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Localization of directed polymers in continuous space
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Abstract

The first main goal of this article is to give a new metrization of the Mukherjee—
Varadhan topology, recently introduced as a translation-invariant compactification of
the space of probability measures on Euclidean spaces. This new metrization allows
us to achieve our second goal which is to extend the recent program of Bates and
Chatterjee on localization for the endpoint distribution of discrete directed polymers
to polymers based on general random walks in Euclidean spaces. Following their
strategy, we study the asymptotic behavior of the endpoint distribution update map
and study the set of its distributional fixed points satisfying a variational principle. We
show that the distribution concentrated on the zero measure is a unique element in
this set if and only if the system is in the high temperature regime. This enables us to
prove that the asymptotic clustering (a natural continuous analogue of the asymptotic
pure atomicity property) holds in the low temperature regime and that the endpoint
distribution is geometrically localized with positive density if and only if the system is
in the low temperature regime.
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1 Introduction

The directed polymer model was introduced in the physics literature [24], [25], [27],
[28], [29] and mathematically formulated by Imbrie and Spencer [26]. Since then, many
models of directed polymers in random environment were studied in the literature over
last several decades, see, e.g. books [40], [23], [20], [14] and multiple references therein.
The common feature of these models is that they are based on Gibbs distributions
on paths with the reference measure usually describing a process with independent
increments (random walks, if the time is discrete) and the energy of the interaction
between the path and the environment is given by a space-time random potential (with
some decorrelation properties) accumulated along the path.
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Localization of directed polymers

One of the intriguing phenomena that these models exhibit is the transition of
dynamics of directed polymers between high/low temperature regimes. In the high
temperature regime, directed polymers have diffusive behavior which is similar to that
of the classical random walks and the endpoint distributions of polymer paths of length n
are typically spread over domains of size of the order of n'/2 (see [9], [39], [2]). On
the other hand, in the low temperature regime, they are super-diffusive, i.e. the typical
transverse displacement of polymer paths is of the order of n® with £ > 1/2. In particular,
it has been conjectured that £ = 2/3 for d = 1, based on two following observations: (i)
when 5 = +o0, the directed polymer models coincide with the last passage percolation
(LPP) models; (ii) Integrable LPP models have shown the spatial fluctuation of order n2/3
and the fluctuation of passage times of order n'/? placing LPP in the KPZ universality
class [19]. This has been proved in some integrable models, see [38], [10]. Besides the
super-diffusive behavior, it is known that polymer measures are mostly concentrated
within a relatively small region in the low temperature regime, see [17], [41], [31], [4].
Such localization phenomenon of directed polymers is closely related to the intermittency
of the solution of stochastic heat equation, see [13], [8], [30]. It is believed that the size of
the small region is O(1) but this has been proved only for integrable models, see [15]. It
is also conjectured that a similar picture holds for generalized directed polymers, see [5].

While many integrable models for (1+1)-dimensional directed polymers have been
extensively studied (see [34], [3], [33], [1]), the results on higher dimensions are rather
restricted. In [7] and its improved version [6], a novel machinery was suggested to study
localization of directed polymers that are discrete in space and time. This approach is
based on another recent achievement, a compactification of the space of probability
measures on R? with respect to the weak convergence [35] (we will refer to this com-
pactification as the MV topology in this paper). In [7], the authors introduce a simple
metrization of the MV topology induced on the space of measures concentrated on Z%
and they were able to obtain localization results for discrete directed polymers by using
the metric.

The first goal of this paper is to develop a new metrization of the MV topology that
will be useful for space-continuous polymer models. Our new metrization is inspired by
the one used in the discrete setting in [7] and is based on coupling in optimal transport.
Its relation to the metric given in [35] resembles the equivalence between the definitions
of the Kantorovich-Wasserstein distance via optimal coupling (2.10) and via Lipschitz
test functions (2.12) known as the Kantorovich duality.

The second goal of this paper is to introduce a broad family of time-discrete and
space-continuous polymer models where polymers are understood as discrete sequences
of points in R¢, and to generalize the entire program of [7] to these models with the help
of our new metrization of the MV topology.

As this paper was being prepared we learned that similar results were obtained
in [11] for a specific model where the reference measure is Brownian and the random
potential is the space-time white noise mollified with respect to the space variable. We
stress that the only assumption we need on the reference measure for polymers is that it
defines a random walk, with no restriction on the distribution of i.i.d. steps in contrast to
a concrete model of [11].

Due to the absence of assumptions on the random walk steps, we can say that our
results generalize those of [7] and [6] that are restricted to lattice random walks (except
that a moment assumption on the potential is slightly weaker in [6]) since one can embed
any i.i.d. random potential indexed by Z¢ into a stationary potential on R¢ with a small
dependence range.

In addition, we give a new result that goes beyond the asymptotic pure atomicity
results of [7] and [11]. Under the assumption that the reference measure is absolutely
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continuous with respect to the Lebesgue measure, several forms of asymptotic cluster-
ing property hold for the random density of the polymer endpoint distribution in low
temperature regime. An important feature of our work is that our results are based on
the new metrization of the MV topology which is of independent interest. However, a
similar program was executed in [11] using the original metrization.

The article is organized as follows: In the remaining part of Section 1, we introduce
our general model of directed polymers, review the results in discrete setting, and state
our results for localization/delocalization of directed polymers. In Section 2, we review
the MV topology and introduce a new metric which is equivalent to the original MV metric
and useful for our analysis of polymer measures. In Sections 3, 4, and 5, we develop a
program parallel to [7], proving the continuity of the update map that maps the law of
the endpoint distribution to the one of the next step endpoint distribution and proving
that the empirical measure of the endpoint distribution of directed polymers converges
to the set of free energy minimizers which is a subset of the set of fixed points of the
update map. We will also see how the set of free energy minimizers can characterize
the high/low temperature regimes. In Section 6, we introduce an asymptotic clustering
property that is an analogue of the asymptotic pure atomicity studied in [41], [7] for
discrete directed polymers, and prove that it holds for the endpoint distribution in the
low temperature regime. In Section 7, we show that the endpoint distribution of directed
polymer is asymptotically geometrically localized with positive density.

1.1 The model of directed polymers in stationary environment

We begin with a Markov chain ((wn)nelN, {Pm}meRd) on R?, defined on a measurable
space (Q,,.#), where
e O, = (RHYN = {w = (wn)n>0 : wn € R},
e .7 is the cylindrical o-algebra on 2,
e For each z € RY, P® is the unique probability measure such that (Wnt1 — Wn)n>0
are i.i.d. and
P¥wy=1x) =1, P%(wny1—wn € dy) = A(dy) (1.1)
for any nondegenerate Borel probability measure A on R<.
We stress that unlike the existing papers on directed polymers, we do not require A to be
a lattice distribution. In fact, for most of the paper, we do not impose any restrictions on
A at all. Thus A may be an arbitrary mixture of Lebesgue absolutely continuous, singular,
and atomic distributions, and, if atomic, it does not have to be concentrated on any
lattice (we only exclude the trivial case where ) is a Dirac mass). We denote expectation
with respect to P* by E*. We also write P and F for P° and E°.
The random environment that we will consider is a real-valued, non-constant random

field (X (n, a:))nelN ega defined on a probability space (Q.,%,P) such that

« (X(n,)), < are independent and identically distributed,

. (X(l7 x))mele is stationary and M-dependent for some finite number M, i.e., for any
subset A, B C RY with dist(A, B) := inf{|lz —y| : 2 € A, y € B} > M, (X(1,%))zeca
and (X (1,z)).ep are independent of each other.

* X(1,-) has continuous trajectories, i.e., the mapping « — X(1, z) is P-a.s. continu-
ous.

The continuity condition can actually be weakened, see Remark A.2. We will write E

for expectation with respect to P. X(1,z) will be sometimes shortened to X(z) for
convenience. We denote by 8 > 0 the inverse temperature parameter and will assume

c(k) == logE{exp (KX(O)):| < oo fork € [-23,28]. (1.2)
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For given n € IN, z € R?, we define the point-to-line quenched polymer measure, starting
from z, at time n as

M (dw) = Zl exp( zn:X(k,wk))Pz(dw)7

T k=1

where .
Ty = E7 {exp (5 ZX(k,wk))}
k=1

is called the point-to-line partition function. Let .#,, and Z,, denote the polymer measure
and the partition function corresponding to P, of length n. Notice that (.#,),>0, (Zn)n>0
are random processes adapted to the filtration (%,,),>0 given by

4, =o(X(k,z):1<k<n,zeR%.

1.2 An outline of existing results in discrete setting

Directed polymer models have been largely studied on the lattice Z?. In this section,
we recall the well-known results in the discrete setting, which will be extended to the
continuous model in this paper. To stress the similarity with our model, we will use the
same notation here as for our continuous setting. That is, in this section, we let .#,, be
the quenched polymer measure on paths of length n defined on (Z%)~ by

M (deo) = Zi exp (83 X (k) ) P(do)
n k=1

where
e P is the distribution of the d-dimensional simple random walk starting at 0,
e the random environment (X (k, :c)) kel weza 1S given by a collection of non-constant,
i.i.d. random variables defined on some probability space (€.,¥,P) and
n
e 7,=E {exp (B> X(k, wk))} is the partition function.
k=1

Most of the mathematical results on directed polymers were obtained mainly by
analyzing the asymptotic behavior of the partition function Z,. One of the interesting
quantities, called the quenched free energy, is given by

1
F,=—logZ,.
n

It turned out that the phase transition in directed polymer model is characterized by the
discrepancy between the quenched free energy and the annealed free energy, which is

1
- logE[Z,] = ¢(5).
Applying a superadditivity argument developed in [12], we see that the limit

lim EF,, = sup EF, := p(5) (1.3)
n—oQ n>1
is well-defined. The following exponential concentration inequality enables us to
make (1.3) stronger:
Theorem A (Theorem 1.4 in [32], for Q = 1). Let 8 > 0 be fixed such Ee/IX(1L0] <
Then, there is a constant a > 0, depending only on 5 and the law of X, such that

N )<{2em2 if 0<z<l1,
z) <

1
P <’ log Z,, — Elog Z,,
n 2T if > 1.
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In particular,
lim F,(8) =p(8) a.s.and L, forall p € [1,0) (1.4)

n—oo
We remark that Theorem A was proved for discrete setting but the proof can be
easily adapted to our space-continuous setting. Therefore, we will use (1.4) later without
further proof.
The Lyapunov exponent of the system is defined as

A(B) = ¢(B) —p(B) = 0, (1.5)

where the inequality follows from Jensen’s inequality. Before describing the phase transi-
tion of directed polymers, we give a statement for the existence of critical temperature.

Theorem B (Theorem 3.2 in [18], Proposition 2.4 in [6]). A(8) is non-decreasing in . In
particular, there is a critical inverse temperature 5. = 5.(d) € [0, o] such that

0<B<B. = AB)=0,
B>pB. = AB)>0.

Theorem B was first proved in [18] when the reference measure is the simple random
walk and c(k) exists for all k € R. [6] enhanced this by extending to reference measures
given by arbitrary random walks on Z? and weakening the moment condition of random
environment. Extending this result to general random walks on R? is straightforward.

We now collect three statements which describe how the Lyapunov exponent identifies
the phase transition of directed polymers. We denote by

pi(-) = Mi(w; € )

the endpoint distribution of directed polymer of length 7.
Theorem C (Corollary 2.2 and Theorem 2.3 (a) in [16]).

n—1

1
A(B)>0 < dec>0 s.t. liminf — ;g&a% pz({x}) >c¢ P-as.

n—oo N

Theorem C tells that the endpoint distribution can localize partial mass in the low
temperature regime. Vargas proposed in [41] the notion of “asymptotic pure atomicity”,
which describes the localization of the entire mass of the endpoint distribution. For any
1>0,e>0,let

A ={z € Z: p;({z}) > €}.

Then, (p;)i>0 is called asymptotically purely atomic if for every sequence (¢;);>o tending
to 0, we have

n—1

3 1 €y —
7}1—{20 -~ ZO pi(AS) =1 P-a.s.

Convergence in probability was used in [41] and the author proved that if ¢(8) = oo, then
(pi)i>o is asymptotically purely atomic. Bates and Chatterjee replaced it with almost sure
convergence and proved the following:

Theorem D (Theorem 6.3 in [7], Theorem 5.3 in [6] ).
A(B) >0 < (p:i)i>o0 is asymptotically purely atomic.

Theorem E illustrates how the favorable sites, which localize mass in the endpoint
distribution of directed polymers, cluster together. For § > 0 and K > 0, let Gs x be the
collection of probability measures on Z? that assign mass greater than 1 — § to some
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subset of Z¢ having diameter at most K. (We use the [; distance here.) We say that
(pi)i>o is geometrically localized with positive density if for every 6 > 0, there exist
K > 0and 6 > 0 such that

n—1

1
lim inf — Z Lipicgsy =0 P-as.

n—oo N
i=0
Theorem E (Theorem 7.3 (a), (c) in [7], Theorem 5.4 in [6]).
A(B) >0 < (pi)i>o0 is geometrically localized with positive density.

1.3 Main results of this paper

The first main result of this paper is the development of a new metrization of the
translation-invariant compactification of the space of probability measures. The structure
of the metric and relevant background are provided in Section 2. As an application of the
theory developed in Section 2, we prove analogues of Theorems D and E for our model
of directed polymers in the continuous space. Before stating our results, we denote the
quenched endpoint distribution for the polymer of length n by

pn(dz) = My (wy € dz).

We extend the notion of asymptotic pure atomicity applicable in discrete case to
the continuous case in three ways. We introduce three related notions of clustering:
we define asymptotic clustering at level » > 0 in Definition 6.1 (this notion is also
considered in [11]), the notion of asymptotic local clustering in Definition 6.2, and the
notion of asymptotic clustering of densities in Definition 6.3. For a sequence of absolutely
continuous measures, the asymptotic local clustering is equivalent to the asymptotic
clustering of densities, see Remark 6.4.

The following results concerning the notions of asymptotic clustering at positive
levels and asymptotic local clustering (analogues of Theorem D on asymptotic pure
atomicity) are proved in Section 6, see Theorems 6.7 and 6.8:

Theorem 1.1. Forr > 0, ¢ > 0, and ¢ > 0, let us define

€ A d. . d € __ d . Jio pZ(BT(‘r))
AS(r) :i={x € R®: p;i(By(x)) > eVgr®}, A5 = {x e R”: hr;lj)nf Tyl > e},

where V, is the volume of the unit ball in R®.
(@) If B > B., then for every r > 0 and every sequence (¢;);>o tending to 0,

n—1

3 1 € —
Jim ?:0 pi(Afi(r)) =1 P-as., (1.6)
and
li 1nil-AE’—l P (1.7)
Jim -~ E_O pi(A) = -a.s. .

(b) If B < j3., then for every r > 0, there is a sequence (¢;);>o tending to 0, such that

n—1
nlLrI;oZpi(AEi (r))=0 P-as. (1.8)
1=0

The following localization result (an analogue of Theorem E) is proved in Section 7,
see Theorem 7.3:
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Theorem 1.2. For§ > 0 and K > 0, let us define a set

sk ={ae My : max a(Bg (z)) > 1 — 6},

where M is the collection of probability measures on R¢.
(a) If8 > ., then for all § > 0, there exist K < oo and 6 > 0 such that

n—1

el
1%I_l)loléf - 2 Tgpicgsy =0 P-as.,
i=

(b) If8 < B, then forall § € (0,1) and K > 0,

n—1
.1
nh_)rr;O - ZZ_% Lipiegsy =0 P-as.

2 Compactification of a space of probability measures

In [7], the authors pointed out that the usual topologies of weak/vague convergence of
probability measures are inadequate to capture the localization phenomenon of directe
polymers. To tackle the issue, they used an analogue of the compact metric space (AN’ ,D)
constructed in the work of Mukherjee and Varadhan [35].

The idea behind the MV topology is that two measures are considered close to each
other if one can find several well-separated regions of high concentration for each of
them such that the restrictions of the measures to these regions are close to being
spatial translations of each other. To encode this, it is natural to work with an extension
of the space of measures on R to the space of measures on IN x R? where multiple
layers (copies of R?) correspond to multiple domains of concentration. In this approach,
it is natural not to distinguish between two measures in one layer if they are obtained by
a translation of each other, and the order of the layers is not important either. Now all
measures on R? that can be approximated as a sum of translations of the measures in
the layers without much overlap can be viewed as being close to each other.

We will discuss two formalizations of these ideas in this section. While the Mukherjee-
Varadhan (MV) topology was originally defined through test functions, Bates and Chat-
terjee introduced a different form of metric on the space of sub-probablity distributions
on IN x Z< in [7] and showed that their metric space is equivalent to the discrete version
of the MV topology. We recall the original MV definition first and then construct a
metrization of the MV topology that is similar to the metric introduced in [7].

Before we begin, we give a brief guide to the notations that we use throughout the

paper.
* z,y are used for elements of R¢ and u, v for elements of IN x R<.
* a,7, ) are used for subprobability measures on R?.
* u,v,n, 7 denote elements of X and X, the spaces defined in Section 2.1.

e £, ( denote elements of 'P(A? ), the space of probability measures on X introduced
in Section 3.

* Functionals on X are usually denoted by capital letters, such as T, R and I,, while
those on P(X) are denoted in calligraphic fonts, e.g., 7 and R.
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2.1 Mukherjee-Varadhan topology
For any a > 0, we denote by M, = M,(R?) (M<,) the space of measures on R¢ with

mass a (less than or equal to a) and by M, = M,/ ~ the quotient space of M, under
spatial shifts on R?. For any o € M,, its orbit is defined by

a={axd,: xR} eM,,

where a; * a2 denotes the convolution of o and o3 in M<,, i.e., for any measurable set
Ain R,

ay x ag(A) = / La(z + y)ar(dz)as(dy).
(R)2

In particular, if as(dz) = f(z)dz, then ay * az(dz) = [ f(z — y)ou (dy)dz. We denote the
zero measure on R? or N x R? by 0.

Let us recall the notions of the weak topology and the vague topology on M, and
M<, which will be used in this paper. We say that a sequence (a;,)nen in M, (or M<,)
converges to a in the weak topology and write «,, = «a if

lim f(@)a,(dz) = f(z)a(dr), (2.1)
n— oo Rd Rd

for all bounded continuous functions f on R?. We say a sequence (an)nen in Mc,
converges to a in the vague topology and write «,, — « if (2.1) holds for all continuous
functions with compact support. Note that the weak convergence preserves the total
mass of measures, while the vague convergence may fail to do so.

Another distinction between two topologies is that M, is compact in the vague
topology, but not in the weak topology.

Throughout the paper, we will work with multisets (sets with multiplicities) [&;]:cr
consisting of elements of M <1. We define

X = {u = [@ier: 1 C N, ay € M<i\{0}, Y ai(RY) < 1}

i€l

to be the space of all empty, finite or countable collections of orbits of subprobability
measures on R?. For convenience, we slightly depart from the original definition in [35]
and do not allow «; to be a zero measure.

Let us introduce an interpretation of X as a quotient space of X = M<;(IN x RY).
For p € X, we can write u(dk, dx) = ), ai(dx)d;(dk) and identify p with the (ordered)
sequence i = (a;);en, of subprobability measures on RY, with > |la;|| < 1. Some of «;
may be equal to 0. We define the IN-support of u € X’ by

S, ={ieN:|a| > 0}. (2.2)

The following definition explains when two measures from X’ are representatives of
the same element of X:
Definition 2.1. Let i = (a;),v = (v;) € X. We write u ~ v if |S,| = |S,| and there is a
bijection o : S, — S, such that a; = 7, ;) foralli € S,,.

Thus p = [@;)ier € X can be represented or viewed as an element of X’ (a measure
on IN x RY), a sequence («;);ew of measures in R? by taking ; = 0 for all i ¢ I. We
will often not make a distinction between p € X and its representative. We will write 0
(instead of ()) for the empty multiset of X since its sole representative is 0.

In order to define the metric and convergence in X, we need to specify test functions.
For an integer k > 2, let F}, be the space of continuous functions f : (R%)* — R which
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are translation invariant and vanishing at infinity, i.e.

f('r1+y7"'axk+y):f($la"'7xk) V$1a"'a$k7yERd7 (23)
lim f(xl7”'azk):0'
max |z; —z ;]| —o00
Note that F, equipped with the uniform norm, is separable. Therefore, if we denote

F = |J Fr, we can choose a countable dense subset { f,(x1, -, 2k, ) }ren of F. We also
k>2

check that for any f € F; and p = [@;] € X, the functional

k
A(f,p) == Z/f(x17~-~ amk)Hai(dxj) (2.4)

icl

is well-defined due to (2.3). For any pu,v € /'? we now define

- 1
D(p,v) = ZmM(ﬂ,H)*A(ﬂW)L (2.5)

r=1

Here ||f|| denotes the uniform norm. We state a theorem proved in [35].

Theorem 2.2 (Theorem 3.1 and Theorem 3.2 in [35]). The metric space (/f’,D) is a
compactification of M.

2.2 Reinterpretation of the MV topology

Due to the analogy with [7], the compact metric space (AN,’,D) is expected to be
suitable for studying localization for directed polymers on IN x R¢. However, one might
have difficulties in extracting some information on two elements ;. = [&,],v = [i] € X
close to each other. More precisely, one would expect that if D(u, v) is very small, one
can match large parts of measures «; and «; by applying appropriate translations to
subsets of R?. Motivated by the approach taken in [7], in the present paper, we attempt
at expressing this idea more explicitly in the definition of an appropriate metric. Similarly
to having two definitions of the Wasserstein distance in terms of Lipschitz test functions
and in terms of couplings, it would be natural and helpful to introduce an equivalent
metric on X that is based on coupling. Adopting the ideas from [7], we construct such an
equivalent metric which allows us to obtain explicit estimates needed to show continuity
of some functionals defined on X.

Before constructing the metric rigorously, we need to introduce some notations. We
define a distance between two elements u = (i,7) and v = (j,y) of N x R by

lu —v| = Lgizjy - |2 =yl + Lz - 0. (2.6)

This definition is natural in the sense that we would like to record two concentrated
regions getting away from each other on different copies of R¢. For > 0, we denote by
B, (u) the open ball centered at u with radius r in IN x R¢ and similarly by B, () in R?.
Notice that B, (u) = {i} x B,(x) by (2.6).

The right-hand side in (2.4) can be expressed in terms of functions defined on IN x R4
instead of R?. More precisely, for an integer k > 2, let G;. be the space of continuous
functions g : (N x R%)* — R that are translation-invariant and vanishing at infinity, i.e.

g(ul +U7"' ,uk—l—v):g(ul,--- 7uk) VUl,"' s Uk, Ul +U7"' ,Uk+U€]NXRd7
lim g(uy, - ,ug) =0. (2.7)

i—uj|—
max |u; —u;| =00
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For any g € G, g # 0 only if all uy, uy, - - - , u) belong to the same copy of R due to (2.7).
Therefore, there is a unique f € Fj such that

f(x1,---,zx) ifu; = (i,x;) for some ¢ € IN,
0 otherwise.

In other words, there is a natural bijection
Ok : fk — Qk. (2-8)

Then, considering p as an element of X, we have
k
AL = [ ) Tty
j=1

Another remark is that any continuous function f : (R%)*~! — R vanishing at infinity can
be identified with an element of F;, by mapping it to

flx1, 22, s xk) = flzg — 1, -+, — 21). (2.9)

For any o € M« (or X) and non-negative function f which is integrable with respect
to a, we write @ = fa if & is defined as a(A) = [, fa(dx) for each measurable set A.
Moreover, we say @ is a submeasure of a (denoted by a < o) if 0 < f < 1. For any signed
measure z on R? or N x R?, denote by ||u|| the total variation of .

2.3 The Wasserstein distance

In this section, we recall the basics on the Wasserstein distance. Similar notions were
first introduced to solve the Monge-Kantorovich transportation probem and it turned
out that such distances can be used extensively in the variety of fields (see, e.g., [42]).

To any metric dg,. on R? generating the Euclidean topology, we can associate a
transport distance on measures as follows. For a,y € M, (a > 0), let II(«,v) be the
collection of Borel probability measures on (R¢)? such that the marginal distribution
of the first argument is «/a and of the second argument is /a. Then, the Wasserstein
distance between « and ~ is defined by

W(a,v) =a inf / dpuc(z, y)m(dx, dy). (2.10)
mell(a,y) JR2

It is known that the infimum on II is achieved. In this paper, we choose to work with a

bounded metric

dEuC(xuy) = ‘LL‘ - y| A 1a

so that W metrizes the topology of weak convergence of M,.
For o,y € M,, we define

W(a,5) = inf W(a,v*d;).
zeR4

Since the choiceﬂ(/)f representativefsv does not affect the value of W it is welfl;deﬁned. One

can check that W is a metric on M, and metrizes the weak topology of M,. The latter
is defined in the following sense:

o, = a in M, <= 3I(zp)nen in R¢ such that a,, * 0z, = ain M,.
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A result of [37] allows us to apply the Wasserstein distance to o,y € Mc, with
different masses. More precisely, the generalized Wasserstein distance W can be
defined by

Wiy = _inf_ (W(a5)+lla—al +Ily =4Il 211)
a<la,y<y
llal=I7I
and it is proved in [37] that the infimum on the right hand side is achieved.
The result known as the Kantorovich duality states that for any o,y € M<; with the
same mass,
Wia) =swp ([ f@atn) - [ swnidy). 2.12)
f R4 R4
where the supremum is taken over all 1-Lipschitz continuous functions f : (R%, dguc) —
(R, |-]), ie

f(x) = fy)| < |z —y|, z,yeRY, sup f —inf f < 1.

It follows from (2.12) that for for any measures u = p1+pe and v = vy +vo with ||u|| = ||v
]l = [l and [|ua | =

’

Wp,v) < Wi, v1) + Wipz,v). (2.13)

2.4 Construction of a metric on X

We are now ready to define a metric on X. From now on, for any = [Qicr € X,
we will abuse the notation i and use it for both the element of X and representatives
chosen from X. When p is used in integration, we mean that an explicit representative,
such as («;)ien, is chosen where «; = 0 for alli ¢ I.

Let © = [&;],v = [%] € X be given. We first introduce a family of functionals
estimating the mass of the heaviest region for a measure in X'. For » > 0, we define a
function 7, on X by

L= sw [ fe-patd)= sp [ g@-ou@), @1
icN,zcRd J R4 weNxR? JINx R4
where
1, lz] <7
fr(x) = 0, |z| >r+1,

r+1—|z|, |z|¢€(r,r+1],

and g, = @fr (See (2.8) and (2.9)). Note that f, is 1-Lipschitz continuous with respect
to dguc. We collect some useful properties of I,.:
e [.(u) is comparable with the mass of the heaviest ball of radius r under g, i.e.,

sup  p(Br(u)) < I(p) < Sup (Bry1 (). (2.15)
uENXR? ENxR4
e [, is sub-additive, i.e., I.(n+v) < L.(u) + I.(v).
e [, is monotone, i.e., if y < v, then I,.(u) < L.(v).
e Since M« is naturally embedded in X, we can define I,(a) for a € M<; in the
same way. For any a,y € M<; with the same mass, (2.12) implies

|Ir(a) - | < sup
z€R?

/fr (x,y)da(y /f, (z,y)dy(y)| < W(a,7). (2.16)

One can check that the choice of the representative of an element in X does not
change the value of I,.(u) so I, is also well-defined on X'.
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Definition 2.3. For any u = (o;),v = () € X, let P,, be the collection of sets
{(ug, vi)}y_, of pairs of submeasures of y,v such that
(1) Foreachk, ||pkll = llvg| > 0.
(2) Foreachk,|S,,|=1S.,,|=1,1ie. each u, and v;, has exactly one layer of R? with
positive mass. (See (2.2) for the definition of S,,).
(3) Collections {supp(uk)}::1 and {supp(uk)}zz1 are each composed of mutually dis-
joint sets.
Then, an element in P, , is called a (u1, v)-matching (or simply a matching when there is
no confusion). We have the empty matching () included in any P, , .
For ¢ = {(uk,vk)}}_, € Py, we define

sep(¢) := _ inf {dist(supp(um%Supp(ukz))Adist(supp(vkl),Supp(vk2))},
1<k1<ko<n

where dist(A, B) = inf{ju —v|:u € A, v € B} for A, B C N x R¢. We set sep(l}) = .
Remark 2.4. From condition (2) in Definition 2.3, we can identify i and vy as subprob-
ability measures on R¢ if needed. The quantity sep(¢) is the degree of separation among
the supports of submeasures in the matching. We see that dist(supp(u;Cl ), supp(ukz)) <
oo only if ug, and ug, belong to the same layer of p. If the supports of distinct u belong
to different layers of u (i.e., u, < oy, and pg, < oy, imply j; # jo for any k; # kp) and
the same holds for v, then we have sep(¢) = co due to (2.6).

Definition 2.5. Let u,v € X. A triple (r,¢,Z) is called a (u,v)-triple if r > 0, ¢ =
{(ur,vi) Y2, € Py, sep(¢) > 2r, and & = (x4, ,x,) € (RY)". For any (u,v)-triple
(r,¢, %), we define

n n n
drge(pv) = D Wlpo v+ 00,) + L (0= D) + L (v =Y w) 4277 (2.17)
k=1 k=1 k=1
Remark 2.6. We see that, for the empty matching, d, g z(u, v) = I () + I, (v) + 27" does
not depend on Z. For any non-empty matching, ux and v, are interpreted in two different
ways in the right-hand side of (2.17).
While they are treated as elements of M<; in the Wasserstein metric term, they are
viewed as submeasures of y and v, respectively, in X = M<;(IN x R?) in the I, terms.
Let us see how this works in a specific example. For simplicity, we assume d = 1. Let
u=(ar,a2,a3,0,0,---)and v = (y1,v2,73,74,0,0, - - - ) such that

1 1 1 1 1
ap = §50 + gU(S,Q)a ag = 151 + EN(M)’ az = ZN(O,l)v
1 1 1 1 1
= —67 —5 = —N s = —U s = 7N s
24! 201 + 10210 Y2 6@ 3 6 (36) Y4 g V(3:3)
where U(, ) is the uniform probability measure on the interval (a,b) and N(, ;) is the
Gaussian measure with mean ¢ and variance b. We can choose a (u, v)-matching ¢ as
follows:

1 1 1 1
H1 = 1—050 in a1, H2 = éU(&g) in a1, U3 = 161 in Qo, 4 = EN(O’D in ag,

1 1 1 1

v = T0510 invy, vp = gU(S,E)‘) in~vs, v3 = 15—1 invy, vy = 6N(2,1) in vo.
Since dist(supp(u1),supp(u2)) = 8, dist(supp(v1),supp(vs)) = 11 and the distances of
any other pairs are infinity, we obtain sep(¢) = 8. So we can let  to be any number
less than 4, let say r = 3, so that they meet the condition of a triple. With the choice of
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x1 = —10,22 = 4,23 = 2,24 = —2, one can check W (puy, v % 6,,) = 0 for k = 1,3,4 and
hence

4
1 1
S W (e, v # 6,) = W(gU(S,g), gU(mo)).
k=1

When it comes to the I, terms, we view measures u; and v, as elements of X':

1 1 1
IU’IZ(TO(SU?(LOa"')a M2:(§U(8,9)7070a"')a M3:(0a161707"'>7
1 1 1
/”‘4:(()’0)6]\](0,1)70’"')’ VIZ(E610a0507"')7 V2:(0707§U(3,6)707"')7

1 1
V3 = (16—1507()’"')’ Vg = (076N(2,1)a07"')'

Therefore, we have

W~

4
1 1 1 1 1
M—Zﬂk = (E(SO’ EN(IA)? ﬂN(O,I%OaOy' ! ');V_];Vk = (0,0, ﬂU(3’6)7 §N3,3,0,07' . )

We can now define
d(p,v) = igfadr,d),f(,u’y), (2.18)
r,¢,T

where the infimum is taken over all (u,v)-triples. One can check that the choice of
representatives of p,v € X does not affect the value of d(u,v) so it is well-defined in X.
One can readily check that

dp,v) <2, pveX, (2.19)

by choosing the empty matching and letting » — oo in a (u, v)-triple.
Let ¢! := {(vg, k) 7, € P, . Then, we see that sep(¢) = sep(¢~ ') and hence

d""v¢’f(/’[” V) = d’l“,¢71.,—:?(y7 /’[’)a

which implies that d is symmetric. With two propositions below, we prove that d is a
metric on X.

Proposition 2.7. d(u,v) = 0 if and only if yu = v.

Proof. Since the “if” part is obvious, it suffices to prove the “only if” part. Let d(u,v) =0
and (a;)ien, (7i)iew be representatives of p, v, respectively. We may assume |a;] >
i1l and ||vill > ||vi+1]| for all ¢ by rearranging the order if needed. For each m € IN,
there is a (u, v)-triple (Fm, @m = {(tn ks Vi) } o1 B = (Tm,15 » Tmon,,)) Such that

1
Ay = dTm,tﬁm,i"m (/.L,l/) < E

Note that r,,, — oo.
Suppose a; = 0 (i.e. p = 0). If ||[71]] > § > 0, since the empty matching is the only
option, we have
am > I, (V) > 1, (1) >0

for all sufficiently large m, which is a contradiction. Hence, ||y1]] =0 and = v = 0.
Now suppose ||a;|| > 0. By the same argument as above, we have ||v;] > 0. We may
assume

ol = [yl (2.20)

and let p € IN be an integer such that ||y1] = -+ = |7l > [[Vp+1]l-
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Since a,, converges to 0, there is at least one integer | = I(m) such that p,,; < oy for
all sufficiently large m. In fact, if this does not hold, then

am > oy (1= 3 ttm) = I 1) = [laa | >0,
k

a contradiction. By rearranging the order of pairs in ¢,,, we may assume that p,, 1 < o
and it has the biggest mass among (tm i : m.k < @1)k.

For any € € (0, ||a1|| /4), let us choose R = R(e) such that a;(Br(0)¢) < e. Then, for
all m satisfying r,,, > R, there is at most one sub-measure i, jm) < a1 whose support
has an overlap with Br(0) since sep(¢m) > 27, > 2R. If fi,, j(m)(Br(0)) < a1(Br(0)) — €
for infinitely many m, then, for these m we have

am = Ly (1= 3 k) = Ly (L3001 = Lo fim, ) =
k

which implies that a.,,, does not converge to 0. Therefore,
[tmjmy | > 1 (Br(0)) — € > [lax || — 2¢ (2.21)

for all sufficiently large m, and for such m, j(m) = 1 by the definition of y,, 1.

We claim that there is ¢ € IN such that v,, 1 < 7, for infinitely many m. To see this,
let ¢,, be an integer such that v,,, ; < 7,,,. If there is no such an integer ¢ as claimed
above, we have ¢,, — oo as m — oo. It follows that ||y, || — 0. On the other hand,
for all sufficiently large m, ||vq,.|| = |Vm.1]] = l[tm.1]| > |lea]| — 2¢ by (2.21), which is a
contradiction. Hence, the claim is proved and, moreover, we obtain

17qll > llaa ]l — 2e.

Here, ¢ = q(¢) may depend on e. However, since ||y, > |1l — 2¢ > [Jay]|/2 for all
€ € (0, |laz]|/4) and, given v, there are at most [—2| (Here, [-] denotes the integer part)

fleal
indices i such that |v;]| > [la1]| /2, there is ¢ € N, independent of ¢, such that ¢ = ¢(+)
for infinitely many n. For such ¢, we have ||v,|| > ||e1||. Combining this with (2.20) we
obtain |a1]] = ||v4l, so ¢ < p. By interchanging ~; and v,, we may assume ¢ = 1.

Let small € > 0 be given. We choose R as above and R’ = R'(¢) such that

(B0, R)) < e.

We can obtain ||t 1]] > ||71] — 2¢ for all sufficiently large m by applying the same
argument used for «a;. Then, for all sufficiently large m,

W(ahﬁl) < W(,Um,h Vm,1 * 59:7”,1) + W(al — Hm,1, ('}/1 - Vm,l) * 5;5,,1,11) < @y, + 2e.

We used (2.13) in the first inequality. Letting m — oo first and then € | 0, we have
W(a1,71) =0, i.e. a3 = 71. Peeling off o7 and ; from 1 and v and repeating the same
process to obtain a; = 7; for all i, we complete the proof. O

Proposition 2.8. d(u,v) < d(u,n) + d(n,v).

Proof. Throughout the proof, we will identify u,n and v as elements of X by choosing
their representatives. Let ¢ > 0 be given. We can choose triples

<T1,¢51 = {(p> )} e, 1 = (m,@:;l), (7“2,052 = { M2k Vi) by T2 = ($2,k):2:1)

such that
dT17¢17f1 (:uv 7]) < d(M? 77) + ¢ dT’27¢2752 (77’ V) < d(nv V) +e.
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We say that 7, , and 12 overlap, if the measure 7 ; := min(f, g)n has non-zero mass,
where f and g are the Radon-Nikodym derivatives of n; ;, and 7, with respect to n. We
collect such overlap measures between {7} and {1, } and relabel them as {7;}}_;.

For each | € {1,2,...,n}, there are j; = ji1(I) and js = j2(l) such that 7, = f;,m
and 7; = fj,72,;, for some measurable f;, and f;, with 0 < f;,, f;, < 1. In other words, 7
is an overlap measure of 1, ; ;) and 7 j,). We remark that j, can be understood as a
function which maps {1,2,--- ,n} to {1,2,--- ,n,} fora =1,2.

Letus fix [ € {1,2,...,n} so that we can shorten j; (/) as j; for the moment. Let us
denote by 7;, the optimal coupling between p;, and 1, ;, * d :

T1,51°

W(ijnjl *69131,j1) = ||/"LJ1H / |1‘ - y| A1 T, (d‘%'?dy)

Then, there is a submeasure ji; of y;, such that zi; is coupled to 7; * d;, ; (which is a
submeasure of 1, j, x 0, ; ) by 7;,. More precisely, we can define

7_rl(dxa dy) = fjl (y)ﬂ-jl (dxa dy)a

notice that 7; * 0z, ; () = lluj, | [ 7i(dz,-), and define

fn(dy) = [l | / 71 dy).
The identity

W (g, gy % 02y, ) = W gy — B, (Mg, — ) % 0y, ) + W (T, 7 % 0sy ) (2.22)

is a specific case of the following lemma:

Lemma 2.9. Let « and v be measures on R¢ with equal total masses and let = be the
optimal coupling between them. That is,

a() = lal / 7 dy), 7() = ol / w(dz, ), W(a,7) = o / & — 4| A1 7(de, dy).

Let 4 = f~ for some measurable f satisfying 0 < f(y) < 1 for all y. We define then
7(dz,dy) = f(y)m(dz,dy), notice that(-) = |l&| [ 7(dz,-), and define &(-) = ||a|| [ 7 (-, dy).
Then, we have

W(a,v) =W(a—a,y—75) +W(a,7).

Proof of lemma. Choosing couplings

[lev] [lev]

(1= f)m(de,dy), = f(y)m(dz,dy)

lov — ]
for (o« — a,y — %) and (&, ), respectively, gives
W(aa’Y) > W(CM -0,y — ’7) + W(dv _)’
The reverse inequality follows from (2.13). O

For each 1 < k < ny, applying (2.22) inductively to all I € j; (k) = {m : ji(m) = k},
we obtain

W (pey ke %0z, ) = Z W(ﬁl,ﬁl*(szl,k)JrW(/tk Z fu, (771,1@* Z 771)*5“&)

eyt i (k) ey L)

(2.23)
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so that the optimal coupling between ;. and 7 x * d,, , can be split into overlapping
parts of n; ;, and the remaining part. Repeating the same process for v in place of u, we
can define v,

Now let us define r = min(rl,rg), ¢ = {(ﬂk, Dk)}zzlf and ¥ = (xl,jl(k) + xQ,jz(k)) € R™.
Since

sep(¢) > min(sep(¢1),sep(¢p2)) > min(2ry, 2ry) = 2r,

(r,¢, %) is a (u, v)-triple.
From the subadditivity property of I, and the following inequality

W(ﬂk, Dk * (5%) = W(ﬂk * 6*11,]1(1@ 5 Dk * (51;2‘”(“)
S W (g # 0z 5,0 8) + W(ﬁk’ Vi * 5r2,12<k>)

= Wtk Tk Oy, 0y) + W(ﬁk’ Uk * 59@2@(7@)’

we have that

\_/

d(/J’7 )<dr¢z w, v Zwukvyk*(sazk +I( Z
k=1 =1

(1/— Z::Z/k) + 27"

k=1

n ni ni n
< ZW(ﬂkvﬁk*(sxl,jl(k)) +Ir(ﬂ7 }U'k’) +IT( Z k)
k=1 k=1 k=1 k=1
n na na n
+ZW(ﬁk,Dk*5r2,jz(k>) +IT(V_ Vk) +I’”(Z Z k) +277. (2.29)
=1 k=1 k=1 k=1

We claim that
n1 n no
DomE=D> M <n—> Mk (2.25)
k=1 k=1 k=1

To see this, let fi, g, be the Radon-Nikodym derivatives of 7, ;, 12 x with respect to
n. Since {supp(ni )}, {supp(nzx)} are disjoint, respectively, we have Y f; < 1 and
> gr < 1 pointwise. Therefore,

ni na n ni na
Zm,k +Z772,k- - Zﬁk = (ka \/ng-)n <1,
k=1 k=1 k=1 k=1 k=1

which proves the claim. Note that (2.25) can be rewritten as > na . — > 7 <N — > N1.k-
We next observe that

(Zﬂk —Zuk) = (f_jl (1 —l@;wuz)) (2.26)

= sup Z/gr(uav) (#k* > ﬂz)(dv): sup Ir(ﬂk* > ﬂz).

4 1<k<
u€NXR® =1 teir tm =h=m teir tm

In the last identity, we used the fact that since sep(¢,) > 2r; > 2r, the support of g, (u, -)
cannot intersect with supp(ux) and supp(u.,) at the same time for any k& # m. Similarly,

we have
ni n
(X me =Y me) =suwp L (ms — 35 ). (2.27)
k=1 k=1

iyt
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We now see that

na

E(m= S m) < (= Y] < h (L= o) + 1= Do)

k:l
na
= sup [r(Mk_ > m)— sup Ir(nl,k_ > ﬁl>+Ir(77_Z772,k)
1<k<nm, eyl 1<k<m = pt
lejy (k) lejy (k)
n2
< sup { (Nk_ Z ) (mk— > m)]JrIr(n—an,k)
1<k<n; - 1 =1
IS HO) lejy (k)
n2
ST (CEID DI CYED St ) FUSS FRACES iy
1<k<ny lei—1 1 k=1
€y (k) lejy ~ (k)
= sup {W(/Lkvnl,k*(SMk Z W (fir, 0 * 0z, }*I( Zﬁu)
1<k<n,
- = 1eiy (k)
ni n
< S W b+ 8es) = D0 W ks i 00,y ) + L (0 Zm) (2.28)
k=1 k=1

where, along with monotonicity of I,., we used (2.25) in the first line, (2.26) and (2.27)
in the second line, shift-invariance of I,. and (2.16) in line 4, (2.23) in line 5, and in the
last line we replaced the maximal term by the sum of all terms. For the same reason, we
obtain

n

ZW Mhes Uk * Oy o) + 1 (ZW-Z ) ZW T2,k Vi * Oy ) +Ll( ZUlk)

= k=1 k=1 k=1
(2 29)
Collecting (2.24), (2.28) and (2.29), we have
ni ni
d(p, <ZW [k Mk * Oy ) +Ir1( Zuk>+fm( —Zm,k)
k=1 k=1
no no na
+ Z W (2,1, Vi * 0y ), ) + I,y (1/ - ka) +1, (77 - an,k) +27"
k=1 k=1 k=1
< dT17¢'1751 (:uv 77) + dr2,¢2,552 (773 V) < d(ﬂ, 77) + d(na V) + 2e.
Letting € | 0 completes the proof. O

Having proved that d is a metric on X, we can now study properties of the metric
space (X, d).

2.5 Compactness and equivalence to the MV topology

In this section, we prove that (X d) is compact and equivalent to the original MV
space (X D). We recall that M 1 is naturally embedded in X since we can identify any
& € M; with the element [a] € X having representative («,0,0,---).

Theorem 2.10. The space (2? d) is a compactification of My, i.e.,
(a) the collection of orbits M, is dense in (X,d);
(b) for any sequence (pn)nen in M, there is a subsequence convergent in (X,d).

Proof. This proof is similar to that of Theorem 3.2 in [35].
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(@) Let u € X be given and («;);eny € X be a representative of u. We may assume
llai]l > ||evig1]| for all @ > 1. For each m € N, there are n = n(m) and R = R(m) such that

1

1 n
[atntall < oot Zaj (Br(0)°) < o
j=1

We may assume 2~ < 1/m. We denote by Ay the product measure on R? with cen-
tered Gaussian marginals of variance N. We can choose N = N(m) and & = Z(m) =
(z1,-++,2,) € (RY)" such that Ir(\y) < 1/m and max |z; — ;| > 4R. Let

i#£]

Pm = Un,N = Zaj *(51;]. + (1 — ZHaJ||>)‘N e M.
j=1 j=1

Let us write B and B; for Br(0) and Bg(z;). One can consider a (i, #)-matching given
by

¢ = {(Ml,ja/jﬂ,j)}?:h ,U/l,j = (]lBJ (O[] * 6zj)5070a o ')7 /’I/Q,j = (07 o 70,]13047‘,070,' o )7
j—1
j—

We observe that

dist(supp(p1,x), supp(p1,)) > 2R, dist(supp(po,k), supp(pz,)) = oo forall k #1,

which implies sep(¢) > 2R. Therefore, (R, ¢, %) is a (ftm, 1)-triple and hence

A(ptms 1) < Rz (tm, 1)

n

= ZW(]lBj(aj *5%.), (]lBaj) * 5%.) —|—IR(um — zn:,ul,k) —|—IR<[L — i:,ugk) +27 R
j=1 j=1

j=1

Since 15, (o * 6%,) = (]lBaj) * drj, all Wasserstein terms above vanish. We estimate Iy
terms.

n

Ir (Mm - im,k) < IR(i:ﬂB;(aj * 5mj)) + IR((l - Z (It ))‘N) < %
j=1 =1

j=1

We can decompose i — Z?:I H2,k into two parts:

M_ZNZ,I@ = /’Li—’—/j';v M‘i = (]]-Bcalv"' 7]13;‘0[”,0,0,"'),,[1/; = (07 ,0,an+1,an+2,~-~).
= ——

n

It is easy to check that
& S S 2
In(p =Y pk) < In(uh) + In(u3) < —
j=1
Collecting all estimates gives d(jm, 1) < 5/m, which implies that p,, — p as m — oco.
(b) We now show that for any (ftn)nen in M 1, there is a subsequence that converges

to u € X. Since I, is bounded by 1, by passing to a subsequence, we may assume that
for every r > 0, there is go(r) > 0 such that

lim I (pn) = qo(r).

n—oo
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Let ptn,0 = . For each m € IN, we can choose inductively a subsequence (£, m)n>1
of (fn,m—1)n>1 such that the limit
im Ly (ftn,m) = qo(m)

n— oo

exists. Since I, (tn,m) < Lmt1(tn,m), go(m) is non-decreasing in m. Therefore, gy :=
lim ¢o(m) is well-defined and one has
m—r 00

Wm I (pnn) = qo(m), lim lim I (ttnn) = qo.

n—oo T—00 N—> 00

For simplicity of notation, we write p,, for y, , from now on.
If g = 0 (i.e. qo(r) = 0 for all » > 0), then for any » > 0, by choosing the empty
matching (), we have
lim sup d(pn, 0) < limsupd,. g o(pin,0) = limsup I, (i) + 1,(0) +27" =27".
n— 00 n— oo n— o0

Letting r — oo, we obtain that /i, converges to 0 in (X, d).
If ¢o > 0, by choosing a suitable sequence (ay,1)nen in R?, we have for some r > 1,

i % 80,4 (By(0)) 2 Lo (p) 2 2

for all sufficiently large n. Due to the compactness of M; in the vague topology, by
taking a subsequence if needed, we may assume

An 1= i ¥ g, , = Q1.

Note that ||a|| > go/2. By Lemma 2.2 in [35], there is a decomposition p,, = ap 1 + Bni
such that
Qn 1 * 5(1",1 = o1, ﬂn,l * 6an,1 = 0.

In particular, it is proved in Theorem 3.2 of [35] that if ¢y = 1, then (,,; can be taken to
be 0, so we have /i, — a; in (X, d).

If 0 < go < 1, we can repeat this iteratively. More precisely, for each k£ € IN, we
can define ¢, = rlim lim I,(B,,) in the same way as go. Then, there is a a sequence

o0 N—00
(an.k+1)new in RY such that
Bk = O k1 + B k+1
and
lowsll 2 5 s *8
If there is k € IN such that g, = 0, then we have the following decomposition for p,,:

= a1, Bnk+1*0a, 4y 0.

A, k41

k
Hn = Zan,j + Bn,k;

j=1

where

lim lim I,.(Bnx) =0,

r—00 N— 00
= aj, B *0a,, 0, 1<j<k, (2.30)
=00, i#j. (2.31)

anvj * 6an,j

lim |an; — an,;
n— oo

To see (2.31), let us assume that it is not true. By taking a subsequence, we may assume
the limit b := lim (a,; — an,;) exists for some ¢ > j. We observe that
n—oo

Bri * Oay, ; > Qnj ¥ 0a,, , = (Ctnj %0 (2.32)

EX)

an,j An,i—0n,j*
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Since $3,,,; * 0q,, ;, = 0,
li_>m Bni %04, ;(K) =0 (2.33)

for any compact set K in R?. On the other hand, it follows from a,, ; * 04, , = a; and
loj|| > q;j—1/2 that there is a compact set K such that a,, ; * d,,, ;(K;) > ¢;-1/3 for all
sufficiently large n. Let

K; ={re€R’:x—be By(y) for some y € K;}.

Then, one can readily check that ay, ; * d4, ,(K}) > g;-1/3 for all sufficiently large n.
Combining this with (2.33) gives contradiction to (2.32).

We claim that p, — p = [ay,--- , &) in (X, d). The argument is the same as in the
proof of (2.34) below, and we omit it here.

If g, > 0 for every k € IN, then there are (a, ;), (8,,;) in M<; and (a, ;) in R¢ such
that for all n, k € N, (2.30), (2.31) hold and

k
Hn = Zan,j + Bn,k-
j=1

Since |la;]| > gj—1/2 and " |le;|] <1, we have ¢; — 0. We claim that
jEN

fin — p1 = [@;]jen  in (X, d). (2.34)

Let ¢ > 0 be given. We first choose k = k(¢) € IN such that g, < e. There is r = r(¢) such

that i i
Zozj (Br(0)) <, Zamj (Br(0)°) <€

for all sufficiently large n > N;. We may assume 27" < ¢. We can also find N, such that
i;rif |@n,i — an, ;| > 2r for all n > N,. Recalling the definition of f, in (2.14), we choose
ik
k
a (p, pn)-matching ¢ = {(f?“aja fr(-+ an,j)an,j)} - and &, = (an1, - ,ank). For all
J:
n > max(Ny, No),

d(u /an) < d7 oy /J, ,U/n (f’r‘aj7f’l" an,] 6(1",]'))

i M?r

+ 1 (“ - Z fT‘“J’) + I(i L= fo(- +an;))am,; + ﬂn,k> +277. (2.35)
Jj=1 j=1

By (2.30), we have foreach 1 < j <k,

lim W(frozj,fr(ozn] x 5%4)) —0. (2.36)

n—oo

It follows from the subadditivity of I,. that

I, (,U - Zk:fraj) ZI ( = fr O‘J) ([aJ-HC]JE]N)

< Zan] ) +aqr < 2. (2.37)
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Similarly, we can also obtain

k

IT(Z(1—fr(.+an,j))an,j+ﬁn,k) ZI ( (1—fr( +anj))an,j)+lr(ﬁn,k) < 2e. (2.38)

Jj=1

Plugging (2.36), (2.37) and (2.38) into (2.35), one has limsup d(u, u,) < 5¢, completing
n—oo

the proof. O

In our proof of the equivalence between the MV topology and the topology defined by
our metric d, we will use the following theorem:

Theorem 2.11 (Theorem 26.6 in [36]). Let X,Y be two topological spaces and let
f+ X — Y be a bijective continuous function. If X is compact and Y is Hausdorff, then
f is homeomorphism.

Before proving the equivalence statement, we recall the original MV metrization D
defined by (2.5) and the functional A defined by (2.4).
Proposition 2.12. (X, d) is equivalent to (X, D).
Proof. We fix k > 2. Since (X, d) is compact by Proposition 2.10 and (X, D) is Hausdorff
being a metric space, it suffices, due to Theorem 2.11, to show the continuity of the
identity map e : (X,d) — (X, D).

By the Portmanteau Theorem, A(f, ™) — A(f,u) for all f € F is equivalent
to A(f, ™) — A(f,p) for all bounded, Lipschitz continuous f € F,. Therefore, it

suffices to show that for given € > 0 and bounded Lipschitz continuous f € Fj, there is
0 = d(¢, f) > 0 such that

d(lu‘vlj)<5 = IA(f,/j,)—A(f,V)|<6.

We may assume 0 < f < 1and f is 1-Lipschitz continuous. Let us choose M = M (¢, f) > 0
such that f(xy, -+ ,zk) < ¢/4 whenever m£x|xi —z;| > M and let
i#j

0 = min (@ 2_M)

Let us assume that d(u, ) < 0. Then there is a (u, v)-triple

(0 = {5 1) Vr 7= (1. ) (2.39)

such that d, 4 5(i,v) < 0. Let
p=) =pn=Y oy V=) =v-) v
j=1 j=1

Notice that since r > M, we have sup p*(Ba(u)) < I.(p®) < 6.
u€ENXRY
Let af = o — af = legaj w; for each j. We divide each term of A(f, i) into a core

part and a sparse part:

/f(xlv"'7$k)ﬁaj(d$i):/f($1a'”a ﬁa + o) (da;)

i=1

k k
=/f(x1,~- ,xk)Hoz‘;(daci) Z /f X1, ,J‘k)HOz;(dﬂ%) (2.40)
i=1 i=1

te{c, s}e\{c}*

EJP 25 (2020), paper 142. https://www.imstat.org/ejp
Page 21/56


https://doi.org/10.1214/20-EJP530
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Localization of directed polymers

Let A= {z e R¢: mjx |z; — x;| > M} and |t| be the number of occurrences of s in .
i#]

For any ¢ € {c, s}* \ {c}*, there is a number / such that ¢; = s, so

[t oo Tleftae = [ @ [of @)+ [ s ]]of @)
ElactF=t st ol (das
st eg [ Tlegn)

€ . . _
ZHO&?Hk s + sup of (Bar(x))[log||*~lag |11
z€R4

A\

IA

IN

€ C — S (6] - S —
2SI a1 + allag == g = (2.41)

From the binomial theorem, we have

Sl Mg < 3T sl el < ol < eyl 242
te{c, s}r\{c}* te{c, s}*
and, by the mean value theorem,
sl + llesl)™ = llagll* _
Sttt = 09 ”;s')' — it <kl (243)

te{c, s}k\{c}*
for some p € [[|af]], [|oy|]. Combining (2.42) and (2.43) with (2.41) gives

Z / 1,00, T Ha (da;) < ( +l~c6)||ajH. (2.44)
ic{c, s}k\{c}*
For the core part,

/f(xlf"amk)ﬁa§(dxi):/f(mly"'a H( Z )dwz)

k
< Y [ st o) [Lmtdon) + Shasl (2.45)

L <aj i=1

where we used in the inequality the fact that sep(¢) > 2r > M, so |f| < ¢/4 on the
support of the off-diagonal products of y;’s. Substituting (2.44) and (2.45) into (2.40)
and summing over all j, we obtain

A(fon) < 3 Afoy) + 5 + ko, (2.46)
j=1

On the other hand, it follows from the non-negativity of f that
A(fom) =AY ) > Z (f, 1) (2.47)
j=1 j=1
Estimates similar to (2.46) and (2.47) also hold true for A(f,v).

We now give an upper bound for W (a®* ~®*) in terms of W (a,v). Let 7 be the
optimal coupling of (a, 7). Then, 7% is a coupling of (a®*,y®*) and

k
W (a®F, ) < / (I — ) A )" (dF, df) < / S (Jz; = 5] A 1)k (47, dg)
=1

[
]~

[ = il Aty ) = KV ). (2.48)
1

.
I
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Combining (2.46), (2.47) and (2.48), we conclude that

IACF, 1) = A ) <D A 1) = A(F,v5)] + % + ko

j=1

< i: W(;@M, (vj * 5yj)®’“) + % + ko
j=1

Skzw(ﬂjaw*%)+§+k5§2k6+§ge,

j=1

where the inequality in the second line follows from the translational invariance of A
and (2.12) (we recall that ¥ = (y1,- - , yn) was introduced in (2.39) as an element of the
(s, v)-triple). O

3 The update map

In this section, following [7], we define an “update map” 7 which maps the law of
the polymer endpoint distribution of length n to that of length n 4+ 1, and prove that 7 is
continuous. As in Section 1.3, the endpoint distribution for the polymer of length n is
denoted by

pn(dx) = My (wy, € d).

Notice that p, is a random measure on the probability space (Qe,9,P) of random
environment. We denote by P(X) the space of Borel probability measures on X and
endow the space P(X) with the Wasserstein metric W:

W(&,&) = inf/ _d(p,v)m(dp, dv), (3.1)

XXX

where the infimum is taken over all couplings 7 of ({1, &2).

3.1 The conditional update map

In this section, we define a “conditional” update map 7" : X — 7?(/'? ) that maps p,, to
the law of p,,+1 given ¥,,. We recall that P, P* and A were defined in (1.1) and below it.
For each n > 1, let us define

PZ (or P,) = the law of (wy, - ,w,) under P* (or P). (3.2)

We observe that

n+1

prsaldr) = B exp (83 X000 1o, 0

n+1 i—1

1 n
= X (i, y; X 1, Poii(dyr, -, dyn,d
Zn+1 [Rd)n “xp (B; (Z’y ) + 6 (n + l’)) +1( Y1 Y, (E)

_ 1 /(]Rd)n exp (5;)((1',%) +BX(n+ 1,9:))Pn(dy1, co L dyn) A (d(z — yn)

ZnJrl

Z'IL n T
=g PR (A e = )

Zn+1

Zn
= 0 PXALD) ) w A(da).
Zn+1
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Integrating over x on the both sides gives

Zny1 :/ BXM+L) 5 A (dix).
Zn, R

Since X(n + 1,-) is independent of %, the law of p,,1 given ¥, is equal to the law of

ePY @)« N(dx)
. €FY @ x N(dz)’

p(dzx) :== f (3.3)

R

where Y () 4 X(-) and Y is independent of &,,.

In general, for u = (a;) € X, we can consider a X-valued random variable i = (&;)
given by

ePY o) o 5 A(da)
(&)
5 Jw 7000 A(d) + (1 )
]:

Gi(dx) == , (3.4)

where (Y (1)), . g = (X (1)), o, e @nd c(-) is defined in (1.2).

Notice that (3.4) is a generalization of (3.3) because ||p,|| = 1 for all n € N. The
additional term in the denominator allows us to define & when y = 0 and we will see
later that this term makes the (conditional) update map continuous.

For any 1 = (a;);en € X and v € M<q, we will write
wky = (o *7)ien. (3.5)

One can check that the convolution is also well-defined for p € X. The measure it can be
now expressed in terms of (3.5) and integration on IN x R¢ as follows:

ePY (W) s X(du)

- ) (3.6)
Jicra €Y @ s AMdw) + (1 — || )ec(®)

du) -

We now would like to have (3.6) to be well-defined on X. For a fixed environment though,
i1 does depend on the choice of the representative of . However, the next proposition
claims that the law of i is independent of the choice of representative. We recall the
equivalence relation ~ on X introduced in Definition 2.1.

Proposition 3.1. For p, e € X with uq ~ us, define i1, fie as in (3.6). Then, fi; 4

as X -valued random variables.

i

Proof. 1t suffices to find a coupling of (Y7, Y3) such that

e Y1,Y; are random fields with the same law as X,

e Y, is used to define fi; in (3.6),

e [ = i in X.
Let y1; = (a;) and ps = (7;). From Definition 2.1, there are a sequence {z;} in R? and a
bijection o : S, — S, such that v; = a,(;) * d,, for alli € S,,. Let Y1, W be independent
random fields with the same law as X and set

Y(z ) Yl(O'(Z'),{E—ifi) ifZ'GSHQ,
7I =
? W (i, z) otherwise.
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Then, we have for any i € S,,,

ePY2(02) oy \(dx)

S fRd ePY200:2)y; % A(dz) 4+ (1 — ||pu2]])ec®
j=1
_ MW=, ) 5 6y, A(da)
T e P g+ 8, A (82) + (1~ [
B eﬁYl(a(i),x)aU(i) * A(dz)
Z f]Rd eBYl(j7Z)Oéj * )\(d'z) + (1 - ”NIH)eC('B)
Jj=1
= &U(i) * (511 (diE),
which implies that &, ;) and 4; belong to the same orbit. =

Proposition 3.1 allows us to define the update map 7 : X — 73(2? ) by
T:p — law of .

Since M 1 is naturally embedded in X, we can identify the endpoint distribution p,, with
a random element of X'. As we discussed before, we have

Tu(dv) = P(ppi1 € dv|pn = p),

or equivalently,

Tpn(dv) = Plppi1 € dv|pn) = P(ppy1 € dv|9,). (3.7)

Therefore, Tu(dv) := I'(u, dv) can be understood as a transition kernel for the Markov
chain (pn)n>0 on X.

3.2 Construction of d revisited

Before proceeding to prove the continuity of the conditional update map, we explore
an alternative construction of the new metric d on X , which was defined in (2.18). For
any p,v € X, we call ¢ := {(p, vk)}7_, @ (1, v)-g-matching (standing for generalized
matching) if it is a (u, v)-matching for which the first condition of the matching is relaxed
(see Definition 2.3). That is, paired submeasures p; and v don’t need to have the same
mass in a g-matching. We can define sep(y) and a g-triple (r, ¢, Z) in the same way as
for matchings (see Definition 2.5). We denote the set of all (i, v)-g-matchings by G, ...
Given a (u, v)-g-triple (r, ¢, Z), we define

drigz (1, V) ZWWW’C*(SM +I( Zuk) + I (”_Z k) +277,

where W is the generalized Wasserstein distance, defined in (2.11). We claim that
dg (N’a V) = inf_‘ dr,w,f(u’ V) = iIlf_‘ dr,¢,i(U7 V) = d(,u7 V)'
7,0,% 7,¢,%
0eGu,v PEP, v

The inequality d(u,v) > d4(p, v) is obvious because every (u,v)-matching is a (y,v)-g-
matching. To see the reverse inequality, let us take any € > 0 and choose a g-triple
(r, = {(1r, vk)}7_1, @) such that d,, z(pt,v) < dy(p,v) + €. For each pair (ux, 1), there
exist submeasures ji;, < pr and 7, < v such that they have the same mass and

W (e, vie) = W (i, ) + [l = fil| =+ [l — 2]l
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Now we consider a triple (r, ¢ = {(fix, 7)}, ). Then we have
drg(isv) = Y Wi o) + 1o (p = > ) + I (v = Yoo ) +277 (38)
k=1 k=1 k=1

and by the subadditivity of 7,

L (=) < L= )+ 1 (D s =sie) < L (=3 s )+ 3 e = jiell . (3.9)
k=1 k=1 k=1 k=1 k=1
Plugging (3.9) into (3.8), we obtain that

dr,q&,f(/fw V) < dr,ap,i‘(ﬂa V) < dg (/147 V) + ¢,

which completes the proof.

3.3 Continuity of the conditional update map

In this section, we prove that T': (X, d) — ('P()?), W) is continuous. In our proof of
continuity, we follow the general strategy used in [7]. Some elements of our proof in the
general continuous setting have appeared in [11] for a Gaussian setting. We begin with
a useful lemma.

Lemma 3.2. Let

A= PV e Ndu) + (1 — ||| ) e, (3.10)
NxR4

where Y 4 X. Then, for any p > 0,
EA? < 9P oc(=pB)
Proof. We consider two cases. If ||| < 1/2, then by Jensen inequality,
EAP < <(1 _ Hun)ec(ﬁ))ﬂj < 9P (EeﬁY(l,O))—P < PRe—PBY (1,0) — 9pc(—ph)

If ||u|| > 1/2, then again by Jensen'’s inequality,

EAP < E( / eBY (W) 4 A(du))
NxR4

, A
<R[ e i)
NxR4 [l
_ A
= ||| P€C(—pﬁ)/ px (du) < 2Pec(=PP), 0
nxre (4]

Proposition 3.3. 7 : (X,d) — (E()?),W) is continuous. That is, for any € > 0, there is
0 = 6(¢) > 0 such that for u,v € X,

dlp,v)<dé = W(Tu,Tv) <e.

Proof. Given representatives u = (a;),v = (v;) € X, let i = (&;), 7 = (¥) be X-valued
random variables with laws T'u, Tv, respectively. Since

W(Tp, Tv) = min Ed(j, 0), (3.11)

where the minimum is taken over all couplings of (/i,”), our goal is to construct a
coupling which makes Ed(ji, ) as small as possible.
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Let € € (0,1) be given. We will determine 6 = d(e) > 0 later. If d(u,v) < ¢, there is a
triple (r, ¢ = {(s, vi)}p—1. @ = (@1, -+ ,x,)) such that

dy.p.z(p,v) < 0. (3.12)

Recalling that M is the radius of dependence of the random field X (1,-), we may assume
§ < 27M so that r > M.

(Part 1) We first assume that for each k, there is at most one j = j(k) such that S,,, = {k}
and the same condition holds for v. By rearranging the order of («;), (y;) and translating
each v; if needed, we may assume S, =S5, ={k}for1 <k <nand &=0.

Let us use the same environment Y to define &;, 4; as in (3.4). In addition to A
defined in (3.10), we introduce

B= / PV Wy x Xdu) + (1 — ||v]| ) e, (3.13)
NxR4

ot (dz) = Y %) oy % A(dx),
vi(dx) = Y BTy, w A(dx).

Then, we can write &; = o (dz)/A, 4 = v/ (dz)/B due to (3.4). Similarly, let us define

pi(da) = e? 50 e w Mda), i, = pj/A, (3.14)
vi(dz) = PV B0y« N(dz), D, = v}/B.

Choosing a ({1, ©)-g-triple (r,¢ = {fix, 2% }}_1,0), we have

n

[éWuk,uk + 1 (@ zn: )+ L= ) +27], @5

k=1 k=1

(Part 1.1) Upper bound for E )" W(/}k, Uk)
We first observe the generalized Wasserstein distance terms.

Vi o) — W (P Ve < gy ((He Ve Vi Vi
EW(uk,uk)—EW(A,B>_EW(A,A>+EW(A B)

1 A-B
< B (i) + B | 2L . 3.16)

Summing over k gives

A~ BI Z vl

A - B
A

Z :U’ka k +E

W(/u'ka k) +E

o
(]
E)
B
$
N

IN
=
=
M: i

E
Il
-

n

g(EA2)1/2<Z[EW( i)+ [E(AB)2]1/2>. (3.17)

k=1
We need to estimate all the terms on the right-hand side of (3.17). We start with
EW (g, vi0).-
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(Part 1.1.1) Upper bound for E[W(uz, vi)?] 1/2
We observe that the stationary process (ewy(c”))mgw is uniformly integrable and by

the path continuity, a |lilrn efY (@) = ¢8Y(0) almost surely. It follows that (e®Y(*)), g4 is
x| —0

Ls-continuous, i.e.,
lim E(e’BY(I) — e’BY(O))2 =0.

|z|—0

Therefore, there is §; = d1(¢) € (0,1) such that
lz] <6, = B(PVE) PV 02 2

Let pj, = pr * A, v, = v, * A. Let m, be the optimal coupling of (px,vx) and 7, be the
optimal coupling of (y},,v;,). One can check that

W (e, vk) < Wk, vi)
by considering the following coupling of (y},, v},):
o (dz, dy) = / AMdw)m (d(z — w), d(y — w)).
weR?

Since ||ux | (e?Y @ A Y )7l is a unnormalized sub-coupling of (i}, vf), i.e.,
el [ 7N O edy) < i), N [ €O A Omid, ) < ;)

we can use it to estimate

W (i vit) < k| /dEuc(xay)(eﬁY(w) APV W)l (dx, dy)

il [ (&7 = Y NPV o, dy)

il [ (270 Y 7 YO o, dy)

= [l /dEuc(x’y)(66Y(x) A PO (da, dy) + ||| / |V — YW (d, dy)

< [lpx /dEuc(x,y)eﬂy(z)ﬂk(dx, dy) + ||| / [P — YW (dx, dy).
Therefore,

EW (uj,, vi)?
2 2

B ([ doaane i dn) +B ([0 - O pni o,y ]

< 2l 26 [t ) . dy)

< 2 ]2

+ 2||/‘k|‘2/E|eﬂY(x) - eﬂY(y)‘g(ﬂ\fE*MZ& + ]l|r*y\<51)7rl/c(dx’ dy)
< 2| ue 2 [ec(zg)W(Mkka) +4ec(25)W(Mk,Vk) +62}
|| [ (101

Taking the square root and summing over k, we conclude that there is a constant
Cp = Cy(B) > 0 such that

S IB i < o[ 4. .19

k=1
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(Part 1.1.2) Upper bound for E(4 — B)?
To estimate (A — B)?, let us define

V() = PY (W) _ 66(,8)7
p = (aj) ::,u—Zuj,VS:('yj) 2:V—ZV]'. (3.19)
j=1 j=1
One can write
Ame® = [ Ve, B-e® = [ Viaw ),
NxR4 NxR?

and therefore

(A—B)? = </}NXW V(u)p * Ndu) — /}NXW V(u)v * A(du))2
<3 in:l </Rd V (k, z)px * Mdzx) — /Rd V(k, ) * )\(dx))] 2

+ 3</]N><]Rd V(u)u * A(du))2 n 3(/}NXW V(u)v® * /\(du))Q. (3.20)

By the independence of {V/(i, o)}iE]N, we see that

2
E (/ V(k,z) s * A(dz) — /]Rd V(k,x)vg * A(dx))]

V(k,z)yy * )\(dx))

NgR

M+ 11-

E ( V(k,z)pg * A(dzx) —
R4 R4

* * 2 " T * *
E([luill — [lvil)” <Y BW (up, vi)>. (3.21)
k=1

S
Il
-

Denote cg(z) = E[(eﬁx(m) — ec(®) (ePXO) — ec(ﬁ))}. Notice that cg(z) < e“?9) for all

x € R%. Let us now give an upper bound for the second term in (3.20):

B( [ Viou ) ZE(/ G a)as * M(d)’
= ZE/]W (, 2)V (j, &) (a5 * X\)**(dw, d7)
= Z/}Rd)z (¢ —&)(a5 * \)**(dz, d). (3.22)

One can see that for any a € M<; and r > 0,

IasX) = sup [ [ g = soa@rte - ) = swp [[ fie+y- soaldrd)

.L()E]Rd fL‘oeRd
< / ( sup /fr(x +y-— xo)a(dy)>)\(dm) = I.(a). (3.23)
.’EoERd
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We recall that M is the radius of dependence of the potential and » > M. Therefore,
/ cp(x — &) (af * N\)**(dw, dF) = / cp(z — &)(af * ) **(dw, d7)
(R4)2 le—F|<M
< e°(28) / (af * N2 (dx, dz) = e°F) / aj * A(Br.(z))aj * A(dx)
lz—Z|<r R4

<8 sup a‘; * )\(Br(a:))/ (a‘; * A)(dz) < ec(zﬂ)lr(a‘; * ) Hozj” < PP Ha;H .
z€R? R4
(3.24)

Combining (3.22) with (3.24) gives
2 o
E(/ V(u)p® * A(du)) < Z P ||onSH < (P, (3.25)
NxR4 J=1

The same upper bound holds for the third term in (3.20). Plugging (3.18), (3.21),
and (3.25) into (3.20), we obtain

[E(4- B < ﬁ(iEVV(u;z, vi)? +2e205)
k=1
n 1/2 5
(kz_l (EW v ) +e6<2ﬁ>/2\/25> < 01(,/6—1 —l—e), (3.26)

where C; = C1(f) > 0 is some constant depending only on S.

(Part 1.1 Conclusion) Now Lemma 3.2 and relations (3.17), (3.18), (3.26) imply there
is a constant Co = C5(S) > 0 such that

[ZW uk,yk)} < 02( 0 ) (3.27)

k=1 o
which is an estimate of the first term in (3.15).

(Part 1.2) Upper bound for EI, (,1 -y ﬂk)

Let us estimate the second term on the right-hand side of (3.15). Since r > M, we
have

2
< (EA2)1/? [E(sup/ gr(u— ug)e?Y W s « )\(du)) }
NxR4

1/2
< 2e“=20)/2 | B sup </ gr(u — ug)?p® * )\(du)/ 20V (W) 5 4 A(du))}
INxR4

R4

1/2 1/2
< 2¢(=28)/2 [E/ e2BY (W) 5 )\(du)} (sup/ gr(u — ug)p® * /\(du))
INxR4 NxR4

uo

< 2e(e(=20)4e@EN/2 [ (145 5 N)Y/2
< 2ele(=26)+c(26))/2 ]T(HS)l/Q < 2ee(=28)+c(28))/2, /5 (3.28)

where we used (3.23) in line 6. The same upper bound holds for EI, (ﬁ -3 ﬁk)
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(Part 1 Conclusion) Finally, based on (3.11), (3.15), (3.27) and (3.28), we conclude
that there is a constant C3 = C3(3) > 0 such that

W(Tu, Tv) < Ed(ji, ) < 03(\/5T + e).

1

Choosing § = min(d;€?,2~M) and replacing ¢ with ¢/(2C3), we complete the proof.

(Part 2) We now relax the assumption that oy, v, are minorized by at most one p;, v; for
each k, respectively.

Our goal is to reduce the problem to that studied in (Part 1). To that end, we will
find 4/ and v/ in X such that

e Ty’ and TV are close to T and Tv, respectively,

e 1/ and 1/ satisfy the conditions of (Part 1), i.e., (i) and () are submeasures (as
elements in M<,) of mutually exclusive orbits in p/ and »/, respectively.

First, we choose R > 0 such that \(Br(0)°) < e and decompose )\ into central and
exterior parts:
)\ = ]]'BR(O))\ + ﬂBR(O)CA = )\1 + )\2.

Recalling that n and (u;)_; were defined just before (3.12), let us consider w o=
(o) € X defined as follows:

i, ’LS'H/,

/
o = .
v Oj_p — E: Mg 1>,

Jinj <oy _p

where we view ; as a subprobability measure on R¢ instead of IN x R¢. In other
words, we set the first n layers ()", in ' to coincide with (u;)? ,, while the remaining
layers (a});>n11 are obtained from p — >°;'_, ui via a shift by n layers. Regarding
the interpretation of uy, we refer readers to Remark 2.6. We also define a function
J:{1l,---,n} > Nby

M <o & J(/ﬂ) =1

We denote by ;' an X-valued random variable whose law is Tu'. To estimate
W(Tu, Ty'), we need to introduce a coupling of (f, ). To this end, let Y,V be in-
dependent random fields with the same law as X and let us use Y to define . We fix j
in the range of J. For k € J~1(j),

Upg={z €R%: x € Bgr(y) for some y € supp(px)}.

If we impose § < 2~ max(MR)=R (e  r > max(M, R) + R), then by the definition of a
(u, v)-triple, for all k # I,

dist (supp (i), supp(p)) > sep(¢) > 2(max(M, R) + R),

which implies that rgé? dist(Uy,U;) > 2max(M, R) > M. Due to the M-dependence of

Y, there is a coupling between Y (4, -) and i.i.d. copies (Y(k))kej—l(j) such that for each
ke Jj),
Y(j,z) = Y®(z) VoeU (3.29)

(we refer to Lemma A.1 in the Appendix for a precise statement.)
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We now set
Y (k) 1<k<
Y'(k,) = { "

S\ Vik,) k>n,

and use it to define ji’.
Combining this with (3.29), we have

Y(J(k),z) =Y (k,z) Vz € Uy. (3.30)

Similarly to (3.14) and (3.10), let us define y;}’, i}, 1* and A’ with the environment Y’
and introduce for j € {1, 2},

piny = D g x n (da), m” i /A'

Choosing a (fi, ii')-g-triple

r

o = 57 p = (ﬂk,laﬂ%,l)?:h f = 0) (331)
gives
n n n
W(TMa T/-/) < Ed(ﬂ, ﬂ/) <E |: Z W(Uk 1 /’Lk 1 +IT0 Z +IT0 ﬂ,llc,l)+2_roj| :
k=1 k=1 k=1

(3.32)
We estimate the first term on the right-hand side in (3.32). Similarly to (3.16)
and (3.17),

B W(jia. fih) < (BA) (Z (B (.1, 10)2] 2 + [B(A - 4')?] 1”) . (3.33)

k=1 k=1

It follows from supp(ux * A1) € Uy and (3.30) that

NZJ = Nzl,l P-as.,, = W(M;;,DHZ/J) =0,

and
’ 2 ! 2
E (/ |el3Y(J(k),w) _ BY (k) ’/Uc " )\(dx)) —E (/ ’eﬂY(J(k),w) —ePY (k,w)"uk % )\g(dib)>
, 2
< gk * A2l E/ (eﬁy(‘](k)’x) — AV (k’z)) fe % Ao (d) < 2¢°C8) || ||? €. (3.34)

Similarly to (3.20), we have

" 2
(e <337 [ (@0 Y0
k=17 R

+ 3(/1de V() A(du))2 + 3(/}NXW V() * )\(du))2, (3.35)

where V/(u) = /Y (®) — ¢¢®) and p* = ;' — 3" i, as in (3.19). Plugging (3.34) and (3.25)
into (3.35), we have

E(A— A)? < 6P (2 + 6). (3.36)
Plugging (3.34) and (3.36) into (3.33) and using Lemma 3.2, we obtain
n
EY Wi, i) < 2eCC20HEN2. (e 4 V). (3.37)
k=1
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As for the I,, terms on the right-hand side of (3.32), we repeat the computation of (3.28)
to obtain

Bl (=Y ) SBL (5= fu) + BL(D iz
k=1 k=1 k=1
< 2¢(c(=2B)+c(28))/2 |:Ir(,us " /\)1/2 L (S )\2)1/2
< 9e(c(=28)+c(28))/2 (\/5 + ﬁ) (3.38)

Combining (3.32), (3.37), (3.38) and recalling that 27" = 2-7/2 < /5 due to (3.31)
and (3.12), we conclude that there is a constant C' > 0 such that

W(Tu, Ty') < 2e20+eCON/2 (\fG(e +V5) + 2(V6 + Ve)) + V6 < Ce

whenever § < min(Jpe?, 2~ ™ax(M,M)=M) The same result holds for v so that there is v/
such that W(Tv,Tv') < Ce. One can check that d, ¢ (1, V') = dy ¢ (1, v) < 6, where
¢ = {(a},v})}*_,. Thus, (Part 1) can be now applied to estimate W(T'y/, Tv'). Finally,

79

the triangle inequality
W(Tu, Tv) < W(Tu, Tp') + W(Tu', Tv') + W(TV' , Tv),

completes the proof in the general case. O

3.4 Lifting the update map

We discussed in (3.7) that Tv(du) = T'(v,du) can be understood as a transition
kernel for the Markov chain (p;);>o of the endpoint distributions of random polymers.
Integrating I'(v,du) over the initial conditions v, we can extend T to an operator 7 on
PX):

Té(dp) = /X T (dp)e(dv). (3.39)

Therefore, 7 maps the law of p; to the law of p;41.
Proposition 3.4. 7 : P(X) — P(X) is (uniformly) continuous
Proof. Let ¢ > 0 and &, &, € P(X) be given. We would like to show that there is § > 0

such that
W(E,&) <8 = W(T&,TE) <e

By Proposition 3.3, there is 4; > 0 such that
d(p,v) <6 = W(Tu,Tv) <e€/2.

Let us assume W({1,82) < 6 := d1¢/4 and let TI(du, dv) € P(X?) be the optimal coupling
of (&1,&2). Moreover, for v € X, let II, ,, be the optimal coupling of (T'x, Tv). Then, one
can check that

I (dn, dr) = /~ 11, . (dn, dr)II(dp, dv)
XXX
is a coupling of (7&;, T&2). Therefore,
W(TE, ) < [ dln T @n,dr) = [ o, 7)1, a1, )

= /W(T,u,TV)H(du,dV) = /W(Tu,TV)(]ld(,W)Z,;l + La(pvy<s, ) 1(dp, dv)

2 € 2 €
< —/d(,u,u)l‘[(du,dl/) +-=—W(,&%) + - <e
01 2 01 2
In the first inequality above, we used the fact W(T'u, Tv) < 2 which follows from (2.19)
and (3.1). This completes the proof. O
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Remark 3.5. Based on the definition of 7, one can readily check that Tv = 7§,. There-
fore, (3.39) can be rewritten as

Té(dp) = /X T6, (dp)é(dv),

and by iteration, one has that for 7 =T o...07,i>1,

Ttdn) = [ T (ds(an). (3.40)

4 Convergence of empirical measure

This section is an adaptation of Section 4 of [7] to our general setting.

4.1 The convergence to fixed points of the update map

Let us denote the empirical probability measure of the endpoint distributions on X by

n—1
1 ~

The goal of this section is to study the asymptotic behavior of v,,. We will prove that v,
converges to a set K of fixed point of 7 and introduce an “energy functional” R which
maps ¥, to a value close to the quenched free energy F,,. The functional R allows us to
improve the former result by replacing K with a subset Ky of X with the minimal energy
state.

Proposition 4.1. Asn — oo, W(¢,, T¥,) — 0 P-a.s.

Proof. We use martingale analysis similar to that in the proof of Proposition 4.1 in [7].
Let
L={h:X—R:|hx) —h)| <d(u,v) forall u,veX, h0)=0}

and

=1

n—1

Using £ (8(py,pn) + 2= O(ps.pr)) @S @ coupling of (¢,,1,) and applying (2.19) we conclude
i=1

that W (¢, 9!) < 2/n. Therefore, it suffices to prove that

W, Ttn) — 0.

It follows from (2.12) that

W, Tibn) = sup Lnl),
hel n
where -
Ma(h) = > (R(pisn) = Elh(pis1)41)
1=0

is a martingale with respect to the filtration (¥,),>1. Since |h| < 2, we can apply the
Burkholder-Davis-Gundy inequality to see that there is a constant C' > 0 such that

n—1

2
EM, (h)* <CE <Z (h(ﬂz'+1) - E[h(Pi+1)|%})2> <16Cn?,

=0
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4
which implies E(Mn(h) /n) < 16Cn~?2 and hence, by the Borel-Cantelli lemma,

A

n—00 n

=0 P-as. (4.1)

On the other hand, we observe

|h—h', <e€

‘Mn(h) M|y

which tells us that (M, (-)/n),>1 is an equicontinuous sequence of functions on £. By
the compactness of £ and Arzela-Ascoli theorem, the limit in (4.1) is uniform in h € L,
which completes the proof. O

Proposition 4.1 suggests that (¢,,),>1 will be close to the set of fixed points of 7 as n
becomes large. We denote the set of fixed points of 7 by

K={¢ePX): T¢=¢}

Notice that K is nonempty since 7dp = Jo. By applying the same argument as in
Corollary 4.3 and Proposition 4.4 in [7], we can prove the following:

Proposition 4.2. Asn — 0o, W(¢,, K) := inf{W(¢,,§) : £ € K} — 0 P-a.s.

Proof. Suppose that W(i,,, ) - 0. Then, there is ¢ > 0 and a subsequence (¢, )r>1
such that W(4,,, ,K) > e forall k > 1. Since P(X) is compact, we may assume klim U, =
—00

1) for some ) € 73(/’? ), if needed, by choosing a further subsequence. On the other hand,

W, TY) S W@, ¥bn,) + W(tn, Ttbn,) + W(Tn,, TY),

and as k — oo, each term in the right-hand side converges to 0 due to the convergence
of ¢, , Proposition 4.1, and continuity of 7, respectively. It follows Ty = ¢, i.e., ¥ € K,
which contradicts the assumption that ¢, is e-away from K. O

Proposition 4.3. If € K, then £({p € X : 0 < ||| < 1}) =0.

Proof. Let{ € K and let pbe a X-valued random variable whose law is &. Let us suppose,
to derive a contradiction, that £({y € X : 0 < ||u|| < 1}) > 0. Recalling that 7' is the law
of the X-valued random variable i1 defined as in (3.6), we have, by Jensen’s inequality
applied to the concave function z — z/(x + (1 — ||u||)e®),

Jioema €77 p o A(du)

E|jil| = E , |
Joema € @ s Mdw) + (1 — ] e<(®)
< Ef]Nx]Rd eﬁY(u) oo )\(du) ec(,ﬁ) HMH B H H
= E Jyeme @ s Mdw) + (1= [ules® = e

where identity holds if and only if f]NX]Rd ePY ) 1 % \(du) is a constant P-a.s. However,
since Y is non-degenerate, we have a strict inequality. Combining this fact and the
assumption that we made, we see that

JanTeen = [[ il ruaean < [ [ a1 Tuamen = [l g,

which is a contradiction since T¢ = &. O
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4.2 Variational formula for the free energy

We observe that

n—1 n—1
1 1 Z; 1 itz
Eu(B) = ~log Zu(B) = — D log == = — > "log (/Rd PXOHLT) b, /\(dw))
i=0 ¢ i=0 )
Conditioning the i-th term on ¥;, we have
1 n—1
EF, = — ER(p;), 4.2
- ; (pi) (4.2)
where
R(p;) :=E [log (/ ePX (L) ) )\(dx)) %} .
Rd
It is useful to extend this to a functional on X as follows:
R0 :=Blog ([ ™ Ouin@i - 0 ue?), ned @)
NxR4

where Y has the same law as X.

Proposition 4.4. Let R : (X,d) — (R, |- |) be defined by (4.3). Then R is well-defined
and uniformly continuous.

Proof. It is easy to check that the right-hand side of (4.3) does not depend on the choice
of the representative of ;. We need to prove that R(p) is finite. For any positive random
variable K, one has

|Elog K| < max{log EK,log EK '} = log (max{EK,EK'}) (4.4)

by Jensen’s inequality. On the other hand, we see that
B[ [ e + (1= ful)e®] =) 4.5)
NxR4
and by Lemma 3.2,
-1
E(/ AV W) s Ndu) + (1 — ||MH)€C(8)> < 2e¢9), (4.6)
NxRd

Combining (4.4), (4.5), and (4.6) gives |R(u)| < 0.
We now prove the uniform continuity of R: given any ¢ > 0, there is § = d(¢) > 0 such
that
d(p,v) <6 = [R(p) — R(v)| < Ne,

where N > 0 is a constant depending only on 5 and the law of X (1,0).
Let € > 0 be given. Let us define A, B by (3.10) and (3.13) and choose ¢ used in the proof
of Proposition 3.3 (see the last line of Part 1). Notice that for any « > 0,

1
|logz| < |z — 1]+ ‘f — 1‘.
T
Combining this with Lemma 3.2 and (3.26), we have
A A B
_ — < e - _
\R(1) — R(v)| ‘ElogB‘ < E‘B 1 +E‘A 1
< ((EB_2)1/2 + (EA_2)1/2) (E(A _ B)2)1/2 < =280,

which completes the proof. O
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Remark 4.5. We can apply Jensen’s inequality to (4.3) to obtain

R() < log B[ [ ¢ @y Adu) + (1 ]
—log | e s Mdu) + (1~ e = ().

Since Y is non-degenerate, the identity holds only if ||u|| = 0, i.e., © = 0. Hence, the
functional R attains its unique maximum at 0.

Proposition 4.6. The map R : (P(X), W) — (R, |- |) defined by

&= [ Riueldn). ¢ <P,
is uniformly continuous.

Proof. Let € > 0 be given and let N := max |R(u)|. It is sufficient to show that there is
neEX
0 > 0 such that

W(1,&) <0 = [R(&) —R(&)] < (2N +1)e.
By Proposition 4.4, there is 4; > 0 such that

dp,v) <dé1 = |R() —RW)| <e.

Set § = d1¢ and let II be the optimal coupling of (¢;,&;). Then, for any &, & € P(X) with
W(&1,&2) < 6, we have

R(E) - R(E)] < / IR(1) — R()|11(dp, dv)
/|R U (Laguwy >80 + Laguw)<s ) (dp, dv)
2N
s 5 d(p, v)IL(dp, dv) + € = TW@'I?&Z) +e< (2N + 1)e,
1 1
completing the proof. O

We can rewrite (4.2) as

nl

Z ER(p;) = E[R(¢n)].

In fact, not only the expectations but the random variables themselves are close:

Proposition 4.7. Asn — oo, F,, — R(¢,) > 0 P-a.s.

Proof. Let

Vi= XL b, x Ndx), U = log V.
Rd

We have E[U;|¥%;] = R(p;) and therefore

n—1
My = n(Fu = R(¥a) = Y (U: ~ E[UI4))
=0
is a martingale.
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We claim that E(U; — E[Ui\%])4 is bounded. It suffices to show that EU} is bounded.
To this end, we observe that

EV? < E/ 2BX (L) 5y Adx) = °(28)
R4

Similarly, we obtain E[VZ_—2} < ¢¢(=28)_ Using the inequality (log z)* < 2% + 1/22, we have
EU! < EV2 + EV, 2 < ¢f8) 4 ¢c(=28),

Using the Burkholder-Davis-Gundy inequality, we obtain
n—1

EM? < OQE(Z(UZ» — E[Ui\%])2)2 < On?,
=0

which implies E(M,,/n)* < Cn~?2 and hence, by the Borel-Cantelli lemma,

| M,

lim |F, — R(¢,)| = lim [Mn] =0 P-as,
n—o00 n— oo n

completing the proof. O

4.3 A representation of convergence of F, via R and 7

In this section, we explore how energy functional R and 7 are related to the quenched
free energy F,,. First, we show that the limit of free energy can be understood as the
minimal energy state among the set K of fixed points of 7, see Theorem 4.8. This result
allows us to describe more precisely the asymptotic behavior of empirical measures v,
previously stated in Proposition 4.2.

Theorem 4.8.
p(B) = lim F, = inf R(§) P-a.s.

n—o00 Eex

We already discussed in (1.4) that |F,, — EF,| — 0 almost surely and in L, for all
p > 1. Hence, it is sufficient to show

n—oo

lim EF, = inf .
im E12}CR(£)

To that end, we need two following propositions.
Proposition 4.9.
liminf EF,, > inf R(¢) P-a.s.
£ek

n— oo

Proof. By Proposition 4.2 and 4.6,

n—oo

liminf R(v,) > inf R P-a.s.
minf R(v,) = nf R(S) Peas
The conclusion follows from Proposition 4.7 and Fatou’s Lemma. O
Proposition 4.10.
limsup EF,, < inf R(¢) P-a.s.
n—00 ek

Proof. We claim that for any x(*) € X and n € N,

n—1
> R(T'6,0) > Elog Z,,. 4.7)
1=0
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First, let us use this claim to derive the proposition. For any & € P(A? ), it follows
from (3.40) that

R(T'E) = / R(v)T€(dv) = / / R0 T 6,,(dv)€(dp) = / R(T'6,)€(dp).

Moreover, if £ € K, then (4.7) implies

n

—1 n—1
RO =5 S RO = [ LS RIT6)EN) = [ =22 ¢ = BF,.
i=0 1=0

(2

Taking infimum over £ € K and lim sup, we complete the proof.

n— oo

Let us prove the claim (4.7). For i > 1, let u(Y) be defined inductively by

eﬁY(i)(u)M(ifl)  A(du)
f]NX]R,d eﬁY(i)(u)M(i—l) * A(dv) T (1 _ ||/.L(7_1)||)€C(’8),

1 (du) = (4.8)

where (Y ()) are i.i.d. random fields whose law is the same as X. By induction, we see

that the law of x() is 76 ,«). Hence,

RT'8,0) = Elog ( / L0 X (du) + (1~ |u@])e?)) = Elog Dis,

NxR4
where
(1) (4 i— i— c
D= [ MU0 A du) + (1~ Y et
INxR4
- / B P (@) D (dv) + (1 — [ )e®, i>0. (4.9
(NxR4)2

Here, we can consider P} as a probability measure on (IN x R%)* by extending P’ defined
in (3.2) as follows: for any ug = (mg,zg) € IN x RY,

P]go (dula T 7duk) = ]]'{’In():ml:u':mk}P,?U (dxh s ,dxk)7

where u; = (mj,z;) € N x R?and j = 1,2,--- , k. Notice that

n—1 n

> R(T'6,0) =Elog [ [ D:.

i=0 i=1
Iterating (4.8) fori =n—1,---,1, we have

/ eﬁy(n)(un)Pl’U'"71(dun)’u(n_l)(dunfl)
(NxR4)

_ 1 / eﬁ(y(")(“")JrY(n_l)(“"*1))P2u"_2(dun_l, dun)'u(nf2) (dun_g)
D, 1 (NxR%)3
1 n .
— (0) (@) (0. uo ( Ji7
S — i (duo)/ exp ( BY D (y ))P (d@), (4.10)
Hi:f D; JNxRd (NxR4)n ; vy
where @ = (uy,--- ,u,). Integrating over w in (4.8), we have
Loy = et
Iz D, :
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Iterating this relation fori =n —1,--- ,1, we obtain
11— YNEZ,
(1 _ ”u(n—l)ll)ec(ﬂ) — ( H:u ”) ( |7|llljl ”) ) (4.11)
H D; [I D;
i=1

Combining (4.9) for : = n, (4.10), and (4.11), we obtain

n

HD /<°) dug) /exp(ZBYm )P“U(du) +(1— [uOEZ

and by Jensen’s inequality,

10gHD >/ )(dug) log (/exp (ZﬁY )P“O(du)) (1- ||p(0)||)logEZn
> / 119 (duy) log ( / exp(ZBY” )P“ﬂ(du)) (1= Elog Z,

= /,u(o) (dug)log Zn,uy + (1 — ||,u(0)||)Elog Zy. (4.12)

Since (Y@ (j, )) | is stationary in z, log Z, ., 2 log Z,, for all u € N x R¢. In particular,
ElogZ,, =E log Zn Taking expectation on the both sides of (4.12), we obtain

n—1

S R(TS,0) = [logH D; } / ) (dug)Elog Z, + (1 — [ ?|)Elog Z, = Elog Z,,
i=0
completing the proof of (4.7) and the entire proposition. O

Let us denote
Ko ={& € K:R(&) = gg,fCR(f)}*

Since R is continuous on the compact space P(z’? ), the infimum is attained and K, is
also compact. Proposition 4.2, Proposition 4.7, and Theorem 4.8 suggest that one can
strengthen Proposition 4.2 by taking a subset Ky of K.

Theorem 4.11. As n — oo, W(¢,,,Ko) — 0 P-a.s.
We omit the proof. It is identical to that of Theorem 4.11 in [7] and is based on

compactness of I, continuity of R, Proposition 4.7, and Theorem 4.8.
5 Characterization of high/low temperature regimes

5.1 Existence of phase transitions
We recall that the critical inverse temperature . was introduced in Theorem B.

Theorem 5.1.
(a) 0< B < B, then K =Ky ={do}.

(b) If 8 > B., then K has an element other than 6o. In this case, {(U) = 5({u cX:
|pl| =1}) =1 forall £ € K.

The proof below follows the proof of Theorem 5.2 in [7] closely.
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Proof. 1t is sufficient to prove the inverses of (a) and (b) because their hypotheses are
complementary. We recall from Theorem B that 0 < 8 < (. is equivalent to A(3) =
c(B) — p(B) = 0, where A, ¢ and p were defined in (1.5), (1.3) and (1.2), respectively.
If K has no elements other than do, i.e., £ = Ky = {do}, then Theorem 4.8 tells us
that
p() = lim EF, = inf R(€) = R(d) = R(0) = ¢(5),

n— oo e
which implies 0 < 8 < ..
Let us assume that there is an element ( € K which is different from é9. From
Remark 4.5, we have R(u) < R(0) for all i # 0. Combining this with the fact (({0}) < 1,
we see that

p(8) = lim EF, <R(C) = / R(u)C(dp) < R(0) = c(B).

n—oo

which implies g > g..

To see that {(U) = 1 for all { € Ko in (b), fix € £\ {0} and let us consider a
conditional probability measure on X given by
C(ANU)

¢(U)

We claim that {y € K. To prove this, first, we notice that due to the presence of
(1 — ||z]De® term in the denominator of (3.6),

Cu(A) = for all Borel A C X.

pwel = TuU)=1, pu¢U = TuU)=0.

Therefore, for any Borel A C X,

TCo(A) = %U) /U Tu(A) C(dp) = @ /U Tu(ANU) C(dy)
_ 1 _sAnt) _
-7 /fTu(An U)Cld) = =y = wlA)

which proves the claim.
If ((U) < 1, then

_ 1 _ 1-¢(U)
R(G) = 27 L BOctaw = [ Ruictam + 5 [ Rucan

< / R(u)C(dp) + (1 — CU)R(0) = R(O),
U

which implies that ¢ € Ky only if ((U) = 1. O
Lemma 5.2. For anyr > 0, the map I, : X - [0,1], defined in (2.14), is continuous.

Proof. Let e > 0, r > 0 and p € X be given. We need to show that there is (¢, 7) > 0
such that
d(p,v) <0 = |L(p) = L(v)| <e

We set § = min(e/2,27") and take any v € X such that d(u,v) < é. There is a (i, v)-triple
(ro, ¢ = {(pw>vi)}7—1, ) such that d,, 4 z(1,v) < 8. By the choice of §, we have ry > r.
From the subadditivity of I,., we have

I ( ; Mk) < I(w)

IN
-~
—
-
=
=
N—
+
&~
VS
=
|
-
=
=
N———

k=1
n n n
IT<ZV;C)SIT(U)SIT(ZV]C)—F[T(V— l/k).
k=1 k=1 k=1
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It follows from sep(¢) > 2r¢ > 2r that

Ir(}éﬂk) —~ Ir(ivk)‘ = ’Sl]ipjr(/lk) —Sgpb(vkﬂ.

k=

Combining all these estimates, we conclude that

n

ROSTARVAOSIAIETT (APED SISRACED S8)

k=1

1Ir (1) = I (v)] <

< ‘ st;p]r(,uk) — Sl}ipb(yk” +46 < Sl]ip |Ir(mc) — Ir(uk)| +96

<sup W (g, vg * 0z, ) +0 < 20 < ¢,
k

which completes the proof. O
Theorem 5.3.

(@) If0 < B < B, then

(b) IfB > f., then there is ¢ > 0 such that
1 n—1
lim inf — Z sup p;(Bi(z)) > ¢ P-as.

n—oo N =0 z€R4

Proof. By the (uniform) continuity of the map ¢ — [ I,(p)¢(dp) on the compact space
P(X), for any € > 0, we can choose some § > 0 such that

WK <5 =t [LGedn) -e< [ 1 () < sup [ gt +e

Theorem 4.11 implies that

inf / L(1)€(dps) < liminf / L, (1) (dp)

£eko n—o00
< limsup / Iy 1)) < sup / L ()E(dp). (5.1)
n— 00 eko

If 0 < B < B, (or equivalently Ky = {do}), we have sup [ I;(p)¢(dp) = 0 and together
£eko
with (2.15), we obtain

n—1

lim sup 1 Z sup p;(Bi(x)) < limsup/Il(u)wn(d,u) =0.

n—oo N i—o vERC n—oo

If 3 > ., by Theorem 5.1, every ¢ € K, is supported on {y € X : ||u|| = 1}. Therefore,
we have

/Io(u)f(du) >0 forall f € K.

This and compactness of Ky imply that there is ¢ > 0 such that

inf / Io(W)E(dp) > c.

£eko

Combining this with (5.1) and (2.15) completes the proof of (b). O
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6 Asymptotic clustering

6.1 Definitions and sufficient conditions

Definition 6.1. The sequence (p;);>o of the endpoint distributions is said to be “asymp-
totically clustered at level r > 0” if for every sequence (¢;);>o tending to 0, we have

n—1

.1 .,
nl1_>n;0 - ZO pi(Afi(r)) =1 P-as.,

where AS(r) = {z € R%: p;(B,(z)) > eVyrd} and V; is the volume of the unit ball in R.

Definition 6.2. We say that (p;);>0 is “asymptotically locally clustered” if for every
sequence (¢;);>o tending to 0, we have

n—1

nlggo - Z; pi(A;) =1 P-as.,

where A = {x € R¢: lirllﬁ)nf % > €}

Definition 6.3. We say that asymptotic clustering of densities holds for (p;);>o if every
p; is absolutely continuous with respect to the Lebesgue measure and for every sequence
(€;)i>0 tending to 0, we have

n—1

3 ]' €\
nl;n;OEZpi(Bi )=1 P-as.,

=0

where Bf = {x € RY: %(x) > e}.

Remark 6.4. If every p; is absolutely continuous with respect to the Lebesgue measure,
then, due to the Lebesgue differentiation theorem, clustering of densities is equivalent
to asymptotically local clustering.

The above definitions are Euclidean space extensions of the notion of of asymptotic
pure atomicity that was introduced first by Vargas in [41] and modified by Bates and
Chatterjee in [7] in their studies of endpoint distributions for discrete polymers. More-
over, asymptotic clustering at positive levels was studied in [11] still under the name of
asymptotic pure atomicity. We introduce the new term asymptotic clustering instead of
asymptotic pure atomicity to avoid a misleading image of convergence of the measures
in question to a purely atomic measure. Roughly speaking, (p;);>0 is asymptotically
clustered at level r if the mass of p; concentrates on few balls of radius r for large .

We state a sufficient condition for asymptotic clustering that is simpler to verify
because it is stated in terms of fixed ¢ > 0 instead of sequences (¢;);>0.

Lemma 6.5 (Lemma 6.2 in [7]). Let » > 0 be given. If for every c > 0, there is € =
e(r,c) > 0 such that

n—1

1
liminf = S pi(AS 1—¢ Peas., 6.1
im in n;p(u‘h(r)b ¢ P-as (6.1)

then (p;);>0 is asymptotically clustered at level r.

The proof of this lemma repeats the proof of Lemma 6.2 of [7] word for word. The
discreteness of Z? plays no role in this argument.
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6.2 Auxiliary functionals

For any € > 0, let us define f. : Ry — [0,1] by

0 for 0<1t<e,
fet) = %(t—e) for e <t <2,
1 otherwise.

One can see that f. is 1/e-Lipschitz continuous and can be interpreted as an approxima-
tion of a step function g.(t) = 1(2c 40 (t) for small e.
For any y = (;)iew € X and r > 0, let us define a functional D, on X x (IN x R%) as

1 |lu — ] 1 |z —y|\ T
D, - T | 1_ .
T('LMU) Vard /]Nx]Rd ( r ) (dv) Vard /]Rd ( r ) al(dy)7

where u = (i,z) and a™ = max(a,0). Comparing this with the definition of /,, one has
that

1
sup D,(u,u) < —I.(u).
uemfw (1, u) Vord (1)

We also observe that

| Dy (py ur) = Dy (1, uz)| < Vrd/‘ 1—71“‘) - (I—M)ﬁL’u(dv)

|U1—U2| i) < ]
- Vdrd - V,ﬂ‘d'H ’

so D, is 1/Vyr@*!-Lipschitz continuous in u. Using the embedding of M into X, we can
naturally define D, on M<; x RY. Combining (2.12) with the fact that y — (1— |z — y|/r)"
is 1/r-Lipschitz for every » € R¢, we obtain

1
|D(a, ) — Dp(y, )| < WW(OL,’}/), a,y € My, z € RY. (6.2)

Let us define a functional J, . : X — [0, 1] by

JT,E(N)Z/IN R feo Dy (u)p(du) Z/ feo Dy o, (x)aj(dx),

7j>1

where we denoted D, (u,-) by D, ,(-). J.. is well-defined on X due to the following
observation

/feODr,a*&y (x)(a % 0y)(dz) = /onDrya(:r)oz(dx), ace M, ye R<.

Proposition 6.6. For any r,e > 0, J, . : X — [0,1] is continuous.
Proof. Let € X and 6, > 0 be given. We claim that

€ Vard(r A1)

d(p,v) < 61 := min ( G

27 s ) = T )] < B2

Fix v € X satisfying d(u, v) < &,. Then, we can find a triple (r', ¢ = { (1, vg)}r_q, %) such
that v’ > 2r and d, 4 (1, ) < 6;. Let us denote

n n

S S /

W :M—E Wi, VU :V—E Vi, V) =V *0g,.
Jj=1 Jj=1
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Then, we have
|Jr,e(,uf)_ re SZ‘/fEODT/_L( Mk d’LL /fEOD’I“l/ )Vk(du)
k=1

+ / fooDn () (du) + / Fo0 Dy (u)* (du). 6.3)

In order to derive the upper bound for the first term in the right-hand side of (6.3), we
observe

‘ [ teoDentwmtan) = [ 5.oDr i)

= ’/fe (Dmuc (w) + Dy pupuy (u))Uk(d“) - /fe (Dnuk (u)),uk(du)
/Dru (W) e (due) /D”L w) p (du)
1

o1
< — I, d <
< o [ B < 0l < Sl

| /\

In the second equality, we used the fact that dist(supp(pk.), supp(ul)) > 2r' > 4r for
all I # k, which implies D,.,,_,, = D, ,s on supp(ux). Combining this with the triangle
inequality, we have

> [ 1eoDrstipntan) = [ geoDrptumatan)
201

< ;’/feoDr,uk () (dax) —/feoDr,uk(x)vk(d:c)' + g (6.4)

On the other hand, we can use (6.2), (2.12), and the 1/e-Lipschitz continuity of f. to
write

‘/onDT (@) e (dr) /fSODT v, (@)vg(dx)

‘ / FeoD ()11 () / foD, oy ()} ()

< ] [P wie )= [ 1D,y () ()

+] D @)= [ D (a1 )

1 1 ) 2 )
Sz / | Drjus (2) = Dy ()| pox(da) + WW(MWQ < WW(HM%)

Summing over k£ on both sides gives

2 261
Z‘/fEODTﬂR ,Uk dx /fEOD’r‘l/k I/k-(dx)‘ WZW /,Lk-,Vk) W

(6.5)
Let us estimate the second and the third terms in the right-hand side of (6.3).

[ teoDeutwmtian = [ oo Dy (d)
{u:D,,,, (u)>e}
< ({u € NxR?: Dyy(u) > €}) < p°({u € Nx R : u(By(u) > eVar®}).  (6.6)

Let C = {u € NxR?: u(B,(u)) > eVygr?}. Then, we can choose a finite number of disjoint
balls
C:{BT(ui):uite SZSN}
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N

such that every ball B,(u), v € C has non-empty intersection with |J B,(u;). The
i=1

disjointness of C gives N < ﬁ and

N N
C c | Bar(ui) € | Br(ws).

i=1

Using this and p* (B, (u)) < s (u®) < 6; for allu € N x R%, (6.6) can be continued as

N
S S S 5
/feoDr,u(u)M( (du) < w (C) < I (U BT’ (uz)> < N(Sl < GleT'd. (67)
i=1
Combining (6.3), (6.4), (6.5), and (6.7) completes the proof. O

6.3 Asymptotic clustering of polymer endpoint distributions

In this section, we prove the following theorem which is a reformulation of rela-
tions (1.6) and (1.8) in Theorem 1.1.

Theorem 6.7.
(@) If B > B., then for all r > 0, (p;)i>0 is asymptotically clustered at level r.
(b) If 8 < f., then for all r > 0, (p;);>0 is not asymptotically clustered at level r.
Moreover, for any r > 0, there is a sequence (¢;);>o tending to 0 as i — oo, such

that
1 n—1
Jim_ ~ ; pi(AS(r) =0  P-us. (6.8)

Proof. (a) Suppose 8 > .. OuNr goal is to show (6.1). To this end, for any r,e > 0, let us
define a functional 7, . on P(X) as

Trel€) = / Ty e (W)€ dp).

Notice that the continuity of J, . passes on to the continuity of 7, .. We also observe that
Jre(pi) = / Jeo Dy p, (z)pi(dr) < / feODnu(x)pi(dx) < pi(Ai(r)).
{@:Dr,p; (x)>€} (r)

Hence,

- Z/% AE Z %Z T,€ pz jr,e(wn)- (69)

i=0
On the other hand, for any ; € X with ||| = 1, we have hf(l) Jre(1t) = 1 because

p({w : Dyp(u) > 0}) = 1and Jp(u) > p({u : D, u(u) > 2€}). Using this along with
Theorem 5.1 (2), we obtain that for every £ € Iy,

llf% \7’)”,6(5) =1

Since each 7, . is continuous on the compact set Ko and (J,.¢).>o is monotone increasing
as € | 0, the convergence above is uniform in ¢ by the Dini’s theorem.
Let now ¢ > 0 be given. By the uniform convergence of (7, .)e>0, We can choose
e = €(r,c) > 0 such that
Tre(§) >1—¢ forall £ € Ky
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and, for such ¢, we can also find § > 0 such that
W Ko) <6 = Tne(Q)>1-c (6.10)

Combining Theorem 4.11, (6.9), and (6.10), we complete the proof of (a).
(b) Suppose 8 < 3. and let r > 0, € > 0 be given. We claim that

n—1

1 ]
Jim ~ ; pi(AS(r) = 0. (6.11)

To see this, we observe that for any ; € X and any u € A (r) ={velNx R? : u(B,(v)) >
eVyrd},

1 u—vl\*T 1 ]l,.u(v) B'r'u /
Do, (u) = V2 / (1_‘ o |) p(dv) > Vd(2r)d/ B (2> p(dv) = g«gTé'd:Zl > 2¢,

where €' = ¢/29+2. Therefore, we have
Tar )= fur0 Doy (wp(du) = p({Daru(w) > 2¢'}) > (AL (1)),
{Day. i (u)>2¢'}
which implies that
1 n—1 1 n—1
n Z Pz(AE(T)) < n Z J2r,e’(pi) = jzr,e’(l/]n)-
i=0 i=0

By Theorem 5.1 (a) and the continuity of 7>, ./, we conclude

n—1

1
nh—>ngo ﬁ lz:; Pz(As(T)) < j27',6/(60) =0.

Fix r > 0 and let us now construct a sequence (¢;);>o tending to 0 and satisfying (6.8).
By (6.11), we see that for each k£ € IN, there is Vi such that

for all n > N;.

T =

1 n—1 .
=D il ATE ) <
=0

We may assume Niy1 > N forall k. Sete; = 1 fori < Ny and e; = 1/k for N, < i < Ng41.
Then, we see that for each n € IN, there is k = k(n) such that Ny < n < N4 and hence

T =

%EMWMK%EMWWW<
i=0 =0

Since lim k(n) = oo, letting n — oo on the both side above completes the proof of (b). O

n—oo

6.4 Asymptotic local clustering of the endpoint distribution
In this section, we prove the following reformulation of relation (1.7) in Theorem 1.1:

Theorem 6.8. If 5 > ., then (p;);>0 is asymptotically locally clustered. In particular,
for these values of 3, clustering of densities (see Remark 6.4) holds if the reference
random walk step distribution A(dx) is absolutely continuous.

Before we prove this, we recall the Besicovitch covering theorem and its related
lemma which will be used later.
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Theorem 6.9 (Besicovitch covering theorem). There is a constant N,;, depending only
on the dimension d, with the following property:

Let F = {B,,(x,) : o € T} be any collection of open balls in R? with sup{r, : 0 € I} < oo.
Let us denote A = {z, : 0 € Z}. Then, there is a countable subcollection G of F such

that G is a cover of A and every x € |J B belongs to at most N, different balls from the
Beg
subcover G.

We remark that in [22], the lower bound and the upper bound for N, (Besicovitch
constant) were provided:

(2.065 + 0(1))* < Ny < (2.691 + o(1))%.

We now state a lemma which is based on the Besicovitch covering theorem.

Lemma 6.10 (Lemma 1.2. in [21]). Let a, v be Radon measures on R and define

lim nf AEE) if y(By(w)) > 0 forall v > 0,

+00 otherwise.

D v(z)=

Zu

Let € > 0 be given. Then, for any Borel A C {z € R : D a(z) < €}, we have a(A) <
ev(A).
Similarly to A$(r) and .AS, let us denote

(Br(m))

€ _ d . d € __ d .13 3 -
AS(r) ={z € R : a(B,(x)) > eVyr?}, A, ={reR%: hrﬁ%)nf Vrd > €}

for any o € M;, € > 0 and r > 0. By substituting v = m (Leb esgue measure on R¢) in
the lemma above, we obtain

a(A) < em(A4), V Borel A C (AL)°. (6.12)
Proposition 6.11. Let ¢, c,r > 0 be given and let us assume that o € M satisfies
alAg(r) >1—c (6.13)
Then, there is ¢; = €1(¢, ¢, r,d) > 0, independent of «, such that
alAs) >1—2c.

Proof. Let ¢ > 0 be given. For any ¢ € (0, 1), let us set s = (1 —t)/(Vgr?) and

1-—1¢
€1 = Se = W€. (614)
We will determine the value of ¢ later.
Let z € AS () and suppose a(AS N B.(x)) < ta(B,-(z)). Then, we see that
(B (z)) = a(AZ N B, (2)) + a((AF)° N Br(z))
<ta(B,(z)) + em((AS)° N Byr(z)) < ta(Br(z)) + seVyre.
In the first inequality above, we used (6.12). By (6.14), we have
V. d
a(B,(x)) < 204 — ¢
1—1t
which contradicts = € A (r). Therefore, we obtain
a(AS N B.(z)) > ta(B,(x))
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or, equivalently,
a((AZ)° N By(x)) < (1 = t)a(By (). (6.15)
Let us now apply Theorem 6.9 with F = {B,(z) : € A5 (r)} and A = A¢(r). Then,

we can find a countable subset A C AS,(r) such that G = {B,(z): = € A} is a cover of

At (r) and every = € |J B,(y) is covered by at most Ny balls from G. Therefore, due
yeA
to (6.15), we have

a((A9)°NAS(r) < @ ((Ai:)c nUJ va<x>)

z€EA
<> al(AZ) N Br(w) < (1=1) Y a(B(x))
zeA zeA
< Ng(1 —t)a (UB ) < Ng(1—t). (6.16)
zeA

Therefore, due to (6.16) and (6.13),

a ((AG)°) = a ((AQ) NAL(r) + o ((AF)° N (AL(r))°)
< Ng(1—t) + a((AL(r)°) < Ng(1 —t) +c.
Choosingt=1— & (s = m) completes the proof. O
Proof of Theorem 6.8. Suppose 5 > f3.. Let (¢;);>0 tending to 0 be given. For any ¢ > 0,
let us denote s = m and

Fo={i>0:pi (A7 (1) >1—¢/2}, F/ ={i>0:p;(AS)>1—c}.

By Theorem 6.7 (a), (p;)i>o is asymptotically clustered at level 1. This can be rewritten
as

lim —|F N[o,n—1) =1.

n—oo N

Since Proposition 6.11 implies F,. C F., the same relation holds for F, and hence

n—1
‘minf — (A > 1 — -
hnrglgéf - Z(:)pl(Al )>1—¢ P-as.
Letting c | 0 completes the proof. O

7 Geometric localization

Adapting the terminology from [7], we say that the sequence (p,,),>0 is geometrically
localized with positive density if for any § > 0, there exist K < oo and 6 > 0 such that

n—1

o1
h,{f_kgfgzﬂ{megs,x} >0 P-a.s., (7.1)
i=0

where

Gsxk ={aeM;: max a(Bg(x)) > 1— 6}
zeR4

If # can be taken equal to 1, then the sequence would be geometrically localized with
full density. A full density localization is an open question. In this section, we prove that
(pi)i>o0 is geometrically localized with positive density if and only if § > £,.
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7.1 Useful functionals
Given pu € X, we choose its representative y = (o;);en € X. To describe Gs k in the
language of (X, d), let us consider
Ws(p) = inf{r >0: I(u) >1 =06}, Vsx={peX:Wsu) <K}
Using (2.15) and the natural embedding of Ml into X, we obtain
s,k CVsx N{p € X ISu] =1, ||l =1} C Gs k41, (7.2)

where S, was defined in (2.2). We also define functionals

[l
G(p) = il = —_—
(W) =maxclleall, Q) =3 1=
€N
One can check that W, G and () are well-defined on X.

Proposition 7.1.
(a) Ws is upper semi-continuous.
(b) G is lower semi-continuous.
(c) Q is lower semi-continuous.

Proof. (a) Let p € X and € > 0 be given. Then, Iyy,(,)+c(#) > 1 — 6. By Lemma 5.2, there
is 41 > 0 such that

d(,LL, V) < 51 = |IW5(},L)+6(H’) - IW&(;L)-&-e(V)‘ < Ela

where € = 3 (Iw,(u)+c(1) — 1 + §). For such v, we obtain Iy, ,)+c(v) > 1 — &, which
implies
Ws(v) < Ws(p) + €.
(b) Fix p € X and 0 < €2 < G(u). We must show that there is ¢; > 0 such that

dlp,v) <e = GW)>G(u)—e.

Without loss of generality, we may assume ||a;|| = G(u). There is R = R(e2) > 0 such
that (Bgr(1,0)) = a1(Bgr(0)) > G(it) — €2/2 > €3/2. Choose ¢; = min(ez/2,27 ). Then,
assuming d(u,v) < €, there is a triple (r, ¢ = {(ur, V) }}_,, Z) such that d, 4 z(p, V) < €1.
Since sep(¢) > 2r > 2R, there is at most one p;, whose support intersects with Br((1,0)).

n
If there is no p;, whose support intersects with Br((1,0)), then I, 1 0y < pt — > pge- It
k=1

follows

drg.z(p,v) > I (N - Z}%) > a1 (Br(0)) > e2/2 > €,
k=1

which is a contradiction. Therefore, we may assume p; is a unique submeasure of a;
n

whose support overlaps with Br(0). Since 1p,(1,0)(#t — p1) < pp— > pix, We have
k=1

(n = p1)(Br(1,0)) < IR(M - iﬂk) <I (u - Zn:uk)-
k=1 k=1

Therefore,
Gv) = [l = llmll = p1(Br(1,0))
= €2, €
> u(Br(1,0)) — I (u - Zuk) > (lonll = 5) =5 =G —e. (7.3)
k=1
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(c) Fix u € X.If Q(u) = oo (i.e. G(u) = 1), then for any L > 0, by part (b), we can find
€1 > 0 such that

dlp,v)<e = G)> Q(v) > L.

CL+1

Now consider the case Q(u) < co and fix €2 > 0. First, we can find N such that

S el < 52—

i>N

Since for any nonnegative 1,2, ... satisfying ) . x; < 1, we see that
I e
im0 1= m

H < 62/2

which implies Z

—
We may assume ||ozl|| > |levjya|| fori < N — 1. Let

. €2
N, = { 1,...,N}: ||a 7}\/0.
1 =supqi€{ }||04H>2N+€2

We can choose R = R(e2) > 0 such that

€2
(B ¢ _ .
2%, B0 < 45
Applying the argument that we used in (7.3), we can find ¢; > 0 such that d(u,v) < ¢
guarantees the existence of (i, v)-matching {(u, vx)}7_, such that n > N; and

€2

> [
ol 2 flonl = 57—

forall 1 < k < Nj. It follows that

Al vk | €2 ok e
— - forl1 <k <N;.
T—fwell = T—Jlax] 2N +e ~ 1—[lewl| 2N =r=

On the other hand, by the definition of Ny, we have

ok | €2
L b2 L for Ny <k < N.
1= [Jo] ~ 2N ! =

Therefore, we conclude

n Ny N
Il ™ el e

>§ TR %I
Q(”—Zl—nvku—z ol ~2¥) *, 2 (T Jorl ~ 28

k=1

el e
— — €. O

Lemma 7.2. Assume 3 > f3.. Then, for any ¢ € K,
[ Qetin) =
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Proof. Let ¢ € Ky be given. Suppose, towards a contradiction, that

/ QUu)E(dp) < oo,

This implies £({u € X : |S,| = 1}) = 0. Let y = [a;] be a X-valued random variable
whose law is ¢ and Y be a random field with the same law as X and independent of 7.
Recalling ¢({n € X |yl = 1}) =1 in Theorem 5.1 (b), we have ||| = 1 almost surely.
Since 77 = n, the law of
Y (u
- g
Jixsema €3 @« A(dw)

is also £. We observe that

E[Q®)n] = %E [Z#i f]Rd ePY U ey % N(d) ‘77]

_ ), 1 |
Sel [ e lel s

E[feﬁy(m) a; * )\(dx)‘n]

N o]

= = Q)
ieN E[Zﬁgi Jra €Y 0D a; « )\(d:c)’n} ieN > i gl

where we used the independence between Y (¢,-) and (Y'(j,-));2: in the second line,
Jensen’s inequality in the third line. Integrating with respect to n of the both sides leads
to a contradiction, which completes the proof. O

The following result is a reformulation of Theorem 1.2:

Theorem 7.3.
(@) If B > B., then (p;);>0 is geometrically localized with positive density.
(b) If B < B, then for any 6 € (0,1) and any K > 0,

. 1 n—1
Jim > 1piegony =0 P-as. (7.4)
=0

Proof. (a) Let § > 0 be given. The left-hand side of (7.1) can be expressed in terms of
the empirical measure ,,:

n—1 n—1

1 1

H Z ]l{pq‘,ega‘f(} = E Z 6Pi (gﬁ,K) = wn(géK)
=0 =0

Therefore, it suffices to show that there are K > 0 and 6 > 0 such that

liminf ¢, (Gs, ) > 6. (7.5)

n— oo
To see this, let us define

Usi={neX:Gp)>1-6}= | Vsx. (7.6)
K=1
By Lemma 7.2, for all £ € K,
f(U5) > 0.
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The lower semi-continuity of G implies that U; is an open set, so the map £ — &(Us) is
also lower semi-continuous. Together with the compactness of Ky, we have

0 := inf .
§lenlco &Us) >0

For each £ € Ky, we can use (7.6) and monotonicity of Vs i in K to choose K = K, < oo
such that

f(V57K) > (1 — 6)9.

The upper semi-continuity of W; implies that the map {¢ — £(Vs5 k) is lower semi-
continuous. Hence, there is r¢ > 0 such that

inf Y > (1—¢)f.
<eB<£,r§)<( kce) > ( )

Since Ky is compact and {B(£,7¢/2)}eck, is a open covering of Ky, we can choose a
finite sub-covering {B(&;,r¢,/2)}i-,. Now let K = max {K¢ ) r= 11321 {re,/2}. Using
i<n <i<n

the finite open covering of Ky above and (7.2), we have
WEKo) <1 = EVsx)>(1—6)0 = &Gski1) > (1-e).

Notice that lim W(y,,Kq¢) — 0 from Theorem 4.11. Therefore, letting ¢ | 0, we
n—roo
obtain (7.5).

(b) Suppose 3 < 3. and let § € (0,1), K > 0, and € > 0 be given. We write
G, = {z €{0,...,n—1} : max p;(Bg(z)) > 1 —5}.
z€R?
Then, (7.4) is equivalent to

lim —‘ G|

n—oo n

=0 P-as. (7.7)

Recalling Theorem 5.3, we can write

73%2;2% pi(Bi(a)) =0 Pas

Therefore, there is N € IN such that

n—1

1 Z max i (B (x)) < (1-0)e forall n> N,
xre

and for such n, we have |G, |/n < e. Letting n — oo and then ¢ | 0, we obtain (7.7). O

A Auxiliary coupling lemma

Here we formally state and prove a coupling lemma used in (Part 2) of Proposition 3.3.
Let us recall that the LU topology (topology of locally uniform convergence) on the space
C[R?, R] of all continuous real-valued functions on R is defined by the following metric:

plwr,ws) Z (sup |ew1 ( )—wg(x)|/\1>.

lz|<n

Let ## = #(C[RY, R]) be the Borel sigma-algebra on C[R?, R] equipped with LU topology.
Let P be the distribution of X(-) on ({2, .%#). Under PP, the canonical process Y, (w) = w(x)
is a distributional copy of X (x).
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Lemma A.1l. Suppose closed sets Uy,Us,--- ,U, C R? satisfy nin dist(U;,U;) > M.
i#]

Then, there is an extended probability space (¥, %', P') and stationary processes
YD y@ ...y defined on this space such that
(1) YU ... Y™ are mutually independent and have the same distribution as X();
2) P{Y) =Y, forallz € U;} = 1 foralli =1,... n.
Remark A.2. Our proof of this lemma uses regular conditional probabilities. Their
existence is guaranteed by our choice of C[R¢, R] as the space of realizations but in
principle we could impose weaker requirements on the potential than continuity in
Section 1.1.

Proof of Lemma A.1. It suffices to give a construction for n = 2 since then one can
iterate it to prove the lemma for general n. Let us define Uy = U; U Us and 74, =
93(0 Uk, ]R]) (the Borel sigma algebra on C[Uy,R] equipped with uniform topology),
k = 0,1,2. For k = 0,1,2, there is a regular conditional probability ()5 defined on
Q x € such that Qp(w,A) = P(A]54,)(w). For any A € #(N), since Qi (-, A) is J4;-
measurable, Q; depends only on uy := w|y, € C[Ug, R]. Therefore, Q) can be viewed as
a function defined on C[Uy, R| x 2. Let T}, be the projection of Q on C[Uy, R] and define
Note that by the M-dependence of Y, po = p1 @ po. Let us now take ' = Qi01.2} 77 —
(V) and define P’ as

P'(Ax BxC) = /QO(U17U27A)Q1(U1aB)Q2(U2aC)Ml(dul)MQ(du2)a

Fori = 0,1, 2, we denote the i-th marginal distribution of P’ by P, and set Ym(i)(w) = w;(x)
for w = (wp,w1,wq) € . It is easy to check that P, = P} = P, = P. In addition, if we
let IP;j be the marginal distribution of P’ with respect to the i-th and j-th arguments for
0<i<j<2 thenP, =P, @P) ie., Y™ and Y® are independent and the proof of
part (1) is completed.

Let us define fi; (dudv) = P{, ((Ty x T1) " (dudv)) on C[Uy, R]?. For A, B € #(C[Uy,R]),
we have

(A x B) = /Qo (w1, ua, Ty M (A)) Q1 (w1, Ty H(B)) pa (dun ) o (dua)
- / Qi (ur, T (A) Q1 (ur, T (B)) i (duy) = / L a(un) s () (d) = pa (A 1 B),

which implies that all the mass of ji; lie on the diagonal of C[U;, R}?, i.e.
fir ({(u,v) € C[U1,R)* :u = v}) = 1.

Therefore, Yz(o) = Yz(l) IP’-a.s. for all x € U;. Similarly, we also obtain YI(O) = Ym@) P’-a.s.
for all 2 € Us. Identifying Y'(°) with Y completes the proof. O
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