cδ(α�)

4
ndtnd (B.1)

Set εnd = inf
(

cδ(α�)tnd

32
√
2σ̄Diam(Θ)

, κσ̄
)
. By proposition 5.5, and with our choice of

εnd, with probability higher than 1−Δ1
nd(εnd),

∑
(z,w)/∈S(z�,w�,tnd)

p(x, z,w;θ)

= p(x|z�,w�,θ�)
∑

(z,w)/∈S(z�,w�,tnd)

p(z,w;θ)eFnd(θ,z,w)−Λ̃(z,w)+Λ̃(z,w)

≤ p(x|z�,w�,θ�)
∑

(z,w)∈Z×W
p(z,w;θ)eFnd(θ,z,w)−Λ̃(z,w)−ndtndcδ(α

�)/4

≤ p(x|z�,w�,θ�)
∑
z,w

p(z,w;θ)e−ndtndcδ(α
�)/8

=
p(x, z�,w�;θ�)

p(z�,w�;θ�)
e−ndtndcδ(α

�)/8

≤ p(x, z�,w�;θ�) exp

(
−ndtnd

cδ(α�)

8
+ (n+ d) log

1

c

)
= p(x, z�,w�;θ�)o(1)

where the second line comes from inequality (B.1), the third from the global
control studied in Proposition 5.5 and the definition of εnd, the fourth from the
definition of p(x, z�,w�;θ�), the fifth from the bounds on π� and ρ� and the
last from tnd � (n+ d)/nd.

In addition, we have ε2nd � n+d
nd so that Δ1

nd(εnd) vanishes and:∑
(z,w)/∈S(z�,w�,tnd)

p(x, z,w;θ) = p(x, z�,w�,θ�)oP (1)

where the oP is uniform in probability over all θ ∈ Θ.
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B.3. Proof of Proposition 5.7 (local convergence Fnd)

Proof. We work conditionally on (z�,w�) ∈ Z1×W1. We assume with no loss of
generality that (z,w) is the representative of its class closest to (z�,w�). Choose
ε ≤ κσ2 small. Manipulation of Λ and Λ̃ yield

Fnd(θ, z,w)− Λ̃(z,w)

nd
≤Λ(z,w)− Λ̃(z,w)

nd

=
∑
k

∑
�

π̂k(z)ρ̂�(w) [f(x̂k�)− f(x̄k�)]

−
∑
k

∑
�

π̂k(z
�)ρ̂�(w

�)α�
k�(x̂

�
k� − x̄�

k�)

where f(x) = x(ψ′)−1(x)−ψ ◦ (ψ′)−1(x), x̂�
k� = x̂k�(z

�,w�) and x̄�
k� = ψ′(α�

k�).

The function f is twice differentiable on Å with f ′(x) = −(ψ′)−1(x) and f ′′(x) =
−1/ψ′′ ◦ (ψ′)−1(x). f ′ (resp. f ′′) are bounded over I = ψ′([−Mα,Mα]) by Mα

(resp. 1/σ2).
Assignments (z,w) belonging to S(z�,w�, c/4) are also c/4-regular. Accord-

ing to Proposition C.2, x̂k� and x̄k� are at distance at most ε with probability

higher than 1− 2 exp
(
− ndc2ε2

32(σ̄2+κ−1ε)

)
, so that:

f(x̂k�)− f(x̄k�) = f ′(x̄k�) (x̂k� − x̄k�) + Ω
(
(x̂k� − x̄k�)

2
)

By Proposition C.2, (x̂k� − x̄k�)
2 = OP (1/nd) where the OP is uniform in z,w

and does not depend on z�,w�. Similarly,

f ′(x̄k�) = f ′(x̄�
k�) + Ω(x̄k� − x̄�

k�) = α�
k� +Ω(x̄k� − x̄�

k�)

x̄k� is a convex combination of the S�
k� = ψ′(α�

k�) therefore,

|x̄k� − x̄�
k�| =

∣∣∣∣∣
[
Rg(z)

TS�Rm(w)
]
k�

π̂k(z)ρ̂�(w)
− x̄�

k�

∣∣∣∣∣
≤

(
1− Rg(z)kkRm(w)��

π̂k(z)ρ̂�(w)

)
(S�

max − S�
min)

Note that:∑
k,�

π̂k(z)ρ̂�(w)

(
1− Rg(z)kkRm(w)��

π̂k(z)ρ̂�(w)

)
= 1− Tr(Rg(z)) Tr(Rm(w))

≤ ‖z− z�‖0,∼
n

+
‖w −w�‖0,∼

d

and x̂k� − x̄k� = oP (1). Therefore∑
k,�

π̂k(z)ρ̂�(w)Ω(x̄k� − x̄�
k�)× (x̂k� − x̄k�) = oP

(
‖z− z�‖0,∼

n
+

‖w −w�‖0,∼
d

)
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The remaining term writes∑
k,�

α�
k� [π̂k(z)ρ̂�(w)(x̂k� − x̄k�)− π̂k(z

�)ρ̂�(w
�)(x̂�

k� − x̄�
k�)]

According to Proposition C.3, this term is oP (
(

‖z−z�‖0,∼
n +

‖w−w�‖0,∼
d

)
uni-

formly in (z,w) and (z�,w�) ∈ Ω1 as soon ne−ad → 0 and de−an → 0 for all
a > 0, which is true under (H4). It follows that:

sup
(z,w)�(z�,w�)

(z,w)∈S(z�,w�,c/4)

Λ(z,w)− Λ̃(z�,w�)

nd
= oP

(
‖z− z�‖0,∼

n
+

‖w −w�‖0,∼
d

)

B.4. Proof of Proposition 5.8 (contribution of local assignments)

Proof. By Proposition 4.2, it is enough to prove that the sum is small compared
to p(z�,w�,x;θ�) on Ω1. We work conditionally on (z�,w�) ∈ Z1×W1. Choose
(z,w) in S(z�,w�, c̃). This set is non empty as soon as min(c̃n, c̃d) > 1.

log

(
p(z,w,x;θ)

p(z�,w�,x;θ�)

)
= log

(
p(z,w;θ)

p(z�,w�;θ�)

)
+ Fnd(θ, z,w)

We can assume without loss of generality that (z,w) is the representative closest
to (z�,w�) and denote r1 = ‖z− z�‖0 and r2 = ‖w −w�‖0. Then:

Fnd(θ, z,w) ≤ Λ(z,w)− Λ̃(z,w) + Λ̃(z,w)

≤ Λ(z,w)− Λ̃(z,w)− cδ(α�)

4
(dr1 + nr2)

≤ −cδ(α�)

4
(dr1 + nr2) (1 + oP (1))

where the first line comes from the definition of Λ, the second line from Propo-
sition 4.7 and the fact that c̃ < C and the third from Proposition 5.7 and the
fact that c̃ < c/4. Thanks to corollary D.3, we also know that:

log

(
p(z,w;θ)

p(z�,w�;θ�)

)
≤ OP (1) exp

{
Mc/4(r1 + r2)

}
There are at most

(
n
r1

)(
n
r2

)
gr1mr2 assignments (z,w) at distance r1 and r2 of

(z�,w�) and each of them has at most ggmm equivalent configurations. There-
fore, ∑

(z,w)∈S(z�,w�,c̃)
(z,w)�(z�,w�)

p(z,w,x;θ)

p(z�,w�,x;θ�)

≤ OP (1)
∑

r1+r2≥1

(
n

r1

)(
n

r2

)
gg+r1mm+r2
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× exp

(
(r1 + r2)Mc/4 −

cδ(α�)

4
(dr1 + nr2) (1 + oP (1))

)
= OP (1)

(
1 + elog g+Mc/4−d

cδ(α�)(1+oP (1))

4

)n

×
(
1 + elogm+Mc/4−n

cδ(α�)(1+oP (1))

4

)d

− 1

≤ OP (1)and exp(and)

where and = nelog g+Mc/4−d
cδ(α�)(1+oP (1))

4 +delogm+Mc/4−n
cδ(α�)(1+oP (1))

4 = oP (1)
as soon as n � log d and d � logn.

B.5. Proof of Proposition 5.9 (contribution of equivalent
assignments)

Proof. Choose (s, t) permutations of {1, . . . , g} and {1, . . . ,m} and assume
that z = z�,s and w = w�,t. Then p(x, z,w;θ) = p(x, z�,s,w�,t;θ) =
p(x, z�,w�;θs,t). If furthermore (s, t) ∈ Sym(θ), θs,t = θ and immediately
p(x, z,w;θ) = p(x, z�,w�;θ). We can therefore partition the sum as

∑
(z,w)∼(z�,w�)

p(x, z,w;θ) =
∑
s,t

p(x, z�,s,w�,t;θ)

=
∑
s,t

p(x, z�,w�;θs,t)

=
∑
θ′∼θ

#Sym(θ′)p(x, z�,w�;θ′)

= #Sym(θ)
∑
θ′∼θ

p(x, z�,w�;θ′)

The complete likelihood p(x, z�,w�;θ) is a unimodal function of θ with mode

located in θ̂c. By consistency of θ̂c, either p(x, z
�,w�;θ) = oP (p(x, z

�,w�;θ�))
or p(x, z�,w�;θ) = OP (p(x, z

�,w�;θ�)) when θ is in a close neighborhood of
θ�. In the latter case, any θ′ ∼ θ other than θ is bounded away from θ� and
thus p(x, z�,w�;θ′) = oP (p(x, z

�,w�;θ�)). In summary,∑
θ′∼θ

p(x, z�,w�;θ′)

p(x, z�,w�;θ�)
= max

θ′∼θ

p(x, z�,w�;θ′)

p(x, z�,w�;θ�)
(1 + oP (1))

Appendix C: Concentration for sub-exponential variables

Concentration inequalities for sub-exponential variables play a key role: in par-
ticular Proposition C.4 for global convergence and Propositions C.2 and C.3 for
local convergence. We present here some properties of sub-exponential variables
[14], then derives the needed concentration inequalities.
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Recall first that a random variable X is sub-exponential with parameters
(τ2, b) if for all λ such that |λ| ≤ 1/b,

E[eλ(X−E(X))] ≤ exp

(
λ2τ2

2

)
.

In particular, all distributions coming from a natural exponential family are sub-
exponential. Sub-exponential variables satisfy a large deviation Bernstein-type
inequality:

P(X − E[X] ≥ t) ≤
{
exp

(
− t2

2τ2

)
if 0 ≤ t ≤ τ2

b

exp
(
− t

2b

)
if t ≥ τ2

b

So that

P(X − E[X] ≥ t) ≤ exp

(
− t2

2(τ2 + bt)

)

C.1. Properties

The sub-exponential property is preserved by summation and multiplication.

• If X is sub-exponential with parameters (τ2, b) and α ∈ R, then so is αX
with parameters (α2τ2, αb)

• If the Xi, i = 1, . . . , n are sub-exponential with parameters (τ2i , bi) and
independent, then so isX = X1+· · ·+Xn with parameters (

∑
i τ

2
i ,maxi bi)

Moreover, Lemma C.1 defines the sub-exponential property of the absolute value
of a sub-exponential variable.

Lemma C.1. If X is a zero mean random variable, sub-exponential with pa-
rameters (σ2, b), then |X| is sub-exponential with parameters (8σ2, 2

√
2b).

Proof. Denote μ = E|X| and consider Y = |X| − μ. Choose λ such that
|λ| < (2

√
2b)−1. We need to bound E[eλY ]. Note first that E[eλY ] ≤ E[eλX ] +

E[e−λX ] < +∞ is properly defined by sub-exponential property of X and we
have

E[eλY ] ≤ 1 +
∑
k=2

|λ|kE[|Y |k]
k!

where we used the fact that E[Y ] = 0. We know bound odd moments of |λY |.

E[|λY |2k+1] ≤ (E[|λY |2k]E[|λY |2k+2])1/2 ≤ 1

2
(λ2kE[Y 2k] + λ2k+2E[Y 2k+2])

where we used first Cauchy-Schwarz and then the arithmetic-geometric mean
inequality. The Taylor series expansion can thus be reduced to

E[eλY ] ≤ 1 +

(
1

2
+

1

2.3!

)
E[Y 2]λ2
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+

+∞∑
k=2

(
1

(2k)!
+

1

2

[
1

(2k − 1)!
+

1

(2k + 1)!

])
λ2kE[Y 2k]

≤
+∞∑
k=0

2k
λ2kE[Y 2k]

(2k)!

≤
+∞∑
k=0

23k
λ2kE[X2k]

(2k)!
= cosh

(
2
√
2λX

)
= E

[
e2

√
2λX + e−2

√
2λX

2

]
≤ e

8λ2σ2

2

where we used the well-known inequality E[|X −E[X]|k] ≤ 2kE[|X|k] to substi-
tute 22kE[X2k] to E[Y 2k].

C.2. Concentration inequalities

Proposition C.2 (Maximum in (z,w)). Let (z,w) be a configuration and
x̂k,�(z,w) resp. x̄k�(z,w) be defined in Equations (3.1) and (4.1). Under the
assumptions of the section 2.2, for all ε > 0

P

(
max
z,w

max
k,l

π̂k(z)ρ̂�(w)|x̂k,� − x̄k�|>ε

)
≤2gn+1md+1exp

(
− ndε2

2(σ̄2 + κ−1ε)

)
.

(C.1)
Additionally, the suprema over all c/2-regular assignments satisfies:

P

(
max

z∈Z1,w∈W1

max
k,l

|x̂k,� − x̄k�| > ε

)
≤ 2gn+1md+1 exp

(
− ndc2ε2

8(σ̄2 + κ−1ε)

)
.

(C.2)

Note that equations C.1 and C.2 remain valid when replacing c/2 by any
c̃ < c/2.

Proof. The random variables Xij are subexponential with parameters (σ̄2, 1/κ).
Conditionally to (z�,w�), z+kw+�(x̂k,�−x̄k�) is a sum of z+kw+� centered subex-
ponential random variables. By Bernstein’s inequality [11], we therefore have for
all t > 0

P(z+kw+�|x̂k,� − x̄k�| ≥ t) ≤ 2 exp

(
− t2

2(z+kw+�σ̄2 + κ−1t)

)
In particular, if t = ndx,

P (π̂k(z)ρ̂�(w)|x̂k,� − x̄k�| ≥ x) ≤ 2 exp

(
− ndx2

2(π̂k(z)ρ̂�(w)σ̄2 + κ−1x)

)
≤ 2 exp

(
− ndx2

2(σ̄2 + κ−1x)

)
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uniformly over (z,w). Equation (C.1) then results from a union bound. Simi-
larly,

P (|x̂k,� − x̄k�| ≥ x) = P (π̂k(z)ρ̂�(w)|x̂k,� − x̄k�| ≥ π̂k(z)ρ̂�(w)x)

≤ 2 exp

(
− ndx2π̂k(z)

2ρ̂�(w)2

2(π̂k(z)ρ̂�(w)σ̄2 + κ−1xπ̂k(z)ρ̂�(w))

)
≤ 2 exp

(
− ndc2x2

8(σ̄2 + κ−1x)

)
Where the last inequality comes from the fact that c/2-regular assignments
satisfy π̂k(z)ρ̂�(w) ≥ c2/4. Equation (C.2) then results from a union bound
over Z1 ×W1 ⊂ Z ×W .

Proposition C.3 (Maximum in non equivalent (z,w)). Let (z̄, w̄) be any con-
figuration and (z,w) the ∼-equivalent configuration that achieves ‖z − z�‖0 =
‖z̄−z�‖0,∼ and ‖w−w�‖0 = ‖w̄−w�‖0,∼, let x̂k� = x̂k,�(z,w) (resp. x̄k�(z,w))
and x̂�

k� = x̂k,�(z
�,w�) (resp. x̄�

k� = x̄k�(z
�,w�) = ψ′(α�

k�)) be as defined in
Equations (3.1) and (4.1). Under the assumptions (H1) to (H3), for all ε ≤ κσ̄2,

P

(
max

(z̄,w̄)�(z�,w�)
max
k,l

nd [π̂k(z)ρ̂�(w)(x̂k,� − x̄k�)− π̂k(z
�)ρ̂�(w

�)(x̂�
k� − x̄�

k�)]

n‖w −w�‖0 + d‖z− z�‖0
>ε

)
≤ gg+1mm+1ande

and

where and = nge−
dε2

σ̄2 +mde−
nε2

σ̄2 .

Proof. Denote r1 = ‖z− z�‖0 and r2 = ‖w −w�‖0. The numerator within the
max in the fraction can be expanded to

Zk�(z,w) =
∑
i,j

(zikwj� − z�ikw
�
j�)(Xij − α�

z�
ikw

�
j�
)

and is thus a sum of at most N = nr2 + dr1 non-null centered sub-exponential
random variables with parameters (σ̄2, 1/κ). It is therefore centered sub-expo-
nential with parameters (Nσ̄2, 1/κ). By Bernstein inequality, for all ε ≤ κσ̄2 we
have

P(Z ≥ ε(nr2 + dr1)) ≤ exp

(
− (nr2 + dr1)ε

2

2σ̄2

)
.

There are at most
(
n
r1

)
gr1gg z at ‖.‖0,∼ distance r1 of z� and

(
d
r2

)
mr2mm z at

‖.‖0,∼ distance r2 of w�. An union bound shows that:

P

(
max

(z̄,w̄)�(z�,w�)
max
k,l

Zk�(z,w)

n‖w −w�‖0 + d‖z− z�‖0
≥ ε

)
≤

∑
r1+r2≥1

∑
‖z̄−z�‖0,∼=r1
‖w̄−w�‖0,∼=r2

gmP(Zk�(z,w) ≥ ε(nr2 + dr1))
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≤
∑

r1+r2≥1

(
n

r1

)(
d

r2

)
gg+1mm+1gr1mr2 exp

(
−(nr2 + dr1)ε

2/2σ̄2
)

= gg+1mm+1
∑

r1+r2≥1

(
ge−

dε2

σ̄2

)r1 (
me−

nε2

σ̄2

)r2

≤ gg+1mm+1ande
and

where and = nge−
dε2

σ̄2 +mde−
nε2

σ̄2 .

Proposition C.4 (concentration for sub-exponential). Let X1, . . . , Xn be inde-
pendent zero mean random variables, sub-exponential with parameters (σ2

i , bi).
Denote V 2

0 =
∑

i σ
2
i and b = maxi bi. Then the random variable Z defined by:

Z = sup
Γ∈Rn

‖Γ‖∞≤M

∑
i

ΓiXi

is also sub-exponential with parameters (8M2V 2
0 , 2

√
2Mb). Moreover E[Z] ≤

MV0
√
n so that for all t > 0,

P(Z −MV0

√
n ≥ t) ≤ exp

(
− t2

2(8M2V 2
0 + 2

√
2Mbt)

)
Proof. Note first that Z can be simplified to Z = M

∑
i |Xi|. We just need to

bound bound E[Z]. The rest of the proposition results from the fact that the
|Xi| are subexponential (8σ2

i , 2
√
2bi) by Lemma C.1 and standard properties of

sums of independent rescaled subexponential variables.

E[Z] = E

⎡⎢⎣ sup
Γ∈Rn

‖Γ‖∞≤M

∑
i

ΓiXi

⎤⎥⎦ = E

[∑
i

M |Xi|
]
≤ M

∑
i

√
E[X2

i ]

= M
∑
i

σi ≤ M

(∑
i

1

)1/2 (∑
i

σ2
i

)1/2

= MV0

√
n

using Cauchy-Schwarz.

Appendix D: Technical lemmas

Lemma D.1 is the working horse for proving Proposition 4.6. Corollary D.3 is
needed for Theorem 5.8 and Lemma D.2 is an intermediate result for Corollary
D.3.

Lemma D.1.
Let η and η̄ be two matrices from Mg×m(Θ) and f : Θ×Θ → R+ a positive

function, A a (squared) confusion matrix of size g and B a (squared) confusion
matrix of size m. We denote dk�k′�′ = f(ηk�, η̄k′�′). Assume that

• all the rows of η are distinct;
• all the columns η are distinct;
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• f(x, y) = 0 ⇔ x = y;
• each row of A has a non zero element;
• each row of B has a non zero element;

and denote
Σ =

∑
kk′

∑
��′

Akk′B��′dk�k′�′

Then,

Σ = 0 ⇔
{
A,B are permutation matrices s, t

η̄ = ηs,t i.e. ∀(k, �), η̄k� = ηs(k)t(�)

Proof. If A and B are the permutation matrices corresponding to the permuta-
tions s et t: Aij = 0 if i 	= s(j) and Bij = 0 if i 	= t(j). As each row of A contains
a non zero element and as As(k)k > 0 (resp. Bs(�)� > 0) for all k (resp. �), the
following sum Σ reduces to

Σ =
∑
kk′

∑
��′

Akk′B��′dk�k′�′ =
∑
k

∑
�

As(k)kBt(�)�ds(k)t(�)k�

Σ is null and sum of positive components, each component is null. However, all
As(k)k and Bt(�)� are not null, so that for all (k, �), ds(k)t(�)k� = 0 and η̄k� =
ηs(k)t(�). Now, if A is not a permutation matrix while Σ = 0 (the same reasoning
holds for B or both). Then A owns a column k that contains two non zero
elements, say Ak1k and Ak2k. Let � ∈ {1 . . .m}, there exists by assumption �′

such that B��′ 	= 0. As Σ = 0, both products Ak1kB��′dk1�k�′ and Ak2kB��′dk2�k�′

are zero.{
Ak1kB��′dk1�k�′ = 0

Ak2kB��′dk2�k�′ = 0
⇔

{
dk1�k�′ = 0

dk2�k�′ = 0
⇔

{
ηk1� = η̄k�′

ηk2� = η̄k�′
⇔ ηk1� = ηk2�

The previous equality is true for all �, thus rows k1 and k2 of η are identical,
and contradict the assumptions.

Lemma D.2.
Let Z1 be the subset of Z of c-regular configurations, as defined in Defi-

nition 4.1. Let Sg = {π = (π1, π2, . . . , πg) ∈ [0, 1]g :
∑g

k=1 πk = 1} be the
g-dimensional simplex and denote Sgc = Sg ∩ [c, 1 − c]g. Then there exists two
positive constants Mc and M ′

c such that for all z, z� in Z1 and all π ∈ Sgc

|log p(z; π̂(z))− log p(z�; π̂(z�))| ≤ Mc‖z− z�‖0
Proof. Consider the entropy map H : Sg → R defined as H(π) =
−

∑g
k=1 πk log(πk). The gradient ∇H is uniformly bounded by Mc

2 = log 1−c
c

in ‖.‖∞-norm over Sg ∩ [c, 1− c]g. Therefore, for all π, π� ∈ Sg ∩ [c, 1− c]g, we
have

|H(π)−H(π�)| ≤ Mc

2
‖π − π�‖1

To prove the inequality, we remark that z ∈ Z1 translates to π̂(z) ∈ Sg ∩ [c, 1−
c]g, that log p(z; π̂(z)) − log p(z�; π̂(z�)) = n[H(π̂(z)) − H(π̂(z�))] and finally
that ‖π̂(z)− π̂(z�)‖1 ≤ 2

n‖z− z�‖0.
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Corollary D.3. Let z� (resp. w�) be c/2-regular and z (resp. w) at ‖.‖0-
distance c/4 of z� (resp. w�). Then, for all θ ∈ Θ

log
p(z,w;θ)

p(z�,w�;θ�)
≤ OP (1) exp

{
Mc/4(‖z− z�‖0 + ‖w −w�‖0)

}
Proof. Note then that:

p(z,w;θ)

p(z�,w�;θ�)

=
p(z,w;π,ρ)

p(z�,w�;π�,ρ�)

=
p(z,w;π,ρ)

p(z�,w�; π̂(z�), ρ̂(w�))

p(z�,w�; π̂(z�), ρ̂(w�))

p(z�,w�;π�,ρ�)

≤ p(z,w; π̂(z), ρ̂(w))

p(z�,w�; π̂(z�), ρ̂(w�))

p(z�,w�; π̂(z�), ρ̂(w�))

p(z�,w�;π�,ρ�)

≤ exp
{
Mc/4(‖z− z�‖0 + ‖w −w�‖0)

}
× p(z�,w�; π̂(z�), ρ̂(w�))

p(z�,w�;π�,ρ�)

≤ OP (1) exp
{
Mc/4(‖z− z�‖0 + ‖w −w�‖0)

}
where the first inequality comes from the definition of π̂(z) and ρ̂(w) and the
second from Lemma D.2 and the fact that z� and z (resp. w� and w) are
c/4-regular. Finally, local asymptotic normality of the MLE for multinomial

proportions ensures that p(z�,w�;π̂(z�),ρ̂(w�))
p(z�,w�;π�,ρ�) = OP (1).
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