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Volume of metric balls in Liouville quantum gravity
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Abstract

We study the volume of metric balls in Liouville quantum gravity (LQG). For γ ∈ (0, 2),
it has been known since the early work of Kahane (1985) and Molchan (1996) that the
LQG volume of Euclidean balls has finite moments exactly for p ∈ (−∞, 4/γ2). Here,
we prove that the LQG volume of LQG metric balls admits all finite moments. This
answers a question of Gwynne and Miller and generalizes a result obtained by Le Gall
for the Brownian map, namely, the γ =

√
8/3 case. We use this moment bound to show

that on a compact set the volume of metric balls of size r is given by rdγ+or(1), where
dγ is the dimension of the LQG metric space. Using similar techniques, we prove
analogous results for the first exit time of Liouville Brownian motion from a metric
ball. Gwynne-Miller-Sheffield (2020) prove that the metric measure space structure of
γ-LQG a.s. determines its conformal structure when γ =

√
8/3; their argument and

our estimate yield the result for all γ ∈ (0, 2).
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1 Introduction

Liouville quantum gravity (LQG) was introduced in the physics literature by Polyakov
[44] as a canonical model of two-dimensional random geometry, and has also been shown
to be the scaling limit of random planar maps in various topologies (see e.g. [17, 19] and
references therein). Let h be an instance of the Gaussian free field (GFF) on the plane
C, and fix γ ∈ (0, 2). Formally, the γ-LQG surface described by (C, h) is the Riemannian
manifold with metric tensor given by “eγh(dx2 + dy2)”. The conformal factor eγh only
makes sense formally since the GFF h does not admit pointwise values. Nevertheless,
one can make rigorous sense of the γ-LQG volume measure µh through the following
regularization and renormalization procedure by Duplantier and Sheffield [14]

µh = lim
ε→0

εγ
2/2eγhε(z)dz,

where hε(z) is the average of h on the radius ε circle centered at z. This falls into the
framework of Gaussian multiplicative chaos, see [27, 45, 47, 5]. The circle average
mollification can be replaced by other alternatives.

We now explain the recent construction of the LQG metric. For ε > 0, let

Dε
h(z, w) = inf

P :z→w

∫ 1

0

e(γ/dγ)h
∗
ε(P (t))|P ′(t)| dt,

where h∗ε is a particular mollified version of h obtained by integrating against the heat
kernel, dγ is the dimension of γ-LQG [10, 25], and the infimum is taken over all piecewise
continuously differentiable paths from z to w. Ding, Dubédat, Dunlap and Falconet
[7] proved that for all γ ∈ (0, 2) the laws of the suitably rescaled metrics Dε

h are tight,
so subsequential limits exist as ε→ 0 (see also the earlier tightness results [8, 12, 9]).
Building on this and several other works [13, 20, 22], Gwynne and Miller [21] showed that
all subsequential limits agree and satisfy a natural list of axioms uniquely characterizing
the LQG metric. So it makes sense to speak of the LQG metric Dh.

Now, we have the metric-measure space corresponding to γ-LQG. The main result of
our paper is the following theorem concerning the volume of metric balls, which answers
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a question of [21] and generalizes estimates obtained by Le Gall [31] for the Brownian
map.

Theorem 1.1. Fix γ ∈ (0, 2) and let h be a whole-plane GFF normalized to have average
zero on the unit circle. Let Bs(z;Dh) be the Dh-ball of radius s centered at z. Then

E [µh(B1(0;Dh))p] <∞ for all p ∈ R. (1.1)

Moreover, for any compact set K ⊂ C and ε > 0, we have almost surely that

sup
s∈(0,1)

sup
z∈K

µh(Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh(Bs(z;Dh))

sdγ+ε
> 0. (1.2)

Consequently, the Minkowski dimension of γ-LQG is dγ almost surely.

This result is in stark contrast to the LQG volume of a deterministic bounded open set,
which only has finite moments for p ∈ (−∞, 4/γ2). Roughly speaking, µh(B1(0;Dh)) has
finite positive moments because the metric ball B1(0;Dh) in some sense avoids regions
where h (and thus µh) is large. Our arguments also show (1.1) when we replace h by
h+ α log | · |−1 for α < γ

2 + 2
γ (see Propositions 3.1 and 4.1).

Similar arguments allow us to prove an analogous result for the first exit time of
the Liouville Brownian motion (LBM) from metric balls. Classically, Brownian motion
is well defined on smooth manifolds and on some random fractals. Formally, LBM is
Brownian motion associated to the metric tensor “eγh(dx2 + dy2)”, and can be rigorously
constructed via regularization and renormalization [16, 3]. It is a time-change of an
ordinary Brownian motion independent of h. For a set X ⊂ C and z ∈ C, denote
by τh(z;X) the first exit time of the Liouville Brownian motion started at z from the
set X. When X is a deterministic bounded open set, τh(z;X) has finite moments for
p ∈ (−∞, 4/γ2). Here, we study the case where X is given by a metric ball.

Theorem 1.2. Fix γ ∈ (0, 2) and let h be a whole-plane GFF normalized to have average
zero on the unit circle. Then

E [τh(0;B1(0;Dh))p] <∞ for all p ∈ R.

Moreover, for any compact set K ⊂ C and ε > 0, we have at a rate uniform in z ∈ K that

lim
s→0

P[τh(z;Bs(z;Dh)) ∈ (sdγ+ε, sdγ−ε)] = 1.

As an application of Theorem 1.1, we can extend results of [24] to the case of general
γ ∈ (0, 2). The following theorem resolves another question of [21].

Theorem 1.3. Let γ ∈ (0, 2) and h be a whole-plane GFF h normalized to have average
zero on the unit circle. Then the field h up to rotation and scaling of the complex plane is
almost surely determined by (i.e. measurable with respect to) the random pointed metric
measure space (C, 0, Dh, µh).

We emphasize that the input is (C, 0, Dh, µh) as a pointed metric measure space, so
in particular we forget the exact parametrization in the complex plane of Dh and µh.
More precisely we view it as an element in the space of pointed metric measure spaces
endowed with the local Gromov-Hausdorff-Prokhorov topology (local here refers to metric
balls about the point). For the special case γ =

√
8/3, [24] proves an analogous theorem

for the quantum disk (see also [37]). Their results depend on the correspondence
between the Brownian map and

√
8/3-LQG [42, 36, 37, 39], and rely on the estimates

obtained by Le Gall [31] for the Brownian map. Theorem 1.1 provides the estimates
needed to generalize the results of [24] to all γ ∈ (0, 2), yielding Theorem 1.3 and a
statement of the convergence of the simple random walk on a Poisson-Voronoi tessellation
of γ-LQG to Brownian motion (viewed as curves modulo time-parametrization) in the
quenched sense; see Section 5.3.
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Paper outline In Section 2, we discuss preliminary material about LQG. We prove the
finiteness of moments statement of Theorem 1.1 in Sections 3 and 4, which bound the
positive and negative moments of the unit LQG ball volume respectively. In Section 5.1,
we complete the proof of Theorem 1.1. Section 5.2 addresses Theorem 1.2. Finally
Section 5.3 discusses Theorem 1.3. In the appendix, we recollect some ingredients of
the proof by Le Gall for the Brownian map case as a comparison.

2 Background and preliminaries

2.1 Notation

For each γ ∈ (0, 2), we write dγ for the Hausdorff dimension of γ-LQG [25] (this was
originally introduced in the literature as the “fractal dimension” of γ-LQG, a scaling
exponent associated with models expected to converge to γ-LQG; see [10, 11, 18]). We
also set the γ-dependent constants

Q =
γ

2
+

2

γ
and ξ =

γ

dγ
. (2.1)

We write N = {1, 2, 3 . . . } and N0 = N ∪ {0}. For x ∈ R, bxc and dxe denote the floor
and ceiling functions evaluated at x. We write |E| for the cardinality of a finite set E. If
f is a function from a set X to Rn for some n ≥ 1, we denote the supremum norm of f
by ‖f‖X := supx∈X |f(x)|.

In our arguments, it is natural to consider both Euclidean balls and metric balls.
We use the notation Br(z) to denote the Euclidean ball of radius r centered at z, and
Br(z;Dh) to denote the metric ball of radius r centered at z (i.e. the ball with respect to
the metric Dh). We also distinguish the unit disk D := B1(0). We denote by X the closure
of a set X. For any r > 0 and z ∈ C, let Ar(z) stand for the annulus Br(z) \ Br/2(z).

Furthermore, for 0 < s < r, we set As,r(z) := Br(z) \Bs(z).
The LQG metric Dh is almost surely a length metric, i.e. Dh(z, w) is the infimum of

the Dh-lengths of continuous paths between z, w. For an open set U ⊂ C, the internal
metric DU

h on U is given by the infimum of the Dh-lengths of continuous paths in U .
We write −

∫
C
f for the average of f over the circle C. For a GFF h, we write hr(z) for

the average of h on the circle ∂Br(z).
We writeX ∼ N (m,σ2) to express that the random variableX is distributed according

to a Gaussian probability measure with mean m and variance σ2.
We say that an event Eε, depending on ε, occurs with superpolynomially high proba-

bility if for every fixed p > 0, for all ε small enough, P[Eε] ≥ 1− εp. We similarly define
events which occur with superpolynomially high probability as a parameter tends to∞.

2.2 The whole-plane Gaussian free field

We give here a brief introduction to the whole-plane GFF. For more details see [40].
Let H be the Hilbert space closure of smooth compactly supported functions f on C,

equipped with the Dirichlet inner product

(f, g)∇ = (2π)−1
∫
C

∇f(z) · ∇g(z) dz.

Let {fn} be any orthonormal basis of H, and consider the equivalence relation on
the space of distributions given by T1 ∼ T2 when T1 − T2 is a constant. The whole-
plane GFF modulo additive constant h is a random equivalence class of distributions,
a representative of which is given by

∑
αnfn where {αn} is a sequence of i.i.d. N (0, 1)

random variables. The law of h does not depend on the choice of {fn}.
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For any complex affine transformation of the complex plane A, it is easy to verify
that (f ◦ A, g ◦ A)∇ = (f, g)∇. Consequently, h has a law that is invariant under affine

transformations: for each r, z ∈ C we have h
d
= h(r ·+z).

Write H̃ ⊂ H for the subspace of functions f with
∫
C
f = 0. Although we cannot

define 〈h, f〉 for general f ∈ H, the distributional pairing makes sense for f ∈ H̃ (the
choice of additive constant does not matter). Explicitly, for f ∈ H̃ the pairing 〈h, f〉 is a
centered Gaussian with variance

Var(〈h, f〉) =

∫∫
C2

f(w)f(z) log |w − z|−1 dwdz. (2.2)

It is easy to check that (2.2) in fact defines the whole-plane GFF modulo additive
constant.

We will often fix the additive constant of h, i.e. choose an equivalence class represen-
tative. This can be done by specifying the value of 〈h, f〉 for some f ∈ H with

∫
C
f 6= 0,

or the average of h on a circle (see [14, Section 3] for details on the circle averages of h).
Recalling that hr(z) means the circle average of h on ∂Br(z), we will typically work with
a whole-plane GFF h normalized so h1(0) = 0 (this is a distribution not modulo additive
constant).

Let H1 ⊂ H (resp. H2 ⊂ H) be the Hilbert space completion of compactly supported
functions which are constant (resp. have mean zero) on ∂Br(0) for all r > 0. It is
easy to verify the orthogonal decomposition H = H1 ⊕H2. This allows us to write the
whole-plane GFF h with h1(0) = 0 as the sum of independent fields h1 and h2; these are
respectively the projections of h to H1 and H2. Moreover, we can explicitly describe the
law of h1: Writing Xt = he−t(0), the processes (Xt)t≥0 and (X−t)t≥0 are independent
Brownian motions started at zero. The strong Markov property tells us that for any
stopping time T of (Xt)t≥0, the random process (Xs+T −XT )s≥0 is independent from
XT . Also, by the scale invariance of the whole-plane GFF, the law of h2 is scale invariant.
These observations (with the independence of h1, h2) give us the following.

Lemma 2.1. Let h be a whole-plane GFF with h1(0) = 0, and let T ≥ 0 be a stopping
time of the circle average process (he−t(0))t≥0. Then we have, as fields on D,

h(e−T ·)|D − he−T (0)
d
= h|D.

Moreover, h(e−T ·)|D − he−T (0) is independent of he−T (0).

We note that there exist variants of the GFF on bounded domains D ⊂ C, such as the
zero boundary GFF and the Neumann GFF; we do not go into further detail, but remark
that their LQG measures (Section 2.3) are well defined.

Finally, we present a version of the Markov property for the whole-plane GFF, taken
from [23, Lemma 2.2]. It essentially follows from the orthogonal decomposition H =

HD ⊕Hharm where HD (resp. Hharm) is the Hilbert space completion of functions which
are compactly supported (resp. harmonic) in D.

Lemma 2.2 (Markov property of GFF). Let h be a whole-plane GFF normalized so h1(0) =

0. For each open set U ⊂ C with harmonically non-trivial boundary and U ∩ ∂D = ∅, we
have the decomposition

h = h + h̊

where h is a random distribution which is harmonic on U , and h̊ is independent from h

and has the law of a zero-boundary GFF on U (in particular, h̊|Uc ≡ 0).

2.3 Liouville quantum gravity and Gaussian multiplicative chaos

Fix γ ∈ (0, 2) and let h be a GFF plus a random continuous function on a domain
D ⊂ C. We can define the γ-LQG volume measure or quantum volume measure via the
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almost sure limit in the vague topology

µh(dz) = lim
ε→0

εγ
2/2eγhε(z) dz

where the limit ε→ 0 is taken along powers of two [14]. (The limit was shown to hold
in probability without the dyadic constraint [47, 5].) Two properties are clear from the
form of the above limit. Firstly, µh is locally determined by h, i.e. for any open set U , the
volume µh(U) is a.s. determined by h|U . Secondly, we have µh+C(·) = eγCµh(·) for any
C ∈ R, and slightly more generally, for any random continuous function f on a compact
set D, we have almost surely eγ infD fµh(D) ≤ µh+f (D) ≤ eγ supD fµh(D).

Liouville quantum gravity is a special case of Gaussian multiplicative chaos (GMC)
introduced by Kahane [27], which considers more general log-correlated fields. More
precisely, if D ⊂ C is a bounded domain and g a continuous function on D × D such
that K(x, y) = log |x − y|−1 + g(x, y) is a nonnegative definite kernel, then one can
consider the log-correlated Gaussian field φ with covariance kernel K. Consider then

the approximating measures µφε(dz) = eγφε(z)−
γ2

2 Varφε(z)σ(dz) where φε(x) denotes the
circle average approximation of φ and σ is a Radon measure on D of dimension at
least two (in this paper we will always take σ to be Lebesgue measure). Then, µφε
converges in probability towards a Borel measure µ on D for the topology of weak
convergence of measures on D and the limit is the same for different approximation
schemes e.g. when replacing the circle average approximation by an other mollification
([5, 47]). The renormalizations for LQG and GMC are different since we typically have

εγ
2/2 6= e−

γ2

2 Varφε(z). We will work with the LQG one when we use the GFF h and the
GMC one when we consider another log-correlated Gaussian field φ.

We refer the reader to [2, 4, 45] for excellent introductions to the domain.

2.4 LQG volume of Euclidean balls

Tails estimates for the LQG volume of Euclidean balls are quite well understood. It
has been known since the work of Kahane [27] and Molchan [43] that it admits finite
moments for p ∈ (−∞, 4/γ2). This result contrasts a very different behavior between the
right tails and the left tails.

Negative moments The finiteness of all negative moments goes back to Molchan [43];
moreover it is more generally true that for any base measure of the GMC, the total GMC
mass has negative moments of all order [15]. Duplantier and Sheffield obtained the
following more explicit tail behavior [14, Lemma 4.5]: writing µh for the LQG measure
corresponding to a zero boundary GFF h on D, they showed that if U ⊂⊂ D is an open
set, then there exists C, c > 0 such that for all s > 0,

P
[
µh(U) ≤ e−s

]
≤ Ce−cs

2

. (2.3)

We note that this result is sharp in the sense that

P
[
µh(U) ≤ e−s

]
≥ ce−Cs

2

,

by a simple application of the Cameron-Martin formula. When h is replaced by h−−
∫
U
hdz,

a sharper tail estimate is obtained in [28].

Positive moments Recently, Rhodes and Vargas [46] obtained a precise asymptotic
result about the upper tails of GMC when γ ∈ (0, 2). They obtained a power law and
identified the constant. This result has been generalized to a more general family of
Gaussian fields in [49], and extended to the critical case γ = 2 in [48].
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As already mentioned, the LQG volume of Euclidean balls has finite p moments for
p < 4/γ2. This can be easily seen for integer moments k < 4/γ2, which we review
below. (This will also serve as a preparation to some of our arguments.) Indeed, due
to the logarithmic correlations of the field, the problem is essentially equivalent to the
finiteness of

uk :=

∫
Dk

dz1, . . . dzk∏
i<j |zi − zj |γ

2 .

By introducing

uk(r) :=

∫
rDk

dz1, . . . dzk∏
i<j |zi − zj |γ

2 and vk(r) =

∫
Dk

1r/2≤maxi<j |zi−zj |≤r∏
i<j |zi − zj |γ

2 dz1 . . . dzk, (2.4)

we note that when uk < ∞ then uk(r) = r2k−γ
2 k(k−1)

2 uk. Furthermore, the vk’s provide
the following inductive inequality, obtained by splitting the points {z1, . . . , zk} into two
well-separated clusters (see Lemma A.1 in the Appendix for details):

vk(r) ≤ Ckr−2
k−1∑
i=1

r−γ
2i(k−i)ui(4r)uk−i(4r) ≤ CkrkγQ−

1
2γ

2k2−2
k−1∑
i=1

uiuk−i.

Finally, we note that

kγQ− 1

2
γ2k2 − 2 = k(2 +

γ2

2
)− 1

2
γ2k2 − 2 = 2(k− 1)− γ2

2
k(k− 1) > 0 if 1 < k < 4/γ2,

and the conclusion follows from uk =
∑
p≥−1 vk(2−p) and an induction on k.

Our later arguments in Section 3.1 follow a similar structure to the above, but also
have to account for the random geometry of the metric ball B1(0;Dh).

2.5 LQG metric

Recently, a metric for LQG was constructed and characterized in [7, 21], relying on
[10, 13, 22, 20, 38]. It is also the limit of an approximation scheme similar to the one of
the LQG measure. For γ ∈ (0, 2), the γ-LQG metric is the unique metric Dh determined
by a field h (a whole-plane GFF plus a possibly random bounded continuous function)
which induces the Euclidean topology and satisfies the following.

I. Length space. (C, Dh) is almost surely a length space. That is, the Dh-distance
between any two points in C is the infimum of the Dh-lengths of continuous paths
between the two points.

II. Locality. Let U ⊂ C be a deterministic open set. Then the internal metric DU
h is

almost surely determined by h|U .

III. Weyl scaling. Recall ξ in (2.1). For each continuous function f : C→ R, define

(eξf ·Dh)(z, w) := inf
P :z→w

∫ len(P ;Dh)

0

eξf(P (t))dt, for all z, w ∈ C, (2.5)

where we take the infimum over all continuous paths from z to w parametrized by
Dh-length. Then almost surely eξf ·Dh = Dh+f for every continuous f : C→ R.

IV. Coordinate change for translation and scaling. Recall Q in (2.1). For fixed
deterministic z ∈ C and r > 0 we have almost surely

Dh(ru+ z, rv + z) = Dh(r·+z)+Q log r(u, v) for all u, v ∈ C.

To be precise, Dh is unique up to a global multiplicative constant, which can be fixed
in some way, e.g. requiring the median of Dh(0, 1) to be 1 for h a whole-plane GFF
normalized so h1(0) = 0. We emphasize that the metric Dh depends on the parameter
γ ∈ (0, 2); to follow previous works and avoid clutter we will omit γ in the notation.
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Basic estimates for distances The main quantitative input we need when working
with the LQG metric is the following estimate relating the Dh-distance between compact
sets to circle averages of h.

Proposition 2.3 (Concentration of side-to-side crossing distance [13, Proposition 3.1]).
Let U ⊂ C be an open set (possibly U = C) and let K1,K2 ⊂ U be disjoint connected
compact sets which are not singletons. Then for r > 0, it holds with superpolynomially
high probability as A→∞ (at a rate uniform in r) that

A−1rξQeξhr(0) ≤ DrU
h (rK1, rK2) ≤ ArξQeξhr(0).

This formulation is slightly different from that of [13, Proposition 3.1], but by [13,
Remark 3.16] they are equivalent. Note that by taking r = 1, this includes the superpoly-
nomial tails of side-to-side crossing distances.

Euclidean balls within LQG balls The next lemma is an important input in the proof
of the finiteness of the negative moments.

Proposition 2.4 (LQG balls contain Euclidean balls of comparable diameter [24, Proposi-
tion 4.5]). Fix ζ ∈ (0, 1) and compact K ⊂ C. Let h be a whole-plane GFF normalized so
h1(0) = 0. With superpolynomially high probability as δ → 0, each Dh-metric ball B ⊂ K
with diam(B) ≤ δ contains a Euclidean ball of radius at least diam(B)1+ζ .

Proof. [24, Proposition 4.5] gives this result with K replaced by D and with the specific
choice γ =

√
8/3. To get the result for K, we simply note that the law of the whole-plane

GFF (viewed modulo additive constant) is scale-invariant, and that the set of all Dh-
metric balls (viewed as subsets of C) does not depend on the choice of additive constant.
To generalize to γ ∈ (0, 2), we remark that the proof of [24, Proposition 4.5] uses only the
following few inputs for the

√
8/3 LQG metric, which we ascertain hold for general γ:

• The scaling relation [24, Lemma 2.3]. In our setting, this is Axiom III (Weyl scaling),
plus the following easy consequence of Weyl scaling: for h a whole-plane GFF
plus a bounded continuous function and f : C→ R a (possibly random) bounded
continuous function, almost surely

exp
(
ξ inf
C
f
)
Dh(z, w) ≤ Dh+f (z, w) ≤ exp

(
ξ sup

C

f

)
Dh(z, w) for all z, w ∈ C.

• With probability tending to 1 as C → ∞, the Dh-distance from S = [0, 1]2 to
∂B1/2(S) is at least 1/C (here, B1/2(S) is the Euclidean 1/2-neighborhood of S).
This follows immediately from Proposition 2.3.

• Fix n ≥ 1. With probability tending to 1 as C →∞, each Euclidean ball of radius
e−Cn

2/3

which intersects [0, 1]2 has Dh-diameter at most e−n
2/3

. This follows from
the fact that Dh is a.s. bi-Hölder with respect to the Euclidean metric [13, Theorem
1.7], and that e−Cn

2/3 → 0 as C →∞.

We point out that this is possible to obtain a more quantative version of this Proposi-
tion, with essentially the same arguments as in [24], which can then be used to obtain
more precise lower tail estimates for the volume of LQG metric balls.

3 Positive moments

The main result of this section is the following.

Proposition 3.1. Let h be a whole-plane GFF such that h1(0) = 0. Then, µh(B1(0;Dh))

has finite kth moments for all k ≥ 1. Furthermore, this result still holds if we add to the
field h an α-log singularity at the origin for α < Q, i.e. replace h with h+ α log | · |−1.
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In the following paragraphs, we present heuristic arguments and an outline of the
proof. Recall the definition of the annulus A1 = B1(0)\B1/2(0). The key difficulty to
prove this result is in arguing that E[µh(B1(0;Dh) ∩A1)k] <∞. So we want to prove

E

[∫
(A1)k

k∏
i=1

1Dh(0,zi)<1µh(dz1) . . . µh(dzk)

]
<∞, (3.1)

and the starting point is to rewrite it via a Cameron-Martin shift, as∫
(A1)k

exp(γ2
∑
i<j

Cov(h(zi), h(zj)))P
[
Dh+γ

∑
j Cov(h(zj),h(·))(0, zi) < 1, ∀i

]
dz1 . . . dzk <∞.

(3.2)

A first heuristic We present a heuristic explaining why E
[
µh(B1(0;Dh) ∩A1)k

]
<∞.

As remarked above and since h is log-correlated, the left-hand side of (3.1) is bounded
from above by ∫

Ak1

Pz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk (3.3)

where
Pz1,...,zk = P[Dh+γ

∑
j Cov(h(zj),h(·))(zi, ∂B1/2(zi)) < 1 for all i].

The volume of Euclidean balls have infinite kth moments when k is large due to the
contribution of clusters at mutual distance r (collection of points in the domain whose
pairwise distance are between cr and Cr). Indeed, for such clusters {z1, . . . , zk}, the

singularities contributes as
∏
i<j |zi − zj |−γ

2 ≈ r−(k2)γ
2

, on a macroscopic domain, we

have r−2 possibilities for placing this cluster and the volume associated is r2k. The total

contribution is then r−2+2k−(k2)γ
2

and the sum over dyadic r is finite if and only if k < 4/γ2.
Now, we explain how this is counterbalanced by the Pz1,...,zk term when k ≥ 4/γ2. By the
annulus crossing distance bound from Proposition 2.3, for any z ∈ K = {z1, . . . , zk}, the
following lower bound holds

Dh+γ
∑
i≤k log |·−zi|−1(z, ∂B1/2(z)) & rξQeξhr(z)r−ξkγ .

Indeed, one can use an annulus centered at z, separating z from ∂B1/2(z) and at distance
r of z, whose width is of the same order. Then, we see that the circle average of the log-
singularity gives the r−ξkγ term. So, by the condition defining Pz1,...,zk , on the associated
event, for z ∈ {z1, . . . , zk},

1 & rξQeξhr(z)r−ξkγ .

By a Gaussian tail estimate, introducing the term ck = kγ−Q ≥ 4
γ2 γ−Q = 2/γ−γ/2 > 0,

we have
Pz1,...,zk . P

[
hr(z) ≤ −ck log r−1

]
≈ r 1

2 c
2
k .

An elementary computation, namely −2 + 2k−
(
k
2

)
γ2 + 1

2c
2
k = 1

2Q
2 − 2, gives then that for

such a cluster, the scale r contribution to (3.3) is r
1
2Q

2−2, which is summable for all k
since Q = γ

2 + 2
γ > 2 for γ ∈ (0, 2) and this is essentially the reason of the finiteness of all

moment.

Outline of the proof To turn this argument into a proof requires us to take care of all
configurations of clusters K = {z1, . . . , zk}. Similarly to the one presented in Section 2.4,
our proof works by induction on k. We will partition K = {z1, . . . , zk} into two clusters
I and J such that the pairwise distance of points between I and J is ≥ r, since both
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∏
i<j |zi − zj |γ

2

and Pz1,...,zk have a nice hierarchical clusters structure (see (3.9) for the
exact splitting procedure partitioning K = I ∪ J and the definition of r). Indeed, for such
a cluster, we can bound from above∏

i<j

|zi − zj |−γ
2

. r−|I||J|γ
2 ∏
I

|za − zb|−γ
2 ∏
J

|za − zb|−γ
2

. (3.4)

Now, we discuss Pz1,...,zk . The aforementioned annuli crossing distance bounds from
Proposition 2.3 imply that for all z ∈ K, ε ∈ (0, 1/2),

hε(z) + γ
∑
za∈K

−
∫
∂Bε(z)

log | · −za|−1 + x ≤ Q log ε−1, (3.5)

for x = 0. From now, denote by P̂ xz1,...,zk the circle average variant of Pz1,...,zk associated
with (3.5): this is the probability that (3.5) holds for every z ∈ K = {z1, . . . , zk} and
ε ∈ (0, 1/2), with this extra parameter x ∈ R, which is necessary to consider when
deriving an inductive inequality. Note that when I and J are at distance of order r and
the diameters of both I and J are smaller than O(r), for ε ∈ (0, r), then ∀z, za ∈ K and
∀zi ∈ I, zj ∈ J ,

−
∫
∂Br(z)

log | · −za|−1 ≈ log r−1 and −
∫
∂Bε(zi)

log | · −zj |−1 ≈ log r−1.

Therefore, we can rewrite the condition (3.5) for z ∈ I as follows

(hε(z)− hr(z)) +

(
γ
∑
zi∈I
−
∫
∂Bε(z)

log | · −zi|−1 + |J |γ log r−1

)
− kγ log r−1

+
(
x+ hr(z) + kγ log r−1 −Q log r−1

)
≤ Q log(ε/r)−1.

Hence, after simplification, for z ∈ I, we have

(hε(z)− hr(z)) + γ
∑
zi∈I
−
∫
∂Bε(z)

log | · /r − zi/r|−1 +
(
x+ hr(z) + ck log r−1

)
≤ Q log(ε/r)−1

which is a variant of (3.5), and a similar condition holds for z ∈ J . Furthermore, note that
the processes ((hε(z)− hr(z))ε∈(0,r))z∈I and ((hε(z)− hr(z))ε∈(0,r))z∈J are approximately
independent and hr(z) ≈ hr(w) for all z, w ∈ K, which we then denote by Xr (this can
thought as their common approximate value; to be rigorous, by monotonicity, one can
take their maximum). From this, and the fact that circle average processes evolve as
correlated Brownian motions, it is natural to expect

P̂ 0
K . E

[
1Xr+ck log r−1≤0P̂

x+Xr+ck log r−1

I/r P̂ x+Xr+ck log r−1

J/r

]
, (3.6)

which is the hierarchical structure we were looking for. Altogether, (3.4) and (3.6) allow
to inductively bound from above the term∫

Ak1

P xz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk,

by a quantitative estimate in term of x. This provides not only E[µh(B1(0;Dh)∩A1)k] <∞
but also a quantitative estimate which allows to get E[µh(B1(0;Dh) ∩Aks ] < sαk for some
αk > 0 and all s ∈ (0, 1), via a standard scaling/decoupling argument. An application of
Hölder’s inequality shows E[µh(B1(0;Dh) ∩D)k] <∞ and similar techniques concludes
that E[µh(B1(0;Dh) ∩ C \D)k] <∞, yielding the proof of Proposition 3.1.
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In our implementation of these ideas, because we have to carry the Euclidean domains
associated with the clusters I, J and K, we use ?-scale invariant fields. The short-range
correlation of the fine field gives independence between well-separated clusters, and
invariance properties of the ?-scale invariant field simplifies our multiscale analysis.

In Section 3.1, we prove a quantitative variant of (3.2) where the field h is replaced
by a ?-scale invariant field plus some constant, and the probability in the integrand is
replaced by the probability of coarse-field distance approximations being less than 1.
In Section 3.2, we use these estimates to first bound E[µh(B1(0;Dh) ∩ A1)k], by using
a truncated moment estimate, then extend our arguments to all annuli to deduce the
finiteness of the kth moment Mk := E[µh(B1(0;Dh)k] for all k ≥ 1. By keeping track
of the k dependence, it turns out that it is possible to bound Mk by Ckck

2

for some
constants C, c depending only on γ. To simplify the presentation of our arguments, we
omit these precise estimates.

3.1 Inductive estimate for the ?-scale invariant field

We derive a key estimate for the positive moments (Proposition 3.8), which is like a
quantitative version of (3.2) where we add a constant to the field. We will use ?-scale
invariant fields, which satisfy properties convenient for multiscale analysis. Relevant
references are [1, 12, 26].

Proposition 3.2 (?-scale decomposition of h). The whole plane GFF h normalized so
h1(0) = 0 can be written as

h = g + φ = g + φ1 + φ2 + . . .

where the fields g, φ1, φ2, . . . satisfy the following properties:

1. g and the φn’s are continuous centered Gaussian fields.

2. The law of φn is invariant under Euclidean isometries.

3. φn has finite range dependence with range of dependence e−n, i.e. the restrictions
of φn to regions with pairwise distance at least e−n are mutually independent.

4. (φn(z))z∈R2 has the law of
(
φ1(zen−1)

)
z∈R2 .

5. The φn’s are mutually independent fields.

6. The covariance kernel of φ is C0,∞(z, z′) = − log |z − z′|+ q(z − z′) for some smooth
function q.

7. We have E[φn(z)2] = 1 for all n, z.

The convergence of this infinite sum is with respect to the weak topology on S ′(R2).

Proof. Lemma B.2 gives the coupling h = g + φ with g continuous. The fields φn are
defined in Appendix B, and are shown to satisfy these properties there.

Define also the field φa,b from scales a to b via

φa,b :=

{
φa+1 + · · ·+ φb if a < b

0 if a ≥ b (3.7)

so that φ = φ0,∞ and set, for z, z′ ∈ C,

Ca,b(z, z
′) := E (φa,b(z)φa,b(z

′)) . (3.8)

We will construct a hierarchical representation of a set of points K = {z1, . . . , zk} ⊂ C.
Roughly speaking, starting with K, we will iteratively split each cluster into smaller
clusters that are well separated. We formalize the splitting procedure below.
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Splitting procedure Define for any finite set S of points in the plane (with |S| ≥ 2)
the separation distance s(S) to be the largest t ≥ 0 for which we can partition S = I ∪ J
such that d(I, J) ≥ t, i.e.

s(S) := max
S=I∪J,|I|,|J|≥1

d(I, J). (3.9)

Define IS , JS ⊂ S to be any partition of S with d(I, J) = s(S). Note that if diamS denote
the diameter of the set S, we have the following inequality

diamS

|S|
≤ s(S) ≤ diamS. (3.10)

For the edge case where |S| = 1 define s(S) = 0.

Lemma 3.3. For |S| ≥ 2, we have s(IS), s(JS) ≤ s(S).

Proof. It suffices to prove the lemma for S such that all pairwise distances in S are
distinct, then continuity yields the result for general S. Suppose for the sake of contra-
diction that s(J) > s(S), then there is a partition J = J1 ∪ J2 satisfying d(J1, J2) > s(S).
Since distances are pairwise distinct, we must have d(I, Ji) = s(S) and d(I, J3−i) > s(S)

for some i. Then d(I ∪ Ji, J3−i) = min(d(I, J3−i), d(Ji, J3−i)) > s(S). This contradicts the
definition of s(S).

Hierarchical structure of K = {z1, . . . , zk} and definition of T aK({φ}) By iterating
the splitting procedure above, we can decompose a set K = {z1, . . . , zk} ⊂ C into a
binary tree of clusters. This decomposition into hierarchical clusters is unique for
Lebesgue typical points {z1, . . . , zk}. Two vertices in this tree are separated by at least
the separation distance of their first common ancestor. See Figure 1 for an illustration.

A labeled (binary) tree is a rooted binary tree with k leaves. For each K =

{z1, . . . , zk} ⊂ C, collection of fields {φ} = (φn)n≥0, and nonnegative integer a ≤
dlog s(K)−1e we will define a labeled binary tree denoted by T aK({φ}). Each internal
vertex of this tree is labeled with a quadruple (S,m,ψ, η) with S ⊂ K and |S| ≥ 2, an
integer m, and ψ, η ∈ R, whereas each leaf is labeled with just a singleton {z} ⊂ K.
The truncated labels (S,m) depend only on the recursive splitting procedure described
above: S is one of the clusters associated with this hierarchical cluster decomposition,
and m = dlog s(S)−1e. The variable a represents an initial scale.

For such a labeled tree T we write T + (ψ0, η0) to be the tree obtained by replacing
each internal vertex label (S,m,ψ, η) with (S,m,ψ + ψ0, η + η0). We also write Left(S) to
denote the leftmost point of S, viz. arg minz∈S <(z), where <(z) denotes the real part of
the complex number z.

We explain how the remaining parts (ψ, η) of the labels are obtained. For (K, {φ}, a)

as above, we proceed as follows to complete the definition of the labeled tree T aK({φ}).
For k := |K| = 1, we simply set T aK({φ}) to be the tree with one vertex, labeled with
the singleton K. For k > 1, setting m := dlog s(K)−1e ≥ a, the root vertex of T aK({φ})
is labeled (K,m, φa,m(Left(K)), (m − a)kγ), and its two child subtrees are given by
TmIK ({φ}) + (φa,m(Left(K)), (m− a)kγ) and TmJK ({φ}) + (φa,m(Left(K)), (m− a)kγ). Essen-
tially, after making the split K = I ∪ J , we add up the contribution of the coarse field
φa,m and the contribution of the γ-log singularities to get the scale m field approximation
for the clusters I and J .

We note that the tree structure of T aK({φ}) is deterministic, and for each internal
vertex with label (S,m,ψ, η), only ψ = ψ({φ}) is random; the other components are
deterministic. Roughly speaking, S is a cluster in our hierarchical decomposition, m is
the scale of the cluster (i.e. s(S) ≈ e−m), ψ (resp. η) approximates a radius e−m circle
average of the field φa,m (resp. γ

∑
z∈K log |z − ·|−1 − γka) at the cluster.
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Figure 1: Left: The set of points K is iteratively divided into smaller and smaller
clusters. Right: From this clustering algorithm we obtain a hierarchical binary tree
T aK({φ}) (labels not shown), where internal vertices correspond to clusters S ⊂ K and
leaves correspond to points z ∈ K.

Remark 3.4. For the labeled tree T aK({φ}), at each internal vertex the field approxima-
tion ψ can be explicitly described in terms of the fields {φ} as follows. Let (Si,mi, ψi, ηi)

for i = 1, . . . , n be a path from the root (S1,m1, ψ1, η1). Then, writing m0 = a, we have

ψn =

n∑
i=1

φmi−1,mi(Left(Si)). (3.11)

The γ-singularity approximation η can likewise be stated non-recursively, as

ηn = γ

n∑
i=1

(mi −mi−1)|Si|. (3.12)

Remark 3.5. The choice Left(Si) is arbitrary; any other deterministic choice of point in
Si works. Replacing φmi−1,mi(Left(Si)) with the average |Si|−1

∑
z∈Si φmi−1,mi(z) would

also work without affecting our proofs much.

Definitions of key observables In this paragraph, we provide analogous defini-
tions of the quantities appearing in (3.2). The first one corresponds to a variant of
P[Dh+γ

∑
j Cov(h(zj),h(·)) (0, zi) < 1 for all i], with an extra parameter x. For x ∈ R, let

P a,xK be the probability that the tree with random labels T aK({φ}) satisfies

ψ + η + x ≤ Q(m− a) for each internal vertex labeled (S,m,ψ, η). (3.13)

Note that this probability is taken over the randomness of the fields {φ}, and that this
definition yields for |K| = 1 that P a,xK = 1. Let us comment a bit on this definition and
its relation with the conditions Dh+γ

∑
j Cov(h(zj),h(·))(0, zi) < 1. These distances being

less than one implies upper bounds for annuli crossing distances for annuli separating
the origin from the singularities. The ψ term corresponds to field average over these
annuli, η is an approximation for the γ-singularities and the Q term stands for the scaling
of the metric. Altogether, roughly speaking, P 0,x

K is the probability that for the field
φ0,∞ +

∑
z∈K γ log |z − ·|−1 + x, for all clusters S of K the field-average approximation of

annulus-crossing distances near S is less than 1.

The following observable stands for a variant of the integral in (3.2). Writing K =

{z1, . . . , zk} and dzK = dz1 . . . dzk, we define

unk (x) :=

∫
Bn(0)k

P 0,x
K∏

i<j |zi − zj |γ
2 1s(K)≤edzK . (3.14)
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In Proposition 3.8, we show that unk (x) <∞, and bound it in terms of x. Note that the
statement unk (x) < ∞ is comparable to (3.2) by the fact that exp(γ Cov(h(zi), h(zj))) �
|zi − zj |−γ

2

.
The next lemma establishes basic properties of P a,xK . To state it, we first define

ck := kγ −Q. (3.15)

Lemma 3.6. The P a,xK ’s satisfy the following properties:

1. Monotonicity: P 0,x
K is decreasing in x.

2. Markov decomposition: for the partition IK ∪ JK = K with separation distance
satisfying e−m ≤ s(K) < e−m+1 we have

P 0,x
K = E

[
1Xr+x+ck log r−1≤0P

log r−1,Xr+x+ck log r−1

IK
P log r−1,Xr+x+ck log r−1

JK

]
,

where r = e−m and Xr = φ0,m (Left(K)) is a centered Gaussian with variance
log r−1.

3. Scaling: P log r−1,x
rz1,...rzk

= P 0,x
z1,...zk

for any r = e−m with m ∈ Z.

4. Invariance by translation: P 0,x
z1+w,...,zk+w

= P 0,x
z1,...,zk

.

The first condition corresponds to a shift of the field. The second condition is an
identity with three terms in the right-hand side: the term Xr represents the coarse
field, the indicator says that the “coarse field approximation of quantum distances” at
Euclidean scale r are less than 1, and the product of the two other terms represent a
Markovian decomposition conditional on the coarse field. Properties 3 and 4 are clear
from the translation invariance and scaling properties of φn.

Proof. The monotonicity Property 1 is clear from the definition.
Property 2 follows from the inductive definition of P 0,x

K , by looking at the first split
K = I ∪ J . Indeed, recall Xr = φ0,m (Left(K)). The event {Xr + x + ck log r−1 ≤ 0}
corresponds to inequality (3.13) for the root vertex (K,m, φ0,m(Left(K)),mkγ).

Then, if the set K is decomposed as K = I ∪ J , note that the trees TmI ({φ}) and
TmJ ({φ}) are independent. Indeed, d(I, J) ≥ e−m, so the restrictions of the field
φm (and each finer field) to I and J are independent. Therefore, since the triple
(φ0,m(Left(K)), TmI ({φ}), TmJ ({φ})) are independent, conditionally on φ0,m(Left(K)), the
trees TmI ({φ}) + (φ0,m(Left(K)),mkγ) and TmJ ({φ}) + (φ0,m(Left(K)),mkγ) are indepen-
dent. Thus, all conditions in the definition of P 0,x

K associated to the child subtrees are
conditionally independent. To conclude, we just have to explain that this is indeed the
term Pm,Xr+x+ckmI which appears. For a non-root vertex (S, b, ψ, η) of T 0,x

K belonging to
the genealogy of I, the condition (3.13) can be rewritten,

ψ + η + x = (Xr + ψ′) + (mkγ + η′) + x ≤ Qb = Q(b−m) +Qm,

hence ψ′+η′+(Xr+x+ckm) ≤ Q(a−m), which is exactly the condition we were looking
for at the vertex (S, b, ψ′, η′) in the tree TmI ({φ}).

The scaling Property 3 follows from the scaling property of the φm and the observation
that s(rK) = rs(K) (and hence dlog s(rK)−1e = log r−1 + dlog s(K)−1e).

The invariance by translation Property 4 follows from the translation invariance of
the fields φm.

Using these properties, we derive the following inductive inequality.
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Lemma 3.7. For each n, k > 0, there exists a constant Cn,k such that the following
inductive inequality holds, for all x ∈ R, where Xr ∼ N (0, log r−1).

unk (x) ≤ Cn,k
k−1∑
i=1

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2×

E
[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6kk−i(Xr + x+ ck log r−1)

]
.

We now turn to the proof of the inductive relation. The argument is close to that of
Lemma A.1, the difference being that we have to take care of the decoupling of P 0,x

K .

Proof. We first introduce some notation. In what follows we will be integrating over
k-tuples of points z1, . . . , zk; write K for this collection of points and dzK = dz1 . . . dzk.
Write f(K) :=

∏
|z − z′|−γ2/2 where the product is taken over all pairs z, z′ ∈ K with

z 6= z′.

We first split the integral in the definition (3.14) of unk (x) as

unk (x) =
∑

r=e−m,m≥0

vnk (x, r)

where for r ∈ (0, 1], vnk (x, r) is defined by

vnk (x, r) :=

∫
Bn(0)k

P 0,x
K f(K)1r≤s(K)≤erdzK . (3.16)

Notice that s(K) ≤ er implies diamK ≤ ekr, so any K contributing to the integral
in (3.16) is contained in a ball of radius 6kr centered in rZ2 ∩B(0, n). Taking a sum over
the O(n2r−2) such balls and by translation invariance, we get the bound

vnk (x, r) ≤ O(n2r−2)

∫
B6kr(0)k

P 0,x
K f(K)1r≤s(K)≤erdzK .

Write K = IK ∪ JK for the partition described before Lemma 3.3. For z ∈ IK and z′ ∈ JK
we have |z − z′|−γ2 ≤ s(K)−γ

2 ≤ r−γ2

, and s(IK), s(JK) ≤ s(K) ≤ er by Lemma 3.3, so

vnk (x, r) ≤ O(n2r−2)

∫
B6kr(0)6k

r−γ
2|IK ||JK |P 0,x

K f(IK)1s(IK)≤erf(JK)1s(JK)≤er dzK .

The Markov property decomposition 2 Lemma 3.6 allows us to split P 0,x
K into an expec-

tation over a product of terms, yielding an upper bound of vnk (x, r) as an integral of
terms which ‘split’ into zIK and zJK parts. This expression is in terms of the partition
IK ∪ JK = K; we can upper bound it by summing over all I, J ⊂ K. To be precise, for
each i = 1, . . . , k−1 we sum over all pairs I, J ⊂ K with |I| = i and |J | = k− i. Absorbing
combinatorial terms like

(
k
i

)
and the prefactor n2 into the constant Cn,k, we get

vnk (x, r) ≤ Cn,kr−2
k−1∑
i=1

r−γ
2i(k−i)EXr

[∫
B6kr(0)i

P log r−1,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤erdzI(∫
B6kr(0)k−i

P log r−1,Xr+x+ck log r−1

w1,...,wk−i∏
a<b |wa − wb|γ

2 1s(w1,...,wk−i)≤erdwJ

)
1Xr+x+ck log r−1≤0

]
.
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We analyze the first integral (we can deal with the second one along the same lines).
Changing the domain of integration from B6kr(0)i to B6k(0)i, we get∫

B6kr(0)i

P log r−1,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤erdz1 . . . dzi

= r2i−γ
2(i2)

∫
B6k(0)i

P log r−1,Xr+x+ck log r−1

rz1,...,rzi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤edz1 . . . dzi,

and then applying the scaling property 3 of P , the integral on the right hand side is
equal to∫

B6k(0)i

P 0,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤edz1 . . . dzi = u6ki (Xr + x+ ck log r−1).

By gathering the previous bounds and identities, and noting that the power of r is

r−2−γ
2i(k−i)+2k−γ2(i2)−γ

2(k−i2 ) = rγkQ−
1
2γ

2k2−2,

and this completes the proof of the inductive inequality.

Using the inductive relation and the base case, we derive the following proposition,
which provides a bound on the quantity (3.14) introduced at the beginning of the section.

Proposition 3.8. Recall that ck = kγ −Q. For x ∈ R we have

unk (x) ≤ Cn,ke−ckx when k ≥ 4/γ2,

and
unk (x) ≤ Cn,k when k < 4/γ2,

where Cn,k is a constant depending only on n, k.

Proof. We first address the case where k < 4/γ2. In this setting, by the trivial bound
P 0,x
K ≤ 1 we have

unk (x) ≤
∫
Bn(0)k

∏
i<j

|zi − zj |−γ
2

dz1 . . . dzk,

and the right-hand side is finite by the discussion in Section 2.4.
Now consider k ≥ 4/γ2. We proceed inductively, assuming that the statement of the

proposition has been shown for all k′ < k. Lemma 3.7 gives us the bound

unk (x) ≤ Cn,k
k−1∑
i=1

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2×

E
[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6kk−i(Xr + x+ ck log r−1)

]
, (3.17)

where Xr ∼ N (0, log r−1). We bound each term u6ki u
6k
k−i using the inductive hypothesis.

We need to split into cases based on which bound of the statement of the proposition is
applicable (i.e. based on the sizes of i, k − i), but the different cases are almost identical,
so we present the first case in detail and simply record the computation for the remaining
cases.

Case 1: i, k − i ≥ 4/γ2. By the inductive hypothesis we can bound the ith term of (3.17)
by a constant times∑

r=e−m,m≥0

rkγQ−
1
2γ

2k2−2E
[
e−(ci+ck−i)(Xr+x+ck log r−1)1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2+ck(ck−Q)e(Q−ck)xE
[
e−(ck−Q)Xr1Xr+x+ck log r−1≤0

]
, (3.18)
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where we have used the identity ci + ck−i = ck − Q. For each r we can write the
expectation in the equation (3.18) by a Cameron-Martin shift as

E[e−(ck−Q)Xr ]P[Xr + x+ ck log r−1 − (ck −Q) Var(Xr) ≤ 0]

= r−
1
2 (ck−Q)2P[Xr ≤ −(Q log r−1 + x)]. (3.19)

We claim that
P[Xr ≤ −(Q log r−1 + x)] ≤ r 1

2Q
2

e−Qx. (3.20)

Indeed, in the case where Q log r−1 + x ≥ 0, we have by a standard Gaussian tail bound
that

P[Xr ≤ −(Q log r−1 + x)] ≤ e−
(Q log r−1+x)2

2 log r−1 = r
1
2Q

2

e−Qxe
− x2

2 log r−1 ≤ r 1
2Q

2

e−Qx,

and in the cases where Q log r−1 + x < 0 we have

P[Xr ≤ −(Q log r−1 + x)] ≤ 1 ≤ e−Q(Q log r−1+x) = rQ
2

e−Qx ≤ r 1
2Q

2

e−Qx.

Finally, we combine (3.18), (3.19) and (3.20) to upper bound the ith term of (3.17). This
upper bound is a sum over r of terms of the form rpowere−ckx where the power is

kγQ− 1

2
γ2k2 − 2 + ck(ck −Q)− 1

2
(ck −Q)2 +

1

2
Q2 =

1

2
Q2 − 2 > 0.

So we can bound the ith term of (3.17) by a constant times∑
r=e−m,m≥0

r
Q2

2 −2e−ckx = O(e−ckx).

Case 2: i ≥ 4/γ2 and k − i < 4/γ2. By the inductive hypothesis we can bound the ith
term of (3.17) by a constant times∑

r=e−m,m≥0

rkγQ−
1
2γ

2k2−2E
[
e−ci(Xr+x+ck log r−1)1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2+cicke−cixE
[
e−ciXr1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2+cick− 1
2 c

2
i e−cixP

[
Xr ≤ −((ck − ci) log r−1 + x)

]
≤

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2+cick− 1
2 c

2
i+

1
2 (ck−ci)

2

e−ckx

=
∑

r=e−m,m≥0

r
1
2Q

2−2e−ckx = O(e−ckx).

Note that by symmetry Case 2 also settles the case where i < 4/γ2 and k − i ≥ 4/γ2.

Case 3: i, k − i < 4/γ2. By the inductive hypothesis we can bound the ith term of (3.17)
by a constant times∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2P
[
Xr ≤ −(ck log r−1 + x)

]
≤

∑
r=e−m,m≥0

rkγQ−
1
2γ

2k2−2+ 1
2 c

2
ke−ckx

=
∑

r=e−m,m≥0

r
1
2Q

2−2e−ckx = O(e−ckx).

This completes the proof.
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The proof of Proposition 3.8 depends on the exponent 1
2Q

2 − 2 = 1
2 ( 2
γ −

γ
2 )2 being

positive. If we make a slight perturbation to our definitions, so long as the resulting
exponent is still positive, we get a variant of Proposition 3.8. In particular, for δ > 0, we
define P a,x,δK similarly to P a,xK by replacing the inequality (3.13) with ψ + η + x ≤ (Q +

δ)(m−a), and define un,δk analogously to (3.14) with P 0,x,δ
K . We record the following result

as a corollary since the proof follows the same steps as in the proof of Proposition 3.8.

Corollary 3.9. For k ≥ 1 and n ≥ 1, for δ small enough, there exist constants Cn,k,δ and
ck,δ such that,

un,δk (x) ≤ Cn,k,δe−ck,δx for all x ∈ R when k ≥ 4/γ2,

and
un,δk (x) ≤ Cn,k,δ for all x ∈ R when k < 4/γ2.

Furthermore, limδ→0 ck,δ = kγ −Q for fixed k.

Remark 3.10. Alternatively, one could modify the definition of unk (x) in (3.14) to have a

different denominator |zi − zj |γ
2+δ. Namely, by setting

ûn,δk (x) :=

∫
Bn(0)k

P 0,x
K∏

i<j |zi − zj |γ
2+δ

1s(K)≤edzK ,

the statement of Corollary 3.9 applies to ûn,δk (x) instead of un,δk (x).

3.2 Moment bounds for the whole-plane GFF

In this section, we use our previous estimate (Proposition 3.8 or its variant Corol-
lary 3.9) to obtain the moment bounds for a whole-plane GFF h such normalized such
that h1(0) = 0 and therefore prove Proposition 3.1. Additionally, in this section we
write C or Ck,δ to represent large constants depending only on k and δ, and may not
necessarily represent the same constant in different contexts or equations.

Proxy estimate for whole-plane GFF

Recall the notation As,r := Br(0) \Bs(0) for 0 < s < r. We introduce the following proxy

P r,dh := {z ∈ C : Dh(z, ∂Br/4(z)) ≤ d}. (3.21)

The set P r,dh contains points whose “local distances” are small. We work with P r,dh because

the event z ∈ P r,dh depends only on the field h|Br/4(z), and is thus more tractable than
the event z ∈ B1(0;Dh) (which depends on the field in a more “global” way). Moreover
we have B1(0;Dh) ∩ Ar ⊂ P r,1h ∩ Ar, so to bound from above µh(B1(0;Dh)) it suffices

to bound from above the volume of the proxy set. We emphasize that P r,dh is different
from the quantity P a,xK introduced in (3.13): the former is associated with a field h and
is considered on the full plane without restriction; the latter is associated with ?-scale
invariant fields, and the capital letter K refers to a finite number of points where the
condition is localized.

Proposition 3.11. Let h be a whole-plane GFF such that h1(0) = 0. For k ≥ 4/γ2,
δ ∈ (0, 1/2), there exists a constant Ck,δ such that for all x ∈ R,

E

[
µh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δe−ck,δx,

where we recall that ck = kγ −Q and ck,δ → ck as δ → 0.
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In fact, for x > 0 it is possible, by using tail estimates for side-to-side distances, to
show that the decay is Gaussian in x. We do not need this result so we omit it.

Proof. In order to keep the key ideas of the proof transparent, we postpone the proofs of
some intermediate elementary lemmas to the end of this section. Consider the collection
of balls

B =
{
Be−`(z) : ` ∈ N0, z ∈ e−`−2Z2, Be−`(z) ∩B10(0) 6= ∅

}
. (3.22)

We will work with three events in the proof: Eδ,M is a global regularity event, FK,δ,M is

an approximation of the event {K ⊂ P 1,e−ξx

h } which replaces the conditions on the metric
by conditions on the field, and F ′K,δ,M is a variant of FK,δ,M where γ-log singularities are

added to the field at the points z ∈ K (this is related to P 0,x
K ). Here, M is a parameter

that is sent to +∞ and δ is a small positive parameter. The integer k is fixed throughout
the proof, so the events are allowed to depend on k and we omit it in the notation.

Step 1: truncating over a global regularity event E. The event Eδ,M is given by the
following criteria:

1. For all ` ≥ 0, the annulus crossing distance of B\0.99B is bounded from below by

M−ξe−ξ`
1
2
+δ

e−ξQ`eξ−
∫
∂B

h for all B ∈ B with radius e−`.

2. For all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, we have the inequality
e−` sup6kB |∇φ`′,`| ≤ `

1
2+δ + logM .

3. For all ` ≥ 0 and all B ∈ B of radius e−`−2, −
∫
∂B

φ`,∞ ≤ `
1
2+δ + logM .

4. ‖φ− h‖D = ‖g‖D ≤ logM .

As we see later in Lemma 3.15, for fixed δ the event Eδ,M occurs with superpolynomially
high probability in M as M →∞. Therefore, when looking at moments of µh(B1(0;Dh)∩
D), one can restrict to moments truncated on Eδ,M .

By using Property 4 of Eδ,M and the definition of µφ as a Gaussian multiplicative
chaos (see Section 2.3), we get

E

[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ CkMγkE

[
1Eδ,Mµφ

(
B10(0) ∩ P 1,e−ξx

h

)k]
and

E

[
1Eδ,Mµφ

(
B10(0) ∩ P 1,e−ξx

h

)k]
= E

[∫
B10(0)k

1Eδ,M1{zi ∈ P 1,e−ξx

h for all i}µφ(dz1) . . . µφ(dzk)

]

≤ E

[∫
B10(0)k

1FK,δ,Mµφ(dz1) . . . µφ(dzk)

]
,

where the event FK,δ,M is defined in the following lemma. In the first inequality above,
the constant Ck appears from the difference of definition between Gaussian multiplicative
chaos measures and the Liouville quantum gravity measure; the former one is defined

by renormalizing by a pointwise expectation whereas the latter one by ε
γ2

2 .

Lemma 3.12. For k ≥ 2, there exists a constant C so that for any k-tuple of points
K = {z1, . . . , zk} ⊂ D we have the inclusion of events

Eδ,M ∩ {zi ∈ P 1,e−ξx

h for all i = 1, . . . , k} ⊂ FK,δ,M
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where FK,δ,M is the event that for all vertices (S,m,ψ, η) of T 0
K({φ}) we have

ψ + x < Qm+ Cm
1
2+δ + C logM. (3.23)

Essentially, Lemma 3.12 holds because K ⊂ P 1,e−ξx

h implies that distances near each
cluster are small. Then for each cluster, Property 1 of Eδ,M lets us convert bounds on
distances to bounds on circle averages of h, Property 2 lets us replace the coarse field
circle average with the coarse field evaluated at any nearby point, and Properties 3
and 4 allow us to neglect the fine field and the random continuous function h− φ; this
gives (3.23).

Step 2: shifting LQG mass as γ-singularties. We then use the following lemma to
replace the terms µφ(dzi)’s by dzi and γ-singularities.

Lemma 3.13. If f is a bounded nonnegative measurable function, and Ca,b are the
covariances of φa,b (defined as in (3.8)), we have

E

[∫
B10(0)k

f(φ, z1, . . . , zk, φ1, . . . , φ`, . . . )µφ(dz1) . . . µφ(dzk)

]
≤
∫
B10(0)k

dz1, . . . dzk

E

f(φ+ γ
∑
i≤k

C0,∞(·, zi), z1, . . . , zk, φ1 + γ
∑
i≤k

C0,1(·, zi), . . . , φ` + γ
∑
i≤k

C`−1,`(·, zi), . . . )


× exp

γ2
2

∑
i 6=j

C0,∞(zi, zj)

 .

We apply Lemma 3.13 with f = 1FK,δ,M and we get

E

∫
B10(0)k

1FK,δ,Mµφ(dz1) . . . µφ(dzk)

≤
∫
B10(0)k

P[F ′K,δ,M ] exp(
γ2

2

∑
i 6=j

C0,∞(zi, zj))dz1 . . . dzk (3.24)

where F ′K,δ,M is the event that in the labeled tree T 0
K({φ}), for any path from the root

(S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn), we have

ψn + γ

n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si)) + x ≤ Qmn + Cm
1
2+δ
n + C logM. (3.25)

Note that by Lemma 3.14 below, (3.25) implies that for each vertex (Sn,mn, ψn, ηn) we
have

ψn + ηn + x ≤ (Q+ δ)mn + C logM + 2C. (3.26)

(The term 2C comes from Lemma 3.14 and the bound Cm
1
2+δ
n ≤ δmn + C, using

that δ ∈ (0, 1/2).) Now, the probability that (3.26) occurs for each vertex is pre-
cisely P 0,x−C logM−2C,δ

K , defined in just before the Corollary 3.9, so we conclude that

P[F ′K,δ,M ] ≤ P 0,x−C logM−2C,δ
K .

Lemma 3.14. For k ≥ 2, there exists Ck such that for K ∈ B10(0)k, for any path from
the root (S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn) in the labeled tree T 0

K({φ}) we have, writing
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m0 = 0,∣∣∣∣∣ηn − γ
n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si))

∣∣∣∣∣
=

∣∣∣∣∣γ
n∑
i=1

(mi −mi−1)|Si| − γ
n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si))

∣∣∣∣∣ < C.

By Proposition 3.2, for K ⊂ B10(0) we have exp(γ
2

2

∑
i 6=j C0,∞(zi, zj)) ≤ C

∏
i<j |zi −

zj |−γ
2

. Combining all of the above bounds yields

E

[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ CkMγk

∫
B10(0)k

P 0,x−C logM−2C,δ
z1,...,zk∏
|zi − zj |γ2 dz1 . . . dzk.

Finally, by Corollary 3.9 we conclude that for all x ∈ R we have

E

[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δMCe−ck,δx. (3.27)

Step 3: concluding the proof. By Markov’s inequality, we get,

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ P[Ecδ,M ] + P[Eδ,M , µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t]

≤ P[Ecδ,M ] + t−kE[1Eδ,Mµh(B10(0) ∩ P 1,e−ξx

h )k]. (3.28)

The second term is bounded by (3.27). To control the first term, we use the following
lemma.

Lemma 3.15. For fixed δ ∈ (0, 1/2), the regularity event Eδ,M occurs with superpolyno-
mially high probability as M →∞.

Combining these bounds, namely starting from (3.28), using (3.27) and the previous
lemma, we get, for all δ, k, p, a constant Cδ,k,p such that for all x ∈ R and for all M, t > 0,

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ Ck,δ,p
(
M−p + t−kMCe−ck,δx

)
.

By taking M = tk/(p+C)eck,δx/(p+C), we get

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ Ck,δ,pt−
p

p+C ke−
p

p+C ck,δx

so by choosing p large and integrating the tail estimate to obtain moment bounds, we
obtain

E[µh(B10(0) ∩ P 1,e−ξx

h )k−δ] ≤ Ce−(ck,δ−δ)x.

Then, by (3.27) and the Cauchy-Schwartz inequality, we get

E

[
µh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δMCe−ck,δx + P[Ecδ,M ]1/2E

[
µh

(
B10(0) ∩ P 1,e−ξx

h

)2k]1/2
and we conclude the proof of Proposition 3.11 by taking M = eε|x| for some small ε > 0

(indeed, for this choice of M we have P[Ecδ,M ] . e−a|x| for any a > 0, and our earlier
bound says that the 2kth moment is at most exponential in x).
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Annuli contributions and α-singularities

Here, we use the proxy estimate to study moments of metric balls when the field
has singularities. The link is made with the following deterministic remark. Recall
that Ar/2 := Br/2(0)\Br/4(0). If z ∈ B1(0;Dh) ∩ Ar/2 then Dh(0, ∂Br/4(0)) ≤ 1 and

z ∈ P r,1−Dh(0,∂Br/4(0))h (recall (3.21) for the definition of P r,dh ).

In the following lemma, we will study the LQG volume of the intersection of the unit
metric ball with the unit Euclidean disk. To do so, we study first the contribution of small
annuli to the volume and then use a Hölder inequality to conclude.

Lemma 3.16. Let h be a whole-plane GFF such that h1(0) = 0. Then for α < Q,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩D)k)

]
<∞.

Proof. Note that B1(0;Dh) ∩ Ar/2 ⊂ P r,1h ∩ Ar/2 and that the latter one is measurable
with respect to the field h|Br(0). We use a decoupling/scaling argument as follows. We
write,

µh(B1(0;Dh) ∩Ar/2) ≤ 1Dh(0,∂Br/4(0))≤1µh(P r,1h ∩Ar/2)

= 1eξhr(0)Dh−hr(0)(0,∂Br/4(0))≤1e
γhr(0)µh−hr(0)

(
Ar/2 ∩ P r,e

−ξhr(0)

h−hr(0)

)
,

and set h̃ := h(r·)−hr(0). By Lemma 2.1 we have the equality in law h̃|D
(d)
= h|D, and also

h̃|D is independent of hr(0). Using the scaling of the metric and of the measure, we get

E
[
µh(B1(0;Dh) ∩Ar/2)k

]
≤ E

[
1eξhr(0)Dh−hr(0)(0,∂Br/4(0))≤1e

γkhr(0)µh−hr(0)

(
Ar/2 ∩ P r,e

−ξhr(0)

h−hr(0)

)k]
≤ rkγQE

[
1eξhr(0)rξQDh̃(0,∂B1/4(0))≤1e

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
. (3.29)

We split the expectation with 1Dh̃(0,∂B1/4)≤rδ and 1Dh̃(0,∂B1/4)≥rδ . Note first that for
p > 1, by Proposition 3.11 and a moment computation for the exponential of a Gaussian
variable with variance constant times log r−1,

E

[
eγpkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)kp]
≤ Crpower,

for some power whose value does not matter. Indeed, because of the superpolynomial
decay of the event {Dh̃(0, ∂B1/4) ≤ rδ} coming from Proposition 2.3, the quantity

E

[
1Dh̃(0,∂B1/4)≤rδe

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
≤ P[Dh̃(0, ∂B1/4) ≤ rδ]1/qE

[
eγpkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)kp]1/p
decays superpolynomially fast in r, by using Hölder’s inequality with 1

p + 1
q = 1.

From now on, we truncate on the event {Dh̃(0, ∂B1/4) ≥ rδ} and we want to bound
from above

rkγQE

[
1eξhr(0)rξQ+δ≤1e

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
.
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By Proposition 3.11, since A1/2 ⊂ B10(0) and hr(0) is independent of h̃|D, by writing
ck,δ = kγ −Q+ αδ for some small αδ, we get

rkγQE

[
1eξhr(0)rξQ+δ≤1e

γkhr(0)µh̃

(
A1/2 ∩ P 1,r−ξQe−ξhr(0)

h̃

)k]
≤ CkrkγQr−ck,δQE

[
1eξhr(0)rξQ+δ≤1e

γkhr(0)e−ck,δhr(0)
]

= Ckr
Q2−QαδE

[
1eξhr(0)rξQ+δ≤1e

(Q−αδ)hr(0)
]
.

Furthermore, since

E
[
1eξhr(0)rξQ+δ≤1e

(Q−αδ)hr(0)
]
≤ E

[
e(Q−αδ)hr(0)

]
,

by a Gaussian computation we get

E
[
µh(B1(0;Dh) ∩Ar/2)k

]
≤ Ckr

1
2Q

2+βδ ,

for some arbitrarily small βδ.
Furthermore, note that when one replaces h by h+ α log | · |−1 for α < Q, we get

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩Ar/2)k

]
≤ Ckr

1
2 (Q−α)

2+βδ . (3.30)

Indeed, on Ar/2, α log | · |−1 is of order − log r +O(1) so the volume term contributes an
additional r−kγα. Furthermore, by monotonicity, we can replace the intersection of the
unit Dh+α log |·|−1 -metric ball with Ar/2 by an order rξα Dh-metric ball intersected with

Ar/2. Then, instead of using B1(0;Dh) ∩Ar/2 ⊂ P r,1h ∩Ar/2 at the beginning of the proof,

we use Brαξ(0;Dh) ∩ Ar/2 ⊂ P r,r
αξ

h ∩ Ar/2. Then we note that the term rξQ in (3.29) is
replaced by rξ(Q−α). Therefore, (3.30) follows by replacing Q with Q− α.

We can conclude as follows. Set V γ,αr := µh+α log |·|−1(B1(0;Dh+α log |·|−1 ∩ Ar)). By
monotone convergence,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩D)k

]
= lim
n→∞

E

( n∑
i=0

V γ,α2−i

)k .
We introduce some deterministic Λ > 1 to be chosen. By Hölder’s inequality we get(

n∑
i=0

V γ,α2−i

)k
=

(
n∑
i=0

ΛiV γ,α2−i Λ−i

)k
≤

(
n∑
i=0

Λki(V γ,α2−i )k

)(
n∑
i=0

Λ−i
k
k−1

)k−1
.

Taking expectations, and using the bound (3.30), we get, uniformly in n,

E

( n∑
i=0

V γ,α2−i

)k ≤ ( 1

1− Λ−
k
k−1

)k−1 ∞∑
i=0

Λki2−i(
1
2 (Q−α)

2+βδ).

Taking Λ close enough to one such that Λk2−
1
2 (Q−α)

2+βδ < 1, this series is absolutely
convergent, as desired.

Lemma 3.17 (Large annuli). Let h be a whole-plane GFF such that h1(0) = 0. Then, for
α < Q, E

[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ C \D)k

]
<∞.

Proof. The proof uses the proxy estimate and a decomposition over annuli with a scaling
argument. This is similar to Lemma 3.16. We point out here only the main differences
with the proof of this lemma.
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Write Dh(0, ∂BR/4(0)) =: RξQeξhR/4(0)XR. Since B1(0;Dh) ∩AR ⊂ PR,1h ∩AR

E[µh(B1(0;Dh) ∩AR)k] ≤ E[1Dh(0,∂BR/4(0))≤1µh(PR,1h ∩AR)k]

= E[1
RξQe

ξhR/4(0)
XR≤1

ekγhR/4(0)µh−hR/4(0)(P
R,e
−ξhR/4(0)

h−hR/4(0) ∩AR)k]

We truncate again with 1XR≤R−δ and 1XR≥R−δ . Because of the superpolynomial decay of
P(XR ≤ R−δ), the term associated with the former truncation is negligible compared to
the other one. Furthermore, since we will have some room at the level of exponent, we
will simply assume that δ = 0 for the remaining steps. By using that h−hR/4(0))|AR/4,2R(0)

is independent of hR/4(0) and that the proxy PR,xh ∩ Ar is measurable with respect to
h|AR/4,2R , we get by scaling,

E(1
RQe

hR/4(0)≤1µh−hR/4(0)(P
R,e
−ξhR/4(0)

h−hR/4(0) ∩AR)k)

= RkγQE(1
RQe

hR/4(0)≤1e
kγhR/4(0)µh̃(P 1,e

−ξhR/4(0)
R−ξQ

h̃
∩A1)k)

At this stage we use the estimate from Proposition 3.11. Therefore, we compute

RkγQE(1hR/4(0)≤−Q logRe
kγhR/4(0)e−ck(hR/4(0)+Q logR))

= RkγQe−ckQ logRE
(

1hR/4(0)≤−Q logRe
QhR/4(0)

)
and by using the Cameron-Martin formula we get

RkγQe−ckQ logRE
(

1hR/4(0)≤−Q logRe
QhR/4(0)

)
≈ RQ

2

R
Q2

2 E
(

1hR/4(0)≤−Q logRe
QhR/4(0)− 1

2Q
2 logR/4

)
≈ R 3

2Q
2

P
(
hR/4(0) ≤ −2Q logR

)
≈ R−

Q2

2 ,

where AR ≈ BR if AR/BR = Ro(1). So this gives

E[µh(B1(0;Dh) ∩AR)k] ≤ R−
Q2

2 +o(1)

The rest of the proof, namely taking into account all the annuli contributions and using
Hölder inequality, is the same as the one of Lemma 3.16.

Proof of Proposition 3.1. Let h be a whole-plane GFF such that h1(0) = 0 and fix α < Q.
The proof follows easily by writing

µh+α log |·|−1(B1(0;Dh+α log |·|−1))

= µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩D) + µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ C \D)

and using the inequality (x + y)k ≤ 2k−1(xk + yk) together with Lemma 3.16 and
Lemma 3.17.

Lemma 3.18 (Upper bound for small metric balls). For ε ∈ (0, 1), k ≥ 1, there exists a
constant Ck,ε such that for all s ∈ (0, 1),

E[µh(Bs(0;Dh))k] ≤ Ck,εskdγ−ε

Proof. The proof is very similar to the one of Lemma 3.16, therefore we omit the
details and just provide the differences. By replacing 1 by s in the proof, we get

E[µh(Bs(0;Dh) ∩ Ar)k] ≤ Cks
kdγ−cγr

Q2

2 where cγ =
dγ
γ Q. By using Hölder’s inequality,

we get E[µh(Bs(0;Dh) ∩Ar)k] ≤ C1/p
kp s

kdγ−
cγ
p r

Q2

2p . We then take p such that cγ/p < ε and
the rest of the proof follows the same line as those of Lemma 3.16.
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Proofs of the intermediate lemmas for Proposition 3.11

We recall here the definition of the event Eδ,M (recall the definition of B in (3.22)). It is
given by the following criteria:

1. For all ` ≥ 0, the annulus crossing distance of B\0.99B is bounded from below by

M−ξe−ξ`
1
2
+δ

e−ξQ`eξ−
∫
∂B

h for all B ∈ B with radius e−`,

2. for all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, we have the inequality
e−` sup6kB |∇φ`′,`| ≤ `

1
2+δ + logM ,

3. for all ` ≥ 0 and for all B ∈ B of radius e−`−2, −
∫
∂B

φ`,∞ ≤ `
1
2+δ + logM ,

4. and ‖φ− h‖D = ‖g‖D ≤ logM .

Proof of Lemma 3.12. We prove here that for any k-tuple of points K = {z1, . . . , zk} ⊂ D
we have

Eδ,M ∩ {zi ∈ P 1,e−ξx

h for all i = 1, . . . , k}

⊂ {ψ + x ≤ Qm+ 8k2(m
1
2+δ + logM) for each vertex (S,m,ψ, η) of T 0

K({φ})}.

Fix K and consider any vertex (S,m,ψ, η) of T 0
K({φ}). Recall first that by (3.11),

ψ = ψn =

n∑
i=1

φmi−1,mi(Left(Si)), (3.31)

where we write (Si,mi, ψi, ηi) for the path from the root (S1,m1, ψ1, η1) to the vertex
(Sn,mn, ψn, ηn) = (S,m,ψ, η). The proof is to compare a circle average around z ∈ S
(which can be bounded since z ∈ P 1,e−ξx

h ) with the right-hand side above. Pick any point

z ∈ S. Since z ∈ P 1,e−ξx

h ,

Dh(z, ∂Be−m−1(z)) ≤ Dh(z, ∂B1/4(z)) ≤ e−ξx,

and we can find a ball B ∈ B, centered at a point in e−m−4Z2 with radius e−m−2 whose
boundary separates z from ∂Be−m−1(z). Hence the annulus crossing distance of B\0.99B

is at most e−ξx. By Property 1, we have,

M−ξe−ξ(m+2)
1
2
+δ

e−ξQ(m+2)eξ−
∫
∂B

h ≤ e−ξx,

or equivalently

−
∫
∂B

h+ x ≤ Q(m+ 2) + (m+ 2)
1
2+δ + logM. (3.32)

Now we lower bound −
∫
∂B

h in term of (3.31) by using properties 2, 3 and 4 of Eδ,M .

• By Property 4 we have

−
∫
∂B

h ≥
n∑
i=1

−
∫
∂B

φmi−1,mi +−
∫
∂B

φm,∞ − logM.

• For each i, notice that z ∈ Si, and so d(z,Left(Si)) ≤ eke−mi by (3.10). Conse-
quently, by Property 2 we have for each i = 1, . . . , n

−
∫
∂B

φmi−1,mi ≥ φmi−1,mi(Left(Si))− 4km
1
2+δ
i − 4k logM.
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• By Property 3 we have

−
∫
∂B

φm,∞ ≥ −m
1
2+δ − logM.

Combining these yields (see Remark 3.4)

−
∫
∂B

h ≥
n∑
i=1

φmi−1,mi(Left(Si))− 6k2m
1
2+δ − 6k2 logM = ψ − 6k2m

1
2+δ − 6k2 logM.

Together with (3.32), this gives ψ + x ≤ Qm + 8k2(m
1
2+δ + logM) and concludes the

proof.

Proof of Lemma 3.13. This is an application of the Cameron-Martin theorem. We outline
here the main idea, assuming for notational simplicity that the function f depends only
on φ, z1, . . . , zk. The argument works the same way for f depending also on (φn)n≥0.

Assume first that f is continuous. Fix k ≥ 2, δ > 0 and set Cδ := {(z1, . . . , zk) ∈
B10(0)k : mini<j |zi − zj | ≥ δ}. Then, by using Fatou’s lemma, we have

E

[∫
B10(0)k∩Cδ

f(φ, z1, . . . , zk)µφ(dz1) . . . µφ(dzk)

]

≤ lim inf
ε→0

E

[∫
B10(0)k∩Cδ

f(φ, z1, . . . , zk)
eγφε(z1)

E[eγφε(z1)]
. . .

eγφε(zk)

E[eγφε(zk)]
dz1 . . . dzk

]
This expectation can be rewritten as∫

B10(0)k∩Cδ

dz1 . . . dzk

e−
γ2

2

∑
i6=j Cov(φε(zi),φε(zj))

E

[
eγ

∑
i≤k φε(zi)−

γ2

2 Var(
∑
i≤k φε(zi))f(φ, z1, . . . , zk)

]
so, by using the Cameron-Martin formula, we get

lim inf
ε→0

∫
B10(0)k∩Cδ

dz1 . . . dzk

e−
γ2

2

∑
i6=j Cov(φε(zi),φε(zj))

E

f(φ+ γ
∑
i≤k

Cov(φ(·), φε(zi)), z1, . . . , zk)


=

∫
B10(0)k∩Cδ

dz1 . . . dzk

e−
γ2

2

∑
i6=j Cov(φ(zi),φ(zj))

E

f(φ+ γ
∑
i≤k

Cov(φ(·), φ(zi)), z1, . . . , zk)

 ,
where we used the dominated convergence theorem in the last equality (indeed, the term∑

i6=j Cov(φ(zi), φ(zj)) is uniformly bounded for (z1, . . . , zn) ∈ Cδ). The Cameron-Martin
formula is used by writing

γ
∑
i≤k

φε(zi) = 〈φ, γ
∑
i≤k

ρε,zi〉

where ρε,zi denote the uniform probability measure on the circle ∂Bε(zi). Note that
the above inequality was only shown for continuous f , but we can approximate general
bounded nonnegative measurable f by a sequence of continuous fn which converge
pointwise to f , and apply the dominated convergence theorem. Thus the above inequality
holds for general f .

Finally, letting δ going to zero and using the monotone convergence theorem, we get

E

[∫
B10(0)k

f(φ, z1, . . . , zk)µφ(dz1) . . . µφ(dzk)

]

≤
∫
B10(0)k

e
γ2

2

∑
i6=j Cov(φ(zi),φ(zj))E

f(φ+ γ
∑
i≤k

Cov(φ(·), φ(zi)), z1, . . . , zk)

 dz1 . . . dzk.
This concludes the proof.
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Proof of Lemma 3.14. It suffices to show that for some constant C, for each z ∈ K and
each i = 1, . . . , n, writing w = Left(Si) we have∣∣Cmi−1,mi(z, w)− (mi −mi−1)1z∈Si

∣∣ < C.

If z 6∈ Si, then by definition d(z, w) ≥ d(z, Si) ≥ e−mi−1 . This is larger than the range of
dependence of φmi−1,mi , so Cmi−1,mi(z, w) = 0 as desired.

Now suppose z ∈ Si. By (3.10), we know that Si is contained in a ball of radius
6ke−mi ; by translation invariance we may assume this ball is centered at the origin. On
B6k(0) × B6k(0), the correlation of φ0,∞ is C0,∞(·, ·) = log | · − · |−1 + q(· − ·) for some
bounded continuous q. Thus, by scale invariance, we can write

Cmi−1,mi(z, w) = C0,mi−mi−1
(emi−1z, emi−1w)

= log |emi−1(z − w)|−1 − Cmi−mi−1,∞(emi−1z, emi−1w) +O(1).

But again by scale invariance we have

Cmi−mi−1,∞(emi−1z, emi−1w) = C0,∞(emiz, emiw) = log |emi(z − w)|−1 +O(1).

Comparing these two equations we conclude that Cmi−1,mi(z, w) = mi −mi−1 +O(1), as
needed.

Finally we check the bound on the regularity event E.

Proof of Lemma 3.15. We prove here the estimate of the occurence of the event Eδ,M .
For all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, the probability that

e−` sup6kB |∇φ`′,`| > `
1
2+δ + logM is ≤ Ce−c(logM)2e−c`

1+2δ

by Lemma B.1. Therefore, the

probability that Condition 2 does not hold is ≤ Ce−c(logM)2
∑
`≥0 `e

2`e−c`
1+2δ

.

For Condition 3, for a B ∈ B of size e−`−2, by scaling −
∫
∂B

φ`,∞ is distributed
as −
∫
∂B0

φ0,∞ where B0 is of size e−2 and this is a centered Gaussian variable with

bounded variance. Therefore, the probability it is at least `
1
2+δ + logM is less than

Ce−c(`
1
2
+δ+logM)2 ≤ Ce−c`

1+2δ

e−c(logM)2 . For each `, there are O(e2`) balls of size e−`−2

in B, hence the probability that Condition 3 does not hold is bounded from above by
Ce−c(logM)2

∑
`≥0 e

2`e−c`
1+2δ

.
For Condition 4, since φ − h is continuous by Proposition 3.2, and applying Fer-

nique’s theorem, the probability that ‖φ− h‖D ≤ logM occurs is ≥ 1− Ce−c(logM)2 . For
Condition 1, we use Proposition 2.3 and again a union bound.

4 Negative moments

In this section, we prove the following lower bound on the LQG volume of the unit
metric ball.

Proposition 4.1 (Negative moments of LQG ball volume). Let h be a whole-plane GFF
normalized so h1(0) = 0. Then

E
[
µh(B1(0;Dh))−p

]
<∞ for all p ≥ 0.

This result also holds if we instead consider the LQG measure and metric associated
with the field h̃ = h− α log | · | for α < Q.

In Section 4.1, we prove the finiteness of negative moments of µh(B1(0;DDh )), the
unit ball with respect to the D-internal metric DDh . This immediately implies Proposi-
tion 4.1 since B1(0;DDh ) ⊂ B1(0;Dh). In Section 4.2 we bootstrap our results to obtain
lower bounds on µh(Bs(0;Dh)) for s ∈ (0, 1); these lower bounds will be useful in our
applications in Section 5.
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4.1 Lower tail of the unit metric ball volume

The goal of this section is the following result.

Proposition 4.2 (Superpolynomial decay of internal metric ball volume lower tail). Let
h be a whole-plane GFF normalized so h1(0) = 0. Let DDh : D ×D → R be the internal
metric in D induced by Dh, and B1(0;DDh ) ⊂ D the DDh -metric ball. Then for any p > 0,
for all sufficiently large C > 0 we have

P
[
µh(B1(0;DDh )) ≥ C−1

]
≥ 1− C−p.

This result also holds if we instead consider the LQG measure and metric associated
with the field h̃ = h− α log | · | for α < Q.

Let N > 1 be a parameter which we keep fixed as C → ∞ (taking N large yields p
large in Proposition 4.2) and define

k0 =

⌊
1

N
logC

⌋
, k1 = bN logCc.

Let P be a Dh̃-geodesic from 0 to ∂Be−k0 (0). See Figure 2 (left) for the setup.

Proof sketch of Proposition 4.2. The proof follows several steps. Each step below holds
with high probability.

• We find an annulus Be−k+1(0)\Be−k(0) with k > k0 not too large, such that the
annulus-crossing length of P is not too small. This is possible because the Dh̃-
length of P between ∂Be−k1 (0) and ∂Be−k0 (0) is at least C−β for some fixed β > 0.
We conclude that the circle average h̃e−k(0) is not small (h̃e−k & − logC).

• We find a Dh-metric ball which is “tangent” to ∂Be−k(0) and ∂Be−k−1(0). Then, by
Proposition 2.4, this metric ball (and hence B1(0;DD

h̃
)) contains a Euclidean ball B

with Euclidean radius not too small (say e−(1+ζ)k for small ζ > 0). Since h̃e−k(0) is
not small, neither is the average of h̃ on ∂B (i.e. −

∫
∂B

h̃ & − logC).

• Finally, we have a good lower bound on µh̃(B) in terms of the average of h̃ on ∂B,
so we find that B has not-too-small LQG volume. Since B lies in B1(0;DD

h̃
), we

obtain a lower bound µh̃(B1(0;DD
h̃

)) & C−power. This last exponent does not depend
on N , so we may take N →∞ to conclude the proof of Proposition 4.2.

We now turn to the details of the proof. Let Lk be the Dh̃-length of the subpath of
P from 0 until the first time one hits ∂Be−k(0). We emphasize that Lk is not the Dh̃

distance from 0 to ∂Be−k(0).

Lemma 4.3 (Length bounds along P ). There exist positive constants c = c(γ, α) and β =

β(γ, α) independent of N such that for sufficiently large C, with probability 1−O(C−cN )

the following all hold:

Lk0 > C−β , (4.1)

Lk1 < C−β−1, (4.2)

Lk−1 − Lk < C exp (−kξ(Q− α) + ξhe−k(0)) for all k ∈ [k0 + 1, k1]. (4.3)

Proof. We focus first on (4.1). Using Proposition 2.3 to bound the crossing distance of
Be−k0 (0)\Be−k0−1(0), we see that with superpolynomially high probability as C →∞ we
have

Lk0 ≥ C−1
(
e−k0

)ξ(Q−α)
exp(ξhe−k0 (0)). (4.4)

EJP 25 (2020), paper 160.
Page 28/50

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP564
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Volume of metric balls in LQG

Note that since Var(he−k0 (0)) = k0 ≤ N−1 logC, we have

P [ξhe−k0 (0) < − logC] ≤ exp

(
− (logC)2

2ξ2N−1 logC

)
= C−cN

for c = 1/(2ξ2). Notice that when we have both (4.4) and {ξhe−k0 ≥ − logC}, then

Lk0 ≥ C−1 · C−ξ(Q−α)/N · C−1 ≥ C−β

for the choice β = 2 + ξ(Q− α). Thus (4.1) holds with probability 1−O(C−cN ).
To prove the upper bound (4.3), we glue paths to bound Lk−1−Lk. By Proposition 2.3

and a union bound, with superpolynomially high probability as C → ∞ the following
event EC holds:

• For each k ∈ [k0 + 1, k1], there exists a path from ∂Be−k+1(0) to ∂Be−k−1(0) and
paths in the annuli Be−k(0)\Be−k−1(0) and Be−k+2(0)\Be−k+1(0) which separate the
circular boundaries of the annuli, and such that each of these path has Dh̃-length
at most 1

3C exp (−kξ(Q− α) + ξhe−k(0)).

Since the segment on P measured by Lk−1 − Lk is the restriction of a geodesic which
crosses a larger annulus, by triangular equality, (4.3) holds on EC .

Finally, we check that for our choice of β, the inequality (4.2) holds with probability
1− C−cN (possibly by choosing a smaller value of c > 0). By the triangle inequality, Lk1
is bounded from above by the sum of the Dh̃-distance from the origin to ∂Be−k1+1(0) plus

the Dh̃-length of any circuit in the annulus Be−k1+1(0)\Be−k1 (0). Hence, using the circuit
bound on EC , we have

Lk1 ≤ Dh̃(0, ∂Be−k1+1(0)) + Ce−k1ξ(Q−α)eξhe−k1 (0).

By scaling of the metric, we find that Dh̃(0, ∂Be−k1+1(0)) is bounded from above by

eξhe−k1+1 (0)e(−k1+1)ξ(Q−α)Y where Y is distributed as Dh̃(0, ∂B1(0)). Now, since k1 =

bN logCc and he−k1 (0) has variance N logC, by a Gaussian tail estimate we get

P

[
he−k1 (0) >

1

4
k1(Q− α)

]
≤ C−cN .

Furthermore, since Y has some finite small moments for α < Q (by [13, Theorem 1.10]),
the Markov’s inequality provides

P
[
Y e−

1
4k1ξ(Q−α) > 1

]
≤ C−cN .

Altogether, we obtain (4.2) with probability 1−O(C−cN ).

As an immediate consequence of the above lemma, we can find a scale k ∈ (k0, k1]

such that B1(0;DD
h̃

) intersects ∂Be−k(0), and the field average at scale k is large. We
introduce here a small parameter ζ > 0 which does not depend on C, whose value we fix
at the end.

Lemma 4.4 (Existence of large field average near B1(0;DD
h̃

)). Consider c and β as

in Lemma 4.3. With probability 1 − O(C−cN ), there exists k ∈ [k0, k1] such that
Dh̃(0, ∂Be−k(0)) < 1 and

− k(Q− α) + he−k(0) ≥ −ξ−1(β + 2) logC; (4.5)

moreover, there exists a Euclidean ball Br(z) with r = e−k(1+ζ) and z ∈ rZ2 such that
Br(z) ⊂ Be−k(0)\Be−k−1(0) and Br(z) ⊂ B1(0;DD

h̃
).
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Proof. To prove (4.5), we first claim that when the event of Lemma 4.3 holds, there
exists k ∈ [k0 + 1, k1] such that Lk < 1 and Lk−1 − Lk ≥ C−β−1. Let k? be the smallest
k ∈ (k0, k1] such that Lk? < C−β , then

k1∑
k=k?

Lk−1 − Lk = Lk?−1 − Lk1 ≥ C−β − C−β−1.

Since the LHS is a sum over at most N logC terms, we indeed find some index k ∈ [k?, k1]

such that

Lk−1 − Lk ≥
C−β − C−β−1

N logC
> C−β−1.

For this choice of k, we have Dh̃(0, ∂Be−k(0)) ≤ Lk ≤ Lk? < C−β < 1, and by (4.3) we
have (4.5) also.

Figure 2: Left: Setup of Lemma 4.3. Given C that we eventually sent to∞, we take the
circles with radii e−k0 ≈ C−1/N and e−k1 = C−N , and draw all circles with radii e−k with
k0 ≤ k ≤ k1. In Lemma 4.4 we follow the geodesic P from the outer circle to the inner
until we find an annulus on which the geodesic segment is long. Right: Illustration of
the second assertion of Lemma 4.4. We find a Dh-metric ball U ⊂ B1(0;DD

h̃
) such that U

is “tangent” to ∂Be−k and ∂Be−k−1 , then apply Proposition 2.4 to find a Euclidean ball
Br(z) ⊂ U .

Now we turn to the second assertion of the lemma; see Figure 2 (right). Let P ′ be a
Dh̃-geodesic from 0 to ∂Be−k(0). By the continuity of Dh̃, we can find a point p ∈ P ′ in the

annulus Be−k(0)\Be−k−1(0) such that Dh+(k+1)α(p, ∂Be−k(0)) = Dh+(k+1)α(p, ∂Be−k−1(0));
let U be the Dh+(k+1)α-ball with this radius centered at p.

We claim that U ⊂ B1(0;DD
h̃

). We assume that α ≥ 0 (the other case is similar). Since

(k + 1)α ≥ α log | · |−1 ≥ kα on Be−k(0)\Be−k−1(0), we have for all w ∈ U that

DD
h̃

(p, w) ≤ eξαDDh+αk(p, w) ≤ eξαDDh+αk(p, ∂Be−k(0)) ≤ eξαDD
h̃

(p, ∂Be−k(0)),

and consequently

DD
h̃

(0, w) ≤ DD
h̃

(0, p) +DD
h̃

(p, w) ≤ DD
h̃

(0, p) + eξαDD
h̃

(p, ∂Be−k(0)) ≤ eξαDD
h̃

(0, ∂Be−k(0));

this last inequality follows from the fact that p lies on P ′ so DD
h̃

(0, p) +DD
h̃

(p, ∂Be−k(0)) =

DD
h̃

(0, ∂Be−k(0)). Since DD
h̃

(0, ∂Be−k(0)) ≤ Lk? < C−β, we conclude that DD
h̃

(0, w) <

eξαC−β ≤ 1, and hence U ⊂ B1(0;DD
h̃

).
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Since U is a Dh+(k+1)α metric ball, it is also a Dh metric ball. Furthermore, since
diam(U) ∈ ( 1

2e
−k, 2e−k), Proposition 2.4 gives us a Euclidean ball of radius e−k(1+ζ/2) in

U , and hence a Euclidean ball Br(z) ⊂ U with z ∈ rZ2. Since U lies in Be−k(0)\Be−k−1(0)

and in B1(0;DD
h̃

), so does Br(z), so we have shown Lemma 4.4.

Finally, we need a regularity event to say that the µh̃-volumes of Euclidean balls are
close to their field average approximations, and that the field does not fluctuate too
much on each scale. The bounds in the following lemma are standard in the literature.
We introduce a large parameter q > 0 that does not depend on C, and fix its value at the
end.

Lemma 4.5 (Regularity of field averages and ball volumes). Fix ζ ∈ (0, 1) and q > 0.

Then for all sufficiently large C > C0(q, ζ,N), with probability 1 − C−ζ(
q2

2N−2N−1) the
following is true. For each k ∈ [k0, k1], writing r = e−k(1+ζ), for all z ∈ rZ2 such that
Br(z) ⊂ Be−k(0)\Be−k−1(0) we have

|hr(z)− he−k(0)| < kqζ (4.6)

and

µh̃(Br(z)) ≥ C−1rγQ exp(γh̃r(z)). (4.7)

Proof. By standard GFF estimates, we have Cov (hr(z), he−k(0)) = k +O(1), Varhr(z) =

− log r +O(1) = k(1 + ζ) +O(1) and Varhe−k(0) = k +O(1). Consequently,

Var (hr(z)− he−k(0)) = ζk +O(1),

and hence by the Gaussian tail bound,

P [|hr(z)− he−k(0)| < kqζ] ≥ 1−O(e−
q2ζk

2 ).

Taking a union bound over all O(e2kζ) points in rZ2 ∩ Be−k(0), then summing over all
k ∈ [k0, k1], we see that the probability (4.6) holds for all k and all suitable z is at least

1−O

(
k1∑
k=k0

e2kζe−q
2ζk/2

)
≥ 1−O

(
N logC · e2k1ζe−q

2ζk0/2
)
≥ 1− C−ζ(

q2

2N−2N−1).

Now, we establish that for each fixed choice of k, z, the inequality (4.7) holds with
superpolynomially high probability as C →∞ (then we are done by a union bound over
a collection of polynomially many k, z); since −α log | · | − αk is bounded on the annulus,
it suffices to show (4.7) with h̃ replaced by h+ αk (or equivalently by h, since both sides
of the equation (4.7) scale the same way under adding a constant to the field). By the
Markov property of the GFF (Lemma 2.2) we can decompose h = h + ĥ, where h is a
distribution which is harmonic in B2r(z), and ĥ is a zero boundary GFF in the domain
B2r(z); moreover h and ĥ are independent. We can then write

µh(Br(z)) ≥ eγ infBr(z) hµĥ(Br(z))

= (2r)γQeγhr(z)e−γĥr(z)eγ infBr(z) h−γh(z)µg(B 1
2
(0)),

where g := ĥ(2r · +z) has the law of a zero boundary GFF on D. (This follows from
an affine change of coordinates mapping B2r(z) 7→ D; then by the coordinate change
formula µĥ(Br(z)) = (2r)γQµg(B 1

2
(0)).)
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Since ĥr(z) is a mean zero Gaussian with fixed variance, and by the quantum volume

lower bound (2.3), we have e−γĥr(z) ≥ C−1/3 and µg(B 1
2
(0)) ≥ C−1/3 with superpolyno-

mially high probability in C. Combining these bounds with the above estimate, with
superpolynomially high probability in C we have

µh(Br(z)) ≥ (2r)γQC−2/3eγ infBr(z) h−γh(z).

Hence we are done once we check that with superpolynomially high probability in C,

eγ infBr(z) h−γh(z) ≥ C−1/3. (4.8)

Since h = h + ĥ and h, ĥ are independent, for x, x′ ∈ Br(z) we have

Var (h(x)− h(x′)) ≤ Var (hr(x)− hr(x′)) = O(1).

Moreover, by the scale and translation invariance of the GFF modulo additive constant
and the fact that h is continuous in B 3

2 r
(z), we know that h(z)− infBr(z) h > −∞ and has

a law independent of r, z, so by the Borell-TIS inequality we see that for some absolute
constants m, c, we have

P

[
h(z)− inf

Br(z)
h > u+m

]
≤ e−cu

2

for all u > 0.

This immediately implies (4.8). Thus, for each fixed choice of k, z, the inequality (4.7)
holds with superpolynomially high probability as C → ∞. Taking a union bound, we
obtain (4.7).

Proof of Proposition 4.2. Let c, β be as in Lemma 4.3. We will work with parameters
N, ζ, q, and choose their values at the end. Assume that the events of Lemmas 4.4 and 4.5

hold; this occurs with probability at least 1− C−cN − C−ζ(
q2

2N−2N−1). Let k, r, and Br(z)
be as in Lemma 4.4.

We now lower bound the quantum volume of Br(z). By (4.5) and (4.6), we see that

rγQ exp
(
γh̃r(z)

)
≥ exp (−γkQ(1 + ζ) + γhr(z) + γαk)

≥ exp(−γζk(Q+ q)− γk(Q− α) + γhe−k(0))

≥ exp(−γζk(Q+ q))C−
γ
ξ (β+2)

≥ C−γζN(Q+q)C−
γ
ξ (β+2).

The last inequality follows from k ≤ k1 = bN logCc. Choose q = N3 and ζ = N−4.
Then by the above inequality, (4.7), and Br(z) ⊂ B1(0;DD

h̃
), we see that for a constant

β′ = β′(γ) > 0 we have

µh̃(B1(0;DD
h̃

)) ≥ µh̃(Br(z)) ≥ C−β
′
.

Since this occurs with probability 1− C−cN − C−ζ(
q2

2N−2N−1) = 1−O(C−cN ), and N can
be made arbitrarily large, we have proved Proposition 4.2.

4.2 Lower tail of small metric balls

Using Proposition 4.2 and the scaling properties of the LQG metric and measure,
we can easily prove a similar result for metric balls centered at the origin of all radii
s ∈ (0, 1). We emphasize that in the following proposition, we are considering the
Dh-metric balls, rather than DDh -metric balls.
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Lemma 4.6. Let h be a whole-plane GFF normalized so h1(0) = 0. For any p > 0, there
exists Cp such that for all C > Cp and s ∈ (0, 1), we have

P
[
µh(Bs(0;Dh)) ≥ C−1sdγ

]
≥ 1− C−p.

Proof. The process t 7→ he−t(0) for t ≥ 0 evolves as standard Brownian motion started at
0. Fix s ∈ (0, 1) and let T > 0 be the first time t > 0 that −Qt+he−t(0) = ξ−1 log s. Notice
that

h(e−T ·) +Q log e−T =
(
h(e−T ·)− he−T (0)

)
−QT + he−T (0)

=
(
h(e−T ·)− he−T (0)

)
+ ξ−1 log s.

By Lemma 2.1, conditioned on T , we have (h(e−T ·) + Q log e−T )
∣∣
D

d
= (ĥ + ξ−1 log s)

∣∣
D

where ĥ is a whole-plane GFF normalized to have mean zero on ∂D. Couple these fields to
agree. By the Weyl scaling relations and the change of coordinates formula for quantum
volume and distances, and the locality property of the internal metric (Axiom II), we
have the internal metric relation

De−TD
h (e−T z, e−Tw) = DD

ĥ+ξ−1 log s
(z, w) = sDD

ĥ
(z, w)

and the volume measure relation

µh(e−T ·) = µĥ+ξ−1 log s(·) = sdγµĥ(·).

Thus we can relate the quantum volume of the internal metric balls Bs(0;De−TD
h ) ⊂ e−TD

and B1(0;DD
ĥ

):

µh

(
Bs(0;De−TD

h )
)

= sdγµĥ(B1(0;DD
ĥ+ξ−1 log s

)),

and consequently we have{
µh(Bs(0;De−TD

h )) ≥ C−1sdγ
}

=
{
µĥ(B1(0;DD

ĥ
)) ≥ C−1

}
.

Since µh(Bs(0;Dh)) ≥ µh(Bs(0;De−TD
h )), our claim follows from Proposition 4.2.

5 Applications and other results

5.1 Uniform volume estimates and Minkowski dimension

In this section, we prove the remaining assertions of Theorem 1.1. Namely, the
Minkowski dimension of a bounded open set S is almost surely equal to dγ and for any
compact set K ⊂ C and ε > 0, we have, almost surely

sup
s∈(0,1)

sup
z∈K

µh(Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh(Bs(z;Dh))

sdγ+ε
> 0.

Since the whole-plane GFF modulo additive constants has a translation invariant law,
we can deduce a version of Lemma 4.6 for metric balls centered at z 6= 0.

Proposition 5.1 (Uniform lower tail for µh(Bs(z;Dh))). Let h be a whole-plane GFF
normalized so h1(0) = 0, and K ⊂ C be any compact set. For any p > 0, there exists
Cp,K > 0 such that

sup
s∈(0,1),z∈K

P
[
µh(Bs(z;Dh)) ≥ C−1sdγ

]
≥ 1− C−p for each C > Cp,K .
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Proof. Fix z ∈ K. We can write h = ĥ+X where ĥ is a whole-plane GFF normalized so
ĥ1(z) = 0, and X = h1(z) is a random real number. On the event {|X| ≤ γ−1 logC} we
have C−1 ≤ eγX ≤ C, so

{µh(Bs(z;Dh)) < C−3sdγ}
={eγXµĥ(Be−ξXs(z;Dĥ)) < C−3sdγ}
⊂{C−1µĥ(BC−1/dγ s(z;Dĥ)) < C−3sdγ} ∪ {|X| > γ−1 logC}

={µĥ(BC−1/dγ s(z;Dĥ)) < C−1(C−1/dγs)dγ} ∪ {|X| > γ−1 logC}.

In the last line, the first event is superpolynomially rare in C by Lemma 4.6, and the
second because X is a centered Gaussian. Note that VarX = Varh1(z) is uniformly
bounded for all z ∈ K, so the decay of the second event is uniform for z ∈ K. This
completes the proof.

Similarly, we can bootstrap Lemma 3.18 to a statement uniform for Dh-balls centered
in a compact set.

Proposition 5.2 (Uniform upper tail for µh(Bs(z;Dh))). Let h be a whole-plane GFF
normalized so h1(0) = 0. For any compact set K ⊂ C, p > 0, ε ∈ (0, 1), there exists a
constant Cp,ε,K > 0 such that

sup
s∈(0,1),z∈K

P
[
µh(Bs(z;Dh)) ≤ Csdγ−ε

]
≥ 1− C−p for each C > Cp,ε,K .

Proof. We note that Lemma 3.18 implies an upper bound version of Lemma 4.6 (with an
exponent of dγ − ε instead of dγ), and we deduce Proposition 5.2 in the same way that
we obtain Proposition 5.1 from Lemma 4.6.

Before moving to the proof of the almost sure uniform estimate, we first prove volume
bounds on a countable collection of metric balls.

Lemma 5.3. For any ε > 0 and bounded open set 2D, the following is true almost surely.
For all sufficiently large m, for all z ∈ 2−mZ2 ∩ 2D, and for all dyadic s = 2−k ∈ (0, 1] we
have

sdγ−ε2εm > µh(Bs(z;Dh)) > sdγ+ε2−εm.

Proof. The proof is a straightforward application of Propositions 5.2 and 5.1 and the
Borel-Cantelli lemma. We prove the lower bound; the upper bound follows the same
argument.

Pick any large p > 0, and let Cp,2D be the constant from Proposition 5.1. Consider
any m such that 2εm > Cp,2D, then for any z ∈ 2D we have

P
[
µh(Bs(z;Dh)) > sdγ+ε2−εm for all dyadic s ∈ (0, 1]

]
> 1− 2−εpm

∑
dyadic s

sεp.

Taking a union bound over all the O(22m) points in 2−mZ2 ∩ 2D yields

P
[
µh(Br(z;Dh)) > sdγ+ε2−εm for all dyadic s ∈ (0, 1] and z ∈ 2−mZ2 ∩ 2D

]
> 1−O(2−(εp−2)m)

∑
dyadic s

sεp.

For p large enough we have εp − 2 > 0, so by the Borel-Cantelli lemma, a.s. at most
finitely many of the above events fail, i.e. the lower bound of Lemma 5.3 holds. The
upper bound follows the same argument.
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With this lemma and the bi-Hölder continuity ofDh with respect to Euclidean distance,
we can prove the second part of Theorem 1.1.

Proof of Theorem 1.1 part 2. We first prove that a.s. for some random r ∈ (0, 1), we have

inf
s∈(0,r]

inf
z∈D

µh(Bs(z;Dh))

sdγ+ζ
> 0. (5.1)

We use the bi-Hölder continuity of Dh with respect to Euclidean distance (see e.g.
[13, Theorem 1.7]) and the Borel-Cantelli lemma to obtain the following. There exist
deterministic constants χ, χ′ > 0 and random constant c, C such that, almost surely,

c|u− v|χ
′
≤ Dh(u, v) ≤ C|u− v|χ for all u, v ∈ 2D.

Moreover, Proposition 2.4 and Borell-Cantelli yield that a.s. every metric ball B contained
in 2D and having sufficiently small Euclidean diameter contains a Euclidean ball of radius
at least diam(B)2.

Consequently, for all sufficiently small s and any z ∈ D, we have

s

2
≤ C diam(Bs/2(z;Dh))χ,

and since any two points in Bs/2(w;Dh) have Dh-distance at most s, the bi-Hölder lower
bound gives

cdiam(Bs/2(z;Dh))χ
′
≤ s.

Since the ball Bs/2(z;Dh) has a small diameter, it a.s. contains a Euclidean ball of
radius at least diam(Bs/2(z;Dh))2 ≥ (s/2C)2/χ hence contains a w ∈ 2−mZ2 with m =

d− 2
χ log2(s/2C)e < − 3

χ log2(s/2C).
Thus, for a random constant c′, for sufficiently small s, applying Lemma 5.3 to m as

above and dyadic s1 ∈ ( s4 ,
s
2 ], we have

µh(Bs/2(w;Dh)) ≥ µh(Bs1(w;Dh)) ≥ sdγ+ε1 · 2−εm ≥
(s

4

)dγ+ε ( s

2C

) 3ε
χ

= c′sdγ+ε+
3ε
χ .

Since w ∈ Bs/2(z;Dh), by the triangle inequality we have Bs/2(w;Dh) ⊂ Bs(z;Dh), so

µh(Bs(z;Dh)) > c′sdγ+3ε+ 3ε
χ .

Almost surely, this holds for all sufficiently small s > 0 and all z ∈ D. Choosing ε > 0 so
that ε+ 3ε

χ < ζ, we obtain (5.1).
The supremum analog of (5.1) follows almost exactly the same proof, except that

instead of finding a “dyadic” metric ball inside each radius s metric ball, we find a dyadic
metric ball B̃ (with dyadic radius s1 ∈ [2s, 4s)) around each metric ball B, then apply
Lemma 5.3 to upper bound µh(B̃) (and hence µh(B)).

Now, we extend (5.1) to a supremum/infimum over all s ∈ (0, 1]. For any s ∈ (r, 1] and
z ∈ D, we have

µh(Bs(z;Dh))

sdγ+ζ
≥ µh(Bs(z;Dh)) ≥ rdγ+ζ µh(Br(z;Dh))

rdγ+ζ
,

and noting that a.s. for sufficiently large R we have Dh(D, ∂BR(0)) > 1,

µh(Bs(z;Dh))

sdγ−ζ
≤ r−dγ+ζµh(BR(0)) <∞.

This concludes the proof of the uniform volume estimates.
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Finally, we prove the statement from Theorem 1.1 about the Minkowski dimension of
a set.

Proof of Theorem 1.1, part 3. Consider any bounded measurable set S containing an
open set and fix δ ∈ (0, 1). Let NS

ε be the minimal number of LQG metric balls with
radius ε needed to cover the set S and denote by Cε the set of centers associated to such
a covering. Then, since

µh(S) ≤
∑
z∈Cε

µh(Bε(z;Dh)) ≤ NS
ε max
z∈Cε

µh(Bε(z;Dh)),

the uniform volume estimate and the fact that µh(S) > 0 a.s. imply that for every δ > 0,

we have the a.s. lower bound lim infε→0
logNSε
log ε−1 ≥ dγ − δ. Now, denote by MS

ε the maximal
number of pairwise disjoint LQG metric balls with radius ε whose union is included in S.
Denote by Dε the set of centers associated to such a collection of metric balls. Note that
MS
ε ≥ NS

2ε. Therefore,

µh(S) ≥
∑
z∈Dε

µh(Bε(z;Dh)) ≥MS
ε min
z∈Dε

µh(Bε(z;Dh)) ≥ NS
2ε min
z∈Dε

µh(Bε(z;Dh))

from which we get the a.s. upper bound lim supε→0
logNSε
log ε−1 ≤ dγ + δ by the uniform

volume estimate and the fact that µh(S) <∞ almost surely. Letting δ → 0 completes the
proof.

5.2 Estimates for Liouville Brownian motion metric ball exit times

Liouville Brownian motion is, roughly speaking, Brownian motion associated to the
LQG metric tensor “eγh(dx2 +dy2)”, and was rigorously constructed independently in the
works [16] and [3]. These papers consider fields different from our field h (a whole-plane
GFF normalized so h1(0) = 0), but their results are applicable in our setting. This can be
verified either directly or by local absolute continuity arguments.

Liouville Brownian motion was defined in [16, 3] by applying an h-dependent time-
change to standard planar Brownian motion. Letting Bt be standard planar Brownian
motion from the origin sampled independently from h, we can define Liouville Brownian
motion as Xt = BF−1(t) for t ≥ 0, where F is a random time-change defined h-almost
surely. The function F (t) should be understood as the quantum time elapsed at Euclidean
time t, and has the following explicit description. Defining the approximation

F ε(t) =

∫ t

0

εγ
2/2eγhε(Bs)ds, (5.2)

and writing TR for the Euclidean time that Bt exits the ball BR(0), the sequence F ε|[0,TR]

converges almost surely as ε→ 0 to F |[0,TR] in the uniform metric [3, Theorem 1.2].

For a set X ⊂ C and z ∈ C, denote by τh(z;X) the first exit time of the Liouville
Brownian motion started at z from the set X. We discuss now the results of [16] on the
moments of τh(z;B1(z)) and of F (t), i.e. the moments of the elapsed quantum time at
some Euclidean time. These results are analogous to the moments of the LQG volume of
a Euclidean ball (Section 2.4).

Proposition 5.4 (Moments of quantum time [16, Theorem 2.10, Corollary 2.12, Corollary
2.13]). For all q ∈ (−∞, 4/γ2), t > 0, the following holds,

E[τh(0;B1(0))q] + E[F (t)q] <∞.
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Heuristically, the nonexistence of large moments is due to the Brownian motion
hitting regions of small Euclidean size but large quantum size. On the other hand, the
random set B1(0;Dh) in some sense avoids such regions.

In this section we prove the finiteness of all moments of the LBM first exit time of
B1(0;Dh), which we abbreviate as τ , and discuss the moments of τh(0;Bs(0;Dh)) for
small s ∈ (0, 1).

Upper bound for LBM exit time of metric balls

Theorem 5.5 (Positive moments for quantum exit time of metric ball). Let h be a whole-
plane GFF normalized so h1(0) = 0, and consider Liouville Brownian motion associated
to h. Let τ be the first exit time of the Liouville Brownian motion started at the origin
from the ball B1(0;Dh), i.e.

τ = inf{t ≥ 0 : Xt 6∈ B1(0;Dh)}.

Then
E[τk] <∞ for all k ≥ 0.

Proof sketch: In computing E[τk], by first averaging out the randomness of (Bt)t≥0,
we obtain an expectation in h of an integral over k-tuples of points in B1(0;Dh); this is
similar to the integral in Step 1 of the proof of Proposition 3.11, but with additional
log-singularities between these points. Because the arguments of Proposition 3.11 had
some room in the exponents, the log-singularities pose no issue for us, and we can
carry out the same arguments from Section 3. We will be succinct when adapting these
arguments.

Let τn be the quantum time LBM spends in the annulus A2n := B2n(0)\B2n−1(0)

before exiting B1(0;Dh). As in [16, (B.2)], we have the following representation of E[τkn ]

for k a positive integer, which follows from taking an expectation over the standard
Brownian motion (Bt)t≥0 used to define (Xt)t≥0 (see (5.2)),

E[τkn ] = E

[∫
(A2n )k

f(z1, . . . , zk, h)1{z1, . . . , zk ∈ B1(0;Dh)}µh(dz1) . . . µh(dzk)

]
, (5.3)

and where, writing t0 = 0 and z0 = 0 for notational convenience, f is given by

f(z1, . . . , zk, h) :=

∫
0≤t1≤···≤tk<∞

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)

)
(5.4)

× P
[
B|[0,tk] stays in B1(0;Dh) | h,Bti = zi for i = 1, . . . , k

]
dt1 . . . dtk.

The function f(z1, . . . , zk) is an integral of the Brownian motion transition density at
times t1, . . . , tk times the conditional probability that the Brownian motion does not
escape B1(0;Dh). We will need the following bound on f , whose proof is postponed to
the end of the section.

Lemma 5.6. There exists a constant C > 0 such that for all sufficiently large R > 0, on
the event {B1(0;Dh) ⊂ BR(0)} we have

f(z1, . . . , zk, h) ≤ C (logR)
k
g(z1, . . . , zk) for all z1, . . . , zk ∈ RD,

where, recalling z0 = 0,

g(z1, . . . , zk) =

k∏
i=1

max (− log |zi − zi−1|, 1) .
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Proof of Theorem 5.5. Our strategy is to fix some large R > 0 then truncate on the event
E′R := {B1(0;Dh) ⊂ BR(0)}. Subsequently, we show an analog of Proposition 3.11, and
use it to bound E[τkn1E′R ] for all n. Combining these, we obtain a bound on E[τk1E′R ].
Finally, we verify that P[E′R] decays sufficiently quickly in R, and we are done.

Step 1: Proving an analog of Proposition 3.11. Recall the definition P r,dh = {z ∈ C :

Dh(z, ∂Br/4(z)) ≤ d} in (3.21). The argument of Proposition 3.11 bounded

E

[∫
(A1)k

1{z1, . . . , zk ∈ A1 ∩ P 1,e−ξx

h }µh(dz1) . . . µh(dzk)

]
by using a Cameron-Martin shift (placing γ-log singularities at each zi and replacing∏
µh(dzi) by

∏
i<j |zi − zj |−γ

2 ∏
dzi), then using Proposition 3.8 to bound the integral.

Recalling Remark 3.10, Proposition 3.11 can be proved even if the exponent γ2 is made
slightly larger. Any such exponent increase will upper bound the log-singularities of g,
hence we have the following analog of Proposition 3.11:

E

[∫
(A1)k

g(z1, . . . , zk)1{z1, . . . , zk ∈ A1 ∩ P 1,e−ξx

h }µh(dz1) . . . µh(dzk)

]
. e−ck,δx.

Step 2: Bounding E[τkn1E′R ] for each n. We start with n = 0. Using Lemma 5.6 and (5.3)

(and noting that B1(0;Dh) ∩ A1 ⊂ A1 ∩ P 1,1
h ), we obtain that E[τk0 1E′R ] is bounded from

above by

(logR)
k
E

[∫
(A1)k

g(z1, . . . , zk)1{z1, . . . , zk ∈ B1(0;Dh)}µh(dz1) . . . µh(dzk)

]
. (logR)

k
,

where the last inequality follows from Step 1. Likewise, building off of Step 1, similar
arguments as in Lemmas 3.16 and 3.17 yield

E
[
τkn1E′R

]
.

{
(logR)

k
2−

Q2

2 |n|2αδ|n| if n < 0,

(logR)
k

2−
Q2

2 n if n > 0,

for some arbitrarily small αδ > 0.

Step 3: Bounding the upper tail of τ . By Hölder’s inequality (see end of proof of
Lemma 3.16), the above bounds on E

[
τkn1E′R

]
yield

E
[
τk1E′R

]
. (logR)

k
.

By Lemma 5.7 (see end of section) we also have for some fixed a > 0 that

P[(E′R)c] ≤ R−a

Combining these assertions, we have

P [τ > t] . P [(E′R)c] + E
[
τk1E′R

]
t−k . R−a + (logR)

k
t−k.

Taking R equal to some large power of t, we conclude that for all p < k we have
E[τp] <∞. Taking k →∞, we obtain Theorem 5.5.

Proof of Lemma 5.6. We instead prove the stronger statement

f(z1, . . . , zk, h) ≤ C
k∏
i=1

(logR− log |zi − zi−1|) for all z1, . . . , zk ∈ A1.
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We split the integral (5.4) into two parts (integrating over tk < R2 and tk ≥ R2 respec-
tively), and bound each part separately.

There exists p > 0 such that the following is true: Let t ≥ 1/k and consider a Brownian
bridge of duration t with endpoints B0, Bt specified in D. Then this Brownian bridge
stays in D with probability at most e−pt. If tk ≥ R2, then there exists some i ∈ {1, . . . , k}
such that ti − ti−1 ≥ tk/k ≥ R2/k, and so B|[ti−1,ti] conditioned on Bti−1 = zi−1 and

Bti = zi stays in RD with probability at most e−ptk/kR
2

. This allows us to upper bound
the integral (5.4) on the restricted domain with tk ≥ R2:∫

0≤t1≤···≤tk<∞

k! dt1 . . . dtk

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)
− p

kR2
(ti − ti−1)

)

=
k!

(2π)k/2

k∏
i=1

∫ ∞
0

1

t
exp

(
−|zi − zi−1|

2

2t
− p

kR2
t

)
dt = O

(
k∏
i=1

(logR− log |zi − zi−1|)

)
,

by using the bound
∫∞
0
e−t/xe−1/t dtt ≤

∫ 1

0
e−1/t dtt +

∫∞
x
e−t/x dtt +

∫ x
1
dt
t ≤ C + log x for

x ≥ 1 and a change of variable.
Now we upper bound the integral (5.4) on the restricted domain 0 ≤ t1 ≤ · · · ≤ tk <

R2: ∫
0≤t1≤···≤tk<R2

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)

)
dt1 . . . dtk

≤ k!

(2π)k/2

k∏
i=1

∫ R2

0

1

t
exp

(
−|zi − zi−1|

2

2t

)
dt = O

(
k∏
i=1

(logR− log |zi − zi−1|)

)
,

where the final inequality follows from
∫ R2

0
e−a/2t dtt =

∫ 1

0
e−1/2u duu +

∫ R2a−2

1
e−1/2u duu ≤

C + logR2a−2. Combining these two upper bounds, we are done.

Lemma 5.7 (Polynomial tail for Euclidean diameter of B1(0;Dh)). Let h be a whole-plane
GFF with h1(0) = 0. Then for all a ∈ (0, Q2/2), for all sufficiently large R we have

P [B1(0;Dh) ⊂ BR(0)] ≥ 1−R−a.

Proof. Fix ε > 0 small. By Proposition 2.3 we have with superpolynomially high probabil-
ity as R→∞ that

Dh(0, ∂BR(0)) ≥ Dh(∂BR/2(0), ∂BR(0)) ≥ Rξ(Q−ε)eξhR(0).

By a standard Gaussian tail bound we also have

P[hR(0) > −(Q− ε) logR] ≤ exp

(
− (Q− ε)2 logR

2

)
= R−(Q−ε)

2/2.

Combining these two bounds, we see that with probability 1−O(R−(Q−ε)
2/2) we have

Dh(0, ∂BR(0)) > 1, as desired.

Lower bound for LBM exit time of metric balls

Theorem 5.8. Recall that τ is the first exit time of the Liouville Brownian motion (Xt)t≥0
from the LQG metric ball B1(0;Dh). For all k ≥ 1, we have

E[τ−k] <∞.
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We now sketch the proof. We restrict to a regularity event on which annulus-crossing
distances and the quantum time taken to cross an annulus are well approximated by
field averages. We can find a collection of annuli separating 0 from Xτ . Gluing circuit
and crossing paths associated to the annuli, we obtain a path from 0 to Xτ . Since
the Dh-length of these is bounded from above by a circle average approximation, the
condition Dh(0, Xτ ) = 1 gives a lower bound for a certain sum of (exponentials of) circle
averages terms. Raising the exponent by a factor of dγ by Jensen’s inequality, we get a
lower bound for a circle average approximation of the quantum time spent across these
annuli. Thus τ is unlikely to be very small.

Consider standard Brownian motion (Bt)t≥0 started at the origin, and recall that
Liouville Brownian motion is given by a random time-change: Xt = BF−t(t), where

the quantum clock F is formally given by F (t) =
∫ t
0
eγh(Bs)ds (see (5.2)). Consider an

annulus Ar/e,r(z) with 0 6∈ Ar/e,r(z). Define τr(z) to be the quantum passage time of the
annulus. That is, for the case where the annulus encircles the origin, writing t1 for the
first time Bt hits ∂Br(z), and t0 for the last time before t1 that Bt hits ∂Br/e(z), we set
τr(z) = F (t1) − F (t0), and define it analogously in the case that the annulus does not
encircle the origin.

We need the following input, which can be seen as a variant of [16, Proposition 2.12]
combined with the scaling relation [16, Equation (2.25)] and which can be obtained by
using the same techniques.

Proposition 5.9. For any compact set K ⊂ C, there exists a random variable X ≥ 0

having all negative moments such that the following is true. For fixed r ∈ (0, 1) and z ∈ K
such that 0 6∈ Ar/e,r(z), the quantum passage time τr(z) is stochastically dominated by
rγQeγhr(z)X.

As an immediate consequence of the r = 1 case of this proposition, we have the
following.

Corollary 5.10. The event {Xτ 6∈ D and τ < C−1} is superpolynomially unlikely as
C →∞.

Similarly to Section 4.1, we set

k1 = bN logCc.

Lemma 5.11. There exist γ-dependent constants χ, c > 0 so that the following holds.
Consider the event EC that each ball Be−k1 (z) included in 2D has quantum diameter at
most 2e−χk1 . Then, EC occurs with probability at least 1− e−cN .

Proof. This is an application of the Hölder estimate [13, Proposition 3.18] which implies
that there exist positive constants χ, α such that, as ε → 0, with probability at least
1− εα,

Dh(u, v) ≤ |u− v|χ, ∀u, v ∈ 2D with |u− v| ≤ ε.

Therefore, taking ε = e−k1 , for z such that Be−k1 (z) ⊂ 2D, for all w ∈ Be−k1 (z), Dh(z, w) ≤
e−χk1 and the quantum diameter of that ball is bounded from above by twice this upper
bound.

We consider the grid ZC := 1
100e

−k1Z2.

Lemma 5.12. Consider the event FC that for every point z ∈ ZC ∩ 2D, for all k ∈ [0, k1],
the following conditions hold. There is a circuit of Dh-length at most e−kξQeξhe−k (z)C
in the annulus Ae−k−1,e−k(z), the crossing length Dh(∂Be−k−1(z), ∂Be−k+1(z)) is at most
e−kξQeξhe−k (z)C, τe−k(z) ≥ e−kγQeγhe−k (z)C−1 and |he−k(z)−he−k+1(z)| ≤ ξ−1 logC. Then,
FC occurs with superpolynomially high probability as C →∞.
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Proof. This follows from Proposition 5.9 and Proposition 2.3 together with a union
bound.

Proof of Theorem 5.8. We will show that P [τ > C−1] occurs with superpolynomially high
probability. By Corollary 5.10 and Lemmas 5.11 and 5.12, we see that the probability of
{τ < C−1 and Xτ 6∈ D} ∪ EcC ∪ F cC is at most C−cN for some fixed c.

Now restrict to the event {Xτ ∈ D} ∩EC ∩ FC ; we show that for some constant α not
depending on C,N we have τ > C−α for sufficiently large C, then we are done since N
is arbitrary. On this event the distances Dh(0, ∂Be−k1 (0)) and Dh(Xτ , ∂Be−k1 (Xτ )) are
small, so we have Dh(∂Be−k1 (0), ∂Be−k1 (Xτ )) ≥ 1

2 . Let w ∈ ZC be the closest point to
Xτ , and grow the annuli centered at 0 and w until they first hit; let k∗ ∈ [0, k1] satisfy
2e−k∗ ≤ |w| < 2e−k∗+1. By Lemma 5.12 we get

τ ≥
∑

k∈[k∗,k1]

τe−k(0) + τe−k(w) ≥ C−1
∑

k∈[k∗,k1]

e−kγQeγhe−k (0) + e−kγQeγhe−k (w)

and, by taking an additional annulus crossing and circuit, using the circle average
regularity between two annuli,

1

2
≤ Dh(∂Be−k1 (0), ∂Be−k1 (Xτ )) ≤ 10C2

∑
k∈[k∗,k1]

e−kξQeξhe−k (0) + e−kξQeξhe−k (w).

Therefore, by raising the inequality above to the power dγ and using Jensen’s inequality
for the right-hand side, as well as the lower bound for τ , we get

1

2dγ
≤ (10C2)dγk

dγ−1
1

∑
k∈[k∗,k1]

e−kγQeγhe−k (0) + e−kγQeγhe−k (w) ≤ (10C2)dγk
dγ−1
1 Cτ,

hence τ ≥ C−α for some fixed power α and C large enough. Since N is arbitrary (α does
not depend on N ), we conclude the proof of Theorem 5.8.

Scaling relations for small balls Finally we explain the behavior of small ball exit
times. Recall that τh(z;Bs(z;Dh)) is the first time that Liouville Brownian motion started
at z exits the ball Bs(z;Dh).

Theorem 5.13. Let h be a whole-plane GFF normalized so h1(0) = 0, and let K ⊂ C be
any compact set. For any ε ∈ (0, 1), there exists a constant Cp,ε,K so that for C > Cp,ε,K ,
for all s ∈ (0, 1) and z ∈ K we have

P[τh(z;Bs(z;Dh)) ≤ Csdγ−ε] ≥ 1− Cp, (5.5)

and
P[τh(z;Bs(z;Dh)) ≥ C−1sdγ ] ≥ 1− Cp. (5.6)

Proof. We first discuss the proofs of (5.5) and (5.6) for the specific case z = 0. For
the z = 0 upper bound, recall that we proved E[τh(0;B1(0;Dh))k] < ∞ for all k > 0 in
Theorem 5.5 by adapting the proof of Proposition 3.1. An extension of these arguments
like in Lemma 3.18 yields E[τh(0;Bs(0;Dh))k] . skdγ−ε with implicit constant depending
only on k, ε, and hence by Markov’s inequality, for all s ∈ (0, 1) and sufficiently large C
that

P[τh(0;Bs(0;Dh)) ≤ Csdγ−ε] ≥ 1− Cp. (5.7)

For the z = 0 lower bound, Theorem 5.8 gives E[τh(0;B1(0;Dh))−k] < ∞ for all k > 0,
and applying the rescaling argument of Lemma 4.6 then yields for all s ∈ (0, 1) and
sufficiently large C that

P[τh(0;Bs(0;Dh)) ≥ C−1sdγ ] ≥ 1− Cp. (5.8)
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Finally, the arguments of Proposition 5.1 allow us to extend (5.7) and (5.8) to (5.5)
and (5.6).

5.3 Recovering the conformal structure from the metric measure space struc-
ture of γ-LQG

The Brownian map is constructed as a random metric measure space (see [32, 33])
and has been proved to be the Gromov-Hausdorff limit of uniform triangulations and 2p-
angulations in [30, 31, 32, 35]. The Brownian map was later endowed with a canonical
conformal structure (i.e. an embedding into a flat domain, defined up to conformal
automorphism of the domain) via identification with

√
8/3-LQG [42, 36, 37, 39] but this

construction was non-explicit. The work of [24] gives an explicit way to recover the
conformal structure of a Brownian map from its metric measure space structure, and
their proof mostly carries over directly to the general setting γ ∈ (0, 2), except for certain
Brownian map metric ball volume estimates of Le Gall [31]. The missing ingredient for
general γ was exactly the uniform volume estimates (1.2) (cf. [24, Lemma 4.9]).

As an immediate consequence of (1.2) and the arguments of [24] (see discussion
before [24, Remark 1.3]), we obtain the following generalization of [24, Theorem 1.1] to
all γ ∈ (0, 2). Let h be a whole-plane GFF normalized so h1(0) = 0, and write B•R(0;Dh)

for the filled Dh-ball centered at 0 with radius R (i.e. the union of BR(0;Dh) and all
µh-finite complementary regions). Let Pλ be a sample from the intensity λ Poisson
point process associated to µh. We can obtain a Dh-Voronoi tessellation of C into cells
{Hλ

z }z∈Pλ by defining Hλ
z = {w ∈ C : Dh(w, z) ≤ Dh(w, z′) ∀ z′ ∈ Pλ}. We define a

graph structure on Pλ by saying that z, z′ ∈ Pλ are adjacent if their Voronoi cells Hλ
z , H

λ
z′

intersect along their boundaries, and define ∂Pλ to be the vertices corresponding to
Voronoi cells intersecting the boundary. Let Y λ be a simple random walk on Pλ started
from the point whose Voronoi cell contains 0, extend Y λ from the integers to [0,∞) by
interpolating along Dh-geodesics, and finally stop Y λ when it hits ∂Pλ.

Theorem 5.14 (Generalization of [24, Theorem 1.1]). As λ→∞, the conditional law of
Y λ given (C, 0, Dh, µh) converges in probability as λ→ 0 to standard Brownian motion
in C started at 0 and stopped when it hits ∂B•R(0;Dh) (viewed as curves modulo time
parametrization).

Here, the metric on curves modulo time parametrization is given as follows. For
curves ηj : [0, Tj ]→ C (j = 1, 2), we set

d(η1, η2) = inf
φ

sup
t∈[0,T1]

|η1(t)− η2(φ(t))|

where the infimum is over increasing homeomorphisms φ : [0, T1]→ [0, T2]. We remark
that the convergence in Theorem 5.14 holds uniformly for the random walk and Brownian
motion started in a compact set, and moreover holds for a range of quantum surfaces
such as quantum spheres, quantum cones, quantum wedges, and quantum disks; see [24,
Theorem 3.3]. Consequently, the Tutte embedding of the Poisson-Voronoi tessellation
of the quantum disk converges to the quantum disk as λ → ∞ (see the proof of [24,
Theorem 1.2]).

Proof. Since we have the estimates (1.2), the general γ ∈ (0, 2) version of [24, Theorem
3.3] holds. In particular, Theorem 5.14 holds if we replace the field h with that of
a 0-quantum cone. By comparing h to the field of a 0-quantum cone and using local
absolute continuity arguments, we obtain Theorem 5.14.

Notice that the construction of Y λ involves only the pointed metric measure space
structure of (C, 0, Dh, µh), so Theorem 5.14 roughly tells us that we can recover the
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conformal structure of (C, 0, Dh, µh) from its metric measure space structure. The
following variant of [24, Theorem 1.2] makes this observation explicit, resolving a
question of [21].

Theorem 5.15 (Pointed metric measure space (C, 0, Dh, µh) determines conformal struc-
ture). Let h be a whole-plane GFF normalized so h1(0) = 0. Almost surely, given the
pointed metric measure space (C, 0, Dh, µh), we can recover its conformal embedding
into C and hence recover h (both modulo rotation and scaling).

Proof. To simplify notation, assume that we are given the two-pointed metric measure
space (C, 0, 1, Dh, µh), then we show we can recover exactly the embedding of µh in C
(otherwise, one can arbitrarily pick any other point from the pointed metric measure
space and use that in place of 1, and only recover the embedded measure modulo
rotation and scaling). Since µh (with its embedding in C) determines h [6] and hence Dh,
it suffices to recover µh.

Consider R large so 1 ∈ B•R(0;Dh). In the same way that [24, Theorem 1.1] is used
to prove [24, Theorem 1.2], we can use Theorem 5.14 to obtain an embedding of the
two-pointed metric measure space (B•R(0;Dh), 0, 1, Dh, µh) into the unit disk D with the
correct conformal structure and sending 0 to 0 and 1 to a point in (0, 1).

Roughly speaking, this is done by taking a λ-intensity Poisson-Voronoi tessellation
of (B•R(0;Dh), 0, 1, Dh, µh), and embedding its adjacency graph Pλ in D via the Tutte
embedding Φλ: let x0, . . . , xn be the vertices in ∂Pλ in counterclockwise order with x0
arbitrarily chosen, and let z0 (resp. z1) be the vertex corresponding to the Poisson-Voronoi
cell containing 0 (resp. 1). Define the map Φ̃λ : Pλ → D via Φ̃λ(z0) = 0, Φ̃(x0) = 1 and
Φ̃λ(xj) = e2πipj where pj is the probability that Y λ hits ∂Pλ at one of the points x0, . . . , xj ,

and extend Φ̃ to the rest of Pλ so it is discrete harmonic. Finally, define Φλ(z) = eiθΦ̃λ(z)

where θ ∈ [0, 2π) is chosen so Φ(z1) ∈ R. Taking λ → ∞, the Φλ-pushforward of the
counting measure on the vertices of the embedded graph normalized by λ−1 converges
weakly in probability to the desired conformally embedded measure. See [24, Section
3.3] for details.

Rescale this embedding (and forget the metric) to obtain an equivalent two-pointed
space (cRD, 0, 1, µ

R) with the LQG measure and conformal structure. That is, there exists
a conformal map ϕR : B•R(0;Dh)→ cRD such that ϕR(0) = 0, ϕR(1) = 1, and the pushfor-
ward (ϕR)∗µh equals µR. We emphasize that since we are only given (C, 0, 1, Dh, µh) as a
two-pointed metric measure space, we know neither the embedding B•R(0;Dh) ⊂ C nor
the conformal map ϕR, but we do know cR and µR.

Now, by a simple estimate on the distortion of conformal maps [41, Lemma 2.4]
(stated for the cylinder R × [0, 2π] but applicable to our setting via the map z 7→ e−z),
we see that for any compact K ⊂ C we have limR→∞ supz∈K |ϕR(z) − z| = 0 and
limR→∞ supz∈K |(ϕR)−1(z) − z| = 0. Thus, for any fixed rectangle A, the measure of
the symmetric difference µh

(
A4(ϕR)−1(A)

)
converges to zero as R→∞; this implies

limR→∞ |µR(A)− µh(A)| = 0. Since µR is a function of the two-pointed metric measure
space (C, 0, 1, Dh, µh), we conclude that µh(A) is also. Therefore the two-pointed metric
measure space (C, 0, 1, Dh, µh) determines µh and hence h.

A Proof of the inductive relation for small moments

Lemma A.1. Recall vk(r) and uk(r) from (2.4). The following relation holds.

vk(r) ≤ Cr−2
k−1∑
i=1

(
k

i

)
(4k)γ

2i(k−i)r−γ
2i(k−i)ui(4r)uk−i(4r). (A.1)
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Proof. Set fk(z1, . . . zk) :=
∏
i<j |zi − zj |−γ

2

. Note that when maxi<j |zi − zj | ≤ r, the k
points are included in B(z1, r) which itself is included in a ball of radius 4r centered at
at point of rZ2 ∩D. Since fk is a function of the pairwise distance, which is translation
invariant, we get

vk(r) =

∫
Dk

1r/2≤maxi<j |zi−zj |≤r∏
i<j |zi − zj |γ

2 dz1 . . . dzk

≤ Cr−2
∫
4rDk

1r/2≤maxi<j |zi−zj |fk(z1, . . . , zk)dz1 . . . dzk

Then, take two points at distance r/2 in 4rD, say z and w among {z1, . . . , zk}. We cut k+1

orthogonal sections of same width to the segment [z, w]. At least one should be empty
and this separates two clusters of points, I = {zp1 , . . . , zpi} and J = {zq1 , . . . , zqk−i} for
some 1 ≤ i ≤ k − 1. All points between the two clusters I and J are separated by
|z − w|/(k + 1) ≥ r/4k. We decouple fk(z1, . . . , zk) for two clusters I and J of size i and
k− i by fk(z1, . . . , zk) ≤ (4k)γ

2i(k−i)r−γ
2i(k−i)fi(I)fk−i(J). In particular, splitting over the

possibles cases we get

vk(r) ≤ Cr−2
k−1∑
i=1

∑
I

(4k)γ
2i(k−i)r−γ

2i(k−i)
∫
4rDk

fi(I)fk−i(J)dz1 . . . dzk,

where for each i, I ranges over all subsets of {z1 . . . , zk} with i elements. This gives

vk(r) ≤ Cr−2
k−1∑
i=1

(
k

i

)
(4k)γ

2i(k−i)r−γ
2i(k−i)ui(4r)uk−i(4r)

and completes the proof.

B Whole-plane GFF and ?-scale invariant field

In this section we recall some properties of ?-scale invariant fields and explain that
the whole-plane GFF modulo constants can be seen as a ?-scale invariant field.

We will denote by S(C) the space of space of Schwartz functions and by L2(C) the
space of square integrable functions, on C. For f, g ∈ L2(C), let 〈f, g〉 stands for the
L2(C) inner product. Furthermore, ∗ denotes the convolution operator.

?-scale invariant field φ We introduce here the field φ =
∑
k≥1 φk we work with in

Section 3.1. The notation and definition are close to the one in [12, Section 2.1] and we
refer the reader to this Section for more details.

Consider k, a smooth, radially symmetric and nonnegative bump function supported
in B1/(2e)(0), such that k is normalized in L2(C). We set c = k ∗ k which has therefore
compact support included in B1/e(0) and satisfies c(0) = 1. We consider a space-time
white noise ξ(dx, dt) on C× [0,∞) and define the random Schwartz distribution

φ(x) :=

∫ 1

0

∫
C

k

(
x− y
t

)
t−3/2ξ(dy, dt).

The covariance kernel of φ is given by E(φ(x)φ(x′)) =
∫ 1

0
c(x−x

′

t )dtt . We decompose φ =∑
k≥1 φk where φk(x) :=

∫ e−(k−1)

e−k

∫
C
k
(
x−y
t

)
t−3/2ξ(dy, dt) and whose covariance kernel

is given by Ck(x, x′) :=
∫ e−(k−1)

e−k
c(x−x

′

t )dtt . Note that Ck(x, x′) = C1(e(k−1)x, e(k−1)x′) and
that if |x− x′| ≥ e−1, C1(x, x′) = 0 hence φk has finite range dependence with range of
dependence e−k. Note also that the pointwise variance of φ0,n :=

∑
1≤k≤n φk is equal to

n.
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Lemma B.1. There exists C, c > 0 such that for all k ≥ 0, x > 0, P(e−k ‖∇φ0,k‖e−kS ≥
x) ≤ Ce−cx2

, where S denotes the unit square [0, 1]× [0, 1].

Proof. This is essentially the argument as in the proof of Lemma 10.1 in [12] which
we recall. By Fernique’s theorem, P(‖∇φ1‖S ≥ x) ≤ Ce−cx

2

. Therefore, by scaling,

P(e−` ‖∇φ`‖e−`S ≥ x) ≤ Ce−cx2

for ` ≥ 1. By setting X` := e−` ‖∇φ`‖e−`S , by the triangle
inequality and since e−kS ⊂ e−`S for ` ≤ k, e−k ‖∇φ0,k‖e−kS ≤

∑
0≤`≤k e

−(k−`)X`. By
inspecting the Laplace functional, and using that the X`’s are independent and identically
distributed, we conclude the proof of the Lemma.

Whole-plane GFF We explain here why
∫∞
0
k(x−yt )t−3/2ξ(dy, dt) is a whole-plane GFF

modulo constants. Set φε(x) =
∫ ε−1

ε

∫
C
k
(
x−y
t

)
t−3/2ξ(dy, dt) and take f ∈ S(C) such that∫

C
fdx = 0. Writing Cε(x) :=

∫ ε−1

ε
c
(
x
t

)
dt
t =

∫ ε−1

ε
ct(x)dtt with ct(·) = c(·/t), we have

E
(
〈φε, f〉2

)
=

∫
C×C

f(x)Cε(x− y)f(y)dxdy =
1

(2π)2

∫
R2

Ĉε(ξ)|f̂(ξ)|2dξ

where our convention for the Fourier transform is ĝ(ξ) :=
∫
C
g(x)e−iξ·x.

We compute the Fourier transform Ĉε(ξ) =
∫ ε−1

ε
ĉt(ξ)

dt
t =

∫ ε−1

ε
tĉ(tξ)dt and since

c = k ∗ k, ĉ = k̂2, then Ĉε(ξ) =
∫ ε−1

ε
tk̂(tξ)2dt = ‖ξ‖−2

∫ ε−1‖ξ‖
ε‖ξ‖ uk̂(u)2du. By monotone

convergence, we get

E
(
〈φε, f〉2

)
=

1

(2π)2

∫
R2

‖ξ‖−2
∫ ε−1‖ξ‖

ε‖ξ‖
uk̂(u)2du|f̂(ξ)|2dξ

→
ε→0

(∫ ∞
0

uk̂(u)2du

)
× 1

(2π)2

∫
R2

‖ξ‖−2 |f̂(ξ)|2dξ.

Since k̂ is radially symmetric and k is normalized in L2, by Plancherel’s theorem∫∞
0
uk̂(u)2du = 2π. Furthermore, by setting g(x) =

∫
C

log |x− y|f(y)dy we get ∆g = 2πf

and in Fourier modes, −‖ξ‖2 ĝ(ξ) = 2πf̂(ξ) hence, by Plancherel’s theorem,∫
C2

f(x)(− log |x− y|)f(y)dxdy = −
∫
C

f(x)g(x)dx =
−1

(2π)2

∫
R2

f̂(ξ)ĝ(ξ)dξ

=
1

2π

∫
R2

‖ξ‖−2 |f̂(ξ)|2dξ.

Note that this term is finite because under the assumption
∫
C
fdx = 0, we have f̂(0) = 0

so the above singularity at the origin is compensated by the first term in the development
of f̂ . Altogether, we get

E
(
〈φε, f〉2

)
→
ε→0

∫
C2

f(x)(− log |x− y|)f(y)dxdy

Hence the convergence of the characteristic functionals: E(ei〈φε,f〉) = e−
1
2E(〈φε,f〉2) →

ε→0

e−
1
2E(〈h,f〉2).
The following lemma will be useful when working with the whole plane GFF not

modulo additive constant.

Lemma B.2. There exists a coupling of the whole-plane GFF h normalized such that
h1(0) = 0 and the ?-scale invariant field φ such that the difference h− φ is a continuous
field.
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Proof. Recall the notation φk,` =
∫ e−k
e−`

k(x−yt )t−3/2ξ(dy, dt). We know φ−∞,∞ is a whole-
plane GFF modulo constant. The fine field φ = φ0,∞ is a well-defined Schwartz dis-
tribution. Also, the gradient field ∇φ−∞,0 is a well-defined continuous Gaussian vec-
tor (this can be checked by inspecting the covariance kernel and applying the Kol-
mogorov continuity theorem). Thus, φ−∞,0 is well defined modulo additive constant, so
φL := “φ−∞,0−−

∫
∂B1(0)

φ−∞,0” is a well-defined continuous Gaussian field, independent of

φ. By setting g := φL − −
∫
∂B1(0)

φ, we get that h := φ+ g is a whole-plane GFF normalized

such that h1(0) = 0.

C Volume of small balls in the Brownian map

We do not use any material in this section in our proofs, but include it to facilitate
an easier comparison between our argument in Section 3 and the analogous result for
the Brownian map case. Le Gall obtained the following uniform estimate on the volume
of small balls in the Brownian map. For β ∈ (0, 1), there exists a random Kβ > 0 such
that for every r > 0, the volume of any ball of radius r in the Brownian map is bounded
from above by Kβr

4−β . Our proof of the finiteness of LQG ball volume positive moments
(Section 3) shares some similarities with his only at a very high level; no explicit formulas
are available in our framework, and the techniques are very different. We discuss
some of the arguments used in the Brownian map setting and we refer the reader to
[29, 34, 30, 31] for details. This estimate was used in the proofs of the uniqueness of the
Brownian map [35, 32].

Tree of Brownian paths A binary marked tree is a pair θ = (τ, (hv)v∈τ ) where τ is
a binary plane tree and where for v ∈ τ , hv is the length of the branch associated to
v. We denote by Λk(dθ) the uniform measure on the set of binary marked trees with k
leaves (uniform measure over binary plane trees and Lebesgue measures for the length
of the branches). I(θ) and L(θ) will denote respectively the internal nodes and leaves of
θ. One can define a Brownian motion on such a tree: the process is a standard Brownian
motion over a branch, and after an intersection, the two processes evolve independently
conditioning on the value at the node. We will denote by P θx this process, started from
the root of the tree with initial value x. Similarly, instead of using a Brownian motion,
one can consider a 9-dimensional Bessel process and we will denote it by Qθx.

Similarly, for trees given by a contour function (h(s))s≤σ with lifetime σ, one can
associate the so-called Brownian snake given by the process (Ws)s≤σ of Brownian type
path (for each s, Ws is a Brownian type path with lifetime h(s), its last value is denoted
by Ŵs and corresponds to the Brownian label above the point of the tree corresponding
to s). We can add another level of randomness by taking h given by a Brownian type
excursion: N0 is the measure associated to the unconditioned lifetime Itô excursion, N0

is also associated to the unconditioned lifetime Ito excursion but the Brownian labels
are conditioned to stay positive.

Explicit formulas The following explicit formula (see [29], Proposition IV.2), relates
the objects of the previous paragraph. For p ≥ 1, x ∈ R and F a symmetric nonnegative
measurable function on W p, where W denotes the space of finite continuous paths,

Nx

[∫
(0,σ)p

F (Ws1 , . . . ,Wsp)ds1 . . . dsp

]
= 2p−1p!

∫
Λp(dθ)P

θ
x

[
F ((w(a))a∈L(θ))

]
. (C.1)

Here, w is the tree-indexed Brownian motion with law P θx and w(a) the restriction of
w to the path joining a to the root, and Nx is the measure N0 where each Brownian
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snake has its labels incremented by x. This formula involves combining the branching
structure of certain discrete trees with spatial displacements. It relies on nice Markovian
properties, in particular on specific properties of the Itô measure. The proof of the
uniform volume bound for metric ball is based on an explicit formula obtained in [34] for
the finite-dimensional marginal distributions of the Brownian tree under N0,

N0

[∫
(0,σ)p

F (Ws1 , . . . ,Wsp)ds1 . . . dsp

]

= 2p−1p!

∫
Λp(dθ)Q

θ
0

F ((w(a))a∈L(θ)
∏
b∈I(θ)

V
4

b

∏
c∈L(θ)

V
−4
c

 . (C.2)

Here, we write w and w(a) for the nine-dimensional Bessel process counterparts of w
and w(a), and V v for the value of the Bessel process at the vertex v. Because of the
conditioning of N0, the spatial displacements are given by nine-dimensional Bessel
processes rather than linear Brownian motions. To derive such a formula, in [34] the
authors generalize (C.1) to functionals including the range of labels and lifetime σ

and then use results on absolute continuity relations between Bessel processes, which
are consequences of the Girsanov theorem (note that integrals over time of Brownian
motions are integral over branches of trees of Brownian motion).

Positive moment estimates In the proof of the upper bound on small ball volumes of
the Brownian map in [31], a key estimate is to show that, for k ≥ 1, ck <∞ where

ck := N0

[(∫ σ

0

1{Ŵs≤1}ds

)k]

= 2k−1k!

∫
Qθ0

(
∏

a∈I(θ)

V
4

a)(
∏

b∈L(θ)

V
−4
b 1V b≤1)

Λk(dθ) =: 2k−1k!d̃k. (C.3)

Note that the second inequality is obtained by using (C.2) with F (Ws1 , . . . ,Wsk) =

1
Ŵs1
≤1, . . . , 1Ŵsk

≤1. The proof works by induction, introducing an additional parameter

to take care of the value of the label at the splitting node in the branching structure, by
setting

d̃k(r) :=

∫
Qθr

 ∏
a∈I(θ)

V
4

a

 ∏
b∈L(θ)

V
−4
b 1V b≤1

Λk(dθ).

In this framework, the base case and inductive relation are quite straightforward because
of the exact underlying branching structure. Let R denote a 9-dimensional Bessel process
that starts from r. The base case corresponds to

d̃1(r) = E

[∫ ∞
0

R−4t 1{Rt≤1}dt

]
= c

∫
R9

|r − z|−7|z|−41{|z|≤1}dz (C.4)

and the inductive relation states

d̃`(r) = E

∫ ∞
0

R4
t

`−1∑
j=1

d̃j(Rt)d̃`−j(Rt)

 . (C.5)

Now, one can easily derive the bounds d̃1(r) ≤Mr−2∧r−7 and for j ≥ 2 d̃j(r) ≤Mj1∧r−7.
We underline that the exact branching structure of the framework is expressed through
the equality (C.5).
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Comparison Let us compare our proof of the finiteness of positive moments with
the one in the Brownian map setting. In our setup, no nice branching structure for
distances is known. Furthermore, by working with a given embedding or a restriction
to a specific domain, we have to carry in the analysis information about the Euclidean
domain, including an additional layer of difficulty.

In the case of the Brownian map, when one considers the “volume” associated
with (C.3) thanks to the explicit formulas (C.1) and (C.2), one ends up with branching
Bessel processes on uniform trees. In our framework, analogous observables of “dis-
tances” are not well understood so far. Instead, circle averages processes are tractable.
They evolve as correlated Brownian motions. These are a good proxy for the metric
because of the superconcentration of side-to-side crossing distances. Furthermore, when
one weights the distribution with singularities (after a Cameron-Martin argument), these
Brownian motions are shifted by drifts. (Note that the passage from (C.1) to (C.2) uses
Girsanov.)

Similarities can be seen as the level of induction where the value of the Bessel process
at the first node can be compared with the value of the circle average of the field in at
the first branching as well in our hierarchical decomposition. Therefore, Lemma 3.7 is
similar to (C.5) and Proposition 3.8 to (C.3).
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