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Abstract: We consider estimating the density of a response conditioning
on an error-prone covariate. Motivated by two existing kernel density esti-
mators in the absence of covariate measurement error, we propose a method
to correct the existing estimators for measurement error. Asymptotic prop-
erties of the resultant estimators under different types of measurement error
distributions are derived. Moreover, we adjust bandwidths readily available
from existing bandwidth selection methods developed for error-free data to
obtain bandwidths for the new estimators. Extensive simulation studies
are carried out to compare the proposed estimators with naive estimators
that ignore measurement error, which also provide empirical evidence for
the effectiveness of the proposed bandwidth selection methods. A real-life
data example is used to illustrate implementation of these methods un-
der practical scenarios. An R package, lpme, is developed for implementing
all considered methods, which we demonstrate via an R code example in
Appendix B.2.
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1. Introduction

The conditional density of a continuous response Y given a covariate X, denoted
by p(y|x), provides a complete picture of the association between Y and X that
is valuable for data visualization and exploration. Rosenblatt (1969) is one of the
pioneers who considered kernel density estimators for p(y|x). Hyndman et al.
(1996) further studied properties of the kernel density estimator based on a
random sample, {(Xj , Yj)}nj=1, given by

p̂1(y|x) =

1

nh1h2

n∑
j=1

K1

(
Xj − x

h1

)
K2

(
Yj − y

h2

)

1

nh1

n∑
j=1

K1

(
Xj − x

h1

) , (1.1)
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where K1(t) and K2(t) are kernels, h1 and h2 are bandwidths. This estimator
originates from two other well studied density estimators. The denominator of
(1.1) is the kernel density estimator for the probability density function (pdf)
of X, denoted by fX(x); and the numerator is the kernel density estimator for
the joint pdf of (X,Y ), denoted by p(x, y). Fan et al. (1996) followed the idea of
local polynomial estimation of a mean function (Fan and Gijbels, 1996, Chapter
3) to construct a class of local polynomial estimators for p(y|x). The estimator
p̂1(y|x) in (1.1) belongs to this class, referred to as the local constant estimator.
Hyndman and Yao (2002) revised the local polynomial estimators to guarantee
non-negativity. Besides p̂1(y|x), Hyndman et al. (1996) proposed another esti-
mator for p(y|x) with a different estimator for p(x, y) in the numerator, leading
to

p̂2(y|x) =

1

nh1h2

n∑
j=1

K1

(
Xj − x

h1

)
K2

{
Yj − m̂(Xj)− y + m̂(x)

h2

}

1

nh1

n∑
j=1

K1

(
Xj − x

h1

) , (1.2)

where m̂(x) is an estimator for m(x) = E(Y |X = x), such as a local polyno-
mial estimator. If one replaces m̂(·) with m(·) in (1.2), one obtains the regular
kernel density estimator for the density of e = Y − m(X) given X, denoted
by fe|X(e|x), which relates to p(y|x) via p(y|x) = fe|X{y −m(x)|x}. This rela-
tionship motivates the construction of p̂2(y|x) in (1.2). Hyndman et al. (1996)
showed that p̂2(y|x) has a smaller asymptotic mean integrated squared error
(MISE) when compared with p̂1(y|x) under some situations commonly encoun-
tered in practice. Hansen (2004) studied p̂2(y|x) more closely, who referred to
p̂2(y|x) as a two-step estimator to stress the estimation of m(x) that is not
needed for p̂1(y|x), a one-step estimator in contrast.

It is common in practice that a covariate of interest cannot be measured di-
rectly or precisely. This motivates our work presented in this article, where we
aim to estimate p(y|x) when X is prone to measurement error. Due to error con-
tamination, the observed data are {(Wj , Yj)}nj=1 as opposed to {(Xj , Yj)}nj=1,
where Wj is an unbiased surrogate of Xj , for j = 1, . . . , n. We assume in this
study a classical additive measurement error model (Carroll et al., 2006, Section
1.2) that relates the observed covariate W and the true covariate X via

Wj = Xj + Uj , (1.3)

where Uj represents measurement error with mean zero and variance σ2
u, fol-

lowing a distribution specified by the pdf fU(u), and is independent of (Xj , Yj),
for j = 1, . . . , n. For reasons related to identifiability issues, we assume fU(u)
known in the majority of the study, and discuss treatments for unknown error
distribution in Section 6. Robins et al. (1995) considered estimating unknown
parameters in p(y|x) that belongs to a pre-specified parametric family when
covariates are missing or measured with error. We are not aware of existing
works on estimating p(y|x) nonparametrically in the presence of measurement
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error. This article presents solutions to this fundamentally important problem,
supplemented with an R package lpme (Zhou and Huang, 2017) for easy imple-
mentation of the proposed methods.

Using the error contaminated data in p̂1(y|x) and p̂2(y|x) leads to two naive
estimators for p(y|x) that ignore covariate measurement error,

p̃1(y|x) =

1

nh1h2

n∑
j=1

K1

(
Wj − x

h1

)
K2

(
Yj − y

h2

)

1

nh1

n∑
j=1

K1

(
Wj − x

h1

) , (1.4)

p̃2(y|x) =

1

nh1h2

n∑
j=1

K1

(
Wj − x

h1

)
K2

{
Yj − m̂∗(Wj)− y + m̂∗(x)

h2

}

1

nh1

n∑
j=1

K1

(
Wj − x

h1

) , (1.5)

where m̂∗(x) is an estimator for m∗(x) = E(Y |W = x). These naive estimators
are sensible estimators for the conditional density of Y given W = x, denoted
by p∗(y|x), but are usually inadequate estimators for p(y|x).

In Section 2, we correct the above naive estimators for measurement error,
producing two non-naive estimators for p(y|x). Asymptotic properties of the pro-
posed estimators are presented in Section 3. In Section 4 we develop methods for
selecting bandwidths involved in these estimators. Finite sample performance of
these estimators are demonstrated in comparison with the two naive estimators
in simulation studies in Section 5. Practical considerations for implementing the
proposed methods are discussed in Section 6, where we entertain a real-life data
example. Lastly, in Section 7, we summarize the contribution of our work and
discuss future research directions.

2. Proposed estimators

2.1. The rationale

Denote by p∗(x, y) the joint density of (W,Y ) evaluated at (x, y). Given the
measurement error model in (1.3), one can show that p∗(x, y) is equal to the
convolution of fU(u) and p(x, y) with respect to the first argument, that is,

p∗(x, y) =

∫
p(v, y)fU(x− v)dv = {p(·, y) ∗ fU}(x). (2.1)

where “∗” in the last expression is the convolution operator. The range of
integration in all integrals in this article is the entire real line, unless speci-
fied otherwise. Denote by φg(t) the Fourier transform of a function g(·) or the
characteristic function of a random variable g. Applying Fourier transform on
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both sides of (2.1) yields φp∗(·,y)(t) = φp(·,y)(t)φU(t), which is equivalent to
φp(·,y)(t) = φp∗(·,y)(t)/φU(t), assuming φU(t) �= 0 for all t. Applying inverse
Fourier transform on both sides of the preceding identity gives

p(y|x)fX(x) =
1

2π

∫
e−itxφp∗(·,y)(t)

φU(t)
dt, (2.2)

where i is the imaginary unit.

Putting a “hat” on top of each unknown quantity in (2.2) to represent an
estimator for this quantity, we obtain a general form of estimators for p(y|x)
that account for covariate measurement error,

p̂(y|x) = f̂−1
X (x) · 1

2π

∫
e−itxφp̂∗(·,y)(t)

φU(t)
dt. (2.3)

With p̂(x, y) = p̂(y|x)f̂X(x) being an estimator for p(x, y), (2.3) relates p̂(x, y)
to p̂∗(x, y), which is a naive estimator for p(x, y) that is suitable for estimating
p∗(x, y). The numerators in p̃1(y|x) and p̃2(y|x) are examples of p̂∗(x, y). Even
though, by construction, the integral in (2.2) is real as long as all integrals
leading to (2.2) are well defined, the integral in (2.3) can be complex with
p∗(·, y) now replaced by p̂∗(·, y). A sensible treatment when the right-hand side
of (2.3) returns a complex quantity is to use the real part as an estimator of
p(y|x), and argue that the imaginary part is merely a consistent estimator of
zero by showing that (2.3) is a consistent estimator of the real-valued p(y|x).

As for the estimator for fX(x) in (2.3), we adopt the deconvoluting density
estimator (Carroll and Hall, 1988; Stefanski and Carroll, 1990),

f̂X(x) =
1

nh1

n∑
j=1

K∗
1

(
Wj − x

h1

)
, (2.4)

where

K∗
1 (t) =

1

2π

∫
e−its φK1

(s)

φU(−s/h1)
ds (2.5)

is referred to as the deconvoluting kernel. Under conditions (K1) given in Sec-
tion 3.1, Stefanski and Carroll (1990) showed that

E

{
K∗

1

(
W − x

h1

)∣∣∣∣X
}

= K1

(
X − x

h1

)
, (2.6)

suggesting that f̂X(x) has the same bias as the ordinary kernel density estimator
for fX(x) that appears as the common denominator of p̂1(y|x) and p̂2(y|x) in
(1.1) and (1.2).
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2.2. Two estimators accounting for measurement error

Using the numerator of p̃1(y|x) as p̂∗(x, y) in (2.3), one can show via straight-
forward algebra that (2.3) reduces to

p̂3(y|x) =

1

nh1h2

n∑
j=1

K∗
1

(
Wj − x

h1

)
K2

(
Yj − y

h2

)

1

nh1

n∑
j=1

K∗
1

(
Wj − x

h1

) . (2.7)

Looking back at its naive counterpart, p̃1(y|x), makes the construction of p̂3(y|x)
in (2.7) transparent. Since the naive estimator p̃1(y|x) depends on Wj only via
K1{(Wj−x)/h1}, (2.6) suggests that replacingK1{(Wj−x)/h1} withK∗

1{(Wj−
x)/h1}, for j = 1, . . . , n, suffices to correct p̃1(y|x) for measurement error. This
substitution yields p̂3(y|x).

To correct p̃2(y|x) for measurement error is more involved because it depends
on {Wj}nj=1 in a more complicated way than p̃1(y|x) does, and the trick of
replacing the regular kernel with a deconvoluting kernel that leads to (2.7)
(and also (2.4)) does not work here. Indeed, if one sets p̂∗(x, y) in (2.3) as the
numerator of p̃2(y|x), an estimator for p∗(x, y) denoted by p̃2(x, y), one obtains
an estimator for p(y|x) given by

p̂4(y|x) = f̂−1
X (x) · 1

2π

∫
e−itxφp̃2(·,y)(t)

φU(t)
dt, (2.8)

which cannot be further simplified. For concreteness, in the majority of our
study, we use the local linear estimator for m∗(x) as m̂∗(x) in p̃2(x, y), with
kernel K3(t) and bandwidth h3. Considerations of other estimators for m∗(x)
are discussed in Sections 5 and 6.

In the absence of measurement error, Hyndman et al. (1996) showed that,
under certain conditions (to be presented in Section 3.3), the two-step estimator
p̂2(y|x) often has a lower MISE than the one-step estimator p̂1(y|x). In the
presence of measurement error, we show next that, after correcting p̃2(y|x) and
p̃1(y|x) for measurement error, the comparison between p̂4(y|x) and p̂3(y|x)
becomes more involved, but p̂4(y|x) still improves over p̂3(y|x) under similar
conditions.

3. Asymptotic properties

3.1. Preamble

We study properties of p̂3(y|x) and p̂4(y|x) under two types of measurement
error distributions, namely ordinary smooth distributions and super smooth
distributions (Fan, 1991a,b,c). Their definitions are given next.
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Definition 3.1 The distribution of U is ordinary smooth of order b if

lim
t→+∞

∣∣tbφU(t)
∣∣ = c and lim

t→+∞

∣∣tb+1φ′
U(t)

∣∣ = cb

for some positive constants b and c.

Definition 3.2 The distribution of U is super smooth of order b if

d0|t|b0 exp(−|t|b/d2) ≤ |φU(t)| ≤ d1|t|b1 exp(−|t|b/d2), as |t| → ∞,

for some positive constants b, b0, b1, d0, d1, and d2.

Laplace and gamma distributions are examples of ordinary smooth distribu-
tions. Normal and Cauchy distributions are super smooth, for instance. Tech-
nical conditions imposed on different functions for the study of asymptotics are
listed below. The first set of conditions are solely regarding measurement error
U .

Conditions U:

(U1) For all t, φU(t) �= 0.
(U2) |φ′

U(t)|∞ < ∞.

Condition (U1) is needed to reach (2.2) and for the validity of K∗
1 (t) in (2.5).

Condition (U2) is imposed to guarantee finite variance for f̂X(x) when U is ordi-
nary smooth, which is a condition that can be relaxed when U is super smooth
due to a stronger condition on K1(t) given in (K5) included in the following set
of conditions.

Conditions K:

(K1) |φK1
(t)/φU(−t/h1)|∞ < ∞,

∫
|φK1

(t)/φU(−t/h1)|dt < ∞.
(K2) |φK1

(t)|∞ < ∞ and |φ′
K1

(t)|∞ < ∞.

(K3)
∫
|t|b|φK1

(t)|dt < ∞,
∫
|t|2b|φK1

(t)|2dt < ∞.
(K4)

∫
(|t|b + |t|b−1)(|φ′

K1
(t)|+ |φK1

(t)|)dt < ∞.
(K5) The support of φK1

(t) is [−1, 1].

Condition (K1) is needed to establish (2.6). Conditions (K2)–(K4) are regular-
ity conditions for the variance of p̂3(y|x) to exist when U is ordinary smooth,
whereas only (K5) is needed for this purpose when U is super smooth. Besides
conditions on K1(t) stated above, we choose all three kernels, K1(t), K2(t), and
K3(t), to be real and even functions with finite second moments. When p̂4(y|x)
is concerned, once Conditions K are imposed on K1(t), intuition suggests that
having a bounded K2(t) should suffice to guarantee finite first two moments for
p̂4(y|x) although one should exercise care in formulating more concrete condi-
tions relating to K2(t). We will come back to this point with more discussions
in Section 3.3. For numerical stability and simplicity, we choose both K1(t) and
K2(t) to be the same kernel in p̂4(y|x) as done in Masry (1993) for instance.
Lastly, it is assumed that fX(x) does not vanish over the support of X, and it
is twice differentiable.
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3.2. Properties of the one-step estimator p̂3(y|x)

We derive in Appendix 7 the asymptotic bias and variance of p̂3(y|x), summa-
rized in the following theorem.

Theorem 3.1 When U is ordinary smooth of order b, if nh1+2b
1 h2(h

2
1+h2

2)
2 →

∞ as n → ∞, h1, h2 → 0, then

p̂3(y|x)− p(y|x)

=DB3(x, y, h1, h2) +O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎛
⎝ 1√

nh1+2b
1 h2

⎞
⎠ , (3.1)

where

DB3(x, y, h1, h2) =
1

2fX(x)

[
{pxx(x, y)− p(y|x)f ′′

X(x)}μ2,1h
2
1 + pyy(x, y)μ2,2h

2
2

]
(3.2)

is the dominating bias, in which f ′′
X(x) is the second derivative of fX(x),

pxx(x, y) = (∂2/∂x2)p(x, y), pyy(x, y) = (∂2/∂y2)p(x, y), and μ2,� =
∫
t2K�(t)dt,

for � = 1, 2. When U is super smooth of order b, if nh1−2b2
1 h2 exp(−2h−b

1 /d2)(h
2
1+

h2
2)

2 → ∞ as n → ∞, h1, h2 → 0, then

p̂3(y|x)− p(y|x)

=DB3(x, y, h1, h2) +O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎧⎨
⎩ exp(h−b

1 /d2)√
nh1−2b2

1 h2

⎫⎬
⎭ , (3.3)

where b2 = b0I(b0 < 0.5).

In contrast to p̂3(y|x), Hyndman et al. (1996, Section 3.1) obtained the fol-
lowing result for the error-free counterpart estimator p̂1(y|x),

p̂1(y|x)− p(y|x)

=
1

2

[{
∂2p(y|x)

∂x2
+ 2

∂p(y|x)
∂x

f ′
X(x)

fX(x)

}
μ2,1h

2
1 +

∂2p(y|x)
∂y2

μ2,2h
2
2

]

+O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

(
1√

nh1h2

)
, (3.4)

where f ′
X(x) is the first derivative of fX(x). Straightforward algebra reveal that

the dominating bias in (3.4) is equal to the dominating bias of p̂3(y|x) given
in (3.2). Although exhibiting same asymptotic bias, the asymptotic variance of
p̂3(y|x) is inflated due to measurement error when compared to p̂1(y|x), with
more substantial inflation when U is super smooth than when it is ordinary
smooth.
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3.3. Properties of the two-step estimator p̂4(y|x)

For a generic bivariate function, g(w, y), we define the following double integral
transform of g(w, y) via the operator Tx(·), assuming |φg(·,y)(t)/φU(t)|∞ < ∞
and

∫
|φg(·,y)(t)/φU(t)|dt < ∞ for each y,

Tx {g(·, y)} =
1

2π

∫
e−itxφg(·,y)(t)

φU(t)
dt. (3.5)

In Appendix A.2, we establish the following results regarding p̂4(y|x).

Theorem 3.2 When U is ordinary smooth of order b, if nh1+2b
1 h2(h

2
1+h2

2)
2 →

∞ and h3 = O(h2) as n → ∞, h1, h2, h3 → 0, then

p̂4(y|x)− p(y|x)

=DB4(x, y, h1, h2) +O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎛
⎝ 1√

nh1+2b
1 h2

⎞
⎠ , (3.6)

where

DB4(x, y, h1, h2)

=
1

2fX(x)

([
pxx(x, y)+

4∑
k=2

Tx{Ik(·, y)}−p(y|x)f ′′
X(x)

]
μ2,1h

2
1+pyy(x, y)μ2,2h

2
2

)

(3.7)

is the dominating bias, in which

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I2(w, y) =

{
d2

dw2
m∗(w)

}∫
py(v, y)fU(w − v)dv,

I3(w, y) =

{
d

dw
m∗(w)

}2 ∫
pyy(v, y)fU(w − v)dv,

I4(w, y) = 2

{
d

dw
m∗(w)

}∫
pxy(v, y)fU(w − v)dv.

(3.8)

When U is super smooth of order b, if nh1−2b2
1 h2 exp(−2h−b

1 /d2)(h
2
1+h2

2)
2 → ∞

and h3 = O(h2) as n → ∞, h1, h2, h3 → 0, then

p̂4(y|x)− p(y|x)

=DB4(x, y, h1, h2) +O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎧⎨
⎩ exp(h−b

1 /d2)√
nh1−2b2

1 h2

⎫⎬
⎭ . (3.9)

Similar to the one-step estimator p̂3(y|x), correcting for measurement error
results in a higher variance for the two-step estimator p̂4((y|x) than its error-
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free counterpart p̂2(y|x). In addition, Theorem 3.2 indicates that, as long as
h3 = O(h2), the effects of estimating m∗(x) on p̂4(y|x) are negligible in regard
to both bias and variance.

In what follows, we compare the dominating bias of p̂4(y|x) with those of
p̂2(y|x) and p̂3(y|x). In the absence of measurement error, Hansen (2004) estab-
lished the following result regarding the two-step estimator p̂2(y|x),

p̂2(y|x)− p(y|x)

=
1

2

[{
∂2fe|X(e|x)

∂x2
+ 2

∂fe|X(e|x)
∂x

f ′
X(x)

fX(x)

}
μ2,1h

2
1 +

∂2fe|X(e|x)
∂e2

μ2,2h
2
2

]

+O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

(
1√

nh1h2

)
.

Elaborations of derivatives of fe|X(e|x) reveal that Hansen’s result suggests the
following dominating bias of p̂2(y|x),

DB2(x, y, h1, h2)

=
1

2fX(x)

[{
f
(2)
X,e,11(x, e)− p(y|x)f ′′

X(x)
}
μ2,1h

2
1 + pyy(x, y)μ2,2h

2
2

]
, (3.10)

where fX,e(x, e) is the joint density of X and e = Y −m(X), and f
(2)
X,e,11(x, e) =

(∂2/∂x2)fX,e(x, e). An interesting finding here is that Hansen’s dominating bias
of the two-step estimator for p(y|x) in the absence of measurement error is
generally not equal to the dominating bias of our proposed two-step estima-
tor accounting for measurement error given in (3.7). Starting from p(x, y) =
fX,e{x, y −m(x)}, one can derive pxx(x, y) and show that

pxx(x, y)

=f
(2)
X,e,11(x, e)−m′′(x)f

(1)
X,e,2(x, e) + {m′(x)}2 f (2)

X,e,22(x, e)− 2m′(x)f
(2)
X,e,21(x, e),

(3.11)

where m′(x) and m′′(x) are the first and second derivatives of m(x), respec-

tively, f
(1)
X,e,2(x, e) = (∂/∂e)fX,e(x, e), f

(2)
X,e,22(x, e) = (∂2/∂e2)fX,e(x, e), and

f
(2)
X,e,21(x, e) = (∂2/∂x∂e)fX,e(x, e). Substituting pxx(x, y) in (3.7) with (3.11),
one can see that

DB4(x, y, h1, h2)

=DB2(x, y, h1, h2) +
μ2,1h

2
1

2fX(x)

[
4∑

k=2

Tx {Ik(·, y)}−

m′′(x)f
(1)
X,e,2(x, e) + {m′(x)}2 f (2)

X,e,22(x, e)− 2m′(x)f
(2)
X,e,21(x, e)

]
. (3.12)

Even though there exists an interesting connection between the three functions
defined in (3.8) and the last three terms in (3.12), (3.12) does not provide much



Density estimation with covariate measurement error 979

insight on how p̂4(y|x) compares with p̂2(y|x). We next consider three special
cases under which (3.12) can be further simplified in order to gain more insight
on the dominating bias associated with different estimators.

The first special case is when m(x) is a constant function, in which case one
can show that m∗(w) is also a constant function. Now, by (3.8), all terms in
(3.12) following DB2(x, y, h1, h2) reduce to zero. If fact, by (3.2) and (3.11),
DB2(x, y, h1, h2) = DB3(x, y, h1, h2) = DB4(x, y, h1, h2) when m(x) is free of x.
The second special case is when there is no measurement error, under which we
show in Section B.3 of Appendix A.2 that terms insides the square brackets in
(3.12) also reduce to zero, suggesting DB4(x, y, h1, h2) = DB2(x, y, h1, h2), as it
should be in the absence of measurement error. The third special case results
from imposing the conditions stated in Hyndman et al. (1996), under which they
concluded that p̂2(y|x) is superior than p̂1(y|x). These conditions include that
(H1) the covariate is locally uniform near x so that f ′

X(x) ≈ 0 and f ′′
X(x) ≈ 0,

(H2) e ⊥ X so that p(y|x) = fe{y−m(x)}, and (H3) m(x) is locally linear near
x so that m′′(x) ≈ 0. Under Conditions (H1)–(H3), we simplify (3.10), (3.2),
and (3.7) in Section B.3 of Appendix A.2 and find that

DB3(x, y, h1, h2) ≈ DB2(x, y, h1, h2) + 0.5f ′′
e (e) {m′(x)}2 μ2,1h

2
1,

DB4(x, y, h1, h2) ≈ DB3(x, y, h1, h2)

+ 0.5f ′′
e (e)

[{
d

dx
m∗(x)

}2

− 2m′(x)
d

dx
m∗(x)

]
μ2,1h

2
1.

It has been observed in many measurement error model settings that (d/dx)m∗(x)
attenuates towards zero compared to m′(x), with the exact attenuation factor
derived for the case when m(x) is linear, and X and U are normally distributed
(Fuller, 2009, Section 1.1). To be more specific, if m(x) = β0+β1x, where β0 and
β1 are the intercept and slope parameters, then it has been shown in this case
that m∗(x) = α0+α1x, where α0 and α1 are the intercept and slope parameters
in the naive regression, in which α1 = λβ1, with λ = σ2

x/(σ
2
x+σ2

u) known as the
reliability ratio (Carroll et al., 2006, Section 3.2.1), and σ2

x being the variance
of X. This gives DB3(x, y, h1, h2) ≈ 0.5f ′′

e (e)(β
2
1μ2,1h

2
1 + μ2,2h

2
2), in contrast to

DB4(x, y, h1, h2) ≈ 0.5f ′′
e (e){(1−λ)2β2

1μ2,1h
2
1+μ2,2h

2
2}. In summary, under the

third special case, one would usual expect the following trend of comparisons,
|DB2(x, y, h1, h2)| ≤ |DB4(x, y, h1, h2)| ≤ |DB3(x, y, h1, h2)|. Therefore, under
the same set of conditions considered in Hyndman et al. (1996), the proposed
two-step estimator p̂4(y|x) is still asymptotically superior than the one-step
estimator p̂3(y|x).

We are now in the position to reflect on the findings that the duo of p̂2(y|x)
and p̂4(y|x) do not share the same dominating bias, whereas the other duo,
p̂1(y|x) and p̂3(y|x), do. Looking back at the construction of the two proposed
estimators accounting for measurement error in Section 2, one can see that
they only differ in the estimator of p∗(x, y) used in (2.3) to obtain an estimator
for the joint density p(x, y) via the integral transform defined in (3.5). Denote
by p̂1(x, y) and p̂2(x, y) the numerators of (1.1) and (1.2), respectively, which
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are two estimators for p(x, y) in the absence of measurement error. Denote by
p̃1(x, y) and p̃2(x, y) the numerators of (1.4) and (1.5), respectively, which are
two estimators for p∗(x, y), viewed as naive estimators for p(x, y) in the presence
of measurement error. In the one-step estimator p̂3(y|x), the estimator for p(x, y)
can be expressed as

Tx {p̃1(·, y)} =
1

nh1h2

n∑
j=1

Tx

{
K1

(
Wj − ·
h1

)}
K2

(
Yj − y

h2

)
(3.13)

=
1

nh1h2

n∑
j=1

K∗
1

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
, by (2.5)

which has the same expectation as that of p̂1(x, y) according to (2.6). This
explains why p̂3(y|x) and p̂1(y|x) have the same dominating bias. In contrast,
in the two-step estimator p̂4(y|x), the estimator for p(x, y) is

Tx {p̃2(·, y)} =
1

nh1h2

n∑
j=1

Tx

[
K1

(
Wj − ·
h1

)
K2

{
Yj − m̂∗(Wj)− y + m̂∗(·)

h2

}]
,

(3.14)

of which the expectation is typically not equal to E{p̂2(x, y)}. Hence, it is not
surprising that, after correcting the naive two-step estimator p̃2(y|x) for mea-
surement error, p̂4(y|x) does not have the same dominating bias as that of
p̂2(y|x).

Contrasting (3.14) with (3.13) also brings awareness that more involved con-
ditions are needed for Tx{p̃2(·, y)} to be well-defined. According to (3.13),
Tx{p̃1(·, y)} is well-defined because h−1

1 Tx[K1{(W − ·)/h1}] is, thanks to Con-
dition (K1). By (3.14), Tx{p̃2(·, y)} is well-defined if (h1h2)

−1Tx(K1{(W −
·)/h1}K2[{Y −m̂∗(W )−y+m̂∗(·)}/h2]) is, for which sufficient conditions formu-
lated in the same spirit as those in Condition (K1) are that |CR(t, Y,W, y)|∞ <
∞ and

∫
|CR(t, Y,W, y)|dt < ∞ with probability one for each y, where

CR(t, Y,W, y)

=

(h1h2)
−1

∫
eitwK1

(
W − w

h1

)
K2

{
Y − m̂∗(W )− y + m̂∗(w)

h2

}
dw

φU(t)
. (3.15)

These sufficient conditions formulated in terms of CR(t, Y,W, y) essentially im-
ply that the Fourier transform of the product kernel, K1(t)K2{s(t)}, tails off to
zero much faster than φU(t) does as |t| → ∞ so that the norm of the complicated
ratio in (3.15) is integrable, where s(·) denotes some function of t, introduced
here to signify that arguments in K1(·) and K2(·) in (3.15) both involve w.
Because imposing Condition (K1) already guarantees that the Fourier trans-
form of K1(t) diminishes fast enough, compared with how fast φU(t) diminishes
as |t| diverges, we conjecture that the aforementioned conditions in terms of
CR(t, Y,W, y) are satisfied when K2(·) is of the same order as K1(·) so that the
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Fourier transform of the product kernel appearing in (3.15) tends to zero no
slower than φK1

(t) does as |t| → ∞. Indeed, when implementing the proposed
two-stage estimation method, we set K2 the same as K1 and encounter little
numerical complication in obtaining p̂4(y|x) in the simulation study.

More general analytic comparisons between p̂3(y|x) and p̂4(y|x) outside of the
aforementioned special cases are unattainable. Empirical evidence from simu-
lation study can shed more light on how they compare with each other and
also with the naive estimators. In order to implement the proposed methods,
strategies for choosing bandwidths are needed. This is the topic of the next
section.

4. Bandwidths selection

4.1. Relevant strategies

The choice of bandwidths in kernel density estimators has a great impact on the
estimators. There are two main streams in the literature on bandwidth selec-
tion, one relating to the so-called plug-in methods, the other in line with cross
validation (CV). Both veins of methodology development start from a criterion
that assesses the quality of an estimator, such as the integrated squared error
(ISE) of a density estimator, or the MISE. Oftentimes one invokes asymptotic
approximations or imposes parametric assumptions, or does both, to simplify a
criterion. If the resultant (approximated) criterion can be optimized with respect
to a bandwidth explicitly, an asymptotically optimal choice of this bandwidth
can be derived. Plug-in methods are based on so-obtained bandwidths, such
as the normal reference rule (Silverman, 1986; Scott, 2015). For more complex
criteria, a cross validation strategy is often used to estimate the criterion and
search for bandwidths that optimize the estimated criterion. Besides plug-in
methods and CV methods, Jones et al. (1996) reviewed other bandwidth selec-
tion methods for density estimation, including the ones that involve bootstrap
estimation of a criterion.

The main challenge bandwidth selection methods attempt to overcome is
estimation of the aforementioned criteria. Criteria like ISE, MISE, or asymptotic
MISE (AMISE) depend on complicated functionals of unknown densities, and
estimating these functionals is often a harder problem than the original problem
of density estimation. This challenge is even more formidable in the presence of
measurement error. To select bandwidths for marginal density estimation in the
presence of measurement error, Delaigle and Gijbels (2004a,b) developed plug-
in methods and bootstrap methods based on MISE or AMISE, which require
estimation of functionals such as the integrated squared density derivatives using
error-prone data. Delaigle and Gijbels (2002) constructed estimators for these
functionals, which again involve bandwidths selection.

Later, Delaigle and Hall (2008) combined cross validation with the strategy
of simulation extrapolation (SIMEX, Cook and Stefanski, 1994; Stefanski and
Cook, 1995) to choose bandwidths in the presence of measurement error. Their
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CV-SIMEX method entails estimating a CV criterion and finding a bandwidth
twice using error-contaminated data (at two levels of contamination) in the
same way one would do when data are error-free. The resulting two bandwidths
together lead to a bandwidth accounting for measurement error via an extrapo-
lation step. Compared to methods considered in Delaigle and Gijbels (2004a,b),
one novelty of the CV-SIMEX method is that it avoids direct estimation of a
CV criterion accounting for measurement error. This is achieved at the price of
increased computational burden caused by the combination of CV and SIMEX,
each of which is computationally expensive on its own. Moreover, what extrap-
olant function should be used at the extrapolation step is rarely known (Carroll
et al., 2006, Section 5.3.2). Indeed, the extrapolant used in Delaigle and Hall
(2008) is only asymptotically justified, i.e., for large sample, under the assump-
tion that error contamination is close to none. For a given application, it is
difficult to gauge if the sample size is large enough, relative to the amount of
error contamination, for the extrapolation step to yield a bandwidth improving
over a naive bandwidth one chooses while ignoring measurement error. A more
realistic goal one can achieve by applying the CV-SIMEX method with caution
is to somewhat adjust a naive bandwidth in the right direction. This direction
is usually upward when measurement errors compromise naive estimation, be-
cause, intuitively, a wider bandwidth is needed when measurement errors blur
the underlying pattern of association between two variables. Indeed, we observe
that a bandwidth used in the proposed estimators that is larger than the naive
bandwidth typically yields more satisfactory results in our extensive simulation
study.

4.2. Bandwidth selection for p̂3(y|x)

The one-step estimator p̂3(y|x) depends on two bandwidths in h = (h1, h2).

We propose to choose h by adjusting the naive bandwidths, denoted by h
(1)
nv =

(h
(1)
nv,1, h

(1)
nv,2), obtained via a CV method for estimating p∗(y|x) using p̃1(y|x).

In particular, we employ the CV method proposed by Fan and Yim (2004) and

Hall et al. (2004) to obtain h
(1)
nv .

As an estimator for p∗(y|x), the authors considered the ISE of p̃1(y|x) given
by

ISE(p̃1) =

∫∫
{p̃1(y|x)− p∗(y|x)}2fW (x)ω(x)dxdy

=

∫∫
{p̃1(y|x)}2 fW (x)ω(x)dxdy − 2

∫∫
p̃1(y|x)p∗(x, y)ω(x)dxdy

+

∫
{p∗(y|x)}2 fW (x)ω(x)dxdy,

(4.1)
where fW (x) is the pdf of W , and ω(x) is a nonnegative weight function used to
avoid estimating p∗(y|x) at an x around which data are scarce. Observing that
the third integral above does not depend on bandwidths, the authors defined a
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CV criterion based on the following estimator of the first two integrals in (4.1),

CV(p̃1) =
1

n

n∑
j=1

ω(Wj)

∫
{p̃1,−j(y|Wj)}2 dy−

2

n

n∑
j=1

ω(Wj)p̃1,−j(Yj |Wj), (4.2)

where p̃1,−j(y|Wj) results from computing the estimator p̃1(y|Wj) using all ob-
served data except the jth data point, (Wj , Yj). We set K2(t) as the Gaussian
kernel in p̃1(y|x), and thus in p̂3(y|x) as well. Thanks to this choice of K2(t), the
integral in (4.2) can be derived explicitly, as shown in Appendix B.2, resulting
in an elaborated expression of CV(p̃1) provided there. As for the other kernel,
K1(t), in p̃1(y|x), and thus also in p̂3(y|x), we set

K1(t) =
48 cos t

πt4

(
1− 15

t2

)
− 144 sin t

πt5

(
2− 5

t2

)
, (4.3)

of which the characteristic function is φK1
(s) = (1 − s2)3I(−1 ≤ s ≤ 1), which

satisfies Conditions K listed in Section 3.1. Other choices of K1(t) one may
consider that also satisfy Conditions K include the sinc kernel, and the kernel
used in Delaigle et al. (2009), of which the characteristic function is φK1

(s) =
(1 − s2)8I(−1 ≤ s ≤ 1). As commented in Section 3.1, (K5) in Conditions K
can be relaxed when U is ordinary smooth. We keep our choice of K1(t) to
fulfill condition (K5) even when U is ordinary smooth mainly for the numerical
stability it renders when computing the deconvoluting kernel K∗

1 (t).
Following the CV method, we search bandwidths that minimize CV(p̃1), re-

sulting in h
(1)
nv = (h

(1)
nv,1, h

(1)
nv,2). Denote by h(1) = (h

(1)
1 , h

(1)
2 ) the bandwidths we

choose for p̂3(y|x) to estimate p(y|x). Since Y is observed without error, we set

h
(1)
2 = h

(1)
nv,2; and to account for covariate measurement error, we set

h
(1)
1 =

(
1 + |ρwy|

√
1− λ̂

)
h
(1)
nv,1, (4.4)

where ρwy is the sample correlation between W and Y , and λ̂ = 1−σ2
u/s

2
w is an

estimate of the reliability ratio λ, in which s2w is the sample variance of W . The

adjustment of h
(1)
nv,1 given in (4.4) is motivated by the following considerations.

When there is no measurement error, certainly no adjustment is needed, which
is exactly what (4.4) indicates when σ2

u = 0 (yielding λ̂ = 1). When there exists
measurement error butX and Y are independent,W and Y are also independent
because U is independent of (X,Y ). In this case, since both p(y|x) and p∗(y|x)
reduce to the marginal density of Y , accounting for measurement error when
estimating p(y|x) is not necessary, and thus neither is adjusting bandwidths
for measurement error, which is also what (4.4) suggests with ρwy consistently
estimating the zero correlation. In the presence of measurement error, if X
and Y are dependent, it is sensible to inflate the naive bandwidth associated
with X to adjust for measurement error, with the adjustment depending on the
severity of error contamination and the strength of dependence between X and
Y , which can be partially assessed by the correlation between them. In summary,
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(4.4) suggests use of the naive bandwidth when no adjustment for measurement
error is necessary, and it leads to a different bandwidth by adjusting the naive
bandwidth in the right direction otherwise.

4.3. Bandwidth selection for p̂4(y|x)

To select bandwidths in h = (h1, h2) for the two-step estimator p̂4(y|x), we also
begin with some naive bandwidths, denoted by h

(2)
nv = (h

(2)
nv,1, h

(2)
nv,2), obtained

from the CV method for estimating p∗(y|x) using p̃2(y|x). Here, the CV criterion
is

CV(p̃2) =
1

n

n∑
j=1

ω(Wj)

∫
p̃2,−j(y|Wj)

2dy − 2

n

n∑
j=1

ω(Wj)p̃2,−j(Yj |Wj). (4.5)

Even though this criterion is similar to (4.2), there are two complications.
First, when m∗(y|x) is estimated by a local polynomial estimator, as done

in the majority of our study, p̃2(y|x) involves an additional bandwidth h3 in
m̂∗(y|x). In this case, we use the plug-in method for local polynomial regression
(Fan and Gijbels, 1996, Chapter 3) implemented by the R function locpol to
obtain h3, with K3(t) being the Gaussian kernel. For the other two kernels
K1(t) and K2(t), we set them both as the kernel in (4.3) for ease of numerical
implementation as commented in Section 3.1. This choice of K2(t) causes the
second complication, which is that the integral in (4.5) for CV(p̃2) now cannot be
derived explicitly. To avoid direct evaluation of this integral, we put the Gaussian
kernel back for K2(t) in (4.5), and proceed with the CV method to choose h =
(h1, h2). This produces an elaborated expression of CV(p̃2) provided in equation
(C.2) in Appendix B.2 that involves residuals defined by e∗j = Yj − m̂∗(Wj).

Denote by h
(2)∗
nv = (h

(2)∗
nv,1, h

(2)∗
nv,2) the bandwidths that minimize (C.2). We then

set h
(2)
nv = (h

(2)∗
nv,1, 0.403h

(2)∗
nv,2) to acknowledge that the kernel used as K2(t) in

the actual p̃2(y|x) is not the Gaussian kernel. The factor c = 0.403 used in
this adjustment for the bandwidth associated with K2(t) is deduced as follows.
Consider generically estimating the density of a random variable V , fV (v), via
a kernel density estimator with K(t) as the kernel. Silverman (1986, page 45)
suggested the following reference rule for choosing bandwidth,

h =

[
8
√
π
∫
K2(t)dt

3
{∫

t2K(t)dt
}2
]1/5

svn
−1/5, (4.6)

where sv is the sample standard deviation of V . For a given sample of size
n, (4.6) provides a relationship between h and K(t). If K(t) is the Gaussian
kernel, (4.6) suggests the reference rule of h = 1.06svn

−1/5; and if K(t) is given
by (4.3), one has h = 0.427svn

−1/5. The ratio of the latter reference rule over
the former gives c = 0.403, a sensible scale factor to use when one changes from
a Gaussian kernel to the kernel in (4.3).
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Lastly, once we have h
(2)
nv , we use h(2) = (h

(2)
1 , h

(2)
2 ) in p̂4(y|x), where h

(2)
2 =

h
(2)
nv,2 and

h
(2)
1 =

(
1 + |ρwe∗ |

√
1− λ̂

)
h
(2)
nv,1, (4.7)

in which ρwe∗ is the sample correlation between W and e∗. The adjustment in
(4.7) is in the same spirit as (4.4), although we use ρwe∗ in place of ρwy. This
replacement is motivated by the fact that p̃2(y|x) and p̂4(y|x) are essentially
estimating the conditional density of a mean residual given the corresponding
covariate.

5. Simulation study

5.1. Simulation design

We are now in the position to compare finite sample performance of the naive
estimators, p̃1(y|x) and p̃2(y|x), and their non-naive counterparts, p̂3(y|x) and
p̂4(y|x). In the simulation experiments, we consider the following three models
of Y given X:

(C1) [Y |X = x] ∼ N
(
m(x), σ2(x)

)
, where m(x) = sin(πx/2) and σ(x) =

exp(1− x/3)/8;
(C2) [Y |X = x] ∼ 0.5N

(
m(x)− 1, σ2(x)

)
+ 0.5N

(
m(x) + 1, σ2(x)

)
, where

m(x) = sin(πx/2) and σ(x) = exp(1− x/3)/12;
(C3) [Y |X = x] ∼ N

(
m(x), σ2(x)

)
, where m(x) = x and σ(x) = exp(1 −

x/3)/8.

The three primary (conditional) models are formulated to create two contrasting
scenarios under which we compare the four density estimators. One scenario is
having a unimodal conditional density (as in (C1) and (C3)) versus a multimodal
density (as in (C2)); the other scenario is having a nonlinear conditional mean
(as in (C1) and (C2)) versus a linear mean (as in (C3)). The designs of these
primary models partly follow the illustrative examples in Sugiyama et al. (2010)
with heteroscedastic noise.

In conjunction with each of the three primary models, we vary the true
covariate distribution, the measurement error distribution, and the reliabil-
ity ratio to create four configurations of secondary models: (a) X ∼ N(0, 1),
U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2),

λ = 0.9; (c) X ∼ N(0, 1), U ∼ N(0, σ2
u), λ = 0.8; (d) X ∼ Uniform(−2, 2),

U ∼ Laplace(0, σu/
√
2), λ = 0.8. Contrasting (a) and (b) allows comparison

under different severity of error contamination in the covariate. Comparing es-
timates under (a) and (c) can shed light on effects of different types of mea-
surement error on considered estimators. In particular, the Laplace distribution
for U under (a) is an example of ordinary smooth error distributions, whereas
the normal distribution for U under (c) provides an example of super smooth
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distributions. Finally, the contrast of (a) and (d) provides a testbed for inspect-
ing the performance of estimators when the true covariate has an unbounded
support compared to when it has a bounded support.

Putting the three primary models with the four secondary model configura-
tions lead to twelve true model settings, according to each of which we generate
200 Monte Carlo (MC) replicates of size n = 500. Given each simulated data set,
we carry out two rounds of density estimation. In the first round, to mitigate the
confounding effect of data-driven bandwidth selection on the estimation qual-
ity, we use the approximated theoretical optimal bandwidths associated with
each of the four estimators. Generically denote by p̂(y|x) one of the estimators,
the approximated theoretical optimal h = (h1, h2) associated with p̂(y|x) is ob-
tained (through a grid search) by minimizing the empirical integrated squared
error (EISE),

EISE =

M′∑
j=1

M∑
k=0

{p̂(yj |xk)− p(yj |xk)}2 fX(xk)ΔΔ′, (5.1)

where {xk = xL+kΔ}Mk=0, Δ is the partition resolution, M is the largest integer

no greater than (xU − xL)/Δ, in which xU = −2 and xL = 2; and {yj}M
′

j=1 is
a sequence of grid points equally spaced over the observed sample range of Y ,
with yj+1 − yj = Δ′. The additional bandwidth, h3, in p̃2(y|x) and p̂4(y|x) is
obtained by minimizing

EISEm =
M∑
k=0

{m̂∗(xk)−m∗(xk)}2 fX(xk)Δ. (5.2)

In the second round, we use the proposed methods in Sections 4.2 and 4.3 to
obtain bandwidths for p̂3(y|x) and p̂4(y|x), and apply the CV method in the
absence of measurement error to choose bandwidths for p̃1(y|x) and p̃2(y|x).
In the CV criteria used for these methods, we set the weight function ω(x) =
I(xL ≤ x ≤ xU), where xU and xL are the 2.5th and 97.5th percentiles of the
observed covariate data, respectively. A similar weight function, as an indicator
function over the interval of interest regarding the covariate, is used in Fan
and Yim (2004, Section 3.3). Besides the practical consideration in regard to
covariate values of interest, one may also choose a weight function to avoid
numerical difficulties caused by dividing by numbers close or equal to zero when
computing the conditional density estimate as discussed in Hall et al. (2004,
Section 2).

As stated in Section 4.1, there exists many different bandwidth selection
strategies in the context of density estimation. To have a more focused simu-
lation experiment presented in this article, we avoid going beyond comparing
our proposed data-driven bandwidths selection methods with the approximated
theoretical optimal approaches, although we did compare the former with their
naive counterparts (with results omitted here to save space for other findings)
and observe noticeable gain in accuracy of density estimation from adopting
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the proposed methods. More comprehensive comparisons between various band-
width selection methods in conjunction with different density estimators besides
the four considered here deserve a manuscript dedicated to reporting simulation
study of a larger scale.

5.2. Simulation results

To quantitatively compare different density estimators, we use the EISE defined
in (5.1) as the metric to assess the quality of estimates. Figures 1–3 present box-
plots of EISE under three primary model configurations when the approximated
theoretical optimal bandwidths are used. When comparing a naive estimator
with a non-naive one, one can see that adjusting for measurement error clearly
leads to estimates of better quality in terms of EISE. On the other hand, p̃2(y|x)
is less compromised by measurement error than p̃1(y|x) is. This can be mostly
explained by the findings in Hyndman et al. (1996) and Hansen (2004), which
suggest that p̃2(y|x) often outperforms p̃1(y|x) as estimators for p∗(y|x). Even
though estimating p∗(y|x) well typically does not imply reliable estimation of
p(y|x), a less satisfactory estimator for the former usually leads to less reliable
estimation for the latter. Intuition suggests that correcting a better estimator of
p∗(y|x) for measurement error can yield a better non-naive estimator of p(y|x).
This intuition is supported by the observations from Figures 1–3 that the most
reliable estimator for p(y|x) among the four is p̂4(y|x) in all considered simula-
tion settings. The benefit of the two-step estimator p̂4(y|x) compared to p̂3(y|x)
is more evident when the mean function is linear (see panel (d) in Figure 1 in
contrast to panel (d) in Figure 3). This can serve as evidence for that adjusting
for the mean in the first step then estimating the residual conditional density in
the second step leads to better estimates for p(y|x) than a one-step estimator;
and this improvement is more noticeable when the dependence of Y on the co-
variate is mostly explained by the conditional mean that can be well estimated
in the first step. As pointed out in Section 3.3, p̂4(y|x) does not offer any gain
asymptotically when compared with p̂3(y|x) if m(x) is a constant function of
x. This is clearly also the case in terms of their finite sample performance. To
demonstrate this point, we include in Appendix B.2 boxplots of EISE associated
with these two estimators and their naive counterparts when data are generated
according to a primary model with a constant m(x). From there, one can see
that p̂3(y|x) behaves very similarly as p̂4(x|y), and the former is less variable
than the latter when the fully data-driven bandwidths are used.

Although p̂3(y|x) substantially improves over p̃1(y|x), p̃2(y|x) can perform
similarly as p̂3(y|x) in terms of EISE, especially when error contamination is
mild (see, for instance, panel (b) in Figures 1–3 where λ = 0.9). To compare
p̃2(y|x) and p̂3(y|x) more closely in regard to bias and variance, we decompose
EISE in (5.1) as follows, where the additional subscript, MC(∈ {1, . . . , 200}),
is added to signify that, under each simulation setting, there are 200 EISE’s
recorded for a density estimator, and, for each point (xk, yj) at which the density
estimate and the true densities are evaluated, there are 200 realizations of a
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density estimator,

EISEMC =

M′∑
j=1

M∑
k=0

{p̂MC(yj |xk)− p(yj |xk)}2 fX(xk)ΔΔ′

=
M′∑
j=1

M∑
k=0

{p̂MC(yj |xk)− p̄(yj |xk)}2 fX(xk)ΔΔ′ (5.3)

+

M′∑
j=1

M∑
k=0

{p̄(yj |xk)− p(yj |xk)}2 fX(xk)ΔΔ′ (5.4)

+ 2

M′∑
j=1

M∑
k=0

{p̂MC(yj |xk)− p̄(yj |xk)} {p̄(yj |xk)− p(yj |xk)} fX(xk)ΔΔ′,

where p̄(yj |xk) =
∑200

MC=1 p̂MC(yj |xk)/200 for each point (xk, yj). With p̄(yj |xk)
being the empirical mean of an estimator evaluated at (xk, yj), (5.3) can be
interpreted as an empirical integrated variance (EIV) associated with a con-
sidered estimator, and (5.4) can be viewed as an empirical integrated squared
bias (EISB) of the estimator. By construction, the EIV in (5.3) varies across
different MC replicates, whereas the EISB in (5.4) does not. Figure 4 shows
the ratio of the EISB of p̂3(y|x) over that of p̃2(y|x) under the model setting
for panels (a) and (b) in Figure 1. The ratio of EIV of p̂3(y|x) over that of
p̃2(y|x), and the ratio of the two EISE’s are also depicted in Figure 4. Recall
that the true model settings under panels (a) and (b) in each aforementioned
figure are the same except for the reliability ratio λ, with λ = 0.8 in (a) and
λ = 0.9 in (b). Under both levels of error contamination, one can see in Fig-
ure 4 that EISB(p̂3)/EISB(p̃2) < 1 and EIV(p̂3)/EIV(p̃2) > 1, suggesting that
p̂3(y|x) does eliminate some bias in the naive estimator p̃2(y|x) at the price of
an inflated variance. This price is lower when the error contamination is milder,
yielding lower ratios of EIV in (b) compared to those in (a); although milder
error contamination also diminishes the amount of bias reduction in p̂3(y|x)
compared to p̃2(y|x) since the latter is less compromised in the presence of less
measurement error. These comparisons between the two estimators in EISB and
EIV explain the resemblance of the estimators in terms of EISE, resulting in
EISE(p̂3)/EISE(p̃2) ≈ 1 when λ = 0.9.

To compare p̂3(y|x) and p̂4(y|x) in regard to bias and variance separately as
in Figure 4, we create Figure 5 to present the ratios of the EISB and EIV of
p̂4(y|x) over those of p̂3(y|x) under the model setting for panels (a) and (b) in
Figure 1. Figure 5 clearly suggests that bias reduction is achieved by p̂4(y|x)
compared to p̂3(y|x) even outside of the special cases considered in Section 3.3,
under which we analytically show the superiority of p̂4(y|x) over p̂3(y|x).

Figures 6–8 provide boxplots of EISE associated with density estimates when
the fully data-driven bandwidths are used. Table 1 presents medians and in-
terquartile ranges of the EISE depicted in these figures. All patterns described
earlier are also observed here, implying great potential of the proposed band-
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width selection methods to approximate theoretical optimal bandwidths. It is
not surprising to see increased variability across all estimates now, with more
uncertainty involved in bandwidth selection, and even more fluctuation when
attempts are made to adjust bandwidths for measurement error.

In both rounds of simulation experiments, EISE associated with each of the
four considered estimates is higher when the underlying conditional density is
bimodal compared to when it is unimodal, or when error contamination is more
severe. These are all expected since multimodal densities or noisier data create
more unwieldy situations for statistical inference in general. Asymptotic results
in Sections 3.2 and 3.3 suggest higher variability for the proposed estimators in
the presence of super smooth U than when U is ordinary smooth. The obser-
vation that EISE’s under panel (c) (with normal U) are higher than those in
panel (a) (with Laplace U) in each of Figures 1–8 indicates that the comparison
of finite sample variance concurs with the large sample variance comparison.
Finally, to demonstrate the effect of sample size, we repeat the simulation study
using a much smaller sample size. Figures 9 and 10 show simulation results
obtained under the setting with the primary model in (C1) with n = 200. Com-
paring with Figures 1 and 6 where n = 500, one can still see similar patterns the
estimates exhibit, although more variable EISE are observed for all estimators,
especially when the fully data-driven bandwidths are used.

As discussed in Hyndman et al. (1996), besides local polynomial estimators,
other nonparametric estimators deemed suitable for estimating m∗(x) can be
employed in the two-step estimators, such as spline-based estimators. Properties
of p̂4(y|x) in Theorem 3.2, as well as properties of p̃2(y|x) established in Hynd-
man et al. (1996) and Hansen (2004), remain valid provided that the adopted
m̂∗(x) converges to m∗(x) faster than the kernel density estimator for the joint
density of (W, e∗) converges to the truth. As an example, we use cubic spline
estimates for m∗(x) in p̃2(y|x) and p̂4(y|x), and repeat the second round of
the simulation experiments. As counterpart plots of Figures 6–8, Appendix B.2
provides these additional boxplots of EISE, which are mostly comparable with
Figures 6–8.

6. Application to dietary data

The data set to be analyzed in this section is from the Women’s Interview
Survey of Health, which contains the food frequency questionnaire (FFQ) intake,
measured as percent calories from fat, and six 24-hour food recalls from 271
subjects. It is of interest to estimate the density of the logarithm of FFQ intake
(Y ) conditioning on one’s long-term usual intake (X). The covariate of interest,
the long-term usual intake, cannot be observed directly. A common practice in
epidemiology studies is to use data from 24-hour food recalls to construct a
surrogate (W ) of the true covariate. For instance, Liang and Wang (2005) used
the average of two 24-hour food recalls from a subject asW and studied the mean
of the log-FFQ intake conditioning on X and other error-free covariates; Wang
et al. (2012) used the average of six 24-hour food recalls as W and estimated
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Fig 1. Boxplots of EISE using the approximated theoretical optimal bandwidths when the pri-
mary model is (C1) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/
√
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u),
λ = 0.8; (d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2), λ = 0.8. Method 1, 2, 3, 4

correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

conditional quantiles of the log-FFQ intake. We follow the construction of W
in Wang et al. (2012), associated with which the estimated reliability ratio is
0.737. Panel (d) in Figure 11 shows the scatter plot of the log-FFQ versus the
so-constructed W from this data set.

For illustration purposes, we estimate the conditional density of the log-FFQ
when the long-term usual intake is equal to 6.8, 7.3, and 7.8, respectively. Pan-
els (a)–(c) in Figure 11 depict four estimated density curves, p̃1(y|x), p̃2(y|x),
p̂3(y|x), and p̂4(y|x), at each of the three covariate values. At x = 6.8, the
two two-step estimates, p̃2(y|x) and p̂4(y|x), are similar but the latter exhibits
more distinct peak features, which can be a sign that p̂4(y|x) corrects p̃2(y|x)
for measurement error to recover the height around modes of the underlying
density. The other non-naive estimate, p̂3(y|x), resembles p̂4(y|x) around the
highest peak more than the two naive estimates do, and it also differs notice-
ably from its naive counterpart p̃1(y|x) at other regions of the support of Y .
At x = 7.3, around which data are denser, the difference among the four esti-
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Fig 2. Boxplots of EISE using the approximated theoretical optimal bandwidths when the pri-
mary model is (C2) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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mated density curves appears to be mostly due to whether one uses two-step
estimates or one-step estimates. This can be viewed as an example where the
effect of measurement error is mild and the two-step estimates lead to improved
estimates compared to the one-step estimates. Finally, at x = 7.8, around which
data become scarce and the association between the response and the covariate
may be weaker, the four estimated density curves are less distinguishable. The
similarity among the four estimates can be due to low correlation between the
response and the true covariate, or that the conditional mean of the response is
nearly constant, or lack of sufficient data information for the non-naive estimates
effectively correct the naive ones.

We repeat the estimation based on p̃2(y|x) and p̂4(y|x) using the cubic spline
estimate for m∗(·) and obtain comparable results in terms of how four estimated
densities compare. A figure showing these estimated density curves is given in
Appendix B.2. Unlike in simulation studies, here, we actually do not know the
measurement error variance σ2

u or the distribution family for the measurement
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Fig 3. Boxplots of EISE using the approximated theoretical optimal bandwidths when the pri-
mary model is (C3) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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error. We resolved this complication by estimating σ2
u via equation (4.3) in Car-

roll et al. (2006) using repeated measurements (i.e., six 24-hour food recalls from
each subject) while assuming Laplace measurement error. Other approaches for
estimating σ2

u are discussed in Carroll (2014), including that based on correlated
repeated measurements (Wang et al., 1996) and those based on validation data
or instrumental variables (Buzas et al., 2014). This treatment gives rise to two
practical concerns we address next. The first concern relates to misspecification
of σ2

u in the proposed estimators since an estimated error variance in place of
its truth is now used in these estimators. Appendix B.2 presents additional nu-
merical experiments where we repeat part of the simulation studies described
in Section 5 but with σ2

u set at values different from its truth when obtaining
p̂3(y|x) and p̂4(y|x). Besides via φU(t), these two estimators also depend on σ2

u

via bandwidths chosen by the data-driven methods proposed in Section 4. De-
spite the two sources of dependence on σ2

u, realizations of p̂3(y|x) and p̂4(y|x)
from the experiments tend to exhibit smaller EISE than those associated with
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Fig 4. The ratio of the empirical integrated squared bias (black dashed lines) associated with
p̂3(y|x) across 200 Monte Carlo replicates over that associated with p̃2(y|x), the ratio of the
empirical integrated variance (red solid lines) between them, and the ratio of EISE (blue dotted
lines) between them, using the approximated theoretical optimal bandwidths when the primary
model is (C1) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/
√
2), λ = 0.9. Method 2 and 3 correspond to

p̃2(y|x) and p̂3(y|x), respectively. The black horizontal solid lines are the reference lines at
value one.

their naive counterparts even when a wrong error variance is used. Hence, al-
though the proposed estimators for p(y|x) are compromised by a misspecified
error variance, they remain more superior than the naive estimators provided
that the misspecification is not close to ignoring measurement error, e.g., as a
result of substantially underestimating σ2

u. The downside of overestimating σ2
u

is inflated variability of the non-naive estimators as evidenced in the simulation
presented in Appendix B.2. The second concern is in regard to the assumed
error distribution. It has been reported in abundant existing studies that non-
parametric inference are often fairly robust to distributional assumptions on
measurement error (e.g., Delaigle et al., 2009; Zhou and Huang, 2016; Huang
and Zhou, 2017). Meister (2004) and Delaigle (2008) provided more theoretical
insight on this robustness. If one feels uneasy at assuming a measurement error
distribution, one may estimate the characteristic function of U using repeated
measurements as proposed by Delaigle et al. (2008), and use this estimate in
place of φU(u) in the density estimators. We conjecture that theoretical prop-
erties of the resulting density estimators that involve such estimated φU(u) can
be derived following similar lines of arguments in Delaigle et al. (2008), which
are beyond the scope of the current study.

7. Discussions

In this study we propose two conditional density estimators that account for co-
variate measurement error by correcting two existing kernel density estimators
developed for error-free data. An R code example is provided in Appendix B.2
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Fig 5. The ratio of the empirical integrated squared bias (black dashed lines) associated with
p̂4(y|x) across 200 Monte Carlo replicates over that associated with p̂3(y|x), the ratio of the
empirical integrated variance (red solid lines) between them, and the ratio of EISE (blue dotted
lines) between them, using the approximated theoretical optimal bandwidths when the primary
model is (C1) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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√
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p̂3(y|x) and p̂4(y|x), respectively. The black horizontal solid lines are the reference lines at
value one.

to demonstrate use of the R package lpme to obtain all four density estimates.
When the conditional mean of the response contributes a lot to explaining the
dependence of the response on the covariate, the two-step estimators p̃2(y|x) and
p̂4(y|x) can substantially benefit from first estimating the mean function. This
strategy can even alleviate to some extent the adverse effect of measurement
error on naive estimation, even though it can bring in more variability given
a finite sample. As one may expect, there will be little return in the effort to
account for measurement error when the error contamination is very small. Fig-
ure 12 provides comparisons between the four estimators considered in Section 5
in such a scenario, where data for responses are generated according to the pri-
mary model in (C1), and X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), with λ = 0.99.

When the approximated optimal theoretical bandwidths are used, one can see
in this figure high resemblance between p̃1(y|x) and p̂3(y|x), as well as between
p̃2(y|x) and p̂4(y|x). In addition, Figure 12 indicates that, when one makes the
extra effort to select bandwidths using the fully data-driven methods proposed
in Section 4, the proposed non-naive estimators exhibit higher variability than
their naive counterparts, making the proposed estimators less appealing without
gaining noticeable bias reduction.

On the theoretical side, in addition to deriving the asymptotic bias and vari-
ance of each proposed estimator, we provide an in-depth comparison between
the proposed estimators and their error-free counterparts in regard to the domi-
nating bias. We believe that asymptotic normality of p̂3(y|x) can be established
by proving the Lyapunov’s conditions (Billingsley, 2008) under additional regu-
larity conditions following arguments similar to those in Huang and Zhou (2017),
although showing the same conditions for p̂4(y|x) can be much more formidable
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Fig 6. Boxplots of EISE using the fully data-driven bandwidths when the primary model is
(C1) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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due to the higher (than two) order moments of (3.14) arising in the proof. Given
the substantial content of this article, we set aside the study of asymptotic nor-
mality of proposed estimators and impacts of the smoothness of the covariate
and measurement error distributions on their asymptotic distributions for a
separate technical note.

The construction of the proposed estimators can be generalized to estimate
a multivariate conditional density given a multivariate covariate, some or all
elements of which are prone to measurement error. But kernel-based estima-
tors are less well received when there are many variables involved due to the
curse of dimensionality (Scott, 2015, Chapter 7) among several other reasons.
The use of the integral transform in (3.5) to account for measurement error in
some variables, as done in (3.13) and (3.14), only magnifies the challenges in
implementing kernel-based density estimation in high dimensional settings. New
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Fig 7. Boxplots of EISE using the fully data-driven bandwidths when the primary model is
(C2) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b)

X ∼ N(0, 1), U ∼ Laplace(0, σu/
√
2), λ = 0.9; (c) X ∼ N(0, 1), U ∼ N(0, σ2

u), λ = 0.8;
(d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2), λ = 0.8. Method 1, 2, 3, 4 correspond to

p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

strategies for nonparametric conditional density estimation are needed in these
settings.

Bandwidth selection has been a hurdle for which no unified solution seems
to exist that is numerically convenient and effective for most kernel-based es-
timation problems. We develop strategies for our proposed estimators aiming
to, first, take advantage of existing well accepted bandwidth selection methods
in the absence of measurement error, and second, adjust the bandwidths for
measurement error in the right direction. Achieving the first goal frees one from
estimating a CV criterion using error-prone data. We reach the second goal by
a simple adjustment of naive bandwidths that depends on the severity of mea-
surement error and the correlation between the covariate and the response or a
mean residual. A more refined adjustment demands systematic investigation on
relationships between naive bandwidths and theoretically optimal bandwidths
accounting for measurement error.
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Fig 8. Boxplots of EISE using the fully data-driven bandwidths when the primary model is
(C3) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/
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Appendix A: Proof of Theorem 3.1

The construction of p̂3(y|x) can be viewed as p̂3(y|x) = f̂−1
X (x)p̂3(x, y), where

f̂X(x) is the deconvoluting kernel estimator of fX(x) in (2.4), and

p̂3(x, y) =
1

nh1h2

n∑
j=1

K∗
1

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
(A.1)

is an estimator of p(x, y).

We next approximate f̂X(x) and p̂3(x, y) via the decomposition, A = E(A)+
Op{

√
Var(A)}, for a random variable A under regularity conditions.

A.1. Approximation of f̂X(x)

Because the mean of f̂X(x) is the same as the mean of the regular kernel density
estimator of fX(x) in the absence of measurement error, which is well established
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Table 1

Medians and interquartile ranges (in parenthesis) of EISE associated with four estimators
across 200 Monte Carlo replicates when the fully data-driven bandwidths are used. Data are

generated according to primary models (C1)–(C3) along with secondary models (a)–(d)
formulated in Section 5.1. Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and

p̂4(y|x), respectively

Model Method (a) (b) (c) (d)

(C1) 1 0.186 (0.028) 0.134 (0.021) 0.234 (0.023) 0.239 (0.028)
2 0.163 (0.030) 0.108 (0.022) 0.215 (0.027) 0.225 (0.029)
3 0.151 (0.049) 0.112 (0.044) 0.205 (0.033) 0.194 (0.057)
4 0.114 (0.059) 0.075 (0.029) 0.181 (0.051) 0.195 (0.154)

(C2) 1 0.230 (0.020) 0.179 (0.015) 0.270 (0.017) 0.276 (0.021)
2 0.206 (0.023) 0.150 (0.020) 0.254 (0.020) 0.263 (0.022)
3 0.196 (0.036) 0.153 (0.021) 0.254 (0.025) 0.245 (0.038)
4 0.167 (0.059) 0.115 (0.030) 0.240 (0.062) 0.251 (0.086)

(C3) 1 0.200 (0.026) 0.135 (0.022) 0.250 (0.025) 0.251 (0.031)
2 0.164 (0.029) 0.096 (0.023) 0.220 (0.027) 0.213 (0.037)
3 0.145 (0.042) 0.105 (0.036) 0.209 (0.045) 0.182 (0.049)
4 0.079 (0.025) 0.056 (0.018) 0.143 (0.044) 0.126 (0.042)

(Scott, 2015, equation (6.16)), one has

E
{
f̂X(x)

}
= fX(x) + 0.5f ′′

X(x)μ2,1h
2
1 +O(h4

1), (A.2)

where f ′′
X(x) is the second derivative of fX(x), and μ2,� =

∫
t2K�(t)dt, for � =

1, 2.
Also similar to the variance result for the ordinary kernel density estimator

of fX(x) (Scott, 2015, equation (6.17)), one can show that

Var
{
f̂X(x)

}
=

fW (x)R(K∗
1 )

nh1
+O(n−1), (A.3)

where fW (·) is the density of W , and R(K∗
1 ) =

∫
{K∗

1 (t)}2dt. In the sequel, we
use R(g) to denote

∫
g2(t)dt for a square integrable function g(t). Note that

R(K∗
1 ) depends on h1 since K∗

1 (t) depends on h1, and by Lemmas B.4 and B.9
in Delaigle et al. (2009), under Conditions U and Conditions K in the main
article,

R(K∗
1 ) =

{
O(h−2b

1 ), if U is ordinary smooth,

O
{
h2b2
1 exp(2h−b

1 /d2)
}
, if U is super smooth,

(A.4)

where b2 = b0I(b0 < 0.5).
By (A.2)–(A.4), one has, when U is ordinary smooth,

f̂X(x) = fX(x) + 0.5f ′′
X(x)μ2,1h

2
1 +O(h4

1) +Op

⎛
⎝ 1√

nh1+2b
1

⎞
⎠ , (A.5)
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Fig 9. Boxplots of EISE using the approximated theoretical optimal bandwidths when the pri-
mary model is (C1) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2),

λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/
√
2), λ = 0.9; (c) X ∼ N(0, 1), U ∼ N(0, σ2

u),
λ = 0.8; (d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2), λ = 0.8. Method 1, 2, 3, 4 corre-

spond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively. The sample size is n = 200.

and, when U is super smooth,

f̂X(x) = fX(x) + 0.5f ′′
X(x)μ2,1h

2
1 +O(h4

1) +Op

⎧⎨
⎩exp(h−b

1 /d2)√
nh1−2b2

1

⎫⎬
⎭ . (A.6)

Following (A.5) and (A.6), one has, for ordinary smooth U ,

f̂−1
X (x) = f−1

X (x)− 0.5f−2
X (x)f ′′

X(x)μ2,1h
2
1 +O(h4

1) +Op

⎛
⎝ 1√

nh1+2b
1

⎞
⎠ , (A.7)

and, for super smooth U ,

f̂−1
X (x) = f−1

X (x)−0.5f−2
X (x)f ′′

X(x)μ2,1h
2
1+O(h4

1)+Op

⎧⎨
⎩exp(h−b

1 /d2)√
nh1−2b2

1

⎫⎬
⎭ . (A.8)
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Fig 10. Boxplots of EISE using the fully data-driven bandwidths when the primary model is
(C1) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b)

X ∼ N(0, 1), U ∼ Laplace(0, σu/
√
2), λ = 0.9; (c) X ∼ N(0, 1), U ∼ N(0, σ2

u), λ = 0.8;
(d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2), λ = 0.8. Method 1, 2, 3, 4 correspond to

p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively. The sample size is n = 200.

A.2. Approximation of p̂3(x, y)

Because the mean of p̂3(x, y) is the same as the mean of the regular bivariate
kernel density estimator of p(x, y) in the absence of measurement error, which
has been established (Scott, 2015, equation (6.40)), one has

E {p̂3(x, y)}
=p(x, y) + 0.5{pxx(x, y)μ2,1h

2
1 + pyy(x, y)μ2,2h

2
2}+O(h4

1) +O(h4
2) +O(h2

1h
2
2),

(A.9)

where pxx(x, y) = (∂2/∂x2)p(x, y) and pyy(x, y) = (∂2/∂y2)p(x, y).
Following similar derivations leading to the asymptotic variance of a regular

bivariate kernel density estimator in the absence of measurement error (Scott,
2015, equation (6.41)), one can show that

Var {p̂3(x, y)} =
p∗(x, y)R(K∗

1 )R(K2)

nh1h2
+O(n−1). (A.10)
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Fig 11. Naive estimates of the conditional density of the logarithm of FFQ intake correspond-
ing to p̃1(y|x) (cyan dash-dotted lines) and p̃2(y|x) (blue dotted lines), and two non-naive
density estimates, p̂3(y|x) (green dashed lines) and p̂4(y|x) (red solid lines) when x = 6.8 (in
panel (a)), 7.3 (in panel (b)), and 7.8 (in panel (c)), respectively. In each panel of (a)–(c),
method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively. The scat-
ter plot of the observed response versus the observed covariate values is shown in panel (d),
where the three values of x at which p(y|x) is estimated are highlighted in red dots on the
horizontal axis.

By (A.9), (A.10), and (A.4), one has, for ordinary smooth U ,

p̂3(x, y) = p(x, y) + 0.5{pxx(x, y)μ2,1h
2
1 + pyy(x, y)μ2,2h

2
2}

+O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎛
⎝ 1√

nh1+2b
1 h2

⎞
⎠ , (A.11)

and, for super smooth U ,

p̂3(x, y) = p(x, y) + 0.5{pxx(x, y)μ2,1h
2
1 + pyy(x, y)μ2,2h

2
2}

+O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎧⎨
⎩ exp(h−b

1 /d2)√
nh1−2b2

1 h2

⎫⎬
⎭ . (A.12)

The result in Theorem 3.1 regarding p̂3(y|x)− p(y|x) is obtained from (A.7)
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Fig 12. Boxplots of EISE using the approximated theoretical optimal bandwidths (in panel
(a)) and boxplots of EISE using the fully data-driven bandwidths (in panel (b)) when the
primary model is (C1) and the secondary model is X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2),

λ = 0.99. Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.
The sample size is n = 500.

multiplying (A.11) for ordinary smooth U , and (A.8) multiplying (A.12) for
super smooth U .

Appendix B: Proof of Theorem 3.2

Because the integral transform Tx(·) defined in (3.5) is a linear operator by
construction, it can commute with another linear operator, such as expectation.
In addition, Tx {g(·, y)} = g(x, y) if φU(t) = 1 for all t.

The construction of p̂4(y|x) originates from p̂4(y|x) = f̂−1
X (x)p̂4(x, y), where

p̂4(x, y) is an estimator of p(x, y) obtained via the aforementioned integral trans-
form of the following estimator for p∗(x, y),

p̃2(x, y) =
1

nh1h2

n∑
j=1

K1

(
Wj − x

h1

)
K2

{
Yj − m̂∗(Wj)− y + m̂∗(x)

h2

}
. (B.1)

More specifically,

p̂4(x, y) =
1

2π

∫
e−itxφp̃2(·, y)(t)

φU(t)
dt

=
1

2π

∫
e−itx

∫
eitwp̃2(w, y)dw

φU(t)
dt

= Tx {p̃2(·, y)} . (B.2)

We next use the mean and variance results for p̃2(x, y) to obtain those for
p̂4(x, y).

Hansen (2004) showed that, despite the extra estimation of m∗(·), the asymp-
totic variance of the two-step estimator for p∗(x, y), namely p̃2(x, y), is of the
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same order as that of the one-step estimator given by

p̃1(x, y) =
1

nh1h2

n∑
j=1

K1

(
Wj − x

h1

)
K2

(
Yj − y

h2

)
. (B.3)

Since p̂3(x, y) = Tx{p̃1(·, y)}, which is the same as how p̂4(x, y) relates to
p̃2(x, y) in (B.2), the asymptotic variance of p̂4(x, y) is also of the same order
as that of p̂3(x, y), which is provided in Section A.2.

In our study, we set m̂∗(·) as the local linear estimator of m∗(·) with kernel
K3(t) and bandwidth h3. Following the proof in Hansen (2004, Section 10), one
can show that, if h3 = O(h2) as h2 and h3 tend to zero,

E {p̃2(x, y)} =p∗(x, y) + 0.5
{
g1(x, y)μ2,1h

2
1 + g2(x, y)μ2,2h

2
2

}
+

O(h4
1) +O(h4

2) +O(h2
1h

2
2),

(B.4)

where

g1(x, y) = f
(2)
W ,e∗,11(x, e

∗) =

[
∂2

∂w2
fW ,e∗(w, e

∗)

]∣∣∣∣
w=x,e∗=y−m∗(x)

, (B.5)

g2(x, y) = f
(2)
W ,e∗,22(x, e

∗) =

[
∂2

∂e∗2
fW ,e∗(w, e

∗)

]∣∣∣∣
w=x,e∗=y−m∗(x)

, (B.6)

in which fW ,e∗(w, e
∗) is the joint density of W and e∗ = Y −m∗(W ). It follows

that, by commuting the operations of expectation and Tx,

E{p̂4(x, y)}
=Tx[E{p̃2(·, y)}]
=Tx{p∗(·, y)}+ 0.5

[
Tx{g1(·, y)}μ2,1h

2
1 + Tx{g2(·, y)}μ2,2h

2
2

]
+O(h4

1) +O(h4
2) +O(h2

1h
2
2),

where

Tx{p∗(·, y)} = p(x, y), (B.7)

Tx{g1(·, y)} = pxx(x, y) +

4∑
k=2

Tx{Ik(·, y)}, (B.8)

Tx{g2(·, y)} = pyy(x, y), (B.9)

in which Ik(w, y), for k = 2, 3, 4, are defined in (3.8). Among (B.7)–(B.9), (B.7)
can be proved using (2.1) in the main article, (B.8) and (B.9) are proved in
Section B.1. In conclusion, we have

E{p̂4(x, y)}

=p(x, y) + 0.5

([
pxx(x, y) +

4∑
k=2

Tx{Ik(·, y)}
]
μ2,1h

2
1 + pyy(x, y)μ2,2h

2
2

)
+

O(h4
1) +O(h4

2) +O(h2
1h

2
2).

(B.10)
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Combining (B.10) with the variance rate of p̂4(x, y), we have, for ordinary
smooth U ,

p̂4(x, y)

=p(x, y) + 0.5

([
pxx(x, y) +

4∑
k=2

Tx{Ik(·, y)}
]
μ2,1h

2
1 + pyy(x, y)μ2,2h

2
2

)

+O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎛
⎝ 1√

nh1+2b
1 h2

⎞
⎠ ,

(B.11)
and, for super smooth U ,

p̂4(x, y)

=p(x, y) + 0.5

([
pxx(x, y) +

4∑
k=2

Tx{Ik(·, y)}
]
μ2,1h

2
1 + pyy(x, y)μ2,2h

2
2

)

+O(h4
1) +O(h4

2) +O(h2
1h

2
2) +Op

⎧⎨
⎩ exp(h−b

1 /d2)√
nh1−2b2

1 h2

⎫⎬
⎭ .

(B.12)
The result in Theorem 3.2 regarding p̂4(y|x)− p(y|x) is obtained from (A.7)

multiplying (B.11) for ordinary smooth U , and (A.8) multiplying (B.12) for
super smooth U .

B.1. Proof of (B.8) and (B.9)

In order to derive the two transforms on the left-hand side of (B.8) and (B.9), we
need to elaborate the two functions, g1(x, y) and g2(x, y), defined in (B.5) and
(B.6). For notational clarity, we first derive partial derivatives of fW ,e∗(w, e

∗),
viewing it as a function of w and e∗, before evaluating the partial derivatives at
w = x and e∗ = y −m∗(x) to obtain g1(x, y) and g2(x, y).

Because

fW ,e∗(w, e
∗) = p∗(w, y) =

∫
p(v, y)fU(w − v)dv, (B.13)

where y = m∗(w) + e∗, one has

∂

∂w
fW ,e∗(w, e

∗)

=

{
d

dw
m∗(w)

}∫
py(v, y)fU(w − v)dv +

∫
p(v, y)f ′

U(w − v)dv

=

{
d

dw
m∗(w)

}∫
py(v, y)fU(w − v)dv +

∫
px(v, y)fU(w − v)dv,
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where integration-by-part is used to obtain the last integral, px(v, y) is equal to
(∂/∂x)p(x, y) evaluated at (x, y) = (v, y), and py(v, y) is equal to (∂/∂y)p(x, y)
evaluated at (x, y) = (v, y). It follows that

∂2

∂w2
fW ,e∗(w, e∗)

=

{
d2

dw2
m∗(w)

}∫
py(v, y)fU(w − v)dv +

{
d

dw
m∗(w)

}2 ∫
pyy(v, y)fU(w − v)dv+{

d

dw
m∗(w)

}∫
py(v, y)f

′
U(w − v)dv +

{
d

dw
m∗(w)

}∫
pxy(v, y)fU(w − v)dv+∫

px(v, y)f
′
U(w − v)dv

=

{
d2

dw2
m∗(w)

}∫
py(v, y)fU(w − v)dv +

{
d

dw
m∗(w)

}2 ∫
pyy(v, y)fU(w − v)dv+{

d

dw
m∗(w)

}∫
pxy(v, y)fU(w − v)dv +

{
d

dw
m∗(w)

}∫
pxy(v, y)fU(w − v)dv+∫

pxx(v, y)fU(w − v)dv

=

∫
pxx(v, y)fU(w − v)dv +

{
d2

dw2
m∗(w)

}∫
py(v, y)fU(w − v)dv+

{
d

dw
m∗(w)

}2 ∫
pyy(v, y)fU(w − v)dv + 2

{
d

dw
m∗(w)

}∫
pxy(v, y)fU(w − v)dv.

Evaluating the last expression at w = x and e∗ = y −m∗(x) gives g1(x, y) =∑4
k=1 Ik(x, y), where I1(x, y) is equal to

∫
pxx(v, y)fU(w − v)dv evaluated at

(w, y) = (x, y), and I2(x, y), I3(x, y), I4(x, y) are the three functions defined in
(3.8) evaluated at (w, y) = (x, y), respectively. It is worth pointing out that, in
the absence of measurement error, (B.13) can be simply viewed as fW ,e∗(w, e

∗) =
p∗(w, y) = p(x, y), which is symbolically equivalent to viewing

∫
p(v, y)fU(w −

v)dv as p(x, y). Following this viewpoint, one has the following definitions of
Ik(x, y) in the absence of measurement error, for k = 2, 3, 4,⎧⎪⎨

⎪⎩
I2(x, y) = m′′(x)py(x, y),

I3(x, y) = {m′(x)}2 pyy(x, y),
I4(x, y) = 2m′(x)pxy(x, y).

(B.14)

To this end, one has Tx{g1(·, y)} =
∑4

k=1 Tx{Ik(·, y)}, where

Tx{I1(·, y)} =
1

2π

∫
e−itx 1

φU(t)

∫
eitw

∫
pxx(v, y)fU(w − v)dvdwdt

=
1

2π

∫
e−itx 1

φU(t)

∫
eitvpxx(v, y)

∫
eit(w−v)fU(w − v)dwdvdt

=
1

2π

∫
e−itx 1

φU(t)

∫
eitvpxx(v, y)φU(t)dvdt

= pxx(x, y).
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This proves (B.8), where the latter three transforms, Tx{Ik(·, y)}, for k =
2, 3, 4, cannot be further simplified in the presence of measurement error without
additional assumptions, such as those on m∗(w).

To show (B.9), we first derive g2(x, y) defined in (B.6). By (B.13), it is

easy to see that f
(2)
W ,e∗,22(w, e

∗) =
∫
pyy(v, y)fU(w − v)dv. Thus g2(w, y) =∫

pyy(v, y)fU(w − v)dv. It follows that

Tx {g2(·, y)} =
1

2π

∫
e−itx 1

φU(t)

∫
eitw

∫
pyy(v, y)fU(w − v)dvdwdt

=
1

2π

∫
e−itx 1

φU(t)

∫
eitvpyy(v, y)

∫
eit(w−v)fU(w − v)dwdvdt

=
1

2π

∫
e−itx 1

φU(t)

∫
eitvpyy(v, y)φU(t)dvdt

= pyy(x, y).

This completes the proof of (B.9).

B.2. Consideration of two special cases in Section 3

We state in Section 3 in the main article that, in the absence of measurement
error, (3.12) reduces to DB4(x, y, h1, h2) = DB2(x, y, h1, h2). We first prove this
statement in this subsection.

Because p(x, y) = fX,e{x, y −m(x)}, one has

py(x, y) = (∂/∂y)fX,e{x, y −m(x)} = f
(1)
X,e,2(x, e),

pyy(x, y) = (∂2/∂y2)fX,e{x, y −m(x)} = f
(2)
X,e,22(x, e),

pxy(x, y) = (∂/∂x)f
(1)
X,e,2{x, y −m(x)} = f

(2)
X,e,21(x, e)−m′(x)f

(2)
X,e,22(x, e).

Using these three results in (B.14), one has that, in the absence of measurement
error,

4∑
k=2

Tx{Ik(·, y)}

=

4∑
k=2

Ik(x, y)

=m′′(x)f
(1)
X,e,2(x, e) + {m′(x)}2 f (2)

X,e,22(x, e)

+ 2m′(x)
{
f
(2)
X,e,21(x, e)−m′(x)f

(2)
X,e,22(x, e)

}
=m′′(x)f

(1)
X,e,2(x, e)− {m′(x)}2 f (2)

X,e,22(x, e) + 2m′(x)f
(2)
X,e,21(x, e),

which cancel with the last three terms in (3.12) in the main article. This proves
that DB4(x, y, h1, h2) = DB2(x, y, h1, h2) in the absence of measurement error.
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In another special case considered in Section 3, we impose the following the
conditions stated in Hyndman et al. (1996): (H1) the covariate is locally uniform
near x so that f ′

X(x) ≈ 0 and f ′′
X(x) ≈ 0, (H2) e ⊥ X so that p(y|x) = fe{y −

m(x)}, and (H3) m(x) is locally linear near x so that m′′(x) ≈ 0. Next, we
simplify the following dominating bias associated with p̂2(y|x), p̂3(y|x), and
p̂4(y|x), respectively,

DB2(x, y, h1, h2) =
1

2fX(x)

[{
f
(2)
X,e,11(x, e)− p(y|x)f ′′

X(x)
}
μ2,1h

2
1

+ pyy(x, y)μ2,2h
2
2

]
, (B.15)

DB3(x, y, h1, h2) =
1

2fX(x)

[
{pxx(x, y)− p(y|x)f ′′

X(x)}μ2,1h
2
1 + pyy(x, y)μ2,2h

2
2

]
(B.16)

DB4(x, y, h1, h2) =
1

2fX(x)

([
pxx(x, y) +

4∑
k=2

Tx{Ik(·, y)} − p(y|x)f ′′
X(x)

]
μ2,1h

2
1

+ pyy(x, y)μ2,2h
2
2

)
. (B.17)

First, by (H2),

pyy(x, y) =
∂2

∂y2
{fX(x)p(y|x)} =

∂2

∂y2
[fX(x)fe{y −m(x)}] = fX(x)f

′′
e (e).

(B.18)

Second, by (H1) and (H2), f
(2)
X,e,11(x, e) and f ′′

X(x) are approximately zero. Hence,
(B.15) reduces to

DB2(x, y, h1, h2) ≈ 0.5f ′′
e (e)μ2,2h

2
2.

Third,

pxx(x, y) =
∂2

∂x2
{fX(x)p(y|x)}

=
∂

∂x
[f ′

X(x)fe(e)− fX(x)f
′
e(e)m

′(x)] , by (H2),

≈ − ∂

∂x
[fX(x)f

′
e(e)m

′(x)] , by (H1),

= −f ′
X(x)f

′
e(e)m

′(x) + fX(x)f
′′
e (e){m′(x)}2 − fX(x)f

′
e(e)m

′′(x)

≈ fX(x)f
′′
e (e){m′(x)}2, by (H1) and (H3).

(B.19)
Hence, (B.16) simplifies to

DB3(x, y, h1, h2) ≈ 0.5f ′′
e (e)

[
{m′(x)}2 μ2,1h

2
1 + μ2,2h

2
2

]
.

Lastly, to simplify DB4(x, y, h1, h2), we need to look into the transform
Tx{Ik(·, y)}, for k = 2, 3, 4. The only reason that it is more difficult to ob-
tain closed-form expressions of these three transforms than the same transform
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of I1(w, y) =
∫
pxx(v, y)fU(w − v)dv is the additional function of w (as deriva-

tives of m∗(w)) outside of the integrals in (3.8). If m∗(w) is approximately linear
so that (d/dw)m∗(w) is approximately a constant, then this only obstacle disap-
pears. This additional assumption can be satisfied for some measurement error
models given Condition (H3). With this assumption on m∗(w), one immedi-
ately has I2(w, y) ≈ 0 according to (3.8) and thus Tx{I2(·, y)} ≈ 0. Following
the same idea behind the derivation for Tx{I1(·, y)} and the proof for (B.9) in
Section B.1, one can show that,

Tx{I3(·, y)} ≈
{

d

dx
m∗(x)

}2

pyy(x, y)

=

{
d

dx
m∗(x)

}2

fX(x)f
′′
e (e), by (B.18),

and

Tx{I4(·, y)} ≈ 2

{
d

dx
m∗(x)

}
pxy(x, y)

= 2

{
d

dx
m∗(x)

}
∂

∂y

{
∂

∂x
fX(x)fe(e)

}
, by (H2),

= 2

{
d

dx
m∗(x)

}
∂

∂y
{−fX(x)f

′
e(e)m

′(x)} , by (H1),

= −2

{
d

dx
m∗(x)

}
fX(x)f

′′
e (e)m

′(x).

Putting these results of Tx{Ik(·, y)}, for k = 2, 3, 4, along with (B.19) and
(B.18), back in (B.17), one has

DB4(x, y, h1, h2) ≈ 0.5f ′′
e (e)

[{
m′(x)− d

dx
m∗(x)

}2

μ2,1h
2
1 + μ2,2h

2
2

]
.

In summary, under the aforementioned special case, we have

DB2(x, y, h1, h2) ≈ 0.5f ′′
e (e)μ2,2h

2
2,

DB3(x, y, h1, h2) ≈ 0.5f ′′
e (e)

[
{m′(x)}2 μ2,1h

2
1 + μ2,2h

2
2

]
,

DB4(x, y, h1, h2) ≈ 0.5f ′′
e (e)

[{
m′(x)− d

dx
m∗(x)

}2

μ2,1h
2
1 + μ2,2h

2
2

]
.

These three approximations imply the comparison between DB3(x, y, h1, h2)
and DB2(x, y, h1, h2), and that between DB4(x, y, h1, h2) and DB3(x, y, h1, h2)
summarized in Section 3.3.

Appendix C: Derivations of the CV criteria associated with p̃1(y|x)
and p̃2(y|x)

The cross validation (CV) criterion proposed by Fan and Yim (2004) and Hall
et al. (2004) for choosing bandwidths in the estimator of p∗(y|x), p̃1(y|x), is
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given by (4.2), the integral in which can be derived explicitly as follows when
K2(t) is the Gaussian kernel.

By the definition of p̃1,−j(y|Wj), one has∫
{p̃1,−j(y|Wj)}2 dy

=

∫
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

(n− 1)h1h2

∑
j′ �=j

K1

(
Wj′ −Wj

h1

)
K2

(
Yj′ − y

h2

)

1

(n− 1)h1

∑
j′ �=j

K1

(
Wj′ −Wj

h1

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2

dy

=

⎧⎨
⎩
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)⎫⎬
⎭

−2 ∫
1

h2
2

∑
j1 �=j

∑
j2 �=j

{
K1

(
Wj1 −Wj

h1

)
×

K1

(
Wj2 −Wj

h1

)
K2

(
Yj1 − y

h2

)
K2

(
Yj2 − y

h2

)}
dy

=

⎧⎨
⎩
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)⎫⎬
⎭

−2

1

h2
2

∑
j1 �=j

∑
j2 �=j

{
K1

(
Wj1 −Wj

h1

)
×

K1

(
Wj2 −Wj

h1

)∫
K2

(
Yj1 − y

h2

)
K2

(
Yj2 − y

h2

)
dy

}
,

in which ∫
K2

(
Yj1 − y

h2

)
K2

(
Yj2 − y

h2

)
dy

=h2

∫
K2(t)K2

(
t− Yj1 − Yj2

h2

)
dt

=h2

∫
1√
2π

exp(−t2/2) · 1√
2π

exp

{
−1

2

(
t− Yj1 − Yj2

h2

)2
}
dt

=
h2√
4π

exp

{
−
(
Yj1 − Yj2

2h2

)2
}
.

Hence,∫
{p̃1,−j(y|Wj)}2 dy

=

1√
4πh2

∑
j1 �=j

∑
j2 �=j

K1

(
Wj1 −Wj

h1

)
K1

(
Wj2 −Wj

h1

)
exp

{
−
(
Yj1 − Yj2

2h2

)2
}

⎧⎨
⎩
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)⎫⎬
⎭

2 .
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Using this result in the first half of (4.2), and using the definition of p̃1,−j(y|Wj)
in the second half of (4.2) leads to the following elaboration of (4.2),

CV(p̃1)

=
1

nh2

n∑
j=1

ω(Wj)×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
4π

∑
j1 �=j

∑
j2 �=j

K1

(
Wj1 −Wj

h1

)
K1

(
Wj2 −Wj

h1

)
exp

{
−
(
Yj1 − Yj2

2h2

)2
}

⎧⎨
⎩
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)⎫⎬
⎭

2

−2

n∑
j′ �=j

K1

(
Wj′ −Wj

h1

)
K2

(
Yj′ − Yj

h2

)
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)
⎤
⎥⎥⎥⎥⎦ .

(C.1)
Following similar derivations leading to (C.1), one can show that, with K2(t)

being the Gaussian kernel, (4.5) becomes

CV(p̃2)

=
1

nh2

n∑
j=1

ω(Wj)×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
4π

∑
j1 �=j

∑
j2 �=j

K1

(
Wj1 −Wj

h1

)
K1

(
Wj2 −Wj

h1

)
exp

{
−
(
e∗j1 − e∗j2

2h2

)2
}

⎧⎨
⎩
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)⎫⎬
⎭

2

−2

n∑
j′ �=j

K1

(
Wj′ −Wj

h1

)
K2

(
e∗j′ − e∗j

h2

)
∑
j′ �=j

K1

(
Wj′ −Wj

h1

)
⎤
⎥⎥⎥⎥⎦ ,

(C.2)
where e∗j = Yj − m̂∗(Wj).
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Appendix D: Boxplots of EISE associated with four density
estimators when m(x) ≡ 1

We simplify the primary model setting (C1) in Section 5.1 in the main article
to create the following primary model setting,

(C4) [Y |X = x] ∼ N
(
m(x), σ2(x)

)
, where m(x) ≡ 1 and σ(x) = e1−x/3/8.

Along with the secondary model settings (a)–(d) stated in Section 5.1 in the
main article, we now have four data generating processes, according to each of
which data of the form {(Wj , Yj)}500j=1 are generated independently 200 times.
Figure D.1 provides boxplots of EISE associated with p̃1(y|x), p̃2(y|x), p̂3(y|x),
and p̂4(y|x) when the approximated theoretical optimal bandwidths are used,
which suggest that all four estimators perform similarly. Figure D.2 shows the
same boxplots when the fully data-driven bandwidths are used. From there
one can see that the two non-naive estimators are more variable than their
naive counterparts, but are otherwise comparable. Between the two non-naive
estimators, p̂3(y|x) is slightly less variable than p̂4(y|x).

Appendix E: Boxplots of EISE under the simulation settings in
Section 5 when cubic spline estimates of the mean function are used

Figures E.1–E.3 are counterpart plots of Figures 6–8 in the main article, where
the cubic spline is used in p̃2(y|x) and p̂4(y|x) to estimate m∗(·).

Appendix F: Estimated density curves using dietary data when
cubic spline estimates of the mean function are used

Figure F.1 is a counterpart plot of Figure 11 in the main article, where dietary
data are used to estimate p(y|x), but with cubic spline estimate for the mean
function in p̃2(y|x) and p̂4(y|x).

Appendix G: Boxplots of EISE associated with four density
estimators when σ2

u is correctly specified and when it is misspecified

In this experiment, we generate data following the primary model specified in
(C1) and the secondary model configuration (a) described in Section 5.1, where
the true measurement error variance is σ2

u = 0.25, corresponding to λ = 0.8.
Based on each of 200 simulated data sets, each of size n = 500, besides comput-
ing p̃1(y|x) and p̃2(y|x), we compute p̂3(y|x) and p̂4(y|x) while assuming σ2

u at
its truth and three other misspecified values corresponding to λ = 0.7, 0.9, 0.99.
All bandwidths are chosen using the data-driven methods described in Section 4.

Figure G.1 contains boxplots of EISE across 200 Monte Carlo replicates at
each assumed level of σ2

u, i.e., at each assumed level of λ(= 0.8, 0.7, 0.9, 0.99).
When comparing with the case without misspecifying the value of σ2

u (in panel
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Fig D.1. Boxplots of EISE using the approximated theoretical optimal bandwidths when
the primary model is (C4) and the secondary models are (a) X ∼ N(0, 1), U ∼
Laplace(0, σu/

√
2), λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.9; (c)

X ∼ N(0, 1), U ∼ N(0, σ2
u), λ = 0.8; (d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2),

λ = 0.8. Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

(a)), one can see that even when one sets σ2
u at a higher level than the truth (in

panel (b)) or at a lower level (in panel (c)), each proposed non-naive estimator,
p̂3(y|x) or p̂4(y|x), still outperforms its naive counterpart, that is, p̃1(y|x) or
p̃2(y|x), in the sense that the median EISE associated with p̂3(y|x) or p̂4(y|x) is
still smaller than that of p̃1(y|x) or p̃2(y|x). The variabilities of the two proposed
estimators with an assumed σ2

u value much larger than the truth, as the case in
panel (b), are higher compared to when one uses the correct σ2

u or sets it at a
smaller value than the truth. This can be caused by, besides involving a wrong
φU(t) in the proposed estimators, one uses a larger bandwidth h1 by setting λ̂
in (4.4) and (4.7) at some smaller value than what one would use had one used
the true value of σ2

u.

Certainly, if one assumes a low enough value for σ2
u such that it is close

to assuming no measurement error, as in panel (d) of Figure G.1, then all four
estimates behave similarly. Table G.1 presents medians and IQRs corresponding
to the EISEs depicted in Figure G.1.
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Fig D.2. Boxplots of EISE using the fully data-driven bandwidths when the primary model
is (C4) and the secondary models are (a) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b)

X ∼ N(0, 1), U ∼ Laplace(0, σu/
√
2), λ = 0.9; (c) X ∼ N(0, 1), U ∼ N(0, σ2

u), λ = 0.8;
(d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2), λ = 0.8. Method 1, 2, 3, 4 correspond to

p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

Appendix H: An example R code for estimating conditional
densities using the R package lpme

For illustration purposes, we generate a data set of size n = 1000 under the pri-
mary model configuration (C3) specified in the main article, with X ∼ N(0, 1),
U ∼ Laplace(0, σu/

√
2), and λ = 0.8. The following code is used to generate

data.

## X - True covariates

## W - Observed covariates

## Y - Individual response

rm(list=ls())

library(lpme)

## Generate Laplace random numbers

rlap = function (use.n, location = 0, scale = 1)

{

location <- rep(location, length.out = use.n)

scale <- rep(scale, length.out = use.n)
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Fig E.1. Boxplots of EISE using the fully data-driven bandwidths with the cubic spline mean
estimate when the primary model is (C1) and the secondary models are (a) X ∼ N(0, 1),
U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.9; (c)

X ∼ N(0, 1), U ∼ N(0, σ2
u), λ = 0.8; (d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2),

λ = 0.8. Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

rrrr <- runif(use.n)

location - sign(rrrr - 0.5) * scale *

(log(2) + ifelse(rrrr < 0.5, log(rrrr), log1p(-rrrr)))

}

## Function f(y|x) to be estimated

mofx = function(x){ x }

sofx = function(x){ exp(1-x/3)/8 }

wide = 0.04; ymin=-4; ymax=3;

x = seq(-2, 2, wide);

y = seq(-4, 3, wide);

nx = length(x)

ny = length(y);

## True density function

fy_x=function(y,x) dnorm(y, mofx(x), sofx(x));

################### Generate data ################

set.seed(2017)

n = 1000 ## sample size:

sigma_x = 1; X = rnorm(n, 0, sigma_x);
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Fig E.2. Boxplots of EISE using the fully data-driven bandwidths with the cubic spline mean
estimate when the primary model is (C2) and the secondary models are (a) X ∼ N(0, 1),
U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.9; (c)

X ∼ N(0, 1), U ∼ N(0, σ2
u), λ = 0.8; (d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2),

λ = 0.8. Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

Y = rep(0, n);

for(i in 1:n){

Y[i] = mofx(X[i]) + rnorm(1, 0, sofx(X[i]));

}

## reliability ratio

lambda = 0.8;

sigma_u = sqrt(1/lambda-1)*sigma_x;

W = X + rlap(n, 0, sigma_u/sqrt(2));

Panel (d) in Figure H.1 shows the scatter plot of the response Y versus the
covariate X, with the corresponding realizations of W imposed. The following
code is used to obtain the conditional density estimates, p̃1(y|x), p̃2(y|x), p̂3(y|x)
and p̂4(y|x), at grid points x and y defined in above code. Panels (a)–(c) in Fig-
ure H.1 depict these four density estimates when x = −1.5, 0, 1.5, respectively.

##----- Method 1: naive estimate without mean adjustment ----

## kernel functions

K1 = "Gauss"; const1 = 1.06;



1016 X. Huang and H. Zhou

Fig E.3. Boxplots of EISE using the fully data-driven bandwidths with the cubic spline mean
estimate when the primary model is (C3) and the secondary models are (a) X ∼ N(0, 1),
U ∼ Laplace(0, σu/

√
2), λ = 0.8; (b) X ∼ N(0, 1), U ∼ Laplace(0, σu/

√
2), λ = 0.9; (c)

X ∼ N(0, 1), U ∼ N(0, σ2
u), λ = 0.8; (d) X ∼ Uniform(−2, 2), U ∼ Laplace(0, σu/

√
2),

λ = 0.8. Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively.

K2 = "Gauss"; const2 = 1.06;

## initial reference rule

hxyhat = c(sd(W)*const1, sd(Y)*const2)*n^(-1/5);

## grid points for searching bandwidths

h1 = hxyhat[1]*seq(0.2, 1.5, length.out = 10 )

h2 = hxyhat[2]*seq(0.2, 1.5, length.out = 10 )

ptm<-proc.time()

fitbw1 = densityregbw(Y, W, xinterval = c(min(x), max(x)), h1 = h1, h2 = h2,

K1 = K1, K2 = K2)

systime1=proc.time()-ptm; systime1;

ptm<-proc.time()

fhat1 = densityreg(Y, W, bw = fitbw1$bw, xgrid = x, ygrid = y,

K1 = K1, K2 = K2);

systime11=proc.time()-ptm; systime11;

##----- Method 2: naive estimate with mean adjustment ----

## kernel functions

K1 = "Gauss"; const1 = 1.06;

K2 = "Gauss"; const2 = 1.06;

## initial reference rule
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Fig F.1. Naive estimates of conditional density of the logarithm of FFQ intake corresponding
to p̃1(y|x) (cyan dash-dotted lines) and p̃2(y|x) (blue dotted lines), and two non-naive density
estimates, p̂3(y|x) (green dashed lines) and p̂4(y|x) (red solid lines) when x = 6.8 (in panel
(a)), 7.3 (in panel (b)), and 7.8 (in panel (c)), respectively. In each panel of (a)–(c), method
1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively. The cubic spline
estimate of the mean function is used in p̃2(y|x) and p̂4(y|x). The scatter plot of the observed
response versus the observed covariate values is shown in panel (d), where the three values of
x at which p(y|x) is estimated are highlighted in red dots on the horizontal axis.

hxyhat = c(sd(W)*const1, sd(Y)*const2)*n^(-1/5);

## grid points for searching bandwidths

h1 = hxyhat[1]*seq(0.5, 3, length.out = 10 )

h2 = hxyhat[2]*seq(0.2, 1.5, length.out = 10 )

ptm<-proc.time()

fitbw2 = densityregbw(Y, W, xinterval = c(min(x), max(x)), h1 = h1, h2 = h2,

K1 = K1, K2 = K2, mean.estimate = "kernel")

systime2=proc.time()-ptm; systime2;

ptm<-proc.time()

fhat2 = densityreg(Y, W, bw = fitbw2$bw, xgrid = x, ygrid = y,

K1 = K1, K2 = K2, mean.estimate = "kernel");

systime22=proc.time()-ptm; systime22;

##----- Method 3: proposed method without mean adjustment ----

## kernel functions

K1 = "SecOrder"; const1 = 0.427398;

K2 = "Gauss"; const2 = 1.06;
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Fig G.1. Boxplots of EISE using the fully data-driven bandwidths when the primary model
is (C1), the secondary model is X ∼ N(0, 1) and U ∼ Laplace(0, σu/

√
2), λ = 0.8. Panel (a)

presents the results when true σ2
u is used. Panels (b), (c) and (d) present the results when

one misspecifies σ2
u such that the reliability λ is assumed to be 0.7, 0.9 and 0.99, respectively.

Method 1, 2, 3, 4 correspond to p̃1(y|x), p̃2(y|x), p̂3(y|x), and p̂4(y|x), respectively. The
sample size is n = 500.

## initial reference rule

hxyhat = c(sd(W)*const1, sd(Y)*const2)*n^(-1/5);

## grid points for searching bandwidths

h1 = hxyhat[1]*seq(0.2, 1.5, length.out = 10 )

h2 = hxyhat[2]*seq(0.2, 1.5, length.out = 10 )

ptm<-proc.time()

fitbw3 = densityregbw(Y, W, xinterval = c(min(x), max(x)), sig = sigma_u,

h1 = h1, h2 = h2, K1 = K1, K2 = K2)

systime3=proc.time()-ptm; systime3;

ptm<-proc.time()

fhat3 = densityreg(Y, W, bw = fitbw3$bw, xgrid = x, ygrid = y, sig = sigma_u,

K1 = K1, K2 = K2);

systime33=proc.time()-ptm; systime33;

##----- Method 4: proposed method wit mean adjustment ----

## kernel functions

K1 = "SecOrder"; const1 = 0.427398;

K2 = "SecOrder"; const2 = 0.427398;
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Table G.1

Median and IQR (in parenthesis) of the EISE associated with each of the four considered
estimators using the fully data-driven bandwidths under (C1) with σ2

u correctly specified
(corresponding to panel (a) in Figure G.1) and misspecified (corresponding to panels (b)–(d)

in Figure G.1)

Method (a) (b) (c) (d)

1 0.186 (0.028) 0.188 (0.027) 0.185 (0.020) 0.187 (0.023)
2 0.163 (0.030) 0.167 (0.026) 0.164 (0.023) 0.165 (0.028)
3 0.151 (0.049) 0.159 (0.114) 0.156 (0.028) 0.185 (0.023)
4 0.114 (0.059) 0.130 (0.100) 0.120 (0.035) 0.160 (0.028)

## initial reference rule

hxyhat = c(sd(W)*const1, sd(Y)*const2)*n^(-1/5);

## grid points for searching bandwidths

h1 = hxyhat[1]*seq(0.5, 3, length.out = 10 )

h2 = hxyhat[2]*seq(0.2, 1.5, length.out = 10 )

ptm<-proc.time()

fitbw4 = densityregbw(Y, W, xinterval = c(min(x), max(x)), sig = sigma_u,

h1 = h1, h2 = h2, K1 = K1, K2 = K2, mean.estimate = "kernel")

systime4=proc.time()-ptm; systime4;

ptm<-proc.time()

fhat4 = densityreg(Y, W, bw = fitbw4$bw, xgrid = x, ygrid = y, sig = sigma_u,

K1 = K1, K2 = K2, mean.estimate = "kernel");

systime44=proc.time()-ptm; systime44;

The function densityregbw in the R package lpme (Zhou and Huang, 2017)
is used for bandwidths selection. We explain five arguments in this function
next.

(i) The argument sig allows one to specify the standard deviation of the
measurement error. Its default value is NULL, suggesting that one assumes
no measurement error. In the above code, letting sig = NULL or leaving
it unspecified leads to the naive estimates, p̃1(y|x) and p̃2(y|x); and we
set sig = sigma u with a pre-defined valeue for sigma u to obtain the
non-naive estimates, p̂3(y|x) and p̂4(y|x).

(ii) The argument mean.estimate is where one specifies the type of estimates
for the mean function m∗(·). If left unspecified, it takes the default value
of NULL, corresponding to the density estimation methods that do not re-
quire estimating the mean function. This is value for this argument when
computing p̃1(y|x) and p̂3(y|x) in the above code. To compute p̃2(y|x) and
p̂4(y|x) in the example code, we set mean.estimate = ‘‘kernel’’ to use
the local linear estimate for the mean function. For these two density esti-
mates, one may set mean.estimate = ‘‘spline’’ to estimate the mean
function using spline-based estimates, and use the argument spline.df

to specify the order of the spline. The default value of spline.df is 5.
(iii) The arguments K1 and K2 correspond to the kernel functions K1(t) and

K2(t) used in the main article. Choices for each one include the Gaussian
kernel, ‘‘Gauss’’, and the second order kernel, ‘‘SecOrder’’, defined in
(4.3) in the main article. In the current version, not all the combinations
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are supported, and one will receive an error message if one chooses a
combination of K1 and K2 that is not supported.

(iv) The arguments h1 and h2 are used to specify the searching grid points for
bandwidths h1 and h2. When unspecified, bandwidths selected based on
reference rules are used.

(v) The argument xinterval is used to specify the values xL and xU in the
main article.

The function densityregbw returns an object with three variables, bw (selected
bandwidths), h1 (searched grid points for h1), and h2 (searched grid points for
h2).

The function densityreg is used for density estimation. Some arguments
in this function are the same as those used in densityregbw. Two additional
arguments in this function are xgrid and ygrid, which are used to specify
the grid points for x and y in estimating p(y|x), respectively. The function
densityreg returns an object with three variables, fitxy (a matrix of fitted
values with rows corresponding to x values), xgrid (grid points for x), and
ygrid (grid points for y).
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