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Abstract

We consider a class of space-time coupled evolution equations (CEEs), obtained
by a subordination of the heat operator. Our CEEs reformulate and extend known
governing equations of non-Markovian processes arising as scaling limits of continuous
time random walks, with widespread applications. In particular we allow for initial
conditions imposed on the past, general spatial operators on Euclidean domains and
a forcing term. We prove existence, uniqueness and stochastic representation for
solutions.
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1 Introduction

We study the space-time coupled evolution equation (CEE){
Hνu(t, x) = −f(t, x), in (0, T ]× Ω,

u(t, x) = φ(t, x), in (−∞, 0]× Ω,
(1.1)

where f and φ are given data and

Hνu(t, x) =

∫ ∞
0

(
erLu(t− r, x)− u(t, x)

)
ν(r) dr, t > 0, (1.2)

so that −Hν = (∂t − L)ν is the subordination of the heat operator (∂t − L) by an infinite
Lévy measure ν. Here the Markovian semigroup {erL}r≥0 acts on the space variable
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Space-time CEEs and their stochastic solutions

Ω ⊂ Rd, and we denote the associated stochastic process by B = r 7→ Br. As our main
result, we prove the stochastic representation for the solution u(t, x) to (1.1) to be

E
[
φ
(
t− Sντ0(t), B

x
Sν
τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
+E

[∫ τ0(t)∧τ0(τΩ(x))

0

f
(
t− Sνs , BxSνs

)
ds

]
, (1.3)

where Sν is the Lévy subordinator with Lévy measure ν, Sν is independent of Bx, with
x denoting the starting point of B, τ0(t) = inf{r > 0 : t − Sνr < 0} is the inverse of Sν

and τΩ(x) is the life time of Bx, x ∈ Ω. Let us first clarify the solution (1.3) by viewing
the evolution equation (1.1) as a Dirichlet problem with space-time boundary conditions.
Assume for simplicity τΩ =∞ and observe that in (1.1) our operator (1.2) is subject to
the exterior/absorbing temporal boundary condition u = φ on (−∞, 0]× Ω. At the same
time (1.2) is the generator of the space-time coupled Markov process

r 7→
(
t− Sνr , BxSνr

)
, (t, x) ∈ R× Ω. (1.4)

Assuming f = 0, then we expect the solution kernel to be given by the absorption of
the space-time process (1.4) on (−∞, 0]× Ω on its first attempt to exit (0, T ]× Ω, which
indeed happens at time τ0(t). If the space-time forcing term f is non-zero, it is now
natural to expect (1.3) to be the solution. (This absorption interpretation can be seen in
the more standard case of the fractional Laplacian with exterior boundary condition [28,
Theorem 1.3], or in a general setting in [29].) It is important to observe that

Y = t 7→ Yt = BSν
τ0(t)

is a non-Markovian process that is trapped when t 7→ τ0(t) is constant. Then there is a
clear intuition for the initial condition on the “past” in problem (1.1), as the time parame-
ters of φ are weighted according to the overshoot Sντ0(t)− t, which is the waiting/trapping
time of Yt (caused by the time change τ0). As an example, let φ(t, x) = 1{t<−1}1{x>0}
(f = 0 and Ω = R), then the solution is

u(t, x) = P [Y xt will not move for at least 1 time-unit & Y xt is positive] ,

and thus the modeller’s choice of φ allows to gain control over the length of the traps in
combination with the spatial position of the process. This implies that imposing initial
conditions on the past in (1.1) results in a “finer” probabilistic model when compared to
only imposing standard initial conditions at 0 (i.e. φ independent of time, so that in the
example above u(t, x) = P[Y xt is positive]).

Select now time independent initial data φ(t) = φ0, f = 0, d = 1 and let r 7→ Br be a
Lévy process with density pr(·). Notating Φ(dy, dr) = pr(y)ν(r) dy dr, we can now write
Hνu(t, x) as∫

R+×R

(
1{t−r>0}u(t− r, x− y)− u(t, x)

)
Φ(dy, dr) +

∫
R

φ0(x− y)Φ(dy, (t,∞)),

and the CEE (1.1) is a particular case of [24, Theorem 4.1, eq. (4.1)]. In [24], prob-
lem (1.1) appears in Fourier-Laplace space as

p(γ, ξ) =
1

γ

ψν(γ + ψB(ξ))− ψν(ψB(ξ))

ψν(γ + ψB(ξ))
, γ > 0, ξ ∈ R,

and it is shown that the Fourier-Laplace transform of the law of Y satisfies the above
identity, where ψB is the Fourier symbol of B and ψν the Laplace symbol of Sν . The
authors in [24] also show that Y arises as the scaling limit of overshoot continuous time
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random walks (OCTRWs). The overshoot is reflected in the time change of B living above
t, in the sense that Sντ0(t) > t [6, Theorem III.4]. Recall again that Y is trapped when
τ0 is constant, like the fractional-kinetic process t 7→ Bτ0(t) [33, Chapter 2.4]. But the
duration of a waiting time induced by τ0 equals the length of the last discontinuity of Sντ0 ,
mirrored in the coupling of space (BSν ) and time (τ0). In particular, if the subordination is
performed by an α-stable subordinator Sα, then Y scales like B, because Sατ0(t) = tSατ0(1).
This implies that if B is a Brownian motion, the order of the mean square displacements
(MSDs) of Yt and Bt are both t, in contrast with the fractional kinetic process, whose
MSD is of order tα [33, Chapter 2.4]. The related literature known to us deals with
variations of the CEE (1.1) in Fourier-Laplace space, mostly motivated by central limit
theorems for coupled OCTRWs. See [30, 36] for multidimensional extensions of OCTRW
limits, [31] for explicit densities in certain fractional cases, and [41, 25] for alternatives
to the first derivative in time. Due to their peculiar properties OCTRWs are popular
models appearing for instance in physics and finance [40, 42, 43, 19, 39, 26]. Worth
mentioning that the OCTRW limit first appeared in [24] as the overshooting counterpart
of CTRW limits studied in [5, 3, 32], which result in different CEEs. In this latter case, the
counterpart of (1.1) expects the solution to be the subordination of B by Sντ0(t)−, for Sνs−
the left continuous modification of Sνs . We could not treat this case, as our method relies
on Dynkin formula, and we could not recover a suitable version for the left continuous
process Sνs−. However, this case is treated in the general setting of space-time Feller
semigroups in [4], as discussed below. Note that, although related, problem (1.1) is
different from [35, problem (1.1)], as the latter does not impose initial conditions, and in
turn it does not describe anomalous diffusion.

We present two main results. The first one is Theorem 3.5, where we prove wellposed-
ness and stochastic representation for solutions. We call these generalised solutions,
and they are (carefully chosen) pointwise limits of potentials of the space-time pro-
cess (1.4) killed outside (0, T ] × Ω. The second main result is Theorem 4.8, where we
prove that (1.3) is a weak solution for (1.1) for weak data and eL self-adjoint. We could
not prove uniqueness of weak solutions, which appears to be a subtle problem already for
the simpler (uncoupled) Marchaud-Caputo EE [1]. We mention that we assume existence
of densities for the processes B and Sν to work with weak data, but this assumption
could be dropped by working with smoother data, as we discuss in Remark 3.6-(ii).

To the best of our knowledge, the novel contribution of this article is the following. A
general probabilistic method to treat wellposedness and stochastic representation for
the CEE (1.1) when it features: initial conditions on the past, general spatial operators
on Euclidean domains and a forcing term. Moreover, our proof method tightly follows
[17] and [38], which treat the rather different uncoupled EEs of Caputo/Marchaud-
type. Therefore proposing a unified method for a large class of fractional/nonlocal
EEs with initial conditions on the past. Besides the introduction of initial conditions
on the past for CEEs, this work appears to be the first one that formulates and solves
the governing equation of Y in differential form, without relying on Fourier-Laplace
transform techniques. This was also part of the contribution of [4], which treats different
CEEs, as mentioned above. We remark that [4] and our work share the idea of considering
the generator of the respective space-time coupled process killed when the process in
the time variable crosses a barrier (t − Sν in (1.4) crossing 0 in this work). Then the
potential of this space-time killed process is a bounded operator and so one can invert
its generator (compare the proofs of [4, Theorem 4.1] and Lemma 3.3, respectively).
Unfortunately, as mentioned above, the rest of our strategy does not appear to be
compatible with the left continuous modifications of the processes in [4] and thus we do
not know whether one can impose initial conditions on the past for the processes treated
in [4].
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The article is organised as follows; Section 2 introduces general notation, our assump-
tions and the main semigroup results used to treat the operator Hν ; Section 3 proves
Theorem 3.5 and presents some concrete fundamental solutions to (1.1); Section 4
proves Theorem 4.8.

2 Notation and subordinated heat operators

We denote by Rd, N, 1, a.e., a ∨ b and a ∧ b the d-dimensional Euclidean space, the
positive integers, the indicator function, the statement almost everywhere with respect
to Lebesgue measure, the maximum and the minimum between a, b ∈ R, respectively. We
denote by Γ(β) the Gamma function for β ∈ (−1, 0) ∪ (0,∞), and we recall the standard
identity Γ(β + 1) = Γ(β)β. We denote by E the topological closure of a set E. If E is a
locally compact space, then we write C(E) for the real-valued continuous functions on
E. We write C∞(E) for the Banach space of functions in C(E) vanishing at infinity with
the supremum norm [10, page 1]. This means that for every f ∈ C∞(E) and ε > 0 there
exists a compact set K ⊂ E such that supx∈E\K |f(x)| ≤ ε, moreover we canonically
extend f to E ∪ {∂} by f(∂) = 0 for ∂ a cemetery state and if E is not compact we set
E ∪ {∂} to be the one-point compactification of E, otherwise ∂ is an isolated point. We
denote by B(E) the Banach space of real-valued bounded Borel measurable functions on
E with the supremum norm. We mostly work with the space-time Banach spaces

C∞((−∞, T ]× Ω), C∞([0, T ]× Ω) and C∞((0, T ]× Ω),

for some Ω ⊂ Rd and any T > 0, with the convention that we extend the functions in
C∞((0, T ] × Ω) to zero on {0} × Ω and for f in any of the above three spaces we write
f(0) = x 7→ f(0, x). We define C1

∞(−∞, T ] = {f, f ′ ∈ C∞(−∞, T ]} for any T ≥ 0, and
C1
c (0, T ) to be the space of continuously differentiable functions in C(R) with compact

support in (0, T ). For two sets of real-valued functions F and G we define

F ·G := {f · g : f ∈ F, g ∈ G}.

For a sequence of functions {fn}n≥1 and a function f , we write fn → f bpw (bpw a.e.) if
fn converges to f pointwise (a.e.) as n→∞, and the supremum (essential supremum)
norms of all fn’s are uniformly bounded in n. We denote by L1(Ω), L2(Ω) and L∞(Ω)

the standard Banach spaces of Lebesgue integrable, square-integrable and essentially
bounded real-valued functions on Ω, respectively. We denote by ‖ · ‖X the norm of a
Banach space X.

The notation we use for an E-valued stochastic process started at x ∈ E is Xx =

{Xx
s }s≥0 = s 7→ Xx

s . Note that the symbol t will often be used to denote the starting point
of a stochastic process with state-space E ⊂ R. By a strongly continuous contraction
semigroup eG we mean a collection of bounded linear operators esG : X → X, s ≥ 0,
where X is a Banach space, such that e(s+r)G = esGerG for every s, r > 0, e0G is the
identity operator and lims↓0 e

sGf = f in X and sups ‖esGf‖X ≤ ‖f‖X for every f ∈ X.
The generator of eG is defined as the pair (G,Dom(G)), where Dom(G) := {f ∈ X : Gf :=

lims↓0 s
−1(esGf −f) exists in X}. We say that a set C ⊂ Dom(G) is a core for (G,Dom(G))

if the generator equals the closure of the restriction of G to C. Recall that Dom(G) is
dense in X. For a given λ ≥ 0 we define the resolvent of eG by (λ−G)−1 :=

∫∞
0
e−λsesG ds,

and recall from [18, Theorem 1.1] that for λ > 0, (λ− G)−1 : X → Dom(G) is a bijection
and it solves the abstract resolvent equation

G(λ− G)−1f = λ(λ− G)−1f − f, f ∈ X,

and if (−G)−1 : X → X is bounded, then the above statement holds for λ = 0 [18,
Theorem 1.1’]. Also, for any f ∈ Dom(G) and C = ‖Gf‖X ∨ ‖2f‖X we have

‖esGf − f‖X ≤ C(s ∧ 1) for all s ≥ 0. (2.1)
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By a Feller semigroup we mean a strongly continuous contraction semigroup eG on
any of the Banach spaces C∞(E) defined above such that for each s > 0, esGf ≥ 0

if f ≥ 0. Feller semigroups are in one-to-one correspondence with Feller processes,
where a Feller process is a time-homogeneous sub-Markov process {Xs}s≥0 such that
esGf(x) := E[f(Xx

s )], f ∈ C∞(E) is a Feller semigroup [10, Chapter 1.2]. We recall that
every Feller process admits a càdlàg (right continuous with left limits) modification
which enjoys the strong Markov property [10, Theorem 1.19 and Theorem 1.20], and we
always work with such modification. For further discussions on these terminologies and
notation we refer to [10].

2.1 The spatial operator L
Definition 2.1. We define (L,Dom(L)) to be the generator of a Feller semigroup {erL}r≥0

on C∞(Ω), where the set Ω ⊂ Rd is either open or the closure of an open set. We denote
the associated Feller process by Bx = s 7→ Bxs , when started at x ∈ Ω. As usual, the
Feller process s 7→ Bxs is defined to be in the cemetery if s ≥ τΩ(x), defining the life
times τΩ(x) = inf{s > 0 : Bxs /∈ Ω}, x ∈ Ω, so that Bxs = Bxs∧τΩ(x).

We will use the following assumption for the spatial semigroup eL.

(H1) The operator erL allows a density with respect to Lebesgue measure for each
r > 0, i.e. there exists a function y 7→ pΩ

r (x, y) ∈ L1(Ω) for each x ∈ Ω such that
erLf(x) =

∫
Ω
f(y)pΩ

r (x, y) dy for every f ∈ C∞(E).

In the examples below we say that a stochastic process s 7→ Xs with state-space E is
strong Feller if f(·) 7→ E[f(X ·s)] maps B(E) to C(E) ∩ B(E) for each s > 0. If E = Rd

we say that Ω ⊂ Rd is a regular set if Ω is open and for each z ∈ ∂Ω, P[inf{s > 0 : Xz
s /∈

Ω} = 0] = 1. (Here ∂Ω denotes the Euclidean boundary of Ω.)

Example 2.2. We mention some examples of Feller semigroups/processes that sat-
isfy (H1), including several nonlocal and fractional derivatives on Rd and on bounded
domains.

(i) Diffusion processes in Ω = Rd with generator div(A(x)∇), where A : Rd → Rd ×Rd
is a matrix valued function which is bounded, measurable, positive, symmetric and
uniformly elliptic [37, Theorem II.3.1, p. 341]. In this case the density (t, x, y) 7→
pΩ
t (x, y) is continuous on (0,∞)×Rd ×Rd and the process is strong Feller (which

follows by the Aronson estimate [37, formula (I.0.10)]).

(ii) All strong Feller Lévy processes (Ω = Rd). Indeed this is a characterisation [22,
Lemma 2.1, p. 338]. See [27, Chapter 5.5] for a discussion. This class includes all
stable Lévy processes.

(iii) Pure jump Lévy or Lévy-type processes (Ω = Rd) with generators characterised by:

(a) Lévy measures κ(dy) for d = 1 such that
∫

[−z,z] y
2 κ(dy) ≥ z2−α for all small z

and some α ∈ (0, 2) [34, Proposition 28.3];

(b) absolutely continuous Lévy measures κ(dy) = κ(y)dy, such that
∫
Rd\{0} κ(y) dy =

∞ [34, Theorem 27.7];

(c) absolutely continuous Lévy-type measures κ(x, dy) = κ(x, y)dy such that the
respective symbols satisfy the Hölder continuity-type conditions in [27, Theorem
2.14] (see also [27, Theorem 3.3]).

(iv) Clearly any Feller process X taking values in Rd such that its density is continuous.
If X is also strong Feller and Ω ⊂ Rd is a regular set, then the process killed upon
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the first exit from Ω is a Feller process on Ω [14, p. 68], and it has a continuous
density (which can be proved by the strong Markov property as in [13, formula
(4.1)]). This case includes the regional fractional Laplacian (−∆)βΩ [13].

(v) Any subordination of a Feller process by a Lévy subordinator which itself satis-
fies (H1), which is a straightforward consequence of [23, Theorem 4.3.5]. This case
includes the spectral fractional Laplacian (−∆Ω)β [9, 8].

(vi) We mention the articles [12, 20] and references therein for related discussions
about some jump-type generators with symmetric and non-symmetric kernels.

(vii) The 1-d reflected Brownian motion [7, Chapter 6.2], so that Ω = [0,∞), and L = ∂2
x,

endowed with the Neumann boundary condition on (0, T ]× {0}.

(viii) The restriction to C∞(Ω) of the L2(Ω) semigroup generated by the divergence oper-
ator div(A(x)∇) with Neumann boundary conditions on a Lipschitz open bounded
connected set Ω ⊂ Rd, for the same coefficients A as in Example 2.2-(i). This is a
consequence of [21, Theorem 3.10, Section 2.1.2].

(ix) The reflected spectrally negative β-stable Lévy process on Ω = [0,∞), for β ∈ (1, 2)

[2, Theorem 2.1, Corollary 2.4]. In this case

Lu(x) = ∂βxu(x) =

∫ x

0

u′′(y)
(x− y)1−β

Γ(2− β)
dy, x > 0,

for u in the core given in [2, Theorem 2.1], which features u′(0) = 0. Note that ∂βx is
the Caputo derivative of order β ∈ (1, 2) [16].

For our notion of weak solution in Section 4 we will use a stronger assumption for
the spatial semigroup. In this assumption below we could allow Ω = Rd, but we do not
as it would affect the clarity of the exposition, as we would have to consider extra cases
in several steps in Section 4.

(H1′) the set Ω is a bounded open subset of Rd, and eL is a Feller semigroup on
X = C∞(Ω) or X = C∞(Ω) such that assumption (H1) holds and eL is self-adjoint,
in the sense that for each r > 0∫

Ω

erLv(x)w(x) dx =

∫
Ω

v(x) erLw(x) dx, v, w ∈ X. (2.2)

Example 2.3.

(i) Assumption (H1′) holds for several processes obtained by killing a Feller process
on Rd upon exiting a regular bounded domain Ω. This is for example the case
of the Dirichlet Laplacian −∆Ω, the regional fractional Laplacian (−∆)βΩ and the
spectral fractional Laplacian (−∆Ω)β , β ∈ (0, 1). These killed semigroups are Feller,
as explained in Example 2.2-(iv)-(v). Property (2.2) follows by the eigenfunction de-
composition of the L2(Ω) extension of the killed Feller semigroup [15, 13, 8], along
with C∞(Ω) ⊂ L2(Ω). More generally, one can use the theory regular symmetric
Dirichlet forms, for example combining [10, Proposition 3.15] with [11, Corollary
3.2.4-(ii)]. These examples correspond to 0 boundary conditions on ∂Ω or Ωc.

(ii) Assumption (H1′) holds for the Feller semigroup of Example 2.2-(viii), as an im-
mediate consequence of the semigroup being generated by a (symmetric) regular
Dirichlet form [21, Theorem 3.10]. One can also consider an appropriate subordina-
tion of the Feller semigroup of Example 2.2-(viii), as mentioned in Example 2.2-(v).
Then (H1) still holds along with property (2.2), which can be seen by the eigen-
function expansion to the subordinated semigroup. These examples correspond
Neumann boundary conditions on ∂Ω.
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2.2 Subordinators and subordinated heat operators

In this section we define the simple space-time process r 7→ (t−r,Bxr ) with state-space
(−∞, T ]× Ω (and suitable killed/absorbed versions) and then we subordinate it to obtain
the space-time process (1.4) (and the respective subordinated killed/absorbed versions).
Basic semigroup theory then leads us to Theorem 2.9, which gives a description of these
processes in terms of generators of space-time Feller semigroups. We will always assume
the following.

(H0) Denote by ν : (0,∞)→ [0,∞) any continuous function such that∫ ∞
0

(r ∧ 1)ν(r) dr <∞ and

∫ ∞
0

ν(r) dr =∞.

Definition 2.4. We denote by Sν = {Sνr }r≥0 the Lévy subordinator for ν, characterised
by the log-Laplace transforms logE[e−kS

ν
r ] = r

∫∞
0

(e−ks−1)ν(s) ds, for r, k > 0. We define
the first exit/passage times

τ0(t) := inf{r > 0 : Sνr > t}, t > 0.

Remark 2.5.

(i) Recall that for each r > 0, the random variable Sνr allows a density pνr (with respect
to the Lebesgue measure) [34, Theorem 27.7]. Also, τ0(t) = inf{r > 0 : Sνr ≥ t}
almost surely for every t > 0 as Sν is increasing [6, Chapter III.2], and for every
t ∈ (0, T ] ∫ ∞

0

∫ t

0

pνs (t− z) dz ds = E[τ0(t)] ≤ E[τ0(T )] <∞,

see for example [6, page 74]. In particular supt∈(0,T ] E[τ0(t)] <∞.

(ii) To obtain the stable subordinator case select

ν(r) := r−1−α/|Γ(−α)|, r > 0, α ∈ (0, 1),

then Sν = Sα is the α-stable subordinator, characterised by the Laplace transforms
E[e−kS

α
r ] = e−rk

α

, for r, k > 0. Denote its densities by pαr , r > 0, and recall that
E[τ0(t)] = tα/Γ(α + 1) [8, Example 5.8]. We refer to [8, Chapter 5.2.2] for other
examples of subordination kernels ν.

We define three semigroups that correspond to three different space-time valued
processes related to the heat operator −∂t+L. Namely the “free” process s 7→ (t−s,Bxs ),
the “absorbed at 0” process s 7→ ((t − s) ∨ 0, Bxs ), and the “killed at 0” process s 7→
((t−s), Bxs ) for t > s and ∂ otherwise. It is straightforward to prove that such semigroups
are Feller and we omit the proof.

Definition 2.6. Define the operators es(−∂t)u(t) := u(t − s) and es(−∂t,0)u(t) := u((t −
s) ∨ 0), t ∈ R, s ≥ 0, acting on the time variable. With the semigroup eL acting on the
Ω-variable, define the three Feller semigroups

esH := es(−∂t)esL, on C∞((−∞, T ]× Ω), s ≥ 0,

esH0 := es(−∂t,0)esL, on C∞([0, T ]× Ω), s ≥ 0,

esH0,kill := esH0 , on C∞((0, T ]× Ω), s ≥ 0,

with the respective generators denoted by

(H,Dom(H)), (H0,Dom(H0)), and (Hkill
0 ,Dom(Hkill

0 )).
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We now define three semigroups that respectively correspond to subordinating the
three semigroups in Definition 2.6 by an the independent Lévy subordinator Sν .

Definition 2.7. For appropriate functions u, we define for r > 0

erH
ν

u(t, x) =

∫ ∞
0

esHu(t, x) pνr (s) ds, t ∈ R, (2.3)

erH
ν
0u(t, x) =

∫ t

0

esHu(t, x) pνr (s) ds+

∫ ∞
t

esLu(0, x)pνr (s) ds, t ∈ [0, T ], (2.4)

erH
ν
0 ,killu(t, x) =

∫ t

0

esHu(t, x) pνr (s) ds, t ∈ (0, T ], (2.5)

and erH
ν

u(t, x) = erH
ν
0u(t, x) = erH

ν
0 ,killu(t, x) = u(t, x), for r = 0.

Remark 2.8.

(i) Note that erHu(t, x) = erLu(t− r, x) = E [u(t− r,Bxr )]. Also, for each r > 0,

erH
ν
0u(t, x) = erH

ν
0 ,killu(t, x) if u(0) = 0.

Moreover, for each r > 0, erH
ν
0 ,kill maps B((0, T ]× Ω) to itself.

(ii) If u is independent of time, then

erH
ν
0u(t, x) =

∫ ∞
0

esLu(x) pνr (s) ds = E
[
u
(
BxSνr

)]
is independent of time.

The next theorem shows that the operators in Definition 2.7 define Feller semigroups,
it gives a pointwise representation for the generators on “nice” cores, and finally it con-
nects the domains of the generators of erH

ν
0 and erH

ν
0 ,kill. These statements serve various

purposes, but let us outline our main line of thinking. Our strategy is to reduce (1.1)
to (3.1) with an appropriate forcing term, as suggested by the simple Lemma 4.6 (here
we use the generators pointwise representation). Hence we solve problem (3.1) in the
framework of abstract resolvent equations (Theorem 3.5). To do so, we use Theorem 2.9-
(iv) to reduce problem (3.1) to the 0 initial condition version, easily solved by inverting
Hν,kill

0 (Lemma 3.3). Moreover, Theorem 2.9 allows us to access Dynkin formula.

Theorem 2.9. Assume (H0). Then, with the notation of Definitions 2.1, 2.6 and 2.7:

(i) The operators erH
ν

, r ≥ 0 form a Feller semigroup on C∞((−∞, T ]× Ω). We denote
the generator of the semigroup by (Hν ,Dom(Hν)).

Moreover, Dom(H) is a core for (Hν ,Dom(Hν)), and for g ∈ Dom(H)

Hνg(t, x) = Hνg(t, x) :=

∫ ∞
0

(
erHg(t, x)− g(t, x)

)
ν(r) dr. (2.6)

(ii) The operators erH
ν
0 , r ≥ 0 form a Feller semigroup on C∞([0, T ] × Ω). We denote

the generator of the semigroup by (Hν0 ,Dom(Hν0)).

Moreover, Dom(H0) is a core for (Hν0 ,Dom(Hν0)), and

Hν0g(t, x) = Hν
0 g(t, x), for g ∈ Dom(H0), (2.7)

where

Hν
0 g(t, x) :=

∫ t

0

(
erHg(t, x)− g(t, x)

)
ν(r) dr +

∫ ∞
t

(
erLg(0, x)− g(t, x)

)
ν(r) dr.
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(iii) The operators erH
ν
0 ,kill, r ≥ 0 form a Feller semigroup on C∞((0, T ]× Ω). We denote

the generator of the semigroup by (Hν,kill
0 ,Dom(Hν,kill

0 )).

Moreover, Dom(Hkill
0 ) is a core for (Hν,kill

0 ,Dom(Hν,kill
0 )), and

Hν,kill
0 g = Hν

0 g, for g ∈ Dom(Hkill
0 ).

(iv) In addition, it holds that Hν0 = Hν,kill
0 on Dom(Hν,kill

0 ), and

Dom(Hν,kill
0 ) = Dom(Hν0) ∩ {g(0) = 0}. (2.8)

Proof. The statements (i), (ii) and (iii) are all consequences of [23, Theorem 4.3.5 and
Proposition 4.3.7] along with preservation of positive functions and the contraction
property, which are easily checked directly from the definitions (2.3), (2.4) and (2.5),
respectively.

(iv) To prove (2.8), we note that the inclusion ‘⊂’ is clear because, Dom(Hν,kill
0 ) ⊂

C∞((0, T ] × Ω), and the two semigroups (2.4) and (2.5) agree on C∞((0, T ] × Ω) by
Remark 2.8-(i). For the opposite inclusion ‘⊃’, we show that

if g ∈ Dom(Hν0), then g − g(0) ⊂ Dom(Hν,kill
0 ).

Consider the resolvent representation for g for a given λ > 0 and gλ ∈ C∞([0, T ] × Ω)

given by

g(t, x) =

∫ ∞
0

e−rλerH
ν
0 gλ(t, x) dr,

and

g(0, x) =

∫ ∞
0

e−rλerH
ν
0 gλ(0, x) dr =

∫ ∞
0

e−rλerH
ν
0 (gλ(0))(t, x) dr,

where we use Remark 2.8-(ii). Then

g(t, x)− g(0, x) =

∫ ∞
0

e−rλerH
ν
0 (gλ − gλ(0))(t, x) dr ∈ Dom(Hν,kill

0 )

as gλ − gλ(0) ∈ C∞((0, T ]×Ω) and erH
ν
0 = erH

ν
0 ,kill on C∞((0, T ]×Ω), and (2.8) is proved.

We can now conclude equating resolvent equations, as for any g ∈ Dom(Hν,kill
0 ), for a

positive λ > 0 and a respective gλ ∈ C∞((0, T ]× Ω)

Hν,kill
0 g = λg − gλ = Hν0g.

Remark 2.10.

(i) Let us stress that Theorem 2.9-(iv), although unsurprising, is a vital technical
ingredient for this work. This is because it allows to obtain uniqueness of our notion
of “solution in the domain of the generator” to (3.1) for non-zero initial data (see
the proof of Lemma 3.3-(i)). This notion of solution is our building block for weak
solutions to (1.1) in Section 4.

(ii) To see that Hνu is well defined pointwise for u ∈ Dom(H) simply use the general
bound in (2.1) along with (H0).

(iii) Theorem 2.9 holds with the exact same proof if we replace Sν with an arbitrary
non-decreasing Lévy process and replace eL with an arbitrary strongly continuous
contraction semigroup. (Of course the statement will have to take into account the
more general representation [23, Eq. (4.132)] for the subordinated generator.) This
theorem can also be generalised to more general heat operators (∂µt − L) where
−∂µt is the generator of a non-increasing Lévy-type process, but this is beyond the
scope of this work.
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The proof of Theorem 2.9-(i) guarantees that the next definition makes sense.

Definition 2.11. We denote by (Lν ,Dom(Lν)) the generator of the Feller semigroup

erL
ν

(·) :=

∫ ∞
0

esL(·)pνr (s) ds, r > 0,

on C∞(Ω) induced by the Feller process r 7→ BSνr .

Remark 2.12. The life time of the Feller process r 7→ BSνr is

inf{s > 0 : BxSνs /∈ Ω} = inf{s > 0 : Sνs ≥ τΩ(x)} = τ0(τΩ(x)),

for each x ∈ Ω, where we used Bxs = Bxs∧τΩ(x) and its independence with respect to Sνs .

We will later use the following simple lemma.

Lemma 2.13. Suppose φ0 ∈ Dom(Lν) and constantly extend φ0(x) to [0, T ] for each
x ∈ Ω. Then φ0 ∈ Dom(Hν0) ⊂ C∞([0, T ]× Ω) and

Hν0φ0 = Lνφ0.

Proof. This is straightforward, because

r−1
(
erH

ν
0 (φ0)(t, x)− φ0(t, x)

)
= r−1

(∫ ∞
0

esLφ0(x)pνr (s) ds− φ0(x)

)
= r−1

(
erL

ν

φ0(x)− φ0(x)
)
→ Lνφ0,

as r ↓ 0, uniformly in both t and x.

3 Generalised solutions

We prove existence, uniqueness and stochastic representation for generalised solu-
tions to the ‘Caputo-type’ problem{

Hν0u(t, x) = −g, in (0, T ]× Ω,

u(0, x) = φ0(x), in {0} × Ω,
(3.1)

under assumptions (H0) and (H1). In particular, we will obtain the probabilistic repre-
sentation

u(t, x) = E
[
φ0

(
BxSν

τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
+ E

[∫ τ0(t)∧τ0(τΩ(x))

0

g
(
t− Sνr , BxSνr

)
dr

]
,

(3.2)
for the solution to (3.1).

Remark 3.1.

(i) Recalling Remark 2.12, observe that if g(∂) = 0 for ∂ the cemetery state of
C∞([0, T ]× Ω), then

E

[∫ τ0(t)∧τ0(τΩ(x))

0

g
(
t− Sνr , BxSνr

)
dr

]
= E

[∫ τ0(t)

0

g
(
t− Sνr , BxSνr∧τΩ(x)

)
dr

]

=

∫ ∞
0

E
[
1{t−Sνr>0}g

(
t− Sνr , BxSνr

)]
dr.

Similarly, if φ0(∂) = 0, for ∂ the cemetery state of C∞(Ω), then

E
[
φ0

(
BxSν

τ0(t)

)]
= E

[
φ0

(
BxSν

τ0(t)
∧τΩ(x)

)]
= E

[
φ0

(
BxSν

τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
.
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(ii) Problem (3.1) corresponds to problem (1.1) for time independent initial condition
φ(t) = φ0, in a similar way as Caputo and Marchaud evolution equations are related
in [38]. By the appropriate choice of forcing term g, problem (3.1) formally rewrites
as problem (1.1), which we make rigorous in Section 4.

We first assume some compatibility condition on the forcing term and the initial data
in order to construct the following kind of strong solution by inverting Hν0 .

Definition 3.2. The function u is a solution in the domain of generator to (3.1) if

Hν0u = −g, on (0, T ]× Ω, u(0) = φ0, u ∈ Dom(Hν0). (3.3)

Lemma 3.3. Assume (H0), and let g ∈ C∞([0, T ] × Ω) and φ0 ∈ Dom(Lν) such that
g + Lνφ0 ∈ C∞((0, T ]× Ω).

(i) Then there exists a unique solution in the domain of the generator to (3.1).

(ii) Moreover, the solution in the domain of the generator allows the stochastic repre-
sentation (3.2).

Proof. i) We first claim that

(−Hν,kill
0 )−1(g + Lνφ0) =

∫ ∞
0

(∫ t

0

esH(g + Lνφ0) pνr (s) ds

)
dr,

is the unique solution to the abstract evolution equation

Hν,kill
0 u = −g − Lνφ0, on (0, T ]× Ω, u(0) = 0, u ∈ Dom(Hν,kill

0 ). (3.4)

Let f ∈ C∞((0, T ]× Ω). Then

(−Hν,kill
0 )−1f(t, x) =

∫ ∞
0

erH
ν
0 f(t, x) dr

=

∫ ∞
0

(∫ t

0

esHf(t, x) pνr (s) ds

)
dr

≤ ‖f‖C∞((0,T ]×Ω)

∫ ∞
0

∫ t

0

pνr (s) ds dr

≤ ‖f‖C∞((0,T ]×Ω)E[τ0(T )].

Moreover, using erH
ν
0 f ∈ C∞((0, T ]×Ω), Dominated Convergence Theorem (DCT) proves

that (−Hν,kill
0 )−1 maps C∞((0, T ] × Ω) into itself. Then [18, Theorem 1.1’] proves the

claim. We recall that by Theorem 2.9-(iv)

Hν0 ũ = Hν,kill
0 ũ, if ũ ∈ Dom(Hν,kill

0 ) = Dom(Hν0) ∩ {f(0) = 0}.

To conclude, it is now enough to show that ũ = u− φ0 is a solution to (3.4) if and only if
u is a solution to (3.3). For the ‘only if’ direction, define

u := ũ+ φ0.

Then u ∈ Dom(Hν0) as ũ ∈ Dom(Hν0) by Theorem 2.9-(iv), φ0 ∈ Dom(Hν0) by Lemma 2.13
and u solves

Hν0(ũ+ φ0) = Hν0 ũ+ Lνφ0 = −g,

along with u(0) = φ0. The ‘if’ direction is similar and omitted.
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ii) Fix (t, x) ∈ (0, T ]× Ω. First compute∫ ∞
0

erH
ν
0 ,kill(Lνφ0)(t, x) dr =E

[∫ ∞
0

∫ ∞
0

Lνφ0(Bxs )1{t−s>0}p
ν
r (s) ds dr

]
=E

[∫ ∞
0

Lνφ0(BxSνr )1{t−Sνr>0} dr

]
=E

[∫ τ0(t)

0

Lνφ0(BxSνr ) dr

]
,

where we use {t − Sνr > 0} = {τ0(t) > r}, by the monotonicity of the subordinator Sν .
Recalling Lemma 2.13, Remark 3.1-(i) and the integrability of τ0(t), we can apply Dynkin
formula [18, Corollary of Theorem 5.1] to the Feller process in Theorem 2.9-(ii) with
respect to its first exit from the open set (0, T ]× Ω to obtain

E

[∫ τ0(t)

0

Lνφ0

(
BxSνr

)
dr

]
+ φ0(x) = E

[
φ0

(
BxSν

τ0(t)

)]
,

and this proves that u can be written as (3.2).

We now give another definition of solution as the pointwise limit of solutions in the
domain of the generator. This allows us to drop the compatibility condition on the data
in Lemma 3.3.

Definition 3.4. Let g ∈ L∞((0, T ) × Ω) and let φ0 ∈ Dom(Lν). Then u is a generalised
solution to (3.1) if

u = lim
n→∞

un, pointwise on (0, T ]× Ω,

where {un}n≥1 is the sequence of solutions in the domain of the generator to (3.1) for a
respective sequence of forcing terms {gn}n≥1 ⊂ C∞([0, T ]× Ω) such that gn(0) = Lνφ0

for all n ≥ 1, gn → g bpw a.e.

Theorem 3.5. Assume (H0), (H1) and let g ∈ L∞((0, T )× Ω) and φ0 ∈ Dom(Lν). Then
there exist a unique generalised solution to (3.1). Moreover the generalised solution
allows the stochastic representation (3.2).

Proof. As Ω is either open or the closure of an open set, by the theory of mollifiers we can
take a sequence {gn}n≥1 as in Definition 3.4. Then the respective solution in the domain
of the generator un allows the representation (3.2) for g ≡ gn, by Lemma 3.3-(ii). Fix
(t, x) ∈ (0, T ]×Ω. By assumption (H1), Remark 2.5-(i), Remark 3.1-(i), and independence
of Sνr and Bxr , we can rewrite the second term in (3.2) as

F (gn) : =

∫ ∞
0

(∫
Ω

∫ ∞
0

1{t−s>0}gn(t− s, y)pΩ
s (x, y) pνr (s) ds dy

)
dr

=

∫
Ω

∫ ∞
0

gn(t− s, y)

(
1{t−s>0}p

Ω
s (x, y)

∫ ∞
0

pνr (s) dr

)
ds dy.

Then, by DCT, F (gn)→ F (g) as n→∞, using the dominating function

(s, y) 7→ sup
n
‖gn‖C∞([0,T ]×Ω)1{t>s}p

Ω
s (x, y)

∫ ∞
0

pνr (s) dr,

given that F (|gn|) ≤ supn ‖gn‖C∞([0,T ]×Ω)E[τ0(t)]. Hence a generalised solution exists
and it allows the stochastic representation (3.2). Conclude observing that independence
of the approximating sequence proves uniqueness.
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Remark 3.6.

(i) By definition, a sequence un of solutions in the domain of the generator converges
pointwise to the generalised solution u on (0, T ]× Ω. Moreover, by the stochastic
representation (3.2),

sup
n
‖un‖C∞([0,T ]×Ω) ≤ ‖φ0‖C∞(Ω) + sup

n
‖gn‖C∞([0,T ]×Ω)E[τ0(T )] <∞,

where each gn is the data of the solution in the domain of the generator un. There-
fore un → u bpw on [0, T ]× Ω.

(ii) We assumed (H1) in Theorem 3.5 to treat L∞ data. But if we were to assume
continuous data (or the closure of C∞((0, T ]× Ω) with respect to bpw convergence
[10, page 1]), then Theorem 3.5 would still hold by changing “bpw a.e.” with “bpw”
in Definition 3.4. In this case we would also not need the subordinator Sν to allow
a density. These conditions would still allow to define and establish existence of
weak solutions on appropriate spaces with the same strategy of Section 4. But we
considered such technical treatment beyond the scope of this work, which aims
to present a clear and concrete treatment of the new formulation of the CEE (1.1)
with initial conditions on the past.

We now show that the fundamental solution that defines (1.3) allows a density with
respect to Lebesgue measure. Then we conclude this section with several examples of
concrete densities for solutions to (1.1).

Lemma 3.7. Assume (H0). Then for each t > 0, the random variable Sντ0(t) − t allows a
density supported on (0,∞), and we can write the density for almost every r ∈ (0,∞) as

pν,τ0(t)(r) =

∫ t

0

ν(y + r)

∫ ∞
0

pνs (t− y) ds dy.

Proof. This follows, for example, by performing the proof of [17, Proposition 3.13] in the
simpler setting without the spatial process.

Lemma 3.8. Assume (H0) and (H1). Suppose φ ∈ L∞((−∞, 0)×Ω) and g ∈ L∞((0,∞)×
Ω). Then for t > 0, x ∈ Ω

E
[
φ
(
t− Sντ0(t), B

x
Sν
τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
=

∫ ∞
0

∫
Ω

φ(−r, y)
(
pΩ
t+r(x, y)pν,τ0(t)(r)

)
dy dr,

(3.5)

and

E

[∫ τ0(t)∧τ0(τΩ(x))

0

g
(
t− Sνr , BxSνr

)
dr

]
=

∫
Ω

∫ t

0

g(t− s, y)
(
pΩ
s (x, y)

∫ ∞
0

pνr (s) dr
)
ds dy.

Proof. Extend φ and g to 0 on the appropriate cemetery state. Then, proceeding as
in Remark 3.1-(i) and then, using independence between Sντ0(t) and Bxr along with
Lemma 3.7, we obtain

E
[
φ
(
t− Sντ0(t), B

x
Sν
τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
=E

[
φ
(
t− Sντ0(t), B

x
Sν
τ0(t)

)]
=

∫ ∞
0

∫
Ω

φ(−r, y)
(
pΩ
t+r(x, y)pν,τ0(t)(r) dy

)
dr.

The inhomogeneous term is treated similarly and we omit the proof.
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Corollary 3.9. Assume (H0) and (H1). Let fn, f ∈ L∞((0,∞)×Ω), φn, φ ∈ L∞((−∞, 0)×
Ω), for n ∈ N, such that fn → f and φn → φ bpw a.e. as n→∞.

Then, as n→∞
un → u bpw a.e. on (−∞, T )× Ω,

where un is defined as (1.3) for f ≡ fn, φ ≡ φn on (0, T )× Ω, and as φn on (−∞, 0)× Ω,
and u is defined as (1.3) for f ≡ f , φ ≡ φ on (0, T )× Ω, and as φ on (−∞, 0)× Ω.

Proof. This is a straightforward application of DCT given Lemma 3.8 and E[τ0(T )] <

∞.

Example 3.10. We list some examples of solutions (1.3). These examples show that the
space-time coupling can lead to closed form solution kernels. Also note that if φ = φ0

does not depend on time, then (3.5) equals

E
[
φ0

(
BxSν

τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
=

∫
Ω

φ0(y)

(∫ ∞
0

pΩ
t+r(x, y)pν,τ0(t)(r) dr

)
dy.

(i) If Sν = Sα, the α-stable subordinator, α ∈ (0, 1), then [24, Formula (5.12)]

pν,τ0(t)(r) =

∫ t

0

(y + r)−1−α

|Γ(−α)|
(t− y)α−1

Γ(α)
dy = tα

r−α(t+ r)−1

Γ(α)Γ(1− α)
,

and if in addition B is a d-dimensional Brownian motion, then

E
[
φ
(
t− Sατ0(t), B

x
Sα
τ0(t)

)]
=

∫ ∞
0

∫
Rd
φ(−r, y)

(
e
−|x−y|2
4(t+r)

cd,αt
α

rα(t+ r)d/2+1

)
dy dr,

where cd,α = sin(πα)/(2dπd/2+1), and of course L = ∆, the d-dimensional Laplacian.
Moreover

E

[∫ τ0(t)

0

g
(
t− Sαr , BxSαr

)
dr

]
=

∫
Rd

∫ t

0

g(t− s, y)

(
e
−|x−y|2

4s

(4πs)d/2
sα−1

Γ(α)

)
ds dy.

(ii) If instead B is a killed 1-d Brownian motion for Ω = (0, π), then for t > 0, x ∈ (0, π)

E
[
φ
(
t− Sατ0(t), B

x
Sα
τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
=

∫ ∞
0

∫ π

0

φ(−r, y)

(( ∞∑
n=1

e−n
2(t+r) sin(nx) sin(ny)

)
cαt

α

rα(t+ r)

)
dy dr,

where cα = 2 sin(απ)/π2, and {n2,
√

2/π sin(n·)}n∈N are the eigenvalues-eigen-
functions of the Dirichlet Laplacian L = ∆Ω [15].

(iii) If now B is the subordination of the above killed Brownian motion by an independent
β-stable Lévy subordinator [9, 8], so that

Lu(x) = −(−∆Ω)βu(x) =
1

|Γ(−β)|

∫ ∞
0

(
er∆Ωu(x)− u(x)

) dr

r1+β
, β ∈ (0, 1),

then, using the Laplace transform of the β-stable Lévy subordinator, for t > 0,
x ∈ (0, π),

E
[
φ
(
t− Sατ0(t), B

x
Sα
τ0(t)

)
1{τ0(t)<τ0(τΩ(x))}

]
=

∫ ∞
0

∫ π

0

φ(−r, y)

(( ∞∑
n=1

e−n
2β(t+r) sin(nx) sin(ny)

)
cαt

α

rα(t+ r)

)
dy dr.
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(iv) If B is the reflection at 0 of a 1-d Brownian motion, then Ω = [0,∞), L = ∂2
x with

Neumann boundary condition on (0, T ]× {0}, and for t, x > 0 and cd,α as in (i)

E
[
φ
(
BxSα

τ0(t)

)]
=

∫ ∞
0

φ(y)

(∫ ∞
0

(
e
−|x−y|2
4(t+r) + e

−|x+y|2
4(t+r)

)
cd,αt

α

rα(t+ r)d/2+1
dr

)
dy.

4 Weak solutions

In this section we prove that the stochastic representation (1.3) is a weak solution
for problem (1.1), under the stronger assumption (H1′) on the spatial semigroup eL. We
recall that Ω is open and bounded under (H1′), we introduce the notation

〈f, g〉 =

∫ T

−∞

∫
Ω

f(t, x)g(t, x) dx dt,

and we define the adjoint operator of Hν as

Hν,∗ϕ(t, x) :=

∫ ∞
0

(
erLϕ(t+ r, x)− ϕ(t, x)

)
ν(r) dr.

For our notion of weak solution we need the pairing 〈u,Hν,∗ϕ〉 to be well defined for
some test function ϕ (see Definition 4.7), and we want to allow constant-in-time data φ,
so that the solution u will be in L∞((−∞, T )×Ω). Moreover, recalling that a generalised
solution u is characterised by the existence of a sequence un → u bpw a.e., we want to be
able to show 〈un, Hν,∗ϕ〉 → 〈u,Hν,∗ϕ〉. And so, to guarantee a well defined pairing and
access dominated convergence arguments, we now prove that Hν,∗ϕ ∈ L1((−∞, T )× Ω).

Remark 4.1. Recall from Theorem 2.9 that Hν and Hν0 denote abstract generators,
meanwhile Hν and Hν

0 denote pointwise defined operators.

Lemma 4.2. Assume (H0) and (H1′). If ϕ = pq ∈ C1
∞(−∞, T ] · Dom(L) is such that

p, ∂tp ∈ L1(R), then

(t, x) 7→
∫ ∞

0

∣∣erLϕ(t+ r, x)− ϕ(t, x)
∣∣ ν(r) dr ∈ L1((−∞, T )× Ω),

and in particular Hν,∗ϕ ∈ L1((−∞, T )× Ω).

Proof. We rewrite

Hν,∗ϕ(t, x) =

∫ ∞
0

erLq(x) (p(t+ r)− p(t)) ν(r) dr + p(t)

∫ ∞
0

(
erLq(x)− q(x)

)
ν(r) dr

=: (I + II)(t, x).

Then, with inequalities holding up to a constant∫
R×Ω

|I(t, x)| dx dt ≤ ‖q‖C(Ω)

∫
R

∣∣∣∣∫ ∞
0

(p(t+ r)− p(t)) ν(r) dr

∣∣∣∣ dt
≤ ‖q‖C(Ω)

(
‖p‖L1(R) + ‖∂tp‖L1(R)

)
,

where we used [17, Lemma 4.3] in the second inequality. Considering II,∫
R×Ω

|II(t, x)| dx dt ≤ ‖p‖L1(R)

∫
Ω

∣∣∣∣∫ ∞
0

(
erLq(x)− q(x)

)
ν(r) dr

∣∣∣∣ dx
≤ ‖p‖L1(R)

∫
Ω

∫ ∞
0

(
(r‖Lq‖C(Ω)) ∧ ‖2q‖C(Ω)

)
ν(r) dr dx,

which is finite using (H0) and that Ω is bounded.

EJP 25 (2020), paper 147.
Page 15/21

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP544
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Space-time CEEs and their stochastic solutions

Proposition 4.3. Assume (H0) and (H1′). Let u ∈ L∞((−∞, T ] × Ω) such that u ∈
Dom(H0) if restricted to t ≥ 0. Then for every ϕ ∈ C1

c (0, T ) · Dom(L)

〈Hνu, ϕ〉 = 〈u,Hν,∗ϕ〉. (4.1)

Proof. Let k > 0 such that ϕ(t) = 0 for every t ≤ k. Note that for each (t, x) ∈ (k, T ]× Ω

we have the bound for a.e. r > 0∣∣erHu(t, x)− u(t, x)
∣∣ =

∣∣erH0u(t, x)− u(t, x)
∣∣1{r≤k} +

∣∣erLu(t− r, x)− u(t, x)
∣∣1{r>k}

≤ r‖H0u‖C∞([0,T ]×Ω)1{r≤k} + 2‖u‖L∞((−∞,T ]×Ω)1{r>k},

and so Hνu (defined in (2.6)) is well defined for each (t, x) ∈ (k, T ]× Ω and bounded on
the same set. And so the left hand side in (4.1) is well defined recalling that ϕ ∈ L1(R×Ω).
To conclude we compute

〈Hνu, ϕ〉 =

∫ T

−∞

∫
Ω

(∫ ∞
0

(
erHu(t, x)− u(t, x)

)
ν(r) dr

)
ϕ(t, x) dx dt

= lim
ε↓0

(∫ T

−∞

∫
Ω

(∫ ∞
ε

erHu(t, x)ν(r) dr

)
ϕ(t, x) dx dt

−
∫ T

−∞

∫
Ω

(∫ ∞
ε

ϕ(t, x)ν(r) dr

)
u(t, x) dx dt

)

= lim
ε↓0

(∫ T

−∞

∫
Ω

u(t, y)

(∫ ∞
ε

erLϕ(t+ r, y)ν(r) dr

)
dy dt

−
∫ T

−∞

∫
Ω

(∫ ∞
ε

ϕ(t, y)ν(r) dr

)
u(t, y) dy dt

)

=

∫ T

−∞

∫
Ω

u(t, y)

(∫ ∞
0

(
erLϕ(t+ r, y)− ϕ(t, y)

)
ν(r) dr

)
dy dt

= 〈u,Hν,∗ϕ〉,

where we use DCT in the second identity, for the third identity we use (2.2), Fubini’s
Theorem and ϕ(t+ r) = 0 for t ≥ T − r, and for the fourth identity we use DCT, thanks to
Lemma 4.2 and u ∈ L∞((−∞, T )× Ω).

Our approximation procedure, in the proof of Theorem 4.8, will be carried out using
the following assumption on the approximating data.

(H2) Let φ be a linear combination of functions in

C1
∞(−∞, 0] ∩ {f ′(0−) = 0} · Dom(L).

If φ satisfies (H2), then it satisfies (H2′) below, as a consequence of C1
∞(−∞, T ]·Dom(L) ⊂

Dom(H). We use (H2′) to apply Dynkin formula in the next lemma.

(H2′) The function φ : (−∞, 0] × Ω → R is such that the extension of φ to φ(0) on
(0, T ]× Ω satisfies φ ∈ Dom(H) ⊂ Dom(Hν).

Remark 4.4. The functions satisfying (H2) are dense in L∞((−∞, 0)× Ω) with respect
to bpw a.e. convergence. To prove it, for Dom(L) ⊂ C∞(Ω) one can use the Stone-
Weierstrass strategy in [38, Appendix II] to show that the functions satisfying (H2) are
uniformly dense in C∞((−∞, 0)×Ω), which in turn is bpw a.e. dense in L∞((−∞, 0)×Ω).
If instead Dom(L) is dense in C∞(Ω), then the same strategy holds by showing that the
functions satisfying (H2) are uniformly dense in C∞((−∞, 0)× Ω).
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For the next two lemmas the domain Ω and the semigroup eL only need to be as in
Definition 2.1.

Lemma 4.5. Assume (H0) and (H2). Let g = f + fφ, for f ∈ L∞((0, T )× Ω), and

fφ(t, x) :=

∫ ∞
t

(
erHφ(t, x)− erLφ(0, x)

)
ν(r) dr, (t, x) ∈ (0, T ]× Ω. (4.2)

Then fφ ∈ C∞([0, T ]× Ω), and (3.2) for g ≡ f + fφ, φ0 ≡ φ(0), equals (1.3) for f , φ.

Proof. Extend φ to φ(0) on (0, T ]. Observe that for t > 0

fφ(t, x) =

∫ ∞
0

(
erHφ(t, x)− erLφ(0, x)

)
ν(r) dr

=

∫ ∞
0

(
erHφ(t, x)− φ(0, x)

)
ν(r) dr +

∫ ∞
0

(
φ(0, x)− erLφ(0, x)

)
ν(r) dr

= Hνφ(t, x)− Lνφ(0, x),

where Hνφ ∈ C∞([0, T ]×Ω) by (H2′) and Theorem 2.9-(i), and Lνφ is a linear combination
of elements in C∞(Ω) by (H2) and Dom(L) ⊂ Dom(Lν). Rearranging, we also proved
that for t > 0

fφ + Lνφ = Hνφ = Hνφ. (4.3)

The same argument at the end of the proof of Lemma 3.3 allows to apply Dynkin formula
[18, Corollary of Theorem 5.1] to obtain for each t > 0 and x ∈ Ω

E
[
φ
(

0, BxSν
τ0(t)

)]
− φ(t, x) = E

[∫ τ0(t)

0

Lνφ
(
t− Sνr , BxSνr

)
dr

]
, (4.4)

where we used φ(t) = φ(0) on (0, T ] and φ(0) ∈ Dom(L) ⊂ Dom(Lν). We conclude by
justifying the following equalities for each t > 0 and x ∈ Ω,

E
[
φ
(
t− Sντ0(t), B

x
Sν
τ0(t)

)]
= E

[∫ τ0(t)

0

Hνφ
(
t− Sνr , BxSνr

)
dr

]
+ φ(t, x)

= E

[∫ τ0(t)

0

(fφ + Lνφ)
(
t− Sνr , BxSνr

)
dr

]
+ φ(t, x)

= E

[∫ τ0(t)

0

fφ

(
t− Sνr , BxSνr

)
dr

]
+ φ(t, x)

+ E
[
φ
(

0, BxSν
τ0(t)

)]
− φ(t, x).

The first equality holds by Dynkin formula [18, Corollary of Theorem 5.1] combining
Theorem 2.9-(i) and (H2′); the second equality holds by (4.3); the third equality holds
by (4.4).

The following simple lemma shows how to recover the operator Hν for an initial
condition φ from Hν

0 plus the correct forcing term.

Lemma 4.6. Assume (H0). Let u ∈ Dom(H0) and denote by ũ its extension to φ ∈
L∞((−∞, 0)× Ω) for t < 0 and write u(0) = φ(0). Then Hν ũ = Hν

0 u+ fφ for t > 0, where
fφ is defined as in (4.2).
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Proof. Recalling (2.6), simply compute for t > 0, x ∈ Ω

Hν ũ(t, x) =

∫ ∞
0

(
esHũ(t, x)− ũ(t, x)

)
ν(r) dr

=

∫ t

0

(
erHu(t, x)− u(t, x)

)
ν(r) dr +

∫ ∞
t

(
erHφ(t, x)− u(t, x)

)
ν(r) dr

=

∫ t

0

(
erHu(t, x)− u(t, x)

)
ν(r) dr +

∫ ∞
t

(
erLu(0, x)− u(t, x)

)
ν(r) dr

+

∫ ∞
t

(
erHφ(t, x)− erLφ(0, x)

)
ν(r) dr

= Hν
0 u(t, x) + fφ(t, x).

We are now ready to define our weak solution for problem (1.1) and to show that the
stochastic representation (1.3) is indeed a weak solution.

Definition 4.7. For given f ∈ L∞((0, T )× Ω) and φ ∈ L∞((−∞, 0)× Ω), a function u is
said to be a weak solution to (1.1) if u ∈ L∞((−∞, T )× Ω) and{

〈u,Hν,∗ϕ〉 = 〈−f, ϕ〉, for ϕ ∈ C1
c (0, T ) · Dom(L),

u = φ, a.e. on (−∞, 0)× Ω.
(4.5)

Theorem 4.8. Assume (H0) and (H1′), and let f ∈ L∞((0, T )×Ω) and φ ∈ L∞((−∞, 0)×
Ω). Then the function defined in (1.3) is a weak solution to (1.1).

Proof. We assume that eL acts on C∞(Ω) (the proof for eL acting on C∞(Ω) is essen-
tially identical1, and we omit it). Note that in each step we may redefine the notation
u, ũ, un, ũn, f, fn, φ and φn. Also, we assume in the first two steps that φ satisfies (H2).

Step 1) Let u ∈ Dom(Hν0) be the unique solution in the domain of the generator to
problem (3.1) for g ≡ f + fφ and φ0 ≡ φ(0), where fφ ∈ C∞([0, T ] × Ω) by Lemma 4.5,
and some f ∈ C∞([0, T ]× Ω) such that f(0) = −fφ(0)− Lνφ(0). This implies that for any
ϕ ∈ C1

c (0, T ) · Dom(L)

〈Hν0u+ fφ, ϕ〉 = 〈−f, ϕ〉. (4.6)

By Theorem 2.9-(iv) we are guaranteed that u−φ(0) ∈ Dom(Hν,kill
0 ). Then, by Theorem 2.9-

(iii), we can pick {ûn}n≥1 ⊂ Dom(Hkill
0 ) such that ûn → u− φ(0) and

Hν
0 ûn = Hν0 ûn = Hν,kill

0 ûn → Hν,kill
0 (u− φ(0)) = Hν0(u− φ(0)),

with both convergences in C∞([0, T ] × Ω) as n → ∞. Then, un := ûn + φ(0) → u with
un(0) = φ(0) for all n, and

Hν
0 un = Hν0 ûn +Hν0φ(0)→ Hν0(u− φ(0)) +Hν0φ(0) = Hν0u, (4.7)

with both convergences in C∞([0, T ] × Ω) as n → ∞, where we used Lemma 2.13 and
the linearity of Hν0 . Define the extension of u as

ũ :=

{
u, t > 0,

φ, t ≤ 0.
(4.8)

Then, for every ϕ ∈ C1
c (0, T ) · Dom(L), we can apply DCT as n→∞ to obtain

〈−f, ϕ〉 ← 〈Hν
0 un + fφ, ϕ〉 = 〈Hν ũn, ϕ〉 = 〈ũn, Hν,∗ϕ〉 → 〈ũ,Hν,∗ϕ〉,

1The only differences are in Step 1, where the Banach space for Hν0 is C∞([0, T ]×Ω), and in Step 2, where
the sequence {fn}n∈N will have to be selected from C∞([0, T ]× Ω).
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where we use (4.7) and (4.6) in the first convergence, Lemma 4.6 with un ∈ Dom(H0) in
the first equality, Proposition 4.3 in the second equality with (H2) and un ∈ Dom(H0),
and Lemma 4.2 with ũn → ũ uniformly on (−∞, T ] × Ω for the second convergence,
where ũn, ũ are respectively the extensions of un, u to φ as defined in (4.8).

Step 2) For f ∈ L∞((0, T ) × Ω), let u be the generalised solution to problem (3.1)
for g ≡ f + fφ and φ0 ≡ φ(0). Now pick a sequence {fn}n≥1 ⊂ C∞([0, T ]× Ω) such that
fn → f bpw a.e., and fn(0) = −fφ(0) − Lνφ(0) for each n ∈ N. Then the respective
solutions in the domain of the generator un converge bpw to u, by Remark 3.6-(i). And
so for every ϕ ∈ C1

c (0, T ) · Dom(L)

〈−f, ϕ〉 ← 〈−fn, ϕ〉 = 〈ũn, Hν,∗ϕ〉 → 〈ũ,Hν,∗ϕ〉,

where we can apply DCT in the second convergence thanks to Lemma 4.2, and the
equality holds by Step 1, where again the functions are extended to φ as in (4.8).

Step 3) Let φ ∈ L∞((−∞, 0)×Ω) and f ∈ L∞((0, T )×Ω) and denote by u the function
defined in (1.3) for such φ and f and t > 0, and denote by ũ the extension of u to φ for
t < 0. By Remark 4.4 we can take φn → φ bpw a.e., and φn satisfies (H2) for each n ∈ N.
Denote by ũn the extension of un to φn as in (4.8), where un is the generalised solution
to problem (3.1) for g ≡ f + fφn and φ0 ≡ φn(0). Then, by Lemma 4.5 combined with the
representation (3.2) of each un, we can apply Corollary 3.9 to obtain as n→∞

ũn → ũ bpw a.e. on (−∞, T ]× Ω.

Then, for every ϕ ∈ C1
c (0, T ) · Dom(L),

〈−f, ϕ〉 = 〈ũn, Hν,∗ϕ〉 → 〈ũ,Hν,∗ϕ〉, as n→∞,

where we use Step 2 for the equality and we use Lemma 4.2 to apply DCT, and we are
done.
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