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Thin times and random times’ decomposition
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Abstract

The paper defines and studies thin times which are random times whose graph is
contained in a countable union of graphs of stopping times with respect to a reference
filtration F. We show that a generic random time can be decomposed into thin and
thick parts, where the second is a random time avoiding all F-stopping times. Then,
for a given random time τ , we introduce Fτ , the smallest right-continuous filtration
containing F and making τ a stopping time, and we show that, for a thin time τ , each
F-martingale is an Fτ -semimartingale, i.e., the hypothesis (H′) for (F,Fτ ) holds. We
present applications to honest times, which can be seen as last passage times, showing
classes of filtrations which can only support thin honest times, or can accommodate
thick honest times as well.
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Introduction

The paper studies the class of thin times in an enlargement of filtration framework.
The concept naturally fits, and complements, the studies of random times and progres-
sive enlargement of filtrations. A random time defined on a filtered probability space
(Ω,G,F,P) with F = (Ft)t≥0, is a random variable with values in [0,∞]. In the literature
of enlargement on filtration, e.g., Mansuy and Yor [21] and Nikeghbali [23], it is common
to assume that the random time τ avoids all F-stopping times, i.e., P(τ = T <∞) = 0 for
any F-stopping time T . The motivation behind our work is to explore what happens if
this condition fails. In Definition 1.1 we introduce thin times which satisfy the opposite
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Thin times and random times’ decomposition

property, i.e., their graph is contained in a countable union of graphs of F-stopping
times. We emphasise that in the discrete time set-up all stopping times, and random
times in general, have countably many values and hence are thin. That is yet another
natural motivation to study this class in general continuous time set-up. The given name
is motivated by the fact that the graph of a thin random time is contained in a thin set
(see [13, Chapter I, Definition 1.30] for definition and main properties of thin sets). The
notion of thin time was mentioned, but not developed, for the first time in Dellacherie
and Meyer [7] under the name arlequine random variable referring to the costume of the
Harlequin which is made of patches of different colors. On the other hand, we also work
with thick times which are introduced in Definition 2.1, and satisfy the above avoidance
condition, and the graph of a thick random time does not intersect any thin set (i.e., the
intersection is an evanescent set). In Section 1, we show the first results on thin times.
Our study strongly relies on the notion of dual optional projection and other processes
linked to the general theory of stochastic processes, in particular, to the enlargement of
filtration theory.

Since their introduction in the 1980’s, enlargements of filtrations have remained
an important tool and field of study in the theory of stochastic processes. In fact the
theory has seen its second youth recently with revised interest sparked by applications
in mathematical finance. These include, in particular, credit risk and modelling of
asymmetry of information, where one considers a financial market where different
agents have different levels of information.

Enlargement of filtration theory, to which we contribute here, focuses on the prop-
erties of stochastic processes under a change of filtration. The behaviour of (semi)-
martingales under a suitable change of filtration may be seen as parallel to absolutely
continuous change of measure and Girsanov’s theorem (see [12, 27, 28]). It is of a funda-
mental interest to provide new classes of enlargements under which the semimartingale
property is stable.

Thin times form a new class of random times which possesses this property under
progressive enlargement. Recall that for a random time τ , Fτ := (Fτt )t≥0 denotes the
right-continuous filtration F progressively enlarged with τ , and is given by

Fτt :=
⋂
s>t

(Fs ∨ σ(τ ∧ s)) for any t ≥ 0.

The fundamental question in the enlargement of filtration theory is if all F-martingales
remain Fτ -semimartingales. If the latter property is satisfied we say, as it is done in the
literature, that the hypothesis (H′) holds for (F,Fτ ), in which case we are interested
in the Fτ -semimartingale decomposition of F-martingales (if (H′) holds for (F,Fτ ), F-
martingales are necessary Fτ -special semimartingales). The main result in Subsection
4.1 is Theorem 4.1 where we establish the hypothesis (H′) for thin random times and
give the corresponding semimartingale decomposition.

In Section 2, we define the decomposition of a random time into thick and thin parts
which we call the thin-thick decomposition. The thin-thick decomposition is congruent
with the decomposition of a stopping time into accessible and totally inaccessible parts.
One of the main results in this section, Theorem 2.5, says that any random time τ admits
a unique thin-thick decomposition and characterizes its thin and thick components in
terms of the dual optional projection of the indicator process 11[[τ,∞[[. In Section 2, we also
show the significance of thin-thick decomposition for the hypothesis (H′) and immersion
in the context of the progressive enlargement of filtration.

In Section 3, we turn to honest times which constitute an important and well studied
class of random times (see Barlow [3] and Jeulin [17]) and can be suitably represented as
last passage times. Adopting the notion of jumping filtration from Jacod and Skorokhod
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Thin times and random times’ decomposition

[14] we show in Theorem 3.6, which is the main result of this section, that such a
filtration can only support honest times which are thin. That includes the compound
Poisson process filtration. In [14], the link between jumping filtration and finite varia-
tion martingales is established; further developments related to purely discontinuous
martingale filtrations are presented in Hannig [10]. In Theorem 3.6, we also show that
there exists a thick honest time in any filtration which can accommodate a non-constant
continuous martingale. In Section 3, we also discuss two examples of thin honest times:
the last passage time at a barrier a of a compound Poisson process and an example
based on an approximation of a Brownian local time.

1 A definition and some properties of thin times

1.1 New class of random times

Let (Ω,G,P) be a complete probability space, equipped with a filtration F := (Ft)t≥0

satisfying the usual conditions of completeness and right-continuity, and such that
F∞ :=

⋃
t>0 Ft ⊂ G. For any càdlàg process X we denote by X− the left-continuous

version of X, by ∆X the jump of X and by X∞ the limit limt→∞Xt if it exists. The
process X is said to be increasing if, for almost all ω, it satisfies Xt(ω) ≥ Xs(ω) for all
t ≥ s. A random variable is said to be positive if it has values in [0,∞). We denote by
G •X the stochastic integral of a predictable process G w.r.t. a semimartingale X, when
this integral is well defined.

Consider a random time τ , i.e., a [0,∞]-valued G-measurable random variable. Note
that a random time τ is not necessarily F∞-measurable. For a random time τ , we denote
by [[τ ]] := {(ω, t) ⊂ Ω × R+ : τ(ω) = t} its graph. Let us recall, following [17], some
useful processes associated with the pair (F, τ). For the process A := 11[[τ,∞[[, we denote
by Ap its F-dual predictable projection and by Ao its F-dual optional projection (for
reader’s convenience definitions are recalled in Appendix A). By an abuse of language,
Ao is also called the dual optional projection of the random time τ . We also define two
F-supermartingales Z and Z̃ as the optional projections of processes 1−A and 1−A−
respectively, i.e.,

Zt := o
[
11[[0,τ [[

]
t

= P(τ > t|Ft) and Z̃t := o
[
11[[0,τ ]]

]
t

= P(τ ≥ t|Ft).

Since the dual optional projection Ao will play a crucial role in the paper, we recall two
equalities where it appears (see [17, Chapitre IV, section 1]):

Ao = m− Z and ∆Ao = Z̃ − Z , (1.1)

where m is a BMO F-martingale. Furthermore, Z̃ = Z− + ∆m.
The following definition contains the leading idea of the paper. It introduces a class

of random times using a criterion based on F-stopping times w.r.t. a reference filtration.

Definition 1.1. A random time τ is called an F-thin time if its graph [[τ ]] is contained in
an F-thin set, i.e., if there exists a sequence of F-stopping times (Tn)∞n=1 with disjoint
graphs such that [[τ ]] ⊂

⋃∞
n=1[[Tn]]. Moreover,

(a) Let T0 := ∞. We say that the sequence (Tn)n≥0 exhausts the F-thin time τ or that
(Tn)n≥0 is an F-exhausting sequence of the F-thin time τ .

(b) We say that the family of sets (Cn)n≥0, given by C0 := {τ =∞} and Cn := {τ = Tn <

∞} for n ≥ 1, is an F-partition of the F-thin time τ .

(c) We say that the family of bounded càdlàg F-martingales (zn)n≥0 given by their
terminal values P(Cn|F∞), namely znt := P(Cn|Ft), is a martingale family of the thin
time τ .
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If this is clear from the context, we shall simply say that τ is a thin time instead of
saying that τ is an F-thin time, etc. Note that a thin time τ is built from F-stopping
times, i.e., τ =

∑
n≥0 Tn11Cn where (Tn)n≥0 is one exhausting sequence and (Cn)n≥0 is its

partition. On the other hand, given a sequence (Tn)n≥0 of F-stopping times with disjoint
graphs such that T0 = ∞ and a partition (Cn)n≥0 of Ω, the random time τ defined as
τ :=∞11C0

+
∑
n≥1 Tn11Cn is thin.

Let us also remark that an exhausting sequence (Tn)n≥0 of a thin time is not unique,
however the properties of a thin time do not depend on the specific choice of an
exhausting sequence. The following proposition combines two exhausting sequences of
a given thin time.

Proposition 1.2. Let τ be a thin time with an exhausting sequence (Tn)n≥0 and a
partition (Cn)n≥0. Suppose that (Sn)n≥0 and (Bn)n≥0 are as well an exhausting se-
quence and a partition of τ . Then, (U0, (Un,m)n≥1,m≥1), defined as U0 := ∞ and
Un,m := Tn11{Tn=Sm} +∞11{Tn 6=Sm} for n ≥ 1 and m ≥ 1, is an exhausting sequence
of τ and (D0, (Dn,m)n≥1,m≥1) defined as D0 := {τ =∞} and Dn,m := Cn ∩ Bm for n ≥ 1

and m ≥ 1, is the corresponding partition of τ .

Proof. Firstly note that Un,m is a stopping time for any pair n ≥ 1 and m ≥ 1 since
{Tn = Sm} ∈ FTn∧Sm . Secondly note that the following identity holds:

τ =∞11{τ=∞} +
∑
n≥1

∑
m≥1

Tn11{τ=Tn=Sm<∞} =∞11D0
+
∑
n≥1

∑
m≥1

Un,m11{τ=Un,m<∞}.

Hence it remains to show that (Un,m)n≥1,m≥1 have disjoint graphs which follows by
observing that the sets

[[Un,m]] ∩ [[Uk,l]] ⊂ [[Tn]] ∩ [[Tk]] and [[Un,m]] ∩ [[Uk,l]] ⊂ [[Sm]] ∩ [[Sl]]

are evanescent if n 6= k or m 6= l.

Thin times, unlike other classes of random times, possess many stability properties
as those described in the following remark.

Remark 1.3. (a) Let Q be a probability measure absolutely continuous w.r.t. P and F̃ be
the filtration F completed with Q-null sets. Then an F-thin time is an F̃-thin time since
F ⊂ F̃. In other words thin times are invariant w.r.t. an absolutely continuous change of
measure.
(b) Let G be a filtration such that F ⊂ G. Then any F-thin time is a G-thin time since
any F-stopping time is a G-stopping time. In other words, thin times are stable under
filtration enlargement.
(c) Let τ and σ be two F-thin times with exhausting sequences (Tn)n≥0 and (Sn)n≥0

respectively. Then τ ∧ σ and τ ∨ σ are also F-thin times since

[[τ ∧ σ]] ⊂
⋃
n≥1

[[Tn]] ∪
⋃
n≥1

[[Sn]] and [[τ ∨ σ]] ⊂
⋃
n≥1

[[Tn]] ∪
⋃
n≥1

[[Sn]].

The following theorem provides a useful characterization of a thin time based on its
F-dual optional projection.

Theorem 1.4. A random time is a thin time if and only if its dual optional projection is a
pure jump process.

Proof. For any sequence (Sn)n≥1 of F-stopping times with disjoint graphs, we have

∞∑
n=1

P(τ = Sn <∞) =

∞∑
n=1

E
[
∆AoSn11{Sn<∞}

]
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as, from definition of dual optional projection, P(τ = S < ∞) = E
[
∆AoS11{S<∞}

]
for

any stopping time S. Since also by definition of the dual optional projection E[Ao∞] =

P(τ < ∞), and using the fact that Ao is an increasing process, we conclude that
the sequence (Tn)n≥0 with T0 = ∞ is an exhausting sequence of τ , i.e., satisfies the
condition

∑∞
n=1P(τ = Tn < ∞) = P(τ < ∞), if and only if it satisfies the condition

E[Ao∞] =
∑∞
n=1E[∆AoTn11{Tn<∞}]. In other words, τ is a thin time if and only if Ao is a

pure jump process.

The following result describes how, after a thin time, the conditional expectations
with respect to elements of Fτ can be expressed in terms of the conditional expectations
with respect to elements of F. For an arbitrary random time, one is able to express
Fτ -conditional expectations in terms of F-conditional expectations only strictly before τ
(this result is often referred to as key lemma in enlargement of filtration literature, see
Lemma 3.1 in [9] and Section 3.1.1 in [4]). A powerful property of thin times is that one
can obtain this kind of result also after τ as described below. It is crucial for results in
Section 4.1.

The proof of the following Lemma 1.5 is given in Appendix C.

Lemma 1.5. Let τ be a thin time with exhausting sequence (Tn)n≥0, partition (Cn)n≥0

and martingale family (zn)n≥0. Then:

(a) znt > 0 and znt− > 0 for all t ≥ 0 a.s. on Cn for each n ≥ 0.

(b) The progressive enlargement of filtration F with τ , Fτ := (Fτt )t≥0, defined by
Fτt :=

⋂
u>t Fu ∨ σ({τ ≤ s} : s ≤ u}, satisfies

Fτt =
⋂
u>t

Fu ∨ σ(Cn ∩ {Tn ≤ s}, s ≤ u, n ≥ 1).

(c) For any n ≥ 1 and any G-measurable integrable random variable X, we have

E [X|Fτt ] 11{t≥Tn}∩Cn = 11{t≥Tn}∩Cn
E [X11Cn |Ft]

znt
.

Corollary 1.6. It follows immediately that, for s ≤ t, n ≥ 1 and any G-measurable
integrable random variable X

E [X|Fτt ] 11{s≥Tn}∩Cn = 11{s≥Tn}∩Cn
E [X11Cn |Ft]

znt
.

1.2 Application to market incompleteness

In Kardaras and Ruf [20], the authors, among other problems, study the question
whether a complete market can become incomplete after shrinking the filtration. In
Section 5.1 therein, the following motivating example is considered. LetW be a Brownian
motion and FW be its natural filtration. Let B be the Lévy transformation of W , i.e.,
B =

∫ ·
0

sgn(Ws)dWs, and FB its natural filtration.
Then FB = F|W | ( FW and the stochastic exponential S = E(B) has a predictable

representation property in both FB and FW , in particular (S,FW )-market is complete.
The authors consider the FW -stopping time

τ := inf{t ≥ 0 : Wt = 1},

and note that τ is not FB-stopping time. The filtration F is defined as the progressive
enlargement of FB with τ . Next, a sequence of FB-stopping times is defined by

Tn := inf{t > Sn−1 : |Wt| = 1}, with Sn := inf{t > Tn : |Wt| = 0} and S0 = 0.
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Then, the process

N := 11[[τ,∞[[ −
1

2

∞∑
n=1

11[[Tn,∞[[11{τ≥Tn}

is an F-martingale but not an FW -local martingale (since it is not continuous). Hence,
the (S,F)-market is not complete (as S has no predictable representation property in F).

We note here that in fact τ is an FB-thin time with exhausting sequence (Tn), indeed
[[τ ]] ⊂

⋃∞
n=1[[Tn]]. The random time τ is an F-accessible stopping time since Tn are already

FB-predictable stopping times, and F is not a quasi left continuous filtration (compare
also with Remark 2.8(b)). The above example from [20] works in analogous way for any
FB-thin time τ , and illustrates natural interest in this class of times.

We also remark that the above example illustrates well the result in [5, Proposition
9, p.289]. The process B is both an F and an FW -martingale which has predictable
representation property in FW . However, B has no predictable representation property
in F, and F is not immersed in FW .

2 Thin-thick decomposition of a random time

In this section we present an application of thin times to the decomposition of a
generic random time into thin and thick parts. In the first subsection, we introduce and
present some results about thick times. Then, in the second subsection, we establish
the thin-thick decomposition. Finally, in the remaining subsections, we apply thin-thick
decomposition to obtain results on the hypothesis (H′) and immersion.

2.1 Thick times

As described in the introduction, thick times avoid stopping times from the reference
filtration, i.e., thick times are defined in the following way.

Definition 2.1. A random time τ is called a thick time if [[τ ]] ∩ [[T ]] is evanescent for any
F-stopping time T , i.e., if it avoids all F-stopping times.

Similarly as for thin times in Theorem 1.4, thick times can be characterized in terms
of their dual optional projection.

Theorem 2.2. A random time is a thick time if and only if its dual optional projection is
a continuous process. In that case Ao = Ap.

Proof. Let T be an F-stopping time. Since E[∆AoT 11{T<∞}] = P(τ = T < ∞) and Ao is
an increasing process, we deduce that

P(τ = T <∞) = 0 if and only if ∆AoT 11{T<∞} = 0 P-a.s.

Since {∆Ao > 0} is an optional set, the optional section theorem [11, Theorem 4.7]
implies that {∆Ao > 0} is exhausted by disjoint graphs of F-stopping times. Thus, we
conclude that τ is a thick time if and only if Ao is continuous.

The straightforward observation that the two classes of thin and thick times have
trivial intersection is stated in the following obvious lemma.

Lemma 2.3. A random time τ belongs to the class of thick times and to the class of thin
times if and only if τ =∞.

2.2 Decomposition of a random time

The main concept of this section, the thin-thick decomposition, is presented in the
next definition. It is followed by the result stating the existence of such a decomposition
for any random time.
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Definition 2.4. Consider a random time τ . A pair of random times (τ1, τ2) is called a
thin-thick decomposition of τ if τ1 is a thin time, τ2 is a thick time, and

τ = τ1 ∧ τ2 τ1 ∨ τ2 =∞.

Theorem 2.5. Any random time τ has a thin-thick decomposition (τ1, τ2) which is a.s.
unique.

Proof. Let us define τ1 and τ2 as τ1 := τ{∆Aoτ>0} and τ2 := τ{∆Aoτ=0}, where τC is the
restriction of the random time τ to the set C, defined as τC = τ11C +∞11Cc . Properties
of dual optional projection ensure that τ1 and τ2 satisfy the required conditions. More
precisely, the time τ1 is a thin time since

[[τ1]] = [[τ ]] ∩ {∆Ao > 0} = [[τ ]] ∩
⋃
n

[[Tn]] ⊂
⋃
n

[[Tn]],

where the sequence (Tn)n exhausts the jumps of the càdlàg increasing process Ao, i.e.,
{∆Ao > 0} =

⋃
n[[Tn]] and the time τ2 is a thick time since, for any F-stopping time T ,

P(τ2 = T <∞) = E
[
11{τ=T}∩{∆Aoτ=0}11(T<∞)

]
= E

[∫ ∞
0

11{u=T}∩{∆Aou=0}dA
o
u

]
= 0.

In the following proposition we study the condition Ao = Ap. We have seen already
that, if either τ avoids F stopping times or all F-martingales are continuous, then this
condition holds.

Proposition 2.6. The condition Ao = Ap holds if and only if the random time τ satisfies
that:

(a) P(τ = T <∞) = 0 for any F-totally inaccessible stopping time T , and

(b) P(τ = S <∞|FS) = P(τ = S <∞|FS−) for any F-predictable stopping time S.

Proof. By Proposition C.2 and Theorem 2.2 it is enough to assume that τ is a thin time.
We choose an exhausting sequence (Sn)n≥1 so that it only contains totally inaccessible or
predictable stopping times. Then, by Proposition C.1 (b) and by the fact that Ap = (Ao)p,
we conclude that Ao = Ap is equivalent to znSn11[[Sn,∞[[ =

(
znSn11[[Sn,∞[[

)p
for each n ≥ 1. If

Sn is totally inaccessible then the latter condition is equivalent to znSn11{Sn<∞} = 0 which

is the condition (1). If Sn is predictable then
(
znSn11[[Sn,∞[[

)p
= pznSn11[[Sn,∞[[ which boils

down to the condition (2).

Remark 2.7. The condition (b) from Proposition 2.6 is always satisfied in quasi-left
continuous filtrations, since then FS = FS− for F-predictable stopping time S. Therefore,
if F is the natural filtration of a Poisson process with jump times (Tn)n≥1, which is
quasi-left continuous, the condition Ao = Ap holds if and only if P(τ = Tn <∞) = 0 for
any n, since any F-totally inaccessible stopping time T satisfies [[T ]] ⊂

⋃
n[[Tn]]. One can

find such an example in [1, Proposition 4].

Remark 2.8. (a) Since τ1 is an Fτ -stopping time, it can be decomposed into Fτ -accessible
and Fτ -totally inaccessible parts. Thus, we can consider the decomposition of τ into
three parts as:

τ i1 = τ{∆Aoτ>0, ∆Apτ=0}, τa1 = τ{∆Aoτ>0, ∆Apτ>0} and τ2 = τ{∆Aoτ=0}.

Since τ2 is Fτ -totally inaccessible, it follows that τ i1 ∧ τ2 is the Fτ -totally inaccessible part
and τa1 is the Fτ -accessible part of the Fτ -stopping time τ . Results of a similar type can
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be found in [6] and [17, p.65]. We note that τ is an Fτ -predictable stopping time if and
only if τ is equal to an F-predictable stopping time on {τ > 0}.
(b) Assume that the Fτ -accessible stopping time τa1 is not equal to an F-stopping time
on {τ > 0}. Then, the filtration Fτ is not quasi-left continuous. This provides a systemic
way to construct examples of non quasi-left continuous filtrations.

3 Link between thin times and honest times

In this section, we restrict our attention to a special class of random times, namely
to honest times. We recall the definition below (see [17, p. 73]) and some alternative
characterizations in Appendix B. Honest times are a well- studied class of time for which,
in particular, the hypothesis (H′) holds.

Definition 3.1. A random time τ is an F-honest time if for every t > 0 there exists an
Ft-measurable random variable τt such that τ = τt on {τ < t}.
Remark 3.2. By eventually taking τt ∧ t, it is always possible to choose τt such that
τt ≤ t in Definition 3.1.

3.1 Fundamental properties

We start with providing a characterisation and properties of (thin) honest times.

Theorem 3.3. (a) Let (τ1, τ2) be the thin-thick decomposition of τ . Then, τ is honest if
and only if τ1 and τ2 are honest.
(b) A random time τ is a thick honest time if and only if Zτ = 1 a.s. on {τ <∞}.
(c) Let τ be an honest time with thin-thick decomposition (τ1, τ2). Then, Zτ < 1 on
{τ = τ1 <∞} and Zτ = 1 on {τ = τ2 <∞}.

Proof. (a) On the set {τ < ∞}, τ is equal to γ, the end of the optional set Γ (Theorem
B.2). Then, as {τ1 < ∞} ⊂ {τ < ∞}, on the set {τ1 < ∞}, one has τ1 = γ, so τ1 is an
honest time. Same argument for τ2.
(b) Assume that τ is a thick honest time. Then, the honest time property presented in
Theorem B.2 (c) implies that Z̃τ = 1 and the thick time property implies, by Theorem 1.4
(b), the continuity of Ao. Therefore, the equality Z̃ = Z + ∆Ao leads to equality Zτ = 1

a.s. on {τ <∞}.
Assume now that Zτ = 1 on the set {τ < ∞}. Then, on {τ < ∞} we have 1 = Zτ ≤

Z̃τ ≤ 1, so Z̃τ = 1 and τ is an honest time. Furthermore, as ∆Aoτ = Z̃τ −Zτ = 0, for each
F-stopping time T we have

P(τ = T <∞) = E
[
11{τ=T}11{∆Aoτ=0}11(T<∞)

]
= E

[∫ ∞
0

11{u=T}11{∆Aou=0}dA
o
u

]
= 0.

So τ is a thick time.
(c) Denoting by Zi, Z̃i the supermartingales associated with τi for i = 1, 2, from the
honest time property of τ and Proposition C.2 (a), on the set {τ <∞}

1 = Z̃τ = Z̃1
τ + Z̃2

τ − 1.

On the set {τ = τ1 <∞},

Zτ = Z1
τ1 + Z2

τ1 − 1 ≤ Z2
τ1 < 1,

where the last inequality is due to Proposition C.1 (a). On the set {τ = τ2 <∞}, we have

1 = Z̃1
τ2 + Z̃2

τ2 − 1 = Z̃1
τ2 ,
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where the second equality comes from (c) in Theorem B.2. Now let us compute Z1
τ2

Z1
τ2 = Z̃1

τ2 −∆A1 ,o
τ2 = Z̃1

τ2 = 1,

where we have used that {∆A1 ,o > 0} =
⋃∞
n=1[[Tn]] with (Tn)n≥0 being an exhausting

sequence of τ1, and the thick time property of τ2, i.e., P(τ2 = Tn <∞) = 0. Finally, on
{τ = τ2 <∞}

Zτ = Z1
τ2 + Z2

τ2 − 1 = 1.

Remark 3.4. We would like to remark that the condition Zτ < 1 for an honest time τ –
which, by Theorem 3.3 (c), is equivalent to the condition that τ is a thin honest time – is
an essential assumption in [2] for the study of arbitrages after honest times.

3.2 Jumping filtration

In this subsection we develop the relationship between jumping filtration and thin
honest times. Let us first recall the definition of a jumping filtration studied in Jacod and
Skorokhod [14].

Definition 3.5. A filtration F is called a jumping filtration if there exists a localizing
sequence (θn)n≥0, i.e., a sequence of stopping times increasing a.s. to ∞, with θ0 = 0

and such that, for all n and t > 0, the σ-fields Ft and Fθn coincide up to null sets on
{θn ≤ t < θn+1}.
The sequence (θn)n is then called a jumping sequence.

We investigate relationship between jumping filtration and honest times. We show
that there does not exist thick honest time in a jumping filtration and that there exists a
thick honest time in a filtration which admits a non-constant continuous martingale (in
particular such a filtration is not a jumping filtration).

Theorem 3.6. The following assertions hold.
(a) If F is a jumping filtration, then all F-honest times are thin.
(b) If all F-honest times are thin, then all F-local martingales are purely discontinuous.

Proof. (a) Let τ be an honest time. Then, take the same process α as in the proof of
Proposition B.1, i.e., α is an increasing, càdlàg, adapted process such that αt = τ on
{τ ≤ t} and τ = sup{t : αt = t}. Let us define the partition (Cn)∞n=0 such that

Cn = {θn−1 ≤ τ < θn}

for n ≥ 1 and C0 = {τ = ∞} with (θn)n≥0 being a jumping sequence for the jumping
filtration F. On each Cn with n ≥ 1, we have

τ = Tn := inf{t ≥ θn−1 : t = αθn−}.

From the jumping filtration property, we know that αθn− is Fθn−1 -measurable, so each
Tn is a stopping time and [[τ ]] ⊂

⋃∞
n=1[[Tn]] which shows that the honest time τ is a thin

time.

(b) By [14, Theorem 1], F is a jumping filtration if and only if all F-martingales has
finite variation. Then, using this equivalence, the proof by contradiction is based on [26,
Exercise (1.26) p.235]. Assume that M is a non-constant continuous F-local martingale
with M0 = 0. Define the F-stopping time S1 = inf{t > 0 : 〈M〉t = 1}. Then, define the
F-honest time
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τ := sup {t ≤ S1 : Mt = 0} .

Since M is continuous, τ is not equal to infinity with strictly positive probability. We now
show that τ is an F-thick honest time. Let us denote Z(ω) := {t : Mt(ω) = 0}. The set
Z(ω) is closed and Zc(ω) is the union of countably many open intervals. We call G(ω) the
set of left ends of these open intervals. In what follows we show that for any F-stopping
time T , we have P(T ∈ G) = 0. Define the F-stopping time DT := inf{t > T : Mt = 0}
and note that {T ∈ G} = {MT = 0} ∩ {T < DT } ∈ FT . Assume P(T ∈ G) = p > 0. Then
the process

Yt = 11{T∈G}|MT+t|11{0≤t≤DT−T}

is an (FT+t)t≥0-martingale. Indeed, for s ≤ t, we have

E(Yt|FT+s) = 11{T∈G}sgn(MT+t)E(MT+t11{t≤DT−T}|FT+s)

=11{T∈G}sgn(MT+t)[
MT+s11{s≤DT−T} − E(11{s≤DT−T}11{t>DT−T}E(MT+t|FDT )|FT+s)

]
=Ys − 11{T∈G}sgn(MT+t)E(11{s≤DT−T}11{t>DT−T}MDT |FT+s)

=Ys

where we have used the martingale property of M and MDT = 0. Moreover Y0 = 0 and
there exists ε > 0 such that

P(MT = 0, DT − T > ε) ≥ p

2
> 0.

Since Yε = 11{MT=0}11{DT−T≥ε}|MT+ε| ≥ 0 and P(Yε > 0) > 0, we have E(Yε) > 0 =

Y0. So, P(T ∈ G) = 0. Finally, as τ ∈ G a.s. we conclude that τ is a thick honest
time.

Finally we give two examples of thick honest times originating from purely discon-
tinuous semimartingales of infinite variation. In particular, these examples show that a
reverse implication in Theorem 3.6(b) does not hold. In the first Example 3.7, we study
the case of Azéma’s martingale (see [25, IV.8 p.232-237]). In the second Example 3.8,
we recall Example 2.1 from [19] on Maximum of downwards drifting spectrally negative
Lévy processes with paths of infinite variation.

Example 3.7. Let B be a Brownian motion and F its natural filtration. Define the
process

gt := sup{s ≤ t : Bs = 0}.

The process

µt := sgn(Bt)
√
t− gt

is a martingale with respect to the filtration G := (Fgt+)t≥0 and is called the Azéma
martingale. Then, the random time

τ := sup{t ≤ 1 : µt = 0}

is clearly a G-honest time. Note that τ = τB := sup{t ≤ 1 : Bt = 0} and τB is an F-thick
honest time since it has continuous F-dual optional projection (see in [21, Table 1α 1),
p.32]). Thus, since G ⊂ F, τ is a G-thick honest time.

Example 3.8. Let X be a Lévy process with characteristic triplet (α, σ2 = 0, ν) satisfying
ν((0,∞)) = 0, α +

∫ −1

−∞ xν(dx) < 0 and
∫ 0

−1
|x|ν(dx) = ∞. Then, ρ = sup{t : Xt− = X∗t−}

with X∗t = sups≤tXs is a thick honest time as shown in [19, Section 2.1].
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4 Martingale and semimartingale stability for thin times

4.1 The hypothesis (H′) for thin times

One of the vital questions in the enlargement of filtration theory is whether all
semimartingales in the reference filtration remain semimartingales in an enlarged
filtration, i.e., whether the hypothesis (H′) holds. In progressive enlargement setting
there are only few classes of random times with this property, i.e., honest times and
random times satisfying Jacod’s absolutely continuous condition. In this section we prove
the hypothesis (H′) for the new class of random times, i.e., thin times.

Theorem 4.1. Let τ be a thin time. Then the hypothesis (H′) is satisfied for (F,Fτ ).
Moreover, each F-local martingale X has the following Fτ -semimartingale canonical
decomposition

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X,m〉s +

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s, (4.1)

where X̂ is an Fτ -local martingale and (zn)n≥0 is a martingale family of the thin time τ ,
and the predictable brackets are computed in F.

Proof. Let F C denote the initial enlargement of the filtration F with the atomic σ-field
C := σ(Cn, n ≥ 0) generated by a partition (Cn, n ≥ 0) of a thin time τ , i.e.,

FCt :=
⋂
s>t

Fs ∨ σ(Cn, n ≥ 0). (4.2)

For this case of enlargement, Jacod’s result (see [17, Theorem 3,2] and [22]) implies that
the hypothesis (H′) holds for (F,F C). Since clearly F ⊂ Fτ ⊂ F C , Stricker’s Theorem [25,
Theorem 4, Chapter II] implies that the hypothesis (H′) holds for (F,Fτ ). To prove the
decomposition result, let H be an Fτ -predictable bounded process. Then, [17, Lemma
(4,4)] implies that

Ht = 11{t≤τ}Jt + 11{τ<t}Kt(τ), t ≥ 0,

where J is an F-predictable bounded process and K : R+ × Ω×R+ → R is P ⊗ B(R+)-
measurable and bounded (P denotes the F-predictable σ-field). Since τ is a thin time,
we can rewrite the process H as

Ht = Jt11{t≤τ} +

∞∑
n=1

11{Tn<t}Kt(Tn)11Cn .

Note that, since {t ≤ τ} ⊂ {Zt− > 0}, J can be chosen to satisfy Jt = Jt11{Zt−>0}
and, since Cn ⊂ {znt− > 0}, each process Kn

t := 11{Tn<t}Kt(Tn) being F-predictable and
bounded, Kn can be chosen to satisfy Kn

t = Kn
t 11{znt−>0}.

We denote by H1(F) the space of F-local martingales N s.t. E([N ]
1/2
∞ ) <∞. Let N be

an H1(F)-martingale. Then the stochastic integrals J •N and Kn •N are well defined and
each of them is an H1(F)-martingale. For each n ≥ 0 and for each bounded F-martingale
N , by integration by parts, we have that

E [11CnN∞] = E [[zn, N ]∞] = E [〈zn, N〉∞] . (4.3)

Since N → E[11CnN∞] is a linear form, the duality (H1, BMO) implies that (4.3) holds
for any H1(F)-martingale N . Similarly, since m, given in (1.1), is a BMO(F)-martingale,
for any H1(F)-martingale N , the process 〈N,m〉 exists and we have

E[Nτ ] = E [[N,m]∞] = E [〈N,m〉∞] .
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Therefore

E

[∫ ∞
0

HsdNs

]
=E

[∫ τ

0

JsdNs

]
+

∞∑
n=1

E

[
11Cn

∫ ∞
0

Kn
s dNs

]

=E

[∫ ∞
0

Jsd〈m,N〉s
]

+

∞∑
n=1

E

[∫ ∞
0

Kn
s d〈zn, N〉s

]
.

Then, since for any predictable finite variation process V , E[
∫∞

0
hsdVs] = E[

∫∞
0

phsdVs],
and Z− = p(1−A−), we deduce, taking care on the specific choice of J and K,

E

[∫ ∞
0

HsdNs

]
= E

[∫ ∞
0

Zs−
Zs−

11{Zs−>0}Jsd〈m,N〉s
]

+

∞∑
n=1

E

[∫ ∞
0

zns−
zns−

11{zns−>0}K
n
s d〈zn, N〉s

]

= E

[∫ τ

0

1

Zs−
Jsd〈m,N〉s

]
+

∞∑
n=1

E

[
11Cn

∫ ∞
0

1

zns−
Kn
s d〈zn, N〉s

]
.

The assertion of the theorem follows as, for any s ≤ t and F ∈ Fτs , the process H =

11(s,t]11F is clearly Fτ -predictable. To end the proof, we recall that any local martingale is
locally in H1 (see [25, Theorem 51, Chapter IV]).

Remark 4.2. Lemma (4,11) in [17], where the random time with countably many values
is considered, is a special case of Theorem 4.1. It corresponds to the situation of
thin random time whose graph is included in countable union of constant sections, i.e,
[[τ ]] ⊂

⋃
n[[tn]] with [[tn]] = {(ω, tn) : ω ∈ Ω} and tn ∈ R+.

We end this section with a second proof of Theorem 4.1. It is based on Lemma 4.3
which establishes a link between processes in Fτ and F C.

Lemma 4.3. Let τ be a thin time and Y be a process such that Y = 11]]τ,∞[[ • Y . Then:

(a) The process Y is an F C-(super, sub)martingale if and only if the process Y is an
Fτ -(super, sub)martingale.

(b) Let ϑ be an F C-stopping time. Then ϑ ∨ τ is an Fτ -stopping time.

(c) The process Y is an F C-local martingale if and only if the process Y is an Fτ -local
martingale.

Proof. (a) Note that the filtrations Fτ and F C are equal after τ , i.e., for each t and for
each set G ∈ FCt , there exists a set F ∈ Fτt such that

{τ ≤ t} ∩G = {τ ≤ t} ∩ F. (4.4)

To show (4.4), by monotone class theorem, it is enough to consider G = Cn and to take
F = Cn ∩ {τ ≤ t} which belongs to Fτt as Cn ∈ Fττ by [11, Corollary 3.5]. That implies
that the process 11]]τ,∞[[ • Y is Fτ -adapted if and only if it is F C-adapted. The equivalence
of (super-, sub-) martingale property comes from (4.4).
(b) For each t we have {ϑ ∨ τ ≤ t} = {ϑ ≤ t} ∩ {τ ≤ t} ∈ Fτt by (4.4).
(c) We combine the two previous points.

Second proof of Theorem 4.1. Let X be a bounded F-martingale. Then, it is enough
to show that 11[[0,τ ]] • X and 11]]τ,∞[[ • X are two Fτ -semimartingales with appropriate
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decompositions. By [17, Proposition (4,16)] 11[[0,τ ]] •X = X·∧τ is an Fτ -semimartingale
with the decomposition

Xt∧τ = X̂1
t +

∫ t∧τ

0

1

Zs−
d〈X,m〉s,

where X̂1 is an Fτ -local martingale. By Lemma 4.3 and Jacod’s result (see [17, Theorem
3,2] and [22]), it follows that 11]]τ,∞[[ •X is an Fτ -semimartingale with decomposition

Xt −Xt∧τ = X̂2
t +

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s,

where X̂2 is an Fτ -local martingale. This completes the proof.

4.2 Immersion for thin times

Immersion, also called the hypothesis (H) is a more restrictive hypothesis for en-
largement of filtration than the hypothesis (H′). Given F ⊂ G, we say that F is immersed
in G if any F-martingale is a G-martingale. The equivalent condition to immersion,
established in Theorem 3 in [5], says that for each t ≥ 0 and G ∈ L1(Gt) it holds that
E[G|Ft] = E[G|F∞]. Immersion does not hold for each thin time. However, in the next
proposition, an equivalent condition to immersion is given. In particular, it implies that
there exist thin times for which immersion holds and which are not stopping times.

Proposition 4.4. Let τ be a thin time with exhausting sequence (Tn)n≥0, partition
(Cn)n≥0 and martingale family (zn)n≥0. Then, F is immersed in Fτ if and only if one of
the following conditions hold:

(a) zn∞ = znTn for each n ≥ 1,

(b) znt = znTn∧t for each t ≥ 0 for each n ≥ 1,

(c) for each n ≥ 1, Cn is independent of F∞ conditionally w.r.t. FTn .

Proof. By Theorem 3 in [5], Lemma 1.5 (b) and monotone class theorem, F is immersed
in Fτ if and only if P(Cn ∩ {Tn ≤ t}|Ft) = P(Cn ∩ {Tn ≤ t}|F∞) for each n ≥ 1. The last
condition is precisely znt 11{Tn≤t} = zn∞11{Tn≤t} for each n ≥ 1, which is the condition (b).
Since zn are martingales, we conclude that immersion is equivalent to znTn = zn∞ stated
in the condition (a). Since znTn = zn∞ can be rewritten as P(Cn|FTn) = P(Cn|F∞), we
conclude that immersion is satisfied if and only if, for each n ≥ 1, Cn is independent of
F∞ conditionally w.r.t. FTn .

Remark 4.5. Immersion property for a random time τ implies in particular that τ is a
pseudo-stopping time. Recall that a random time τ is a pseudo-stopping time if for any
bounded F-martingale X it holds that E[Xτ ] = E[X0], or equivalently as established in
[24], if m ≡ 1.

Let τ be a thin time. Then, by Proposition C.1, τ is a pseudo-stopping time if and
only if

∑∞
n=0 z

n
t∧Tn = 1 for any t ≥ 0. Clearly, immersion implies the last condition as, by

Proposition 4.4 (b) and since T0 =∞,

∞∑
n=0

znt∧Tn = z0
t +

∞∑
n=1

znt∧Tn =

∞∑
n=0

znt = 1.

Reverse implication does not hold.
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5 Martingale and semimartingale stability for a general random
time

5.1 The hypothesis (H′) for a random time

We study here the hypothesis (H′) in the progressive enlargement of filtration in
connection to the thin-thick decomposition of the random time. Let (τ1, τ2) be the
thin-thick decomposition of a random time τ . We define three enlarged filtrations
Fτ1 := (Fτ1t )t≥0, Fτ2 := (Fτ2t )t≥0 and Fτ1,τ2 := (Fτ1,τ2t )t≥0 as

Fτit : =
⋂
s>t

Fs ∨ σ(τi ∧ s) for i = 1, 2

Fτ1,τ2t : =
⋂
s>t

Fs ∨ σ(τ1 ∧ s) ∨ σ(τ2 ∧ s).

Clearly, F ⊂ Fτi ⊂ Fτ1,τ2 = (Fτ1)τ2 = (Fτ2)τ1 for i = 1, 2.

Theorem 5.1. Let τ be a random time and (τ1, τ2) its thin-thick decomposition. Then,
Fτ = Fτ1,τ2 . Furthermore, the hypothesis (H′) is satisfied for (F,Fτ ) if and only if the
hypothesis (H′) is satisfied for (F,Fτ2).

Proof. In a first step, we show that, for i = 1, 2:

F ⊂ Fτi ⊂ Fτ1,τ2 = Fτ .

Let Ao be the F-dual optional projection of τ . Note that

11[[τ1,∞[[ = 11[[τ,∞[[11{∆Aoτ>0} and 11[[τ2,∞[[ = 11[[τ,∞[[11{∆Aoτ=0},

thus, since ∆Aoτ ∈ Fττ , the processes 11[[τ1,∞[[ and 11[[τ2,∞[[ are Fτ -adapted which implies
that Fτ1,τ2 ⊂ Fτ . On the other hand, we have

11[[τ1,∞[[ + 11[[τ2,∞[[ = 11[[τ,∞[[

which implies that Fτ1,τ2 ⊃ Fτ .
In a second step, note that if an F-martingale is an Fτ -semimartingale, by Stricker’s

Theorem [25, Theorem 4, Chapter II, p. 53], it is as well an Fτ2 -semimartingale. Thus
the necessary condition follows. Since τ1 is an F-thin time, it is an Fτ2 -thin time and
the equality Fτ1,τ2 = Fτ and Theorem 4.1 imply that the hypothesis (H′) is satisfied for
(Fτ2 ,Fτ ). Thus the sufficient condition follows.

In the following corollary, we examine the hypothesis (H′) for the minimum of a
thin time and a random time satisfying the hypothesis (H′), namely an honest time or a
time satisfying Jacod’s absolute continuity condition (see [17, Chapter 5] and [15, 12]
respectively).

Corollary 5.2. Let τ be a thin time and σ be an honest time or a time satisfying Jacod’s
absolute continuity condition. Then, the hypothesis (H′) is satisfied for (F,Fτ∧σ).

Proof. First we recall that, if σ is honest then the hypothesis (H′) is satisfied for (F,Fσ)

by [17, Theorem (5,10)], and if σ satisfies Jacod’s absolute continuity condition then (H′)
is satisfied for (F,Fσ) by [15, Theorem 3.1].

Let (σ1, σ2) be a thin-thick decomposition of σ. Then, by Remark 1.3, τ ∧ σ1 is a thin
time and (τ ∧ σ1, σ2) is a thin-thick decomposition of τ ∧ σ. Then the statement of the
corollary follows by applying twice Theorem 5.1.
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Proposition 5.3. Let τ be a random time and (τ1, τ2) its thin-thick decomposition.
Let (Tn)n≥0 be an F-exhausting sequence, (Cn)n≥0 an F-partition and (zn)n≥0 an F-
martingale family of F-thin time τ1. Assume that for an F-local martingale X, there
exists an Fτ2 -predictable finite variation process Γ(X) such that X = X̃ + Γ(X) where X̃
is an Fτ2 -local martingale. Then,

Xt = X̂t + Γ(X)t +

∫ t∧τ

0

1

Zs−
d〈X̃, m̃〉

Fτ2

s +

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

z̃ns−
d〈X̃, z̃n〉

Fτ2

s

where X̂ is an Fτ -local martingale, z̃nt := P(Cn|Fτ2t ) = 11{t<τ2}
znt
Z2
t

and m̃t =
∑
n z̃

n
t∧Tn .

Proof. The decomposition of X as an Fτ -semimartingale follows by Fτ = Fτ1,τ2 and
Theorem 4.1 since τ1 is an Fτ2 -thin time. Lemma C.3 and Proposition C.1 imply the forms
of z̃n and m̃.

5.2 Immersion for a random time

Thin-thick decomposition finds application in studying immersion for a generic ran-
dom time.

Proposition 5.4. F is immersed in Fτ if and only if F is immersed in Fτ1 and in Fτ2 . In
that case, Fτ1 and Fτ2 are immersed in Fτ .

Proof. Since F ⊂ Fτi ⊂ Fτ , it is clear that, if F is immersed in Fτ , then F is immersed in
Fτ1 and in Fτ2 .

Let F be immersed in Fτ1 and in Fτ2 , i.e., Zit = P(τi > t|F∞) for each t ≥ 0, for
i = 1, 2. Then, by Proposition C.2 (a),

Zt = Z1
t + Z2

t − 1 = P(τ1 > t|F∞) + P(τ2 > t|F∞)− 1 = P(τ > t|F∞)

and we conclude that F is immersed in Fτ .
It remains to prove the last assertion. Let F be immersed in Fτ . Then, using similar

arguments as in the proof of Lemma C.3, we obtain:

P(τ2 > t|Fτ1∞) = 11{τ1≤t} + 11{t<τ1}
P(τ > t|F∞)

P(τ1 > t|F∞)

and the assumed immersion yield to

P(τ2 > t|Fτ1∞) = 11{τ1≤t} + 11{t<τ1}
P(τ > t|Ft)
P(τ1 > t|Ft)

= P(τ2 > t|Fτ1t ) .

Therefore, Fτ1 is immersed in Fτ . The same proof is valid for τ2.

Remark 5.5. In [18], the authors introduce a random time τ = ϑ ∧ ξ where ξ avoids
F-stopping times, and is constructed as ξ = inf{t : Λt :=

∫ t
0
λsds ≥ Θ} where λ is a

positive F-adapted process and Θ is an exponential random variable independent from F,
and ϑ is an F-accessible stopping time. Therefore, ξ is thick and ϑ is thin. The thin-thick
decomposition τ = τ1 ∧ τ2 can be obtained as follows: τ2 = ϑ11{ϑ<ξ} +∞11{ξ≤ϑ} and
τ1 = ξ11{ξ<ϑ} +∞11{ϑ≤ξ}.

The authors establish immersion property by checking P(τ > t|Ft) = P(τ > t|F∞), a
characterisation of immersion that we have recalled above. From our result, immersion
holds since F is immersed in Fξ, hence in Fτ , due to the property that ϑ is an F-stopping
time.
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Let us also remark here the form of the dual optional projection of Aτ = 11[[τ,∞[[ in
terms of the dual optional projections of Aξ = 11[[ξ,∞[[ and Aϑ = 11[[ϑ,∞[[. Let H be an
F-optional bounded process and recall that Ai = 11[[τi,∞[[ for i = 1, 2. Then

E

[∫
[0,∞)

HsdA
1,o
s

]
= E

[
Hτ111{τ1<∞}

]
= E

[
Hξ11{ξ<∞}11{ξ<ϑ}

]
= E

[
HξP(ξ < ϑ|Fξ)11{ξ<∞}

]
= E

[
Hξγξ11{ξ<∞}

]
where γ is an F-optional bounded process such that γξ = P(ξ < ϑ|Fξ). Finally we
conclude that A1,o

t =
∫

[0,t]
γsdA

ξ,o
s . In the same way we compute that A2,o

t =
∫

[0,t]
κsdA

ϑ,o
s

where κ is another F-optional process satisfying κϑ = P(ϑ < ξ|Fϑ). Then, by Proposition
C.2 (b) we conclude that

Aτ,ot =

∫
[0,t]

γsdA
ξ,o
s +

∫
[0,t]

κsdA
ϑ,o
s .

Note that Aτ,p can be expressed analogously.

A Definitions of projections

We collect here the definitions of the key tools we have used along the paper. Pro-
jections and dual projections onto the reference filtration F play an important role in
the theory of enlargement of filtrations. First we recall the definition of optional and
predictable projections, see [11, Theorems 5.1 and 5.2] and [16, p.264-265].

Definition A.1. Let X be a measurable bounded (or positive) process. The optional
projection of X is the unique optional process oX such that for every stopping time T ,
we have

E
[
XT 11{T<∞}|FT

]
= oXT 11{T<∞} a.s.

The predictable projection of X is the unique predictable process pX such that for every
predictable stopping time T we have

E
[
XT 11{T<∞}|FT−

]
= pXT 11{T<∞} a.s.

For definition of dual optional projection and dual predictable projection see [16,
p.265], [25, Chapter 3 Section 5], [8, Chapter 6 Paragraph 73 p.148], [11, Sections 5.18,
5.19]. We point out that the convention we use here allows a jump at 0, where for a finite
variation process V we assume that V0− = 0.

Definition A.2. (a) Let V be a càdlàg pre-locally integrable variation process (not
necessary adapted). The dual optional projection of V is the unique optional process V o

such that for every optional process H we have

E

[∫
[0,∞)

HsdVs

]
= E

[∫
[0,∞)

HsdV
o
s

]
.

In particular, V o0 = E[V0|F0].
(b) Let V be a càdlàg locally integrable variation process (not necessary adapted).

The dual predictable projection of V is the unique predictable process V p such that for
every predictable process H we have

E

[∫
[0,∞)

HsdVs

]
= E

[∫
[0,∞)

HsdV
p
s

]
.

In particular, V p0 = E[V0|F0].
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B Summary of results on honest times

For reader’s convenience we gather complementary results on honest times. They
can be found in [17] (see Lemma 5,1 and its proof there).

Proposition B.1. (a) A random time τ is an F-honest time if and only if for every t > 0

there exists an Ft−-measurable random variable τt such that τ = τt on {τ < t}.
(b) A random time τ is an F-honest time if and only if for every t > 0 there exists an
Ft-measurable random variable τt such that τ = τt on {τ ≤ t}.

Proof. Sufficiency of both conditions is straightforward.

Using the notation from Definition 3.1, we introduce the process α− as α−t =

supr∈Q,r<t τr. This definition implies that α− is an increasing, left-continuous, adapted
process such that α−t = τ on {τ < t} thus the necessary condition in (a) is proven.

Let us denote by α the right-continuous version of α−, i.e., αt = α−t+. Then, α is an
increasing, càdlàg, adapted process such that αt = τ on {τ ≤ t} and τ = sup{t : αt = t}
thus the necessary condition in (b) is proved.

Theorem B.2. Let τ be a random time. Then, the following conditions are equivalent:

(a) τ is an honest time;

(b) there exists an optional set Γ such that τ(ω) = sup{t : (ω, t) ∈ Γ} on {τ <∞};

(c) Z̃τ = 1 a.s. on {τ <∞};

(d) τ = sup{t : Z̃t = 1} a.s. on {τ <∞}.

Remark B.3. For progressive enlargement with an honest time, the hypothesis (H′) is
satisfied, and the following decomposition is given in [17, Theorem (5,10)]. Let M be an
F-local martingale. Then, there exists an Fτ -local martingale M̂ such that:

Mt = M̂t +

∫ t∧τ

0

1

Zs−
d〈M,m〉s −

∫ t

0

11{s>τ}
1

1− Zs−
d〈M,m〉s. (B.1)

For a thin honest time τ , the two decomposition formulas, first given in Theorem 4.1 and
second given in (B.1), coincide. It is enough to show that∫ t

0

11{s>τ}
1

1− Zs−
d〈X, 1−m〉s =

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s.

This is a simple consequence of the set inclusion {τ < s} ∩ {τ = Tn} ⊂ {Tn = τs ≤ s} and
Lemma C.4 (a):∫ t

0

11{s>τ}
1

1− Zs−
d〈X, 1−m〉s =

∞∑
n=1

∫ t

0

11{s>τ}∩{τ=Tn}
1

1− Zs−
d〈X, 1−m〉s

=

∞∑
n=1

∫ t

0

11{s>τ}∩{τ=Tn}
1

zns−
d〈X, zn〉s

=

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s.
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C Proofs and auxiliary results

Proof of Lemma 1.5 (a) Define, for any n ≥ 0, the F-stopping time

Rn := inf{t ≥ 0 : znt = 0}. (C.1)

As zn is a positive càdlàg martingale, by [26, Proposition (3.4) p.70], it vanishes on
[[Rn,∞[[. Since zn is bounded, zn∞ exists and:

{Rn <∞} =

{
inf
t≥0

znt = 0

}
= {zn∞ = 0}.

Moreover, the equality 0 = E[zn∞11{zn∞=0}] = E[11Cn11{zn∞=0}] implies that Cn ∩ {zn∞ = 0}
is a null set, so as well Cn ∩ {inft z

n
t = 0} is a null set. We obtain that zn > 0 and zn− > 0

a.s. on Cn.

(b) The proof is based on monotone class theorem and we focus on a generator. The
inclusion

⋂
u>t Fu ∨ σ(Cn ∩ {Tn ≤ s}, s ≤ u, n ≥ 1) ⊂ Fτt follows since τ and Tn are

Fτ -stopping times, therefore {τ = Tn < ∞} ∈ FτTn and {τ = Tn < ∞} ∩ {Tn ≤ s} ∈ Fτs .
The reverse inclusion is due to {τ ≤ s} =

⋃∞
n=1 Cn ∩ {Tn ≤ s}.

(c) By (a) and the monotone class theorem, for each G ∈ Fτt there exists F ∈ Ft such
that, for any n ≥ 1,

G ∩ {Tn ≤ t} ∩ Cn = F ∩ {Tn ≤ t} ∩ Cn. (C.2)

Then, using the fact that Tn is an F-stopping time, we have to show that

E
[
X11{t≥Tn}∩Cnz

n
t |Fτt

]
= 11{t≥Tn}∩CnE

[
X11{t≥Tn}∩Cn |Ft

]
.

For any G ∈ Fτt , we choose F ∈ Ft satisfying (C.2), and we obtain

E
[
X11{t≥Tn}∩Cn∩G znt

]
= E

[
X11{t≥Tn}∩Cn∩F E [11Cn |Ft]

]
= E

[
11{t≥Tn}∩F E [11Cn |Ft]E [X11Cn |Ft]

]
= E

[
11{t≥Tn}∩Cn∩F E [X11Cn |Ft]

]
= E

[
11{t≥Tn}∩Cn∩G E [X11Cn |Ft]

]
which ends the proof, taking into account that znt > 0 on Cn.

The next result gives the supermartingales Z and Z̃ of a thin time and their decompo-
sitions into an F-martingale m and the increasing process Ao in terms of an exhausting
sequence and martingale family of τ . This is useful to check certain properties of thin
(honest) times (we refer the reader to Sections 4.2 and 3).

Proposition C.1. Let τ be a thin time with exhausting sequence (Tn)n≥0, partition
(Cn)n≥0 and martingale family (zn)n≥0. Then:

(a) 1− Zτ > 0 a.s. on {τ <∞},

(b) Z̃t =
∑∞
n=0 11{t≤Tn}z

n
t , Zt =

∑∞
n=0 11{t<Tn}z

n
t , Aot =

∑∞
n=1 11{t≥Tn}z

n
Tn

and mt =∑∞
n=0 z

n
t∧Tn .

Proof. (a) We have Zτ11{τ<∞} =
∑∞
n=1 11CnZTn and, on {Tn <∞}, we have

1− ZTn = P(τ ≤ Tn|FTn) ≥ P(τ = Tn|FTn) = znTn .

Combined with Lemma 1.5 (a), this implies that 1− Zτ > 0 a.s. on {τ <∞}.
(b) Deriving the form of Z and Z̃ is straightforward. To compute Ao, note that for any
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F-optional process X, one has, setting Hn = 11[[Tn,∞[[,

E

[∫
[0,∞)

XsdA
o
s

]
= E

[∫
[0,∞)

XsdAs

]
= E[Xτ11{τ<∞}] =

∞∑
n=1

E
[
XTnz

n
Tn11{Tn<∞}

]
=

∞∑
n=1

E

[∫
[0,∞)

Xsz
n
s dH

n
s

]
.

The form of m follows by (1.1).

For i ∈ {1, 2}, corresponding to the thin part τ1 and the thick part τ2 of a random time
τ , we define Ai := 11[[τi,∞[[. Then Ai,p and Ai,o are respectively the F-dual predictable

projection and the F-dual optional projection of Ai. Let us denote by Zi and Z̃i the
supermartingales associated with τi. Then, the following relations hold.

Proposition C.2. Let τ be a random time and (τ1, τ2) its thin-thick decomposition.
(a) The supermartingales Z and Z̃ can be decomposed in terms of the supermartingales
Z1, Z2 and Z̃1, Z̃2 as:

Z = Z1 + Z2 − 1 and Z̃ = Z̃1 + Z̃2 − 1.

(b) The dual optional projection Ao can be decomposed as

Ao = A1,o +A2,o = A1,p +A2,o.

(c) The dual predictable projection Ap can be decomposed as

Ap = A1,p +A2,p = A1,o +A2,p.

Proof. The result follows from 11[[τ1,∞[[ + 11[[τ2,∞[[ = 11[[τ,∞[[ which holds since τ1 ∨ τ2 =∞,
and by Theorem 2.2.

Lemma C.3. Let τ be a random time and (τ1, τ2) its thin-thick decomposition. Let (Tn)n≥0

be an F-exhausting sequence, (Cn)n≥0 an F-partition and (zn)n≥0 an F-martingale family
of the F-thin time τ1. Then, for any t ≥ 0,

P(Cn|Fτ2t ) = 11{t<τ2}
znt
Z2
t

for all n ≥ 0 ,

P(τ1 > t|Fτ2t ) = 1− 11{t<τ2}
1− Z1

t

Z2
t

,

P(τ2 > t|Fτ1t ) = 1− 11{t<τ1}
1− Z2

t

Z1
t

.

Proof. Let us compute P(Cn|Fτ2t ) on the two sets before τ2 and after τ2 separately as
follows:

P(Cn|Fτ2t ) = 11{τ2≤t}P(Cn|Ft ∨ σ(τ2)) + 11{t<τ2}
P(Cn ∩ {t < τ2}|Ft)

P(t < τ2|Ft)
.

Then, taking into account that Cn = {τ1 = Tn <∞} and τ1 ∨ τ2 =∞, one has on the one
hand

11{τ2≤t}P(Cn|Ft ∨ σ(τ2)) = P(τ1 = Tn <∞, τ2 ≤ t|Ft ∨ σ(τ2)) = 0 ,

and, on the other hand,

P(Cn ∩ {t < τ2}|Ft) = P(Cn|Ft) = znt .
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Therefore, the first equality holds.
By symmetry, we only prove the second identity and we skip the third one. Similarly

as before we compute P(τ1 > t|Fτ2t ) on the two sets before τ2 and after τ2 separately as
follows:

P(τ1 > t|Fτ2t ) = 11{τ2≤t}P(τ1 > t|Ft ∨ σ(τ2)) + 11{t<τ2}
P(τ2 > t, τ1 > t|Ft)

P(τ2 > t|Ft)
.

Then, on the one hand, taking into account that τ1 ∨ τ2 =∞,

11{τ2≤t}P(τ1 > t|Ft ∨ σ(τ2)) = P(τ1 > t ≥ τ2|Ft ∨ σ(τ2)) = P(t ≥ τ2|Ft ∨ σ(τ2)) = 11{τ2≤t} ,

and, on the other hand, by τ1 ∧ τ2 = τ and Proposition C.2 (a),

P(τ1 > t, τ2 > t|Ft) = P(τ > t|Ft) = Zt = Z1
t + Z2

t − 1.

Therefore,

P(τ1 > t|Fτ2t ) = 11{τ1≤t} + 11{t<τ2}
Z1
t + Z2

t − 1

Z2
t

and the result follows.

Lemma C.4. Let τ be a thin honest time, τt be associated with τ as in Definition 3.1 and
(Tn)n≥0 be an exhausting sequence of τ . Then:

(a) on {Tn = τt} = {Tn = τt ≤ t}, we have znt = 1− Zt, Aot = znTn and 1−mt = znt − znTn
for each n ≥ 1;

(b) on {Tn < t} we have znt = 11{τt=Tn}(1 − Z̃t) and znt− = 11{τt=Tn}(1 − Zt−) for each
n ≥ 1; in particular

1− Z̃t =

∞∑
n=1

11{τt=Tn<t}(1− Z̃t) and 1− Zt− =

∞∑
n=1

11{τt=Tn<t}(1− Zt−).

Proof. (a) Using properties of τt, we deduce that

11{Tn=τt}z
n
t = P(Tn = τt ≤ t, τ = Tn <∞|Ft)

= P(τ ≤ t, Tn = τt = τ |Ft)
= P(τ ≤ t, Tn = τt|Ft)
= 11{Tn=τt}(1− Zt)

where the first equality is due to τt ≤ t, the third one follows by τt = τ on {τ ≤ t} and
the last one is true since Tn ∧ t and τt are two Ft-measurable random variables and

{Tn = τt} = {Tn = τt < t} ∪ {Tn = τt = t}
=
{
{Tn ∧ t = τt} ∩ {τt < t}

}
∪
{
{Tn = t} ∩ {τt = t}

}
.

The dual optional projection of a thin time satisfies

11{Tn=τt}A
o
t =

∞∑
k=1

11{Tn=τt, Tk≤t}z
k
Tk

= 11{Tn=τt}z
n
Tn ,

where the second equality is due to the fact that, for n 6= k, we have

11{Tn=τt, Tk≤t}z
k
Tk

= 11{Tn=τt}E(11{τ=Tk≤t}|Tk)

= 11{Tn=τt=Tk}E(11{τ=Tk≤t}|Tk) = 0
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since Tn and Tk have disjoint graphs and τ is an honest time. Combining the two previous
points, we conclude that 1−mt = 1− Zt −Aot = znt − znTn on the set {Tn = τt}.
(b) Again using properties of the random variable τt, we derive

11{Tn<t}z
n
t = P(τ = Tn = τt < t|Ft) = 11{Tn=τt<t}(1− Z̃t),

11{Tn<t}z
n
t− = P(τ = Tn = τt < t|Ft−) = 11{Tn=τt<t}(1− Zt−).

Then, Proposition C.1 (b) completes the proof.
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