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Abstract

In this article we derive Talagrand’s T2 inequality on the path space w.r.t. the maximum
norm for various stochastic processes, including solutions of one-dimensional stochas-
tic differential equations with measurable drifts, backward stochastic differential
equations, and the value process of optimal stopping problems.

The proofs do not make use of the Girsanov method, but of pathwise arguments.
These are used to show that all our processes of interest are Lipschitz transformations
of processes which are known to satisfy desired functional inequalities.
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1 Introduction and main results

1.1 Notation

Let (Ω,F , (Ft), P ) be the canonical space of a d-dimensional Brownian motion W

equipped with the P -completion of the filtration σ(Ws : s ≤ t) generated by W . That is,
Ω = C([0, T ],Rd) is endowed with the maximum norm, Wt(ω) = ω(t), and P is the Wiener
measure. For p ∈ [1,∞) and µ, ν ∈ P(Ω) (the set of all Borel probability on Ω) define the
p-Wasserstein distance and the relative entropy by

Wp(µ, ν) :=
(

inf
π

∫
Ω×Ω

‖ω − η‖p∞ π(dω, dη)
)1/p

and H(ν|µ) :=

∫
Ω

dν

dµ
log

dν

dµ
dµ,

where the infimum is taken over all couplings π (that is, probability measures on the
product with first marginal µ and second marginal ν) and we used the convention dν/dµ =
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Functional inequalities for forward and backward diffusions

+∞ if ν is not absolutely continuous w.r.t. µ. Recall that the quadratic transportation
inequality (sometimes called Talagrand’s inequality) reads as

µ satisfies T2(C) ifW2(µ, ν) ≤
√
CH(ν|µ) for all ν ∈ P(Ω).

The validity of this inequality has several (deep) consequences, for instance for the
concentration of measure phenomenon, the isoperimetric problem and various problems
of probability in high dimensions. We refer the reader e.g. to [36, 53, 49, 37] for an
overview and applications. Let us for instance mention a result by Gozlan, see [26,
Theorem 1.3], who showed that T2(C) is equivalent to the dimension-free concentration

µn
(∣∣∣F − ∫ Fdµn

∣∣∣ > x
)
≤ 2 exp(−cx2) (1.1)

for all x > 0, n ≥ 1 and some constant c > 0, where µn is the n-fold product of µ and
F : Ωn → R is a 1-Lipschitz function w.r.t. the l2-norm on Ωn.

1.2 Main results

In this work, we prove the validity of T2 for various stochastic processes evolving
forward and backward in time. Let us present our principal contribution; the proofs are
postponed to later sections along with applications and consequences.

1.2.1 Optimal stopping

Our first result concerns the value process of an optimal stopping problem.

Theorem 1.1 (Optimal Stopping). Let Γ: [0, T ] × Ω → R be an adapted process with
continuous paths such that Γt is LΓ-Lipschitz for every t ∈ [0, T ] and denote by

St := ess.sup
τ is stopping time, t≤τ≤T

E[Γτ |Ft] (OptStop)

for t ∈ [0, T ] the value process of the optimal stopping problem of Γ. Then S has
continuous paths and

the law µs of S satisfies T2(Cs)

with Cs := 2L2
Γ.

A generalization of Theorem 1.1 is given in Corollary 2.5. In many applications it is
interesting to approximate the law µs of S. Denote by µN := µsN the empirical measure
associated to µ := µs, that is, we fix P∞ the infinite product of P under which i.i.d.
random variables (Sn)n∈N with distribution µ are defined, and we put µN := 1

N

∑N
n=1 δSn

for everyN ≥ 1. Applying (1.1) to the 1-Lipschitz function F (y) :=
√
NW2( 1

N

∑N
n=1 δyn , µ)

gives the following concentration property of Wasserstein distance between the true and
the empirical measure:

Corollary 1.2. In the setting of Theorem 1.1 there is c > 0 such that

P∞
(∣∣∣W2(µ, µN )− EP∞ [W2(µ, µN )]

∣∣∣ ≥ x) ≤ 2 exp(−cx2N)

for every x > 0 and N ≥ 1.

Also note that by convergence of EP∞ [W2(µ, µN )] to zero, the above implies that
there is c > 0 and, for every x > 0, some N0(x) such that

P∞(W2(µ, µN ) ≥ x) ≤ 2 exp(−cx2N)

for all N ≥ N0(x).
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Functional inequalities for forward and backward diffusions

Another consequence (which could also be shown by simpler methods) is due to the
fact that the T2-inequality implies Gaussian concentration [53, Theorem 22.10], that is,
Theorem 1.1 in particular implies that

P (|St − E[St]| ≥ x) ≤ 2 exp(−cx2)

for all x > 0, where c > 0 is a constant. This means that (on a large scale) E[St] can be
seen as a good proxy for the value of St. This is interesting in that E[St] = supt≤τ≤T E[Γτ ]

can usually be computed quite efficiently (see e.g. [4]) while the computation of St might
be hard.

1.2.2 Backward diffusions

We now turn our attention to the backward stochastic differential equation

Yt = F +

∫ T

t

gu(Yu, Zu) du−
∫ T

t

Zu dWu for t ∈ [0, T ] (BSDE)

whose solution is given by a pair of processes (Y, Z) on the canonical space Ω with Y

adapted and Z progressive. We have the following:

Theorem 1.3 (T2 for multi-dim BSDE). Let m ∈ N and assume that

(A) g : [0, T ]× Ω×Rm ×Rm×d → Rm is progressive, gt(·, ·, ·) is Lg-Lipschitz continuous

for every t ∈ [0, T ], and E[
∫ T

0
|gt(·, 0, 0)|2 dt] <∞,

(B) F : Ω→ Rm is LF -Lipschitz continuous.

Then there exists a unique solution (Y, Z) of (BSDE) and

the law µy of Y satisfies T2(Cy)

with Cy := 2(LF + TLg)
2e2TLg .

Remarkably, the constant Cy in Theorem 1.3 does not depend on m and d, suggesting
that the result can be extended to infinite dimensional BSDEs (e.g. BSDEs on Hilbert
spaces analyzed in [24]). We will not take up this task here. As an (rather direct)
application of Theorem 1.3, we derive in Corollary 2.3 a transportation inequality for
laws of martingales, thus extending a result by Pal [42]. Moreover, we will show in
Section 4 that under additional conditions pertaining to the regularity of g, functional
inequalities can also be deduced for the law of the control process Z.

When Y is one-dimensional (but the Brownian motion still d-dimensional) the regular-
ity conditions on g can be weakened as follows:

Theorem 1.4 (T2 for 1-dim BSDE). Assume that

(A) g : [0, T ]×Rd → R+ is Borel measurable and convex in the last variable,

(B) gt(z) ≤ C(1 + |z|2) for all z ∈ Rd and for some constant C > 0.

(C) inft∈[0,T ] gt(z)/|z| → ∞ as |z| → ∞, and

(D) F : Ω→ R is bounded from below and LF -Lipschitz continuous.

Then (BSDE) admits a unique solution (Y,Z) and

the law µy of Y satisfies T2(Cy)

with Cy := 2L2
F .
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Functional inequalities for forward and backward diffusions

Remark 1.5. When d = 1, g = 0 and F = id, then Y is the Brownian motion, and Cy = 2

(which is known to be optimal for Brownian motion) showing that the constant Cy in
Theorem 1.3 and Theorem 1.4 cannot be improved in general.

Example 1.6. By Theorem 1.4, the law of the process Yt := logE[exp(F )|Ft] satisfies
T (2L2

F ) for every LF -Lipschitz continuous function F on Ω which is bounded from below.
In fact, it follows from martingale representation and Itô’s formula that there is a
progressive process Z such that (Y,Z) solve equation (BSDE) with g(z) = 1

2 |z|
2 and

terminal condition F .

BSDEs provide a powerful probabilistic tool to tackle second order nonlinear partial
differential equations as first noted by [45]. They can be seen as a nonlinear general-
ization of the maximum principle in stochastic control theory. Moreover, BSDEs have
various applications in quantitative finance. The following is a prime example stated in
more generality (and precision) in Section 3.1.

Example 1.7 (Utility maximization). Let F : Ω→ R be bounded and LF -Lipschitz contin-
uous, and consider the Black-Scholes dynamics dSt = St(dt+ dWt) for the stock price.
The process

Vt := ess sup
p

E
[
U
(
F −

∫ T

t

pu
dSu
Su

)∣∣∣Ft] with U(x) = − exp(−x),

where the supremum is taken over predictable portfolios p subject to some integrability
condition, defines the value process of the exponential utility maximization problem in
the Black-Scholes market with random endowment F .

Then (a suitable transformation of) V and the optimal trading strategy π∗ are char-
acterized by a BSDE and we will see that both satisfy the T2-inequality. In particular,
concentration of empirical measure as in Corollary 1.2 or Gaussian concentration hold,
showing for example that the value of the optimal utility and portfolio are concentrated
around their mean.

1.2.3 Forward diffusions

Let us finally consider the stochastic differential equation

Xt = x+

∫ t

0

bu(Xu) du+

∫ t

0

σu(Xu) dWu for t ∈ [0, T ] (SDE)

in dimension 1 (again, the Brownian motion is d-dimensional).

Theorem 1.8 (T2 for 1-dim SDE). Assume that

(A) b : [0, T ] × R → R is Borel measurable and continuously differentiable in the first
variable,

(B) σ : [0, T ]×R→ Rd is bounded, continuously differentiable in the first variable and
Lσ-Lipschitz continuous in the second variable, and σσ′ ≥ c > 0 for some constant c,

(C) the quantities c1 := supt∈[0,T ] ‖ bt
σtσ′t

(·)‖L1(dx); c2 := supt∈[0,T ] ‖ bt
σtσ′t

(·)‖L∞(dx); c3 :=

supt∈[0,T ] ‖ ∂∂t
bt
σtσ′t

(·)‖L1(dx) and c4 := ‖ supt∈[0,T ]
∂
∂t

bt
σtσ′t

(·)‖L1(dx) are finite.

Then, (SDE) admits a unique strong solution and

the law µx of X satisfies T2(Cx)

with Cx := 6 exp(c1 + 15 max(c3 exp(2c1), ‖σ‖∞c2 exp(2c1) + exp(2c1)L2
σ)).
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Example 1.9. The above result applies for instance to Langenvin’s equations: These
are stochastic differential equations of the form

dXt = −U ′(Xt) dt+
√

2/λ dWt, X0 = x (1.2)

where U : R→ R is differentiable and plays the role of a potential, and λ > 0 (we take
for simplicity d = 1). We will discuss this example further in Section 5.

Remark 1.10. Observe that the statement of Corollary 1.2 remains true for the diffusions
considered in Theorem 1.3, Theorem 1.4 or Theorem 1.8.

1.2.4 Variations and extensions

The arguments leading to our main results for backwards diffusions and the optimal
stopping problem (inspired by techniques used in ‘pathwise control theory’ see e.g. [19,
40]) consist in showing that the processes under consideration are Lipschitz transforms
of Brownian motion. It is likely that this technique also applies to more general stochastic
optimal control problems and that different consequences than the above can be deduced.

To illustrate our point, we derive the logarithmic-Sobolev inequality, which reads as:

µ ∈ P(Rm) satisfies LSI(C) if Entµ(f) ≤ C
∫
Rm

|∇f |2 dµ

for every µ-integrable and differentiable function f : Rm → R. Here we denote by
Entµ(f) :=

∫
f2 log(f2/

∫
f2 dµ) dµ the entropy of f w.r.t. µ with the convention 0/0 = 0.

Theorem 1.11 (Log-Sobolev). In the setting of either Theorem 1.3 or Theorem 1.4, for
every t ∈ [0, T ] one has that

the law µyt of Yt satisfies LSI(TCy)

with the constant Cy given in the respective theorems.
The same holds true in the setting of Theorem 1.1 (if Y above is replaced by S).

1.3 Related literature

Measure concentration is a popular area of modern probability theory. This is
mostly due to its variety of applications, including (and certainly not restricted to)
model selection, random algorithms, quantitative finance and statistics [38, 7, 8, 34,
50, 18, 43]. It is the works of Marton [37] and Talagrand [49] that first underlined
the relevance of transportation inequalities in the description of the concentration of
measure phenomenon. Transportation inequalities are also related to Poincaré inequality,
log-Sobolev inequality and hypercontractivity, see [41, 5].

Talagrand proved the validity of T2 for the multidimensional Gaussian distribution
with optimal constant C = 2. His work was then extended to Wiener measure on the
path space in [22]. Transportations inequalities for laws of (forward) SDEs have been
extensively studied. We refer to [15, 51, 42] for equations driven by Brownian motion and
to [47, 46] for equations driven by fractional Brownian motion or a Gaussian process. All
the aforementioned works on SDEs assume that the coefficients are Lipschitz continuous
or satisfy a dissipative condition. Note however the exception of [1] who derives versions
of the Poincaré and log-Sobolev inequalities of the so-called skew Brownian motion,
which can be seen as the solution of an SDE whose drift depends on the local time of the
unknown.

Regarding Transportations inequalities for backward SDEs, to the best of the authors’
knowledge the only work on the subject is the paper [3] available online since August
2019. It uses the Girsanov transform technique of [15] to derive quadratic transportation
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inequalities for laws of one-dimensional BSDEs with bounded coefficients, and Lipschitz
continuous generators.

1.4 Organization of the paper

We organize the rest of the paper as follows: The next section is dedicated to the
proofs of Theorems 1.1 and 1.3, we also discuss various extensions and applications,
including functional inequalities for laws of martingales. In Section 3, we present the
proof of Theorem 1.4. The application to portfolio optimization alluded in the introduction
is presented in more details. We prove Talagrand inequality for SDEs with measurable
drifts in Section 5 and conclude with the analysis of the logarithmic-Sobolev inequality.

2 The proofs of Theorem 1.3 and Theorem 1.1

The strategy behind the proofs is to show that the objects of interest are in fact
obtained through Lipschitz transformations of Brownian motion. The latter is known to
satisfy the T2-inequality, see [22, Theorem 3.1]. For this reason, the following lemma on
the stability of transportation inequalities under push-forward by Lipschitz maps (taken
from [15]) is fundamental and stated separately.

Lemma 2.1 ([15, Lemma 2.1]). Assume that µ satisfies T2(C) and let ψ : Ω → Ω be
µ-almost surely Lψ-Lipschitz. Then the push-forward ψ∗µ satisfies T2(CL2

ψ).

The proofs need some notational preparation, introduced below. For t ∈ [0, T ] denote
by

Ωt := {γ ∈ C([t, T ],Rd) : γ(t) = 0}
the shifted canonical space, by W t the canonical process on Ωt, by P t the Wiener
measure on Ωt, and by (F ts)s∈[t,T ] the P t-completion of the natural filtration of W t. For
ω ∈ Ω, t ∈ [0, T ], and γ ∈ Ωt define the concatenation ω ⊗t γ ∈ Ω via

(ω ⊗t γ)(s) :=

{
ω(s) if s ∈ [0, t),

γ(s) + ω(t) if s ∈ [t, T ].

Further, for a function X : Ω× [0, T ]→ Rk with k ∈ N and fixed (t, ω) ∈ [0, T ]× Ω, define
its shifts by

Xt,ω : Ωt × [t, T ]→ Rk, Xt,ω
s (γ) := Xs(ω ⊗t γ).

Similar notation is applied to a function X : Ω→ Rk or a function g : Ω× [0, T ]×A→ Rk,
where A is an arbitrary space, that is, Xt,ω(γ) = X(ω ⊗t γ) or gt,ωs (γ, a) := gs(ω ⊗t γ, a).

Note that, using the above notation, one has

E[X|Ft](ω) =

∫
Ωt

Xt,ω(γ)P t(dγ) =: EP t(dγ)[X
t,ω(γ)] =: EP t [Xt,ω]

for P -almost all ω ∈ Ω.

2.1 Proof of Theorem 1.3 and first consequences

Proof of Theorem 1.3. It follows from the work of Pardoux & Peng [44, Theorem 3.1]
that the equation (BSDE) admits a unique solution (Y, Z) such that Z is square integrable
and Y has (P -almost surely) continuous paths, that is, Y (ω) ∈ C([0, T ],Rm) for (P -almost
every) ω ∈ Ω. Using arguments close in spirit to [19], we will show that the function
ω 7→ Y (ω) is Lipschitz continuous.

Let t ∈ [0, T ]. By Lemma 2.2 below there is a P -zero set N ⊂ Ω such that for ω ∈ N c

one has Yt(ω) = Y t,ωt P t-almost surely and the pair (Y t,ωr , Zt,ωr )r∈[t,T ] satisfies

Y t,ωr = F t,ω +

∫ T

r

gt,ωu (W t, Y t,ωu , Zt,ωu ) du−
∫ T

r

Zt,ωu dW t
u, P t-a.s. r ∈ [t, T ]. (2.1)

EJP 25 (2020), paper 94.
Page 6/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP495
http://www.imstat.org/ejp/


Functional inequalities for forward and backward diffusions

From now on fix ω, η ∈ N c and t ∈ [0, T ]. For r ∈ [t, T ] define

δYr := Y t,ωr − Y t,ηr ,

δZr := Zt,ωr − Zt,ηr ,

δgr := gt,ωr (W t, Y t,ωr , Zt,ωr )− gt,ηr (W t, Y t,ωr , Zt,ωr ).

As (y, z) 7→ gr(ω, y, z) is Lipschitz and therefore Lebesgue almost surely differentiable, it
follows that

gt,ωr (W t, Y t,ωr , Zt,ωr )− gt,ηr (W t, Y t,ηr , Zt,ηr )

= δgr +

∫ 1

0

(
∂yg

t,η
r (W t, Y t,ωr − aδYr, Zt,ωr − aδZr)

∂zg
t,η
r (W t, Y t,ωr − aδYr, Zt,ωr − aδZr)

)>(
δYr
δZr

)
da

:= δgr + βrδYr + qrδZr.

Note that the progressive processes β and q are bounded by Lg. Moreover, the pair
(δY, δZ) solves the linear equation

δYr = δYT +

∫ T

r

δgu + βuδYu + quδZu du−
∫ T

r

δZu dW
t
u, P t-a.s.

for r ∈ [t, T ], and a standard computation as in [21, Theorem 1.1] reveals that

δYr = e
∫ T
r
βu duδYT +

∫ T

r

e
∫ u
r
βs dsδgu du−

∫ T

r

e
∫ u
r
βs dsZu(dW t

u − qu du) P ta.s.

For r ∈ [t, T ], define

Γr := exp
(∫ r

t

qu dWu −
1

2

∫ r

t

|qu|2 du
)

exp
(∫ r

t

βu du
)
.

By Girsanov’s theorem, taking the expectation with respect to the (shifted) measure P t

yields

|δYt| =
∣∣∣EP t

[
ΓT δYT +

∫ T

t

Γrδgr dr
]∣∣∣ (2.2)

P t-almost surely. Moreover, by Lipschitz continuity of g, it holds that

|δgr(γ)| ≤ Lg‖ω ⊗t γ − η ⊗t γ‖∞
≤ Lg‖ω − η‖∞

for all γ ∈ Ωt. Thus, as EP t [Γr] ≤ exp(TLg) for every r ∈ [t, T ], it follows from (2.2) that

|δYt| ≤ LF ‖ω − η‖∞EP t [ΓT ] + Lg‖ω − η‖∞EP t

[ ∫ T

t

Γr dr
]

≤ (LF + TLg) exp(TLg)‖ω − η‖∞

P t-almost surely.
As ω, η ∈ N c and t ∈ [0, T ] were arbitrary and P (N) = 0, this shows that

Y : Ω→ C([0, T ],Rm) is (LF + TLg)e
TLg -Lipschitz.

Now recall that by [22, Theorem 3.1], the probability measure P (the law of the Wiener
process) satisfies T2(2). Hence, the result follows by Lemma 2.1.
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Lemma 2.2. For P -almost all ω ∈ Ω it holds that

Y t,ωr = F t,ω +

∫ T

r

gt,ωu (W t, Y t,ωu , Zt,ωu ) du−
∫ T

r

Zt,ωu dW t
u, P t-a.s. r ∈ [t, T ]

and Yt(ω) = Y t,ωt P t-almost surely.

Proof. Let r ≥ t be fixed and denote by N c
1 the set of all ω ∈ Ω such that (BSDE) holds

true so that P (N1) = 0. Then, for every ω ∈ Ω and γ ∈ Ωt such that ω ⊗t γ ∈ N c
1 ,

unwrapping the definitions of Y t,ω, Zt,ω and (BSDE) it holds that

Y t,ωr (γ) = F t,ω(γ) +

∫ T

r

gt,ωu (γ, Y t,ωu (γ), Zt,ωu (γ)) du−
(∫ T

r

Zu dWu

)
(ω ⊗t γ). (2.3)

As the law of the concatenation Ω×Ωt 3 (ω, η) 7→ ω⊗t η ∈ Ω under P ⊗P t equals P , one
has

P (N c
2 ) = P (N c

1 ) = 1, where

N c
2 := {ω ∈ Ω : P t(γ ∈ Ωt : ω ⊗t γ ∈ N c

1 ) = 1}.

For every ω ∈ N c
2 we have that (2.3) holds for P t-almost all γ ∈ Ωt. Thus we are left to

show that for P -almost all ω ∈ Ω, one has that(∫ T

r

Zu dWu

)
(ω ⊗t γ) =

(∫ T

r

Zt,ωu dW t
u

)
(γ) (2.4)

for P t-almost all γ ∈ Ωt and all r ∈ [t, T ].
In case that Z is a simple processes, the dW and dW t-integrals are just finite sums.

Then, as r ≥ t, only increments of γ appear in either sums and it follows that (2.4) holds
true for all ω ∈ Ω and γ ∈ Ωt. In the general case, approximate Z in L2(P ⊗ du) by
simple integrands Zn which are progressive w.r.t. the raw filtration (in particular, Zn,t,ω

is progressive w.r.t. F t and the same holds true for the limit). Using once more that the
law of the concatenation under P ⊗ P t equals P , one obtains that

EP (dω)

[
EP t(dγ)

[ ∫ T

t

|Zn,t,ωu (γ)− Zt,ωu (γ)|2 du
]]

= EP (dω)

[ ∫ T

t

|Znu (ω)− Zu(ω)|2 du
]
→ 0.

After passing to a subsequence, one may assume that the inner expectation converges
to 0 for P -almost all ω ∈ Ω, that is Zn,t,ω → Zt,ω in L2(P t ⊗ du). The triangle inequality,
Ito’s isometry, and the fact that the law of · ⊗t · under P ⊗ P t equals P then show that

EP (dω)

[
EP t(dγ)

[∣∣∣( ∫ T

r

Zu dWu

)
(ω ⊗t γ)−

(∫ T

r

Zt,ωu dW t
u

)
(γ)
∣∣∣2]] = 0,

which implies (2.4).
To complete the proof, we are left to prove that Yt(ω) = Y t,ωt P t-almost surely. This is

a consequence of Blumenthal’s 0-1 law, i.e. conditioning on the right-continuous filtration
is up to P -zero sets the same as conditioning on the raw filtration. The raw filtration at
time t is generated by paths up to time t, hence Yt(ω) = Yt(η) for all ω, η ∈ Ω such that
ω = η on [0, t].

In the next corollary we show that in our Brownian filtration, laws of martingales
satisfy transportation inequalities: This corollary as well as the subsequent subsection
use the notion of Malliavin derivative. We refer the reader to [39] for an introduction to
this topic and the (little bit of) Malliavin calculus used in the article.
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Corollary 2.3. Let q : [0, T ] × Ω → Rd×m be a bounded progressive process and let M
be an m-dimensional martingale under the probability measure Qq := Law(W +

∫
q du).

If MT and q are both Lipschitz continuous in Ω, then the law of M satisfies T2(C) for
some constant C > 0 depending on d.

Here ‘q is Lipschitz continuous in Ω’ means that there is a constant Lq such that
|qt(ω)− qt(η)| ≤ Lq‖ω − η‖∞ for all ω, η ∈ Ω and t ∈ [0, T ].

Proof. By Lipschitz continuity, MT is square integrable. Thus, it follows from martingale
representation and Girsanov’s theorem that the process M satisfies

Mt = MT +

∫ T

t

Zuqu du−
∫ T

t

Zu dWu (2.5)

for some progressive, square integrable process Z. In particular, (M,Z) satisfies the
equation (BSDE) with generator g defined by gt(ω, y, z) := qt(ω)z and terminal condition
F := MT .

As MT is Lipschitz continuous and q of bounded Malliavin derivative (this follows
from the Lipschitz assumption on q, see e.g. [11, Proposition 3.2]), we have by [11,
Theorem 2.2] that Z must be bounded, say by C. Thus, M also satisfies (2.5) with the
now Lipschitz continuous generator g̃t(z) := gt(z)1{|z|≤C} + g(zC/|z|)1{|z|>C}. The result
then follows from Theorem 1.3.

2.2 Proof of Theorem 1.1

We shift our focus on the proof of Theorem 1.1. Denote by T t the set of all stopping
times σ : Ωt → [t, T ], that is, {σ ≤ s} ∈ F ts for all s ∈ [t, T ].

Lemma 2.4. It holds that

ess.sup
τ is stopping time, t≤τ≤T

E[Γτ |Ft](ω) = sup
σ∈T t

EP t [Γt,ωσ ]

for P -almost all ω ∈ Ω.

Proof. In a first step, note that one may restrict everywhere to stopping times w.r.t. the
raw filtration. Indeed, for a general stopping time τ there is a stopping time τ ′ w.r.t. the
right-continuous version of the raw filtration such that τ = τ ′ almost surely. Further,
integrability and pathwise continuity of Γ guarantee that E[Γmin(τ ′+ε,T )] → E[Γτ ′ ] as
ε→ 0. It remains to notice that min(τ ′ + ε, T ) is a stopping time w.r.t. the raw filtration
for every ε > 0. The same arguments apply to conditional expectations.

We start by showing that the left hand side is smaller than the right hand side.
To that end, by definition of the essential supremum, there exists a sequence (τn) of
stopping times with values in [t, T ] such that, P -almost surely, the left hand side equals
supnE[Γτn |Ft]. For every n and ω ∈ Ω one has that τ t,ωn ∈ T t, which shows that

E[Γτn |Ft](ω) = EP t(dγ)[Γ
t,ω

τt,ω
n (γ)

(γ)]

≤ sup
σ∈T t

EP t(dγ)[Γ
t,ω
σ(γ)(γ)]

for P -almost all ω. Taking the countable supremum thus yields the first claim.

As for the reverse inequality, assume first that

Γω,t =
∑
n

fn1An(ω) for every ω ∈ Ω,
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where (An) is a F0
t -measurable partition of Ω and fn are functions from Ωt × [t, T ] to R.

Then
sup
σ∈T t

EP t [Γt,ωσ ] =
∑
n

1An(ω) sup
σ∈T t

EP t [fnσ ]

for every ω ∈ Ω. Now, let ε > 0 be fixed and, for every n, pick some σn ∈ T t which
achieves the supremum above up to an error of ε > 0. Define

τ : Ω→ [t, T ] τ(ω) :=
∑
n

1An(ω)σn(ω|[t,T ] − ω(t)),

that is, one has τ(ω ⊗t γ) =
∑
n 1An(ω)σn(γ). Then it holds that

E[Γτ |Ft](ω) =
∑
n

1An(ω)EP t [fnσn ] ≥ sup
σ∈T t

EP t [Γω,tσ ]− ε

for P -almost all ω ∈ Ω. Further, it can be checked that τ is a stopping time. Hence,
under the assumption made on Γ, the second claim follows.

We are left to argue why this assumption is not restrictive. First, by tightness of P t,
for every ε > 0, there is some compact K ⊂ Ωt for which

|EP t [Γt,ωσ ]− EP t [Γt,ωσ 1K ]| ≤ ε

uniformly over all σ ∈ T t. Now note that ω 7→ Γt,ω1K is a function with values in the
separable space C(K × [t, T ],R). Thus, it can be approximated uniformly by functions of
the form

∑
n f

n1An(ω).

Proof of Theorem 1.1. By [20, Proposition 2.3] one has that S is the value process of
the solution of a ‘reflected BSDE’ with barrier Γ. Recall that a triple (Y,Z,K) (where Y
and K are adapted, Z progressive and K continuous, increasing with K0 = 0) solves a
reflected BSDE with barrier Γ if{

Yt = F +
∫ T
t
gs(Ys, Zs) ds+KT −Kt −

∫ T
t
Zs dWs

Yt ≥ Γt for all t ∈ [0, T ]

and it holds
∫ T

0
(Yt − Γt) dKt = 0. Therefore, S has continuous paths.

Let t ∈ [0, T ] be fixed and denote by N the set of all ω ∈ Ω such that

St(ω) := ess.sup
τ∈Tt

E[Γτ |Ft](ω) 6= sup
σ∈T t

EP t [Γt,ωσ ].

By Lemma 2.4 one has P (N) = 0. Fix ω, η ∈ N c.
For every s ∈ [t, T ] and γ ∈ Ωt, unwrapping the definition of Xt,ω yields

|Γt,ωs (γ)− Γt,ηs (γ)| = |Γs(ω ⊗t γ)− Γs(η ⊗t γ)|
≤ LΓ‖ω ⊗t γ − η ⊗t γ‖∞
≤ LΓ‖ω − η‖∞.

Thus, for every σ ∈ T t, it holds that

|EP t [Γt,ωσ ]− EP t [Γt,ησ ]| ≤ LΓ‖ω − η‖∞.

In particular, as ω, η ∈ N c, this implies that

|St(ω)− St(η)| ≤ LΓ‖ω − η‖∞.

Hence, the function γ 7→ St(γ) is P -almost surely a LΓ-Lipschitz function. The claimed
functional inequality for (the law of) S follows again from Lemma 2.1 and [22, Theorem
3.1].
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Corollary 2.5. Let (Y,Z) solve (BSDE) and let Γ: [0, T ] × C([0, T ],Rm) → R be an
adapted process with continuous paths such that Γt is LΓ-Lipschitz for every t ∈ [0, T ].
Under the conditions of Theorem 1.3 (in case m ≥ 1) or Theorem 1.4 (in case m = 1), the
process

St := ess.sup
τ is stopping time, t≤τ≤T

E[Γτ (Y )|Ft]

has continuous paths and its law satisfies T2(C) with C = 2L2
Y and LY = LF + TLge

TLg

(in case of Theorem 1.3) or LY = LF (in case of Theorem 1.4).

Proof. Set Γ′ := Γ ◦ Y . Then Γ′ is still adapted and it has continuous paths. Moreover,
from (the proof of) Theorem 1.3 (resp. Theorem 1.4) it follows that Γ′t is Lipschitz
continuous with a constant not depending on t. The claim now follows from Theorem
1.1.

3 The proof of Theorem 1.4

Recall the definition of the convex conjugate

g∗t (q) = sup
z∈Rd

(qz − gt(z)) for every t ∈ [0, T ] and q ∈ Rd. (3.1)

Remark 3.1. The proof of Theorem 1.4 uses [2, Lemma 5.1], which assumes

lim
|q|→+∞

inf
t∈[0,T ]

g∗t (q)

|q|
= +∞ and

∫ T

0

∣∣∣ sup
|q|≤r

g∗t (q)
∣∣∣ dt <∞. (3.2)

When the equation (BSDE) admits a solutions, the conclusion of Theorem 1.4 remains
valid if the assumptions (B) and (C) are replaced by the assumptions (3.2). These are in
fact weaker assumptions, as the following lemma shows.

Lemma 3.2. Assume that supt∈[0,T ] gt(z) < ∞ for every z ∈ Rd. Then it holds that
inft∈[0,T ] g

∗
t (q)/|q| → ∞ as |q| → ∞.

On the other hand, assume that inft∈[0,T ] gt(z)/|z| → ∞ as |z| → ∞. Then it holds that
supt∈[0,T ] g

∗
t (q) <∞ for every q ∈ Rd.

Proof. To show the first claim, let m ≥ 0 be arbitrary. As z 7→ supt∈[0,T ] gt(z) is convex
and real valued, it is continuous. Hence, there exists c > 0 such that gt(z) ≤ c for all
|z| ≤ m and all t ∈ [0, T ]. Plugging the choice z := mq/|q| in (3.1) implies

inf
t∈[0,T ]

g∗t (q)

|q|
≥ inf
t∈[0,T ]

( qz
|q|
− gt(z)

|q|

)
≥ m− c

|q|
→ m

as |q| → ∞. Since m > 0 was arbitrary, this implies the first claim.

To show the second claim, let q ∈ Rd be arbitrary. We distinguish between small and
large z in the representation (3.1). By assumption there is c > 0 such that gt(z) ≥ 2|q||z|
for all t ∈ [0, T ] and |z| ≥ c. For such z one has qz − gt(z) ≤ |z||q| − 2|q||z| ≤ 0. On the
other hand, g ≥ 0 implies that qz − gt(z) ≤ c|q| for all |z| ≤ c. This show the second
claim.

Proof of Theorem 1.4. In a first step we focus on the case where F is bounded.

It follows from the condition (B) and [31, Theorem 2.3] that equation (BSDE) admits
a solution (Y, Z). Let Cb(Ω) denote the space of bounded continuous functions on Ω.
For any generator h, consider the functional ρh : Cb(Ω) → R which maps the terminal
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condition F to Y0, where Y is the solution of (BSDE) with g substituted by h. By [14,
Theorems 2.1 and 2.2] and convexity of g one has

Y0 = ρg(F ) = sup
q
EQ

[
F −

∫ T

0

g∗u(qu) du
]
, (3.3)

where the supremum is taken over all progressive and square integrable processes q
with values in Rd, Q a probability measure absolutely continuous with respect to P and
with density

dQ

dP
:= exp

(∫ T

0

qu dWu −
1

2

∫ T

0

|qu|2 du
)
.

In particular it follows that

|ρg(F )− ρg(G)| ≤ sup
ω∈Ω
|F (ω)−G(ω)| (3.4)

for all bounded functions F,G : Ω→ R.
As in the proofs of Theorems 1.3 and Theorem 1.1 we use shifts of paths, however,

this time defined with intrinsic scaling: For t ∈ [0, T ) and ω, η ∈ Ω with η(0) = 0, define
ω ⊕t η ∈ Ω via

(ω ⊕t η)s := ω(t ∧ s) +
√
T − t · η

( s− t
T − t

)
1[t,T ](s).

Only Brownian motion will be plugged in as the second argument, hence ω ⊕ η only
needs to be defined for paths η which start in 0. However, to be formally correct, one
can define ω ⊕t η := ω ⊕t (η − η(0)) for all paths η which do not start at 0. Moreover,
define g(t) : [0, T ]×Rd → R by

g(t)
s (z) := (T − t)gt+s(T−t)

( z√
T − t

)
.

Since (Y,Z) is the unique solution of (BSDE) with generator g, it then follows from
[14, Theorem 2.2], [17, Theorem 4.5] and [2, Lemma 5.1] that

Yt(ω) = ρg
(t)

(F (ω ⊕t ·))

for P -almost all ω ∈ Ω and every t ∈ [0, T ). Using the 1-Lipschitz continuity of the

operator ρg
(t)

(·) shown in (3.4) it follows that

|Yt(ω)− Yt(η)| ≤ sup
γ∈Ω
|F (ω ⊕t γ)− F (η ⊕t γ)|

≤ LF sup
γ∈Ω
‖ω ⊕t γ − η ⊕t γ‖∞

≤ LF ‖ω − η‖∞

for P -almost all ω, η ∈ Ω and every t ∈ [0, T ). As YT = F and Y has P -almost surely
continuous paths, we conclude that Y : Ω→ Ω is LF -Lipschitz P -almost surely. It thus
follows by [22, Theorem 3.1] and Lemma 2.1 that the law µy of Y satisfies T2(2L2

F ).
In case that F is not bounded it follows by Lipschitz continuity of F that it has

exponential moments. Denote by Y n the solution to (BSDE) with F replaced by F ∧ n
for each n ∈ N. As F ∧ n is LF -Lipschitz, by the above, Y n : Ω→ Ω is LF -Lipschitz, and
it follows from stability of BSDE with terminal conditions having exponential moments
(see [9, Proposition 7]) that Y n → Y P ⊗ dt-almost surely (where (Y,Z) is the solution
of (BSDE)). As Lipschitz continuity is stable under pointwise convergence, Y remains
LF -Lipschitz and the claim again follows from [22, Theorem 3.1] and Lemma 2.1.
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Remark 3.3 (Supersolutions). The condition (B) in Theorem 1.4 serves as a guarantee
that the (one-dimensional) BSDE with generator g admits a solution (Y,Z) such that Y
satisfies the representation (3.3). Without that condition, the BSDE still admits a unique
minimal supersolution (Ȳ , Z̄) in the sense of [16], and it follows from [17] that Ȳ satisfies
the representation (3.3). Therefore, the proof of Theorem 1.4 shows that the law of Ȳ
satisfies T2(Cy) with Cy = 2L2

F .

Corollary 3.4. Assume that

(A) g : [0, T ] × Rd → R is Borel measurable, convex in the last variable, satisfies (B)
in Theorem 1.4 and there is b ∈ R and bounded Borel a : [0, T ] → Rd such that
gt(z) ≥ atz + b.

(B) F : Ω→ R is bounded from below and LF -Lipschitz continuous.

Then (BSDE) admits a unique solution (Y,Z) and

the law µy of Y satisfies T2(Cy)

with Cy := 2L2
F .

Proof. Since (Y,Z) satisfies (BSDE), we have

Yt + tb = F + Tb+

∫ T

t

gu(Z)− (auZu + b) du−
∫ T

0

Zu( dWu − au du).

By Girsanov’s theorem, the process W̃ := W −
∫ t

0
au du is a Brownian motion under the

probability measure P̃ with density

dP̃

dP
:= exp

(
−
∫ T

0

au dWu −
1

2

∫ T

0

|au|2 du
)
.

Thus, putting

Ỹt := Yt + tb, F̃ := F + Tb and g̃t(z) := gt(z)− (atz + b),

it holds that (Ỹ , Z) solve equation (BSDE) driven by the Brownian motion W̃ with
generator g̃ and terminal condition F̃ . In oder words,

Ỹt = F̃ +

∫ T

t

g̃u(Zu) du−
∫ T

t

Zu dW̃u P̃ -a.s.

Observe that in this case, the function g̃ is convex, positive and satisfies the growth
conditions g̃t(z) ≤ C(1+ |z|2) for some C and lim|q|→∞ inft∈[0,T ] g̃(q)/|q| = +∞. As argued

in the proof of Theorem 1.4, the process Ỹ satisfies Ỹt(ω) = ρg̃
(t)

(F̃ (ω ⊕t ·)) for a 1-
Lipschitz continuous operator (depending on P̃ ). In particular, ω 7→ Ỹ (ω) (and therefore
ω 7→ Y (ω)) is LF -Lipschitz continuous and thus, the result follows from [22, Theorem
3.1] and Lemma 2.1.

3.1 Portfolio optimization

Let us come back to the quantitative finance application alluded to in Examples 1.7
in the introduction. Consider a market with m stocks whose prices are given by the
m-dimensional process S following the Black-Scholes model

dSt = St(bt dt+ σt dWt)
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with b and σ two bounded functions of t with appropriate dimensions (recall that W
is a d-dimensional Brownian motion). A basic task in quantitative finance consists of
optimizing the expected utility of a given claim by dynamic trading. Concretely, let us
fix the exponential utility U(x) := − exp(−αx) for some α > 0 modeling the investor’s
preferences and a claim F : Ω→ R. Then the problem in question reads as

ut :=
1

α
log
(
− ess sup

p
E
[
− exp

(
− α

(∫ T

t

ps (dWt + θtdt)− F
))∣∣∣Ft]). (3.5)

Here A is the set of admissible strategies, i.e. the set of all predictable processes
p with values in a convex and closed set A ⊆ Rd for which E[

∫ T
0
|pt|2 dt] < ∞ and

{exp(−α
∫ τ

0
pt (dWt + θtdt)) : τ is stopping time} is uniformly integrable, and θt :=

σtr(σtσ
tr
t )−1bt. In particular, σtσtrt is invertible and we assume moreover that θ is a

bounded function of time only.

Theorem 3.5 ([29, Theorem 7 and Proposition 9]). Assume that F is bounded. There is
an admissible portfolio p∗ which is optimal for all t simultaneously (i.e. p∗ achieves (3.5)
for every t ∈ [0, T ]).

Moreover, defining g by gt(ω, y, z) = (α/2)dist2(z+ θt/α,A)− zθt− |θt|2/(2α), the pair
(u, p∗ − θ/α) solves (BSDE) with generator g and terminal condition F .

Since the constraint set A is convex, the generator g satisfies the conditions of
Corollary 3.4. Thus, if F is Lipschitz continuous, then the law of u satisfies T2(C)

for some constant C > 0. If A = Rd and we additionally assume that F is Malliavin
differentiable with Lipschitz continuous Malliavin differentials, then by Corollary 4.5
below the law of p∗ satisfies T2 as well.

These imply that (under the above assumptions made on F and A), convergence of
empirical measure as in Corollary 1.2 can be deduced, or the Gaussian concentration

P (|f(ut)− E[f(ut)]| ≥ x) ≤ 2 exp(−cx2/L2
f ),

P (|g(p∗t )− E[g(p∗t )]| ≥ x) ≤ 2 exp(−cx2/L2
g)

for every x > 0 and Lf -Lipschitz continuous functions f and g of appropriate dimensions.

4 Transportation inequalities for the control process

This section presents (modest) results on transportation inequalities for the control
process Z. Its main finding is Corollary 4.5 which shows that for a linear equation the
law of Z satisfies the T2 inequality.

We use the notation Di
sξ for the Malliavin derivative of the random variable ξ in the

direction of the ith Brownian motion.

Lemma 4.1. In addition to the assumptions of Theorem 1.3, assume that

(C) We have g·(0, 0, 0) ∈ L2([0, T ]), for every (t, y, z), the function ω 7→ gt(ω, y, z) is
Malliavin differentiable and it holds

|Di
ugt(ω, y

1, z1)−Di
ugt(ω, y

2, z2)| ≤ Ku(t)
(
|y1 − y2|+ |z1 − z2|

)
for every ω ∈ Ω, y1, y2 ∈ Rm, z1, z2 ∈ Rm×d, t, u ∈ [0, T ] and i = 1, . . . , d and
for some R+-valued adapted process (Ku(t))t,u∈[0,T ] such that we have∫ T

0
E[(
∫ T

0
|Ku(t)|2 dt)2] du <∞.

(D) The function F is Malliavin differentiable and t 7→ Di
tF is continuous.
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Then Z has continuous paths and is bounded. In particular, the law µz of Z satisfies

W2(µz, ν) ≤ CzH(ν|µz)1/4 for all ν ∈ P(Ω), (4.1)

with Cz := 2
(
1 +

(
mL2

F e
(Lg+1)2T +mL2

gT
)4)1/4

.

Remark 4.2. Notice that the Malliavin differentiability of g and F are consequences
of the Lipschitz continuity assumptions made in Theorem 1.3. The additional property
needed in Lemma 4.1 is the regularity of Di

ug.

Proof. First assume that the function g is continuously differentiable in (y, z). Since g
is Lg-Lipschitz continuous, it follows by [11, Proposition 3.2] that gt(·, y, z) is Malliavin
differentiable for every t, y, z and |Di

sgt(y, z)| ≤ Lg for all i = 1, . . . , d. Similarly, F is
Malliavin differentiable and for every t ∈ [0, T ], it holds that |Di

tF | ≤ LF for all i = 1, . . . , d.
Thus, since t 7→ Di

tF is continuous, it follows by [21, Proposition 5.3], that the process Z
has a version with continuous paths. Moreover, Z is bounded, see [33, Lemma 3.2]. In
fact, it is shown therein that Z satisfies

|Zt|2 ≤ mL2
F e

(2Lg+L2
g+1)T +mL2

gT =: C. (4.2)

If g is not continuously differentiable in (y, z), let gn be a sequence of smooth functions
converging to g and denote by (Y n, Zn) the solution of equation (BSDE) with generator
gn. Then, it follows for instance by [21, Proposition 2.1] that Zn converges to Z in
L2(P ⊗ dt). Therefore, Z also satisfies (4.2).

In particular, it has exponential moments of all orders. Thus, it follows by [6, Corollary
2.4] that the law µz of Z satisfies (4.1).

In the next corollary, we show that when the Malliavin derivative of the function g is
bounded, it does not need to be Lipschitz continuous in z in order to have a transportation
inequality for the law of Y . In fact, the function g can grow arbitrarily fast in its last
variable.

Corollary 4.3. Assume that g : [0, T ]× Ω×Rm ×Rm×d → Rm satisfies

(A) There is an increasing function ϕ : R+ → R+ such that for every ω1, ω2 ∈ C,
y1, y2 ∈ Rm, z1, z2 ∈ Rm×d it holds

|gt(ω1, y1, z1)− gt(ω2, y2, z2)| ≤ Lg
(
||ω1 − ω2||∞ + |y1 − y2|

)
+ ϕ(|z1| ∨ |z2|)|z1 − z2|.

(B) F : Ω→ Rm is LF -Lipschitz continuous.

(C) Condition (C) in Lemma 4.1 is satisfied.

Then, if T is small enough the equation (BSDE) admits a unique solution (Y, Z) and

the law µy of Y satisfies T2(Cy)

with Cy := 2(LF +T max(Lg, ρ(Q)))2e2T max(Lg,ϕ(Λ)), where Λ is given by Λ :=
(
2dm(L2

F +

TL2
g)
)1/2

.

Furthermore, if the map t 7→ Di
tF is continuous, then the law µz of Z satisfies

W2(µz, ν) ≤ CzH(ν|µz)1/4 for all ν ∈ P(Ω),

with Cz := 2
(
1 +

(
mL2

F e
(max(Lg,ϕ(Λ))+1)2T +mT max(Lg, ϕ(Λ))2

)4)1/4
.
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Proof. As argued in the proof of Lemma 4.1, F is Malliavin differentiable and has a
derivative bounded by LF . Therefore, the existence of a unique solution (Y,Z) follows
from [33, Theorem 3.1], where it is further proved that the process Z satisfies |Z| ≤ Λ,
provided that T ≤ log(2)

2Lg+ϕ2(Λ)+1 . The truncated function

ĝt(y, z) :=

{
gt(y, z) if |z| ≤ Λ

gt(y,Λz/|z|) if |z| > Λ

is Lipschitz continuous with Lipschitz constant smaller than max(Lg, ϕ(Λ)), and since
gt(Yt, Zt) = ĝt(Yt, Zt) P -almost surely for every t ∈ [0, T ] we conclude by uniqueness
that (Y, Z) solves the equation (BSDE) with g replaced by ĝ. Thus, the results follow by
Theorem 1.3 and Lemma 4.1.

Remark 4.4. When the function g is deterministic, it is automatically Malliavin differen-
tiable and its Malliavin derivative is zero. In this case, all the conditions pertaining to
the Malliavin derivative of g in Lemma 4.1 and Corollary 4.3 are trivially satisfied.

On the other hand, the smallness condition on the time horizon T is necessary because
Y is a multidimensional process. It is well known that in the multidimensional case, and
when the function g is allowed to grow as fast as the quadratic function, backward SDE
are typically ill-posed for arbitrary time horizons, see for instance [23] for a discussion
of this issue. The smallness condition is not necessary in one dimension.

In Lemma 4.1 and Corollary 4.3 we derived a transportation inequality of the form
W2(µz, ν) ≤ φ(H(µz|ν)) for the law of Z, with φ(x) = x1/4. While this type of inequality
(extensively studies e.g. in [27]) allow to derive deviation inequalities, they do not
tensorize or allow to derive other important inequalities as Poincaré inequality.

The next corollary provides a simple example under which Talagrand inequality holds
for the law of Z. It is the case of a linear equation.

Corollary 4.5. Assume that

(A) F : Ω→ Rm is Malliavin differentiable and its Malliavin derivatives DiFt : Ω→ Rm

are LF -Lipschitz continuous.

(B) gt(ω, y, z) = αt(ω) + βy + γz for some constants β, γ and a progressive, square
integrable process α such that for each t, αt is Malliavin differentiable and its
derivative are Lα-Lipschitz continuous.

Let (Y,Z) be the unique solution of equation (BSDE). Then, the

the law µz of Z satisfies T2(Cz)

with Cz := 2(LF + TLG)2e2TLG and LG := max(Lα, |β|, |γ|).
If in addition F and αt are respectively LF - and Lα-Lipschitz continuous, then

the law µy,z of (Y,Z) satisfies T2(Cy,z)

with Cy,z := max(Cy, Cz).

Proof. It follows from [21] that for every t ∈ [0, T ], the pair (Yt, Zt) is Malliavin differ-
entiable and a version of the derivatives (Di

sYt, D
i
sZt), i = 1, . . . , d satisfies the linear

equations

Di
sYt = Di

sF +

∫ T

t

Di
sαr + βDi

sYr + γDi
sZr dr −

∫ T

t

Di
sZr dWr, (4.3)
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for i = 1, . . . , d and Di
tYt = Zit . Moreover, by (B), the function G(ω, y, z) given by

G(ω, y, z) := Di
sαr(ω) + βy + γz

is Lipschitz continuous, with Lipschitz constant LG := max(Lα, |β|, |γ|). Thus, it follows
by Theorem 1.3 (and its proof) that the process (DtYt)t is a Lipschitz continuous function
of W , and its law satisfies T2(Cz). Since Zt = DtYt P ⊗ dt-almost surely, the first claim
follows.

If α and F are Lipschitz continuous, then it follows by Theorem 1.3 that Y = φ(ω)

for some Lipschitz continuous function φ. Thus, the second claim follows by Lemma 2.1
since (Y, Z) is a Lipschitz continuous function of W .

5 Proof for SDEs

Proof of Theorem 1.8. It follows from the conditions (B) and (C) that the function b is
bounded. Thus, the existence of a unique strong solution follows from [54, Theorem 4].

Define the following three functions

ft(x) := exp
(∫ x

−∞
−2

bt(a)

σtσ′t(a)
da
)
,

Ft(x) :=

∫ x

0

ft(a) da, and

Gt(x) := [Ft(·)]−1(x)

for all (t, x) ∈ [0, T ] × R. Note that it follows from the integrability assumption (C)
that Ft(·) is bijective and therefore G is well-defined. Moreover, as b·(x) and σ·(x) are
differentiable by assumption (A) and (B), it follows from (C) that f·(x) (and therefore
F·(x)) is differentiable for every x ∈ R. Further Ft(·) is differentiable with deriva-
tive ∂xFt(x) = ft(x) for every (t, x) ∈ [0, T ] × R and ∂xFt(·) is absolutely continuous
w.r.t. Lebesgue measure for every t ∈ [0, T ]. Thus, it admits a weak derivative which we
denote ∂xxFt(·). That is, F belongs to the Sobolev space W 1,2

2 ([0, T ]×R).
Putting Yt := Ft(Xt), it follows from Itô-Krylov’s formula [32, Theorem 2.10.1] that

Yt = Y0 +

∫ t

0

∂tFs(Xs) +
1

2
∂xxFs(Xs)σsσ

′
s(Xs) ds+

∫ t

0

∂xFs(Xs)bs(Xs) dWs

= Y0 +

∫ t

0

∂tFs(Gs(Ys)) ds+

∫ t

0

fs(Gs(Ys))σs(Gs(Ys)) dWs.

By assumption (C) one has exp(−c1) ≤ f ≤ exp(c1). Hence, for every t ∈ [0, T ], both
mappings

Ft(·) and Gt(·) are exp(c1)-Lipschitz.

Further, as |∂tf | is bounded by exp(c1)c3, it follows that

∂tFt(·) =

∫ ·
0

∂tft(a) da is c3 exp(c1)-Lipschitz

for every t ∈ [0, T ]. Thus ∂tFt(G(t, ·)) is c3 exp(2c1)-Lipschitz for every t ∈ [0, T ]. Moreover

ft(·) is c2 exp(c1)-Lipschitz,

ft(Gt(·)) is c2 exp(2c1)-Lipschitz, and

σt(Gt(·)) is Lσ exp(c1)-Lipschitz
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for every t ∈ [0, T ]. As f is bounded by exp(c1) and σ by ‖σ‖∞, one obtains that the
product

ft(Gt(·))σt(Gt(·)) is ‖σ‖∞c2 exp(2c1) + exp(2c1)Lσ-Lipschitz

for every t ∈ [0, T ].
Therefore, [51, Theorem 1] shows that the law µy of Y satisfies T2(Cy) with

Cy = 6 exp(15 max(c3 exp(2c1, ‖σ‖∞c2 exp(2c1) + exp(2c1)L2
σ))).

Moreover, by the above, X = G(Y ) and the mapping G is exp(c1)-Lipschitz. An applica-
tion of Lemma 2.1 shows that µx satisfies T2(exp(c1)Cy).

Example 5.1. Let us come back to the Langenvin dynamic presented in the introduction,
see (1.2). These equations play a fundamental role notably in the modeling of physical
phenomena, see for instance the survey of [48] for applications in Physics, and the
more recent mathematical treatments [30, 13]. It follows by Theorem 1.8 that if U ′ is
integrable and bounded, then the law of X satisfies T2(C) for some C > 0.

It is well-known that if U grows fast enough for e−λU to be integrable, (and it holds
xU ′(x) ≥ c1x

2 − c2 for some c1, c2 ≥ 0) then the measure µ on R with density (with
respect to Lebesgue measure) e−λU(x)/

∫
R
e−λU(x) dx is the unique stationary measure

of the solution of the Langenvin equation, see e.g. [35, Lemma 1.2]. Since U ′ does not
depend on time, the constant Cx in Theorem 1.8 is time independent. Therefore, it
follows by Theorem 1.8 that the measure µ satisfies T2(C).

It is well-known, see e.g. [36, Theorem 5.2], that log-concave measures1 satisfy
the quadratic transportation inequality. Notice that in the above arguments we do not
require U to be convex, but simply a differentiable function on the real line. Nevertheless,
a standard tensorization argument for T2 inequalities allows to extend the argument to
measures on Rd with density of the form e−

∑d
i=1 U(xi).

6 Logarithmic-Sobolev inequality

In this final section we prove the logarithmic-Sobolev inequality for the law of Yt.
This requires some notational preparations.

Let H denote the Cameron-Martin space

H :=
{
h ∈ Ω : h is absolutely continuous, h0 = 0 and

∫ T

0

|ḣs|2 ds <∞
}
.

Then H becomes a Hilbert space when equipped with the inner product 〈h, g〉H :=∫ T
0
ḣsġs ds for h, g ∈ H and associated norm ‖h‖H := 〈h, h〉1/2H . Let F : Ω → R be

Malliavin differentiable, with DtF ∈ L2 for all t ∈ [0, T ]. Given h ∈ H, consider the
directional derivative

DhF (ω) := lim
ε↓0

F (ω + εh)− F (ω)

ε
.

This defines a continuous linear operator on H, so that by Riesz representation theorem,
there is a map ω 7→ D̄sF (ω) with values in H such that

DhF (ω) = 〈D̄F (ω), h〉H .

It is well-known that D̄F = DF P -almost surely, see e.g. [52, Remark B.6.2]. In particular,
as H is separable, this implies that |DF |H = suph∈H s.th. |h|H≤1 |DhF | P -almost surely.

1A probability measure µ is said to be log-concave if its density with respect to Lebesgue measure is of the
form e−U with U convex.
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The following Lemma is in spirit the same as Lemma 2.1. It states that, since the
Wiener measure P satisfies the log-Sobolev inequality

EntP (f) :=

∫
f2 log

( f2∫
f2 dP

)
dP ≤ 2

∫
Ω

|Df |2H dP

for every P -integrable and Malliavin differentiable function f : Ω→ Rm, the push forward
of the Wiener measure under any Lipschitz transformation to the Euclidean space again
satisfies the log-Sobolev inequality. It is likely to be known, but we could not find a
reference and therefore provide its proof. Note however that the finite dimensional case
is given in [12, Section 1].

Lemma 6.1. Let ψ : (Ω, ‖ · ‖∞) → Rm be Lψ-Lipschitz continuous. Then ψ∗P satisfies
LSI(2TL2

ψ).

Proof. In a first step, note that by Lipschitz continuity of ψ, it is Malliavin differentiable
(with derivative bounded by Lψ), see e.g. [11, Proposition 3.2]. Let f : Rm → R be
differentiable. We need to show that Entψ∗P (f) ≤ 2TL2

ψ

∫
|∇f | d(ψ∗P ).

To that end, let ω ∈ Ω and h ∈ H be arbitrary and note that

lim sup
ε↓0

∣∣∣f(ψ(ω + εh))− f(ψ(ω))

ε

∣∣∣
≤ lim sup

ε↓0

∣∣∣∇f(ψ(ω)) · ψ(ω + εh)− ψ(ω)

ε

∣∣∣ ≤ |∇f(ψ(ω))| · Lψ‖h‖∞

by Lψ-Lipschitz continuity of ψ and the Cauchy-Schwarz inequality. Further, Hölder’s
inequality implies that ‖h‖∞ ≤

√
T |h|H , hence

Dh(f ◦ ψ)(ω) ≤ Lψ
√
T · |∇f(ψ(ω))| · |h|H

for every h ∈ H. By the discussion preceding the lemma, this therefore implies that

|D(f ◦ ψ)|H ≤ Lψ
√
T · |∇f ◦ ψ|

P -almost all surely.
Now notice that EntP (f ◦ ψ) = Entψ∗P (f) by the transformation lemma. Hence, as

the Wiener meausre P satisfies LSI(2) by [28] (see also [10] and [25, Theorem 1.1] for a
formulation using the Malliavin gradient as ours), it follows that

Entψ∗P (f) = EntP (f ◦ ψ)

≤ 2

∫
Ω

|D(f ◦ ψ)|2H dP ≤ 2TL2
ψ

∫
Rm

|∇f | d(ψ∗P ).

This proves the claim.

Proof of Theorem 1.11. Recall from the proof of Theorem 1.3 that Y : Ω → Ω is LY -
Lipschitz with LY =

√
Cy/2 (where Cy is the constant given in that theorem). In

particular Yt : Ω→ Rm remains LY -Lipschitz. The proof is completed by an application
of Lemma 6.1.
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