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KPZ equation tails for general initial data
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Abstract

We consider the upper and lower tail probabilities for the centered (by time/24) and
scaled (according to KPZ time1/3 scaling) one-point distribution of the Cole-Hopf
solution of the KPZ equation when started with initial data drawn from a very general
class. For the lower tail, we prove an upper bound which demonstrates a crossover
from super-exponential decay with exponent 3 in the shallow tail to an exponent 5/2
in the deep tail. For the upper tail, we prove super-exponential decay bounds with
exponent 3/2 at all depths in the tail.
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1 Introduction

In this paper we consider the following question: How does the initial data for
an SPDE affect the statistics of the solution at a later time? Namely, we consider
the Kardar-Parisi-Zhang (KPZ) equation (or equivalently, the stochastic heat equation
(SHE)) and probe the lower and upper tails of the centered (by time/24) and scaled
(by time1/3) one-point distribution for the solution at finite and long times. Our main
results (Theorems 1.2 and 1.4) show that within a very large class of initial data, the
tail behavior for the KPZ equation does not change in terms of the super-exponential
decay rates and at most changes in terms of the coefficient in the exponential. These
results are the first tail bounds for general initial data which capture the correct decay
exponents and which respect the long-time scaling behavior of the solution.

In order to state our results, let us recall the KPZ equation, which is formally written
as

∂TH(T,X) =
1

2
∂2
XH(T,X) +

1

2
(∂XH(T,X))2 + ξ(T,X), H(0, X) = H0(X).
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KPZ equation tails

Here, ξ is the space-time white noise, whose presence (along with the non-linearity)
renders this equation ill-posed. A proper definition of the solution of the KPZ equation
comes from the Cole-Hopf transform by which we define

H(T,X) := logZ(T,X) (1.1)

where Z(T,X) is the unique solution of the well-posed SHE

∂TZ(T,X) =
1

2
∂2
XZ(T,X) + Z(T,X)ξ(T,X), Z0(X) = eH0(X).

Note that the logarithm in (1.1) is defined since Z(T,X) is almost-surely strictly positive
for all T > 0 and X ∈ R [Mue91]. We refer to [Qua12, Cor12, Hai13] for more details
about the KPZ equation and the SHE and their relation to random growth, interacting
particle systems, directed polymers and other probabilistic systems (see also [Mol,
Kho14, BC95, BC17, Com17]).

In this paper, we consider very general initial data as now describe.

Definition 1.1. Fix ν ∈ (0, 1) and C, θ, κ,M > 0. A measurable function f : R →
R ∪ {−∞} satisfies Hyp(C, ν, θ, κ,M) if:

(1) f(y) ≤ C +
ν

22/3
y2, ∀y ∈ R, (1.2)

(2) there exists a subinterval I ⊂ [−M,M ] with |I| = θ such that

f(y) ≥ −κ, ∀y ∈ I. (1.3)

For a measurable function f : R→ R ∪ {−∞}, and T > 0 consider the solution to the
KPZ equation with initial data H0 chosen such that

T−
1
3H0

(
(2T )

2
3 y
)

= f(y). (1.4)

We consider the KPZ equation with this initial data and run until time1 T . Namely, let

hfT (y) :=
H
(
2T, (2T )

2
3 y
)

+ T
12 −

2
3 log(2T )

T
1
3

. (1.5)

Our first main result (Theorem 1.2) provides an upper bound on the lower tail that
holds uniformly over f ∈ Hyp(C, ν, θ, κ,M), and T > 1. The proof of this and our other
main results are deferred to the later sections of the paper.

Theorem 1.2. Fix any ε, δ ∈ (0, 1
3 ), C,M, θ > 0, ν ∈ (0, 1), and T0 > 0. There exist

s0 = s0(ε, δ, C,M, θ, ν, T0) and K = K(ε, δ, T0) > 0 such that for all s ≥ s0, T ≥ T0, and
f ∈ Hyp(C, ν, θ, κ,M) (recall hfT (y) is defined in (1.4) and (1.5)),

P
(
hfT (0) ≤ −s

)
≤ e−T

1/3 4(1−ε)s5/2
15π + e−Ks

3−δ−εsT 1/3

+ e−
(1−ε)s3

12 . (1.6)

Remark 1.3. There are three regions of the lower tail (see I, II, and III in Figure
1). In each region (and for T large) a different one of the three terms on the r.h.s.
of (1.6) becomes active. For instance, for region I when s � T 2/3, the largest term
in our bound is the first term in the r.h.s. of (1.6). Likewise, the middle term in the
r.h.s. of (1.6) is active in region II and the last term in region III. We presently lack a
matching lower bound for the lower tail probability. This is known for only the narrow
wedge (see Proposition 1.10). See Section 1.3 for some discussion regarding physics
literature related to this tail. Let us also note that one can get similar bound as in (1.6)

1Notice that the initial data and time horizon are both dependent on T . This allows for a much wider class
of initial data which are adapted to the KPZ fixed point scaling.
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KPZ equation tails

I II III IV

Figure 1: Schematic plot of the density (top) and log density (bottom) of hfT (0). Letting
s denote the horizontal axis variable, there are four regions which display different
behaviors. Region I (deep lower tail, when s� −T 2/3): the log density has power law
decay with exponent 5/2. Region II (shallow lower tail, when −T 2/3 � s� 0): the log
density has power law decay with exponent 3. Region III (center, when s ≈ 0): the
density depends on initial data as predicted by the KPZ fixed point. Region IV (upper tail,
when s� 0): the log density has power law decay with exponent 3/2. The universality of
the power law exponents (in regions I, II and IV ) for general initial data constitutes the
main contribution of this paper.

on P
(
hfT (y) ≤ −s

)
when y 6= 0. This is explained in Section 1.1. Finally, observe that

two important choices of initial data — narrow wedge and Brownian motion — do not fit
into this class2. The narrow wedge result is in fact a building block for the proof of this
result, while Brownian follows as a fairly easy corollary (see Section 1.2).

Our second main result pertains to the upper tail and shows upper and lower bounds
which hold uniformly over f ∈ Hyp(C, ν, θ, κ,M), and T > π.

Theorem 1.4. Fix any ν ∈ (0, 1) and C, θ, κ,M > 0. For any T0 > 0, there exist
s0 = s0(C, ν, θ, κ,M, T0) > 0, c1 = c1(T0) > c2 = c2(T0) > 0 such that for all s ≥ s0, T > T0

and f ∈ Hyp(C, ν, θ, κ,M),

e−c1s
3/2

≤ P
(
hfT (0) ≥ s

)
≤ e−c2s

3/2

. (1.7)

We may further specify values of c1 and c2 for which (1.7) holds, provided we assume
T0 > π. In that case, for any ε, µ ∈ (0, 1

2 ), there exists s0 = s0(ε, µ, C, ν, θ, κ,M, T0) > 0

such that for all s ≥ s′0, T ≥ T0, and f ∈ Hyp(C, ν, θ, κ,M), (1.7) holds with the following
choices for c1 > c2:

(i) If s0 ≤ s < 1
8ε

3(1 − 2µ
3 )−1T

2
3 then we may take c1 = 8

3 (1 + µ)(1 + ε) and c2 =
√

2
3 (1− µ)(1− ε).

(ii) If s ≥ max{s0,
9
16ε
−2(1 − 2µ

3 )−1T
2
3 } then we may take c1 = 8

√
3(1 + µ)(1 + ε) and

c2 =
√

2
3 (1− µ)(1− ε).

(iii) If max{s0,
1
8ε

3(1 − 2µ
3 )−1T

2
3 } ≤ s ≤ max{s0,

9
16ε
−2(1 − 2µ

3 )−1T
2
3 } then we may take

c1 = 29/2ε−3(1 + µ) and c2 =
√

2
3 (1− µ)ε.

2The flat initial data is in the class and arises from f ≡ 0.
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KPZ equation tails

Remark 1.5. In Theorems 1.11 and 1.14, we prove similar results for narrow wedge
and Brownian initial data. The upper and lower bounds on the constants c1 and c2 are
not optimal. In fact, it is not clear to us how the initial data translates to the optimal
value of c1 or c2. There, however, some predictions in the physics literature – see Section
1.3. The condition T0 > π assumed in the second part of Theorem 1.4 could be replaced
by an arbitrary lower bound, though the resulting conditions on s, c1 and c2 would need
to change accordingly. This value π turns out to work well in the computations leading
to this result; in particular see (4.19).

1.1 Proof sketch

The fundamental solution to the SHE Znw(T,X) corresponds to delta initial data
Z0(X) = δX=0. For any positive T , this results in a strictly positive solution, hence the
corresponding KPZ equation solution is well-defined for T > 0 and this initial data is
termed narrow wedge since in short time Z(T,X) is well-approximated by the Gaussian

heat-kernel whose logarithm is a very thin parabola X2

2T .

Definition 1.6 (Cole-Hopf Transform). The Cole-Hopf transform of Znw(T,X) is denoted
here by Hnw(T,X) := logZnw(T,X). We further define a scaled and centered version of
this as

ΥT (y) :=
Hnw(2T, (2T )

2
3 y) + T

12

T
1
3

. (1.8)

The proof of our main results relies upon a combination of three ingredients: (1) lower
tail bounds for the narrow wedge initial data recently proved in [CG], (2) Gibbsian line
ensemble techniques applied to the KPZ line ensemble [CH16], and (3) explicit integral
formulas for moments of the SHE with delta initial data. Now, we give an overview of our
proofs. A more involved discussion of the KPZ line ensemble is contained in Section 2.

To prove Theorem 1.2, one of our main tools is the upper and lower bound for the
lower tail of the one point distribution of the narrow wedge solution of the KPZ equation
given in Proposition 1.10. However, to use this result, we need a connection between
the solution of the KPZ equation under general initial conditions and the narrow wedge
solution. This connection is made through the following identity (which follows from the
Feynman-Kac formula) which represents the one point distribution of the KPZ equation
started from H0 as a convolution between the spatial process ΥT (·) and the initial data
H0(·).

Proposition 1.7 (Lemma 1.18 of [CH16]). For general initial data H0(·) := H(0, ·) and
for a fixed pair T > 0 and X ∈ R, the Cole-Hopf solution H(T,X) of the KPZ equation
satisfies

H(2T,X)
d
= log

(∫ ∞
−∞

eH
nw(2T,Y )+H0(X−Y )dY

)
d
= − T

12
+ log

(∫ ∞
−∞

eT
1
3 ΥT ((2T )−

1
3 Y )+H0(X−Y )dY

)
.

Furthermore, for H0 as in (1.4), we have

H(2T, (2T )
1
3X) + T

12 −
2
3 log(2T )

T
1
3

d
=

1

T
1
3

log
(∫ ∞
−∞

eT
1
3

(
ΥT (Y )+f(X−Y )

)
dY
)
. (1.9)

To employ this identity, we need tail bounds for the entire spatial process ΥT (·).
Presently, exact formulas amenable to rigorous asymptotics are only available for one-
point tail probabilities, and not multi-point. However, by using the Gibbs property for
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the KPZ line ensemble (introduced in [CH16] and recalled here in Section 2) we will be
able to extend this one-point tail control to the entire spatial process. Working with the
Gibbs property is a central technical aspect of our present work and forms the backbone
of the proof of Theorem 1.2.

Besides the KPZ line ensemble, another helpful property of the narrow wedge KPZ
solution is the stationarity of the spatial process ΥT (·) after a parabolic shift.

Proposition 1.8 (Proposition 1.4 of [ACQ11]). The one point distribution of ΥT (y)+ y2

22/3

does not depend on the value of y.

The proof of Theorem 1.4 shares a similar philosophy with that of Theorem 1.2. We
first prove an upper (as Theorem 1.11) and a lower bound for the upper tail probability
of ΥT (0). The proof of Theorem 1.11 employs a combination of the one-point Laplace
transform formula (see Proposition 4.5) and moment formulas (see the proof of Lemma
4.1) for Znw.

The rest of the proof of Theorem 1.4 is based on the Gibbs property of the KPZ
line ensemble and the FKG inequality of the KPZ equation. The FKG inequality of the
KPZ equation is, for example (as shown in [CQ13, Proposition 1]) a consequence of the
positive associativity of its discrete analogue, the asymmetric simple exclusion process
(ASEP).

Proposition 1.9 (Proposition 1 of [CQ13]). Let H be the Cole-Hopf solution to KPZ
started from initial data H0. Fix k ∈ Z>0. For any T1, . . . , Tk ≥ 0, X1, . . . , Xk ∈ R and
s1, . . . , sk ∈ R,

P
( k⋂
`=1

{
H(T`, X`) ≤ s`

})
≥

k∏
`=1

P
(
H(T`, X`) ≤ s`

)
.

A simply corollary of this result is that for T1, T2 ∈ R>0, X1, X2 ∈ R and s1, s2 ∈ R,

P
(
H(T1, X1) > s1,H(T2, X2) > s2

)
≥ P

(
H(T1, X1) > s1

)
P
(
H(T2, X2) > s2

)
. (1.10)

1.2 Narrow wedge and Brownian initial data results

Neither narrow wedge nor two-sided Brownian initial data belongs to the class of
functions in Definition 1.1. We record here the analogues of Theorems 1.2 and 1.4 for
these two cases. As mentioned in the last section, the one point tail results for the
narrow wedge solution are important inputs to the proof of Theorems 1.2 and 1.4. We
recall these below.

Proposition 1.10 (Theorem 1.1 of [CG]). Fix ε, δ ∈ (0, 1
3 ) and T0 > 0. Then, there exist

s0 = s0(ε, δ, T0), K1 = K1(ε, δ, T0) > 0, K2 = K2(T0) > 0 such that for all s ≥ s0 and
T ≥ T0,

P(ΥT (0) ≤ −s) ≤ e−T
1/3 4s5/2(1−ε)

15π + e−K1s
3−δ−εsT 1/3

+ e−
(1−ε)s3

12 (1.11)

and, P(ΥT (0) ≤ −s) ≥ e−T
1/3 4s5/2(1+ε)

15π + e−K2s
3

.

Our general initial data results also rely upon upper and lower bounds on the upper
tail probability of ΥT (·) which are, in fact, new (see Section 1.3 for a discussion of
previous work).

Theorem 1.11. For any T0 > 0, there exist s0 = s0(T0) > 0 and c1 = c1(T0) > c2 =

c2(T0) > 0 such that for all s ≥ s0 and T > T0

e−c1s
3/2

≤ P(ΥT (0) ≥ s) ≤ e−c2s
3/2

. (1.12)
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We may further specify values of c1 and c2 for which (1.12) holds, provided we assume
T0 > π. In that case, for any ε ∈ (0, 1

2 ), there exists s0 = s0(ε, T0) > 0 such that for all
s ≥ s0 and T ≥ T0, (1.12) holds with the following choices for c1 > c2:

(i) If s0 ≤ s < 1
8ε

2T
2
3 then we may take c1 = 4

3 (1 + ε) and c2 = 4
3 (1− ε).

(ii) If s ≥ max{s0,
9
16ε
−2T

2
3 } then we may take c1 = 4

√
3(1 + ε) and c2 = 4

3 (1 − ε).
Furthermore, for c1 = 4

3 (1 + ε) there exists a sequence {sn}n≥1 with sn → ∞ as

n→∞ such that P(ΥT > sn) > e−c1s
3/2
n for all n.

(iii) If max{s0,
1
8ε

2T
2
3 } ≤ s ≤ max{s0,

9
16ε
−2T

2
3 } then we may take c1 = 27/2ε−3 and

c2 = 4
3ε.

Remark 1.12. Part (i) of Theorem 1.11 shows that P(ΥT (0) > s) is close to exp(−4s
3
2 /3)

when s � T
2
3 . This is in agreement with the fact that the tail probabilities of ΥT (0)

should be close to the tails of the Tracy-Widom GUE distribution as T increases to
∞. Part (ii) of Theorem 1.11 shows that the upper bound to P(ΥT (0) > s) is close
exp(−4s

3
2 /3) when s� T

2
3 . We also have some lower bound which is not tight. However,

part (ii) further tells that the lower bound for P(ΥT (0) > s) cannot differ much from
exp(−4s

3
2 /3) for all large s. In the regime s = O(T

2
3 ), we do not have tight upper and

lower bounds in (1.12), although, the decay exponent of P(ΥT (0) > s) will still be equal
to 3/2.

Our next two results are about the tail probabilities for the KPZ equation with two
sided Brownian motion initial data; as this initial data falls outside our class, some
additional arguments are necessary. Define HBr

0 : R→ R as HBr
0 (x) := B(x) where B is

a two sided standard Brownian motion with B(0) = 0. Denote the Cole-Hopf solution of
the KPZ equation started from this initial data HBr

0 by HBr(·, ·) and define

hBr
T (y) :=

HBr(2T, (2T )
2
3 y) + T

12 −
2
3 log(2T )

T
1
3

∀T > 0. (1.13)

We first state our result on the lower tail of hBr
T (0).

Theorem 1.13. Fix ε, δ ∈ (0, 1
3 ) and T0 > 0. There exist s0 = s0(ε, δ, T0) and K =

K(ε, δ, T0) > 0 such that for all s ≥ s0 and T ≥ T0,

P
(
hBr
T (0) ≤ −s

)
≤ e−T

1/3 4(1−ε)s5/2
15π + e−Ks

3−δ−εsT 1/3

+ e−
(1−ε)s3

12 . (1.14)

Our last result of this section is about the upper tail probability of hBr
T (0).

Theorem 1.14. Fix ε, µ ∈ (0, 1
2 ) and T0 > 0. Then, there exists s0 = s0(ε, µ, T0) such that

for all s ≥ s0 and T ≥ T0,

e−c1s
3/2

≤ P
(
hBr
T (0) > s

)
≤ e−c2s

3/2

+ e
− 1

9
√

3
(µs)3/2

where c1 > c2 depend on the values of ε, µ and T0 as described in Theorem 1.4.

In Theorem 1.14, the second term of the upper bound (on the right-hand side of the
equation) comes from the fact that Brownian motion is random, and the first term arises
in an analogous way as it does for deterministic initial data in Theorem 1.4.

As proved in [BCFV15, Theorem 2.17], hBr
T (0) converges in law to the Baik-Rain dis-

tribution (see [BR00, FS006, IS04, PS04, BFP10]). The following corollary strengthens
the notion of that convergence and implies that the moments of hBr

T (0) converge to the
moments of the limiting Baik-Rains distribution. This answers a question posed to us by
Jean-Dominique Deutschel (namely, that the variance converges).
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Corollary 1.15. Let X be a Baik-Rains distributed random variable (see [BCFV15,
Definition 2.16]). Then, E[et|X|] <∞ and for all t ∈ R,

E
[
et|h

Br
T (0)|]→ E

[
et|X|

]
, as T →∞. (1.15)

Proof. Theorems 1.13 and 1.14 show that et|h
Br
T (0)| is uniformly integrable. The dom-

inated convergence theorem, along with [BCFV15, Theorem 2.17] yields (1.15) and
E[et|X|] < ∞. �

1.3 Previous work and further directions

The study of tail probabilities for the KPZ equation and the SHE has a number of
motivations including intermittency and large deviations. We recall some of the relevant
previous literature here and compare what is done therein to the results of this present
work.

The first result regarding the lower tail probability of Z(T,X) the proof of its almost
sure positivity by [Mue91]. Later, [MN08] investigated the lower tail of the SHE re-
stricted on the unit interval with general initial data and Dirichlet boundary condition;
they bounded P(logZ(T,X) ≤ −s) from above by c1 exp(−c2s

3
2−δ) (where c1, c2 are two

positive constants depending inexplicitly on T ). In [MF14], this upper bound was further
improved to c1 exp(−c2s2) for the delta initial data SHE (the constants are different
but still depend inexplicitly on T ). Using these bounds, [CH16] demonstrated similar
upper bounds on the lower tail probability of the KPZ equation under general initial
data. There are also tail bounds for the fractional Laplacian (∆α/2 with α ∈ (1, 2]) SHE.
[CHN16, Theorem 1.5] generalizes the bound of [MN08] and shows an upper bound3

with exponent 2− 1/α (= 3/2 when α = 2).
None of the previous SHE lower tail bounds were suitable to taking time T large.

Specifically, the constants depend inexplicitly on T and the centering by T/24 and scaling
by T 1/3 were not present. Thus, as T grows, the bounds weaken significantly to the
point of triviality. For instance, one cannot conclude tightness of the centered and scaled
version of logZ(T,X) (ΥT (X) herein) as T goes to infinity using the bounds.

The first lower tail bounds suitable to taking T large came in our previous work [CG]
which dealt with the delta initial data SHE (see Proposition 1.10 herein). That result
relied upon an identity of [BG16] (see Proposition 4.5). No analog of that identity seems
to exist for general initial data. This is why we use the KPZ line ensemble approach in
our present work.

The upper tail probability of the SHE had been studied before in a number of
places. For instance, see [CD15, CJK13, KKX17] in regards to its connection to the
moments and the intermittency property [GM90, GKM07] of the SHE. Again, there is
a question of whether results are suitable to taking T large. The only such result is
[CQ13, Corollary 14] which shows that for some constants c1, c2, c′1, c

′
2, and s, T ≥ 1,

P(ΥT > s) ≤ c1 exp(−c′1sT 1/3) + c2 exp(−c′2s3/2). When s � T
2
3 the second bound is

active and one sees the expected 3/2 power-law in the exponent. However, as s� T
2
3 ,

the leading term above become c1 exp(−c′1sT
1
3 ) and only demonstrates exponential decay.

Our result (Theorem 1.11) shows that c1 exp(−c′1sT
1
3 ) is not a tight upper bound for

P(ΥT > s) in this regime of s. In fact, the 3/2 power-law is shown to be valid for all s
even as T grows (with upper and lower bounds of this sort).

3In light of our results, it might natural to expect the true decay exponent is 3− 1/α. Perhaps the methods
of [MF14] can be applied to give decay at least with exponent 2. Heuristically, one may be able to see the true
exponent by using the physics weak noise theory as in, for example, [KMS16].
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Some works have focused on the large s but fixed T upper tail, e.g. [CJK13] showed
that logP

(
logZ(T,X) > s

)
� −s 3

2 as s → ∞ where Z(0, X) ≡ 1. These results are
not suitable for taking T and s large together. Our results (Theorems 1.4, 1.11 and
1.14) provide the first upper and lower bound for the upper tail probability which are
well-adapted to taking T large. In particular, we showed that for a wide range of initial
data the exponent of the upper tail decay is always 3

2 (a result which was not proved
before for any specific initial data). However, the constants in the exponent for our
bounds on the upper tail probability are not optimal.

It is natural to speculate on the values of these optimal coefficients. There is some
discussion of this in the physics literature (see, for example, [KMS16, HLDM+18]) based
on numerics and the weak noise theory (WNT)4. In the deep lower tail (the 5/2 exponent
region) the coefficient depends on the initial data and can be predicted using the WNT
as in [KMS16]. For the shallow lower tail (the 3 exponent region) one expects (by reason
of continuity) to have a coefficient corresponding to the tail decay of the KPZ fixed point
with the corresponding initial data. Remarkably, for the upper tail (the 3/2 exponent
region) it seem that for all deterministic initial data, the upper tail coefficient remains
the same5. However, for Brownian initial data, the coefficient changes by a factor
of 2.

There have been previous considerations of tail bounds in the direction of studying
large deviations for the KPZ equation (i.e., the probability that as T → ∞, logZ(T,X)

looks like cT for some constant not equal to −1/24). The speed for the upper tail and
lower tail are different (the former being T and the later being T 2). The lower tail large
deviation principle has been the subject of significant study in the physics literature
(see [SMP17, CGK+18, KL18a, KL18b] and references therein). Recently, [Tsa] provided
a rigorous proof of the lower tail rate function. We are not aware of a rigorous proof
of the (likely) simpler upper tail rate function for the KPZ equation (there is some non-
rigorous predictions about this, see e.g. [LDMS16]). However, for a discrete analog (the
log-gamma polymer) and a semi-discrete analog (the O’Connell-Yor polymer) such an
upper tail bound is proved in [GS13] and [Jan15] respectively.

We finally mention a few directions worth pursuing. Theorem 1.2 only provides an
upper bound on the lower tail. Our KPZ line ensemble methods are able to produce a
lower bound, but with a worse (larger) power law. It is only for the narrow wedge initial
data that we have a tight matching lower bound. We conjecture that there should be
a similarly tight upper and lower bound for the lower tail which holds true for general
initial data. The large deviation result for the lower tail (see [SMP17, CGK+18, Tsa])
is only shown for narrow wedge initial data (though there is also some work needed
for flat and Brownian initial data). It would be interesting to determine how the large
deviation rate function depends on the initial data. In fact, even for the KPZ fixed point
(e.g. TASEP) this does not seem to be resolved.

Outline Section 2 reviews the KPZ line ensemble and its Gibbs property. Sections 3.1
and 3.2 establish the lower tail bounds of Theorems 1.2 and 1.13 by first analyzing the
narrow wedge initial condition tails and then feeding those bounds into an argument
leveraging the Gibbs property and the convolution formula of Proposition 1.7. We prove
the upper tail bounds of Theorem 1.11 in Section 4 by analyzing the moment formula
(see Lemma 4.1) and the Laplace transform formula (see Proposition 4.5) of the narrow
wedge solution. Sections 5.1 and 5.2 contain the proofs of (respectively) Theorems 1.4
and 1.14 on the upper tail bounds under general initial data.

4The approach is to look at the KPZ equation in short time with very weak noise. This is a different problem
than looking at the deep tail, but so far the results one gets from the WNT seem to be true even in long time.

5For instance, for flat and narrow wedge initial data, the upper tail seems to have the same 4/3 coefficient.
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KPZ equation tails

2 KPZ line ensemble

This section reviews (following the work of [CH16]) the KPZ line ensemble and its
Gibbs property. We use this construction in order to transfer one-point information
(namely, tail bounds) into spatially uniform information for ΥT (y) (see Definition 1.6). It
is through this mechanism that we can escape the bonds of exact formulas and generalize
the conclusions of [CG] to general initial data.

Definition 2.1. Fix intervals Σ ⊂ N and Λ ⊂ R. Let X be the set of all continuous
functions f : Σ × Λ 7→ R endowed with the topology of uniform convergence on the
compact subsets of Σ× Λ. Denote the sigma field generated by the Borel subsets of X
by C.

A Σ×Λ-indexed line ensemble L is a random variable in a probability space (Ω,B,P)

such that it takes values in X and is measurable with respect to (B, C). In simple words,
L is a collection of Σ-indexed random continuous curves, each mapping Λ to R.

Fix two integers k1 ≤ k2, a < b and two vectors ~x, ~y ∈ Rk2−k1+1. A {k1, . . . , k2} × (a, b)

– indexed line ensemble is called a free Brownian bridge line ensemble with the entrance
data ~x and the exit data ~y if its law, denoted here as Pk1,k2,(a,b),~x,~yfree , is that of k2 − k1 + 1

independent Brownian bridges starting at time a at points ~x and ending at time b at
points ~y. We use the notation Ek1,k2,(a,b),~x,~yfree for the associated expectation operator.

Consider a continuous function H : [0,∞)→ R, which we call a Hamiltonian. Given
H and two measurable functions f : [0,∞) → R ∪ {∞} and g : [0,∞) → R ∪ {−∞},
we define a {k1, . . . , k2} × (a, b) – indexed line ensemble with the entrance data ~x, the

exit data ~y, boundary data (f, g) and H to be the law of Pk1,k2,(a,b),~x,~y,f,gH on curves
Lk1 , . . . ,Lk2 : [0,∞) → R which is given in terms of the following Radon-Nikodym
derivative

dP
k1,k2,(a,b),~x,~y,f,g
H

dP
k1,k2,(a,b)
free

(Lk1 , . . . ,Lk2) =
W

k1,k2,(a,b),~x,~yf,g
H (Lk1 , . . . ,Lk2)

Z
k1,k2,(a,b),~x,~y,f,g
H

W
k1,k2,(a,b),~x,~y,f,g
H (Lk1 , . . . ,Lk2) = exp

{
−

k2∑
k=k1−1

∫ b

a

H
(
Lk1+1(u)− Lk(u)

)
du

}

with the convention Lk1−1 = f and Lk2+1 = g. Here, the normalizing constant is given by

Z
k1,k2,(a,b),~x,~y,f,g
H = E

k1,k2,(a,b)
free

[
W

k1,k2,(a,b),~x,~y,f,g
H (Lk1 , . . . ,Lk2)

]
where the curves (Lk1 , . . . ,Lk2) are distributed via Pk1,k2,(a,b),~x,~yfree . Throughout this paper
we will restrict our attention to one parameter family of Hamiltonians indexed by T ≥ 0:

HT (x) := eT
1/3x.

A Σ× Λ-indexed line ensemble L satisfies the H-Brownian Gibbs property if for any
subset K = {k1, k1 + 1, . . . , k2} ⊂ Σ and (a, b) ⊂ Λ, one has the following distributional
invariance

Law
(
L
∣∣
K×(a,b)

conditional on L
∣∣
Σ×Λ\K×(a,b)

)
= P

k1,k2,(a,b),~x,~y,f,g
H

where ~x = (ak1 , . . . , ak2), ~y = (bk1 , . . . , bk2) and f = Lk1−1|(a,b), g = Lk2+1 with f = −∞ if
k1 − 1 /∈ Σ and g = +∞ if k2 + 1 /∈ Σ. This is a spatial Markov property — the ensemble
in a given region has marginal distribution only dependent on the boundary-values of
said region.

Denote the sigma field generated by the curves with indices outside K × (a, b) by
Fext(K × (a, b)). The random variable (a, b) is a K-stopping domain if {a ≤ a, b ≥ b} ∈
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Fext(K × (a, b)). Let CK(a, b) be the set of continuous functions (fk1 , . . . , fk2) where
fi : (a, b)→ R and define

CK :=
{

(a, b, fk1 , . . . , fk2) : a < b and (fk1 , . . . , fk2) ∈ CK(a, b)
}
.

Denote the set of all Borel measurable functions from CK to R by B(CK). Then, a
K-stopping domain (a, b) is said to satisfy the strong H-Brownian Gibbs property if for
all F ∈ B(CK), following holds P-almost surely,

E
[
F
(
a, b,L

∣∣
K×(a,b)

)∣∣∣Fext(K × (a, b))
]

= E
k1,k2,(`,r),~x,~y,f,g
H

[
F (`, r,Lk1 , . . . ,Lk2)

]
(2.1)

where ` = a, r = b, ~x = {Li(a)}k2i=k1 , ~y = {Li(b)}k2i=k1 , f(·) = Lk1−1(·) (or +∞ if k1− 1 /∈ Σ)

and g(·) = Lk2+1(·) (or −∞ if k2 +1 /∈ Σ). On the l.h.s. of (2.1), L
∣∣∣
K×(a,b)

is the restriction

of the P-distributed curves and on the r.h.s. Lk1 , . . . ,Lk2 is Pk1,k2,(`,r),~x,~y,f,gH -distributed.

Remark 2.2. When k1 = k2 = 1 and (f, g) = (+∞,−∞) the measure Pk1,k2,(a,b),~x,~y,f,gH is
same as the measure of a free Brownian bridge started from ~x and ended at ~y.

The following lemma demonstrates a sufficient condition under which the strong
H-Brownian Gibbs property holds.

Lemma 2.1 (Lemma 2.5 of [CH16]). Any line ensemble which enjoys the H-Brownian
Gibbs property also enjoys the strong H-Brownian Gibbs property.

The next proposition relates the narrow wedge KPZ equation to the KPZ line ensem-
ble6.

Proposition 2.3 (Theorem 2.15 of [CH16]). Fix any T > 0. Then there exists an
N×R-indexed line ensemble HT = {HnT (x)}n∈N,x∈R satisfying the following properties:

(1) The lowest indexed curve H1
T (X) is equal in distribution (as a process in X) the

Cole-Hopf solution Hnw(T,X) of KPZ started from the narrow wedge initial data.

(2) HT satisfies the H1-Brownian Gibbs property (see Definition 2.1).

(3) Define the scaled KPZ line ensemble {Υ(n)
T (x)}n∈N,x∈R as follows

Υ
(n)
T (x) :=

Hn2T
(
(2T )

1
3x
)

+ T
12

T
1
3

.

Then, {2− 1
3 Υ

(n)
T (x)}n∈N,x∈R satisfies the H2T -Brownian Gibbs property7

The following proposition is a monotonicity result which shows that two line ensem-
bles with the same index set can be coupled in such a way that if the boundary conditions
of one ensemble dominates the other, then likewise do the curves.

Proposition 2.4 (Lemmas 2.6 and 2.7 of [CH16]). Fix an interval K = {k1, . . . , k2} ⊂ Σ

for some fixed positive integers k1 < k2, (a, b) ⊂ Λ for a < b and two pairs of vectors
~x1, ~x2 and ~y1, ~y2 in Rk2−k1+1. Consider any two pairs of measurable functions f, f̃ :

(a, b) → R ∪ {+∞} and g, g̃ : (a, b) → R ∪ {−∞} such that f̃(s) ≤ f(s), g̃(s) ≤ g(s) for

all s ∈ (a, b) and x
(k)
2 ≤ x

(k)
1 , y(k)

2 ≤ y
(k)
1 for all k ∈ K. Let Q = {Q(n)(x)}n∈K,x∈(a,b) and

Q̃ = {Q̃(n)(x)}n∈K,x∈(a,b) be two K × (a, b)-indexed line ensembles in the probability

6Note, we do not require the full strength of the result proved in Theorem 2.15 of [CH16]. That result also

proves uniform over T of the local Brownian nature of the top curve Υ
(1)
T (x) as x varies.

7This pesky 2−
1
3 compensates for the fact that it is missing in the denominator of Υ

(n)
T (x).
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space (Ω,B,P) and (Ω̃, B̃, P̃) respectively such that P equals to Pk1,k2,(a,b),~x1,~y1,f,g
H and P̃

equals to Pk1,k2,(a,b),~x2,~y2,f̃ ,g̃
H . If H : [0,∞) → R is convex, then, there exists a coupling

(i.e., a common probability space upon which both measures are supported) between P
and P̃ such that Q̃(j)(s) ≤ Q(j)(s) for all n ∈ K.

Let us provide the basic idea behind how we use Lemma 2.4. Note that by H-Brownian
Gibbs property the lowest indexed curve 2−

1
3 Υ

(1)
T (·) of the N-indexed KPZ line ensemble

{2− 1
3 Υ

(n)
T (x)}n∈N,x∈R, when restricted to the interval (a, b), has the conditional measure

P
1,1,(a,b),2−

1
3 Υ

(1)
T (a),2−

1
3 Υ

(1)
T (b),+∞,2−

1
3 Υ

(2)
T

H2T
. On the other hand, replacing 2−

1
3 Υ

(2)
T by −∞,

P
1,1,(a,b),2−

1
3 Υ

(1)
T (a),2−

1
3 Υ

(1)
T (b),+∞,−∞

H2T
is the probability measure of a Brownian bridge on

the interval (a, b) with the entrance and exit data 2−
1
3 Υ

(1)
T (a) and 2−

1
3 Υ

(1)
T (b) respectively.

Lemma 2.4 constructs a coupling between these two measures on the curve 2−
1
3 Υ

(1)
T

∣∣
(a,b)

such that

P
1,1,(a,b),2−

1
3 Υ

(1)
T (a),2−

1
3 Υ

(1)
T (b),+∞,2−

1
3 Υ

(2)
T

H2T
(A) ≤ P1,1,(a,b),2−

1
3 Υ

(1)
T (a),2−

1
3 Υ

(1)
T (b),+∞,−∞

H2T
(A)

(2.2)

for any event A whose chance increases8 under the pointwise decrease of Υ
(1)
T .

In most of our applications of this idea, it is easy to find upper bounds on the r.h.s.
of (2.2) using Brownian bridge calculations. Via (2.2), those bounds transfers to the
spatial process Υ

(1)
T (·). Since, by Proposition 2.3, this curve is equal in law to ΥT (·) (the

scaled and centered narrow wedge KPZ equation solution), these bounds in conjunction
with the convolution formula of Proposition 1.7 embodies the core of our techniques
to generalize the tail bounds from narrow wedge to general initial data. The following
lemma is used in controlling the probabilities which arise on r.h.s. of (2.2).

Lemma 2.2. Let B(·) be a Brownian bridge on [0, L] with B(0) = x and B(L) = y. Then,

P
(

inf
t∈[0,L]

B(t) ≤ min{x, y} − s
)
≤ e− 2s2

L . (2.3)

Proof. Due to symmetry, we may assume min{x, y} = y. Note that τ = min{t ∈ [0, 1] :

B(t) ≤ y} is a stopping time for the natural filtration of B(·). Thanks to the resampling
invariance property of the Brownian bridge measure, {B(t)}t∈[τ,L] conditioned on the
sample paths outside the interval (τ, L) is again distributed as a Brownian bridge with
B(τ) = B(L) = y. Now, applying [KS91, (3.40)] (see also Lemma 2.11 of [CH16]), we get

P
(

inf
t∈(τ,L]

B(t) ≤ min{x, y} − s
∣∣∣F([0, τ ])

)
= e−

2s2

(L−τ) . (2.4)

Here, F([0, τ ]) denotes the natural filtration of {B}t∈[0,L] stopped at time τ . Taking

expectation of (2.4) with respect to the σ-algebra Fτ and noting e−
2s2

(L−τ) ≤ e− 2s2

L yields
(2.3). �

It is worth noting that Proposition 4.3.5.3 of [JYC09] contains an exact formulas for
the left hand side of (2.3). The next result (which follows from [GT11, (3.14)]) is used in
Theorem 1.14.

Lemma 2.3. Let B(·) be a two-sided standard Brownian motion with B(0) = 0. Then,
for any given ξ ∈ (0, 1), there exists s0 = s0(ξ) such that for all c > 0 and s ≥ s0,

P
(
B(t) ≥ s+ ct2 for some t ∈ R

)
≤ 1√

3
e
− 8(1−ξ)

√
cs

3
2

3
√

3 .

8If increase is replaced by decrease, then, the inequality (2.2) is reversed.
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3 Lower tail under general initial data

In this section, we prove Theorems 1.2 and 1.13. Starting with the tail bounds of
Proposition 1.10, we first bound the lower tail probabilities of the narrow wedge solution
at a countable set of points of R (see Lemma 3.1). Combining this with the Brownian
Gibbs property of the narrow wedge solution and the growth conditions of initial data
(given in Definition 1.1), we prove the lower tail bound of Theorem 1.2 in Section 3.1 via
the convolution formula of Proposition 1.7. By controlling the fluctuations of a two sided
Brownian motion in small intervals, we prove the lower tail bound of Theorem 1.13 (see
Section 3.2) in a similar way.

3.1 Proof of Theorem 1.2

Recall that the initial data H0 is defined from f via (1.3). Also recall the definition of
ΥT (·) from (1.8). Fix the sequence {ζn}n∈Z where ζn := n

s1+δ
. Let us define the following

events

Af :=

{∫ ∞
−∞

eT
1
3

(
ΥT (y)+f(−y)

)
dy ≤ e−T

1
3 s

}
,

En :=

{
ΥT (ζn) ≤ − (1 + 2−1ν)ζ2

n

22/3
− (1− ε)s

}
,

Fn :=

{
ΥT (y) ≤ − (1 + ν)y2

22/3
−
(

1− ε

2

)
s for some y ∈ (ζn, ζn+1)

}
.

Here, we suppress the dependence on the various variables. By (1.9) of Proposition 1.7,
P(hfT (0) ≤ −s) = P(Af ) which we need to bound. To begin to bound this, note that

P(Af ) ≤ P
( ⋃
n∈Z

En

)
+ P

(
Af ∩

( ⋃
n∈Z

En

)c)
≤
∑
n∈Z

P
(
En
)

+ P
(
Af ∩

( ⋃
n∈Z

En

)c)
. (3.1)

We focus on bounding separately the two terms on the right side of (3.1).

Lemma 3.1. There exist s0 = s0(ε, δ, C, ν, T0) and K∗ = K∗(ε, δ, T0) > 0 such that for all
T ≥ T0 and s ≥ s0,

∞∑
n=−∞

P (En) ≤ e−T
1/3 4(1−ε)s5/2

15π + e−K∗s
3−δ−εsT 1/3

+ e−
(1−ε)s3

12 . (3.2)

Proof. Recall that the one point distribution of ΥT (y) + y2

22/3 is independent of y (see

Proposition 1.8). Setting sn := (1− ε)s+
νζ2n
25/3 and invoking Propositions 1.8 and 1.10, we

write

P (En) = P(ΥT (0) ≤ −sn) ≤ e−T
1/3(1−ε) 4s

5/2
n

15π + e−Ks
3−δ
n −εsnT 1/3

+ e−(1−ε) s
3
n

12 . (3.3)

Applying the reverse Minkowski inequality, we get sαn ≥ ((1− ε)s)α + (νn2κ2/25/3s2)α for
all α ≥ 1. Plugging this into (3.3) and summing over all n ∈ Z, we get

∑
n∈Z

P(En) ≤e−T
1/3(1−ε) 4s5/2

15π

∑
n∈Z

e−T
1/3K1

|n|5

s5 + e−(1−ε) s312
∑
n∈Z

e−K2
n6

s6

+ e−Ks
3−δ−εsT 1/3 ∑

n∈Z
e
−K3

|n|2(3−δ)

s2(3−δ)
−ε ν

25/3
n2

s2
T 1/3

(3.4)
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for three positive constants K1, K2 and K3. By a direct computation, we observe∑
n∈Z

e−T
1/3K1s

−5|n|5 ≤ K ′1T−
1
3 s5,

∑
n∈Z

e−K2
n6

s6 ≤ K ′2s6, (3.5)

∑
n∈Z

e
−K3

|n|2(3−δ)

s2(3−δ)
−ε ν

25/3
n2

s2
T

1
3 ≤ K ′3

(
s3(2−δ) + s2T−

1
3

)
. (3.6)

Combining (3.5) and (3.6) with (3.4) yields (3.2). �

Now it suffices to control the second term on the right side of (3.1). We start by
showing:

Lemma 3.2. Under the assumption that f belongs to the class Hyp(C, ν, θ, κ,M), there
exists s1 = s1(C, ν, θ, κ,M) such that for all s ≥ s1,⋂

n∈Z
{Ecn ∩ F cn} ⊂ (Af )c. (3.7)

Proof. Assume the events on the l.h.s. of (3.7) occur. Appealing to (1.3), we observe∫ ∞
−∞

eT
1/3
(

ΥT (y)+f(−y)
)
dy ≥

∫
I
e
−T 1/3

(
(1+ν/2)

22/3
y2+(1− ε2 )s−κ

)
dy

≥ θe
−T 1/3

(
1+ν/2

22/3
M2+κ− εs2

)
e−T

1
3 s.

Clearly, there exists s1 = s1(C, ν, θ, κ,M) such that the right side above is bounded below

by e−T
1
3 s for all s ≥ s1. This shows the claimed containment of the events in (3.7). �

Owing to (3.7) and then, Bonferroni’s union bound,

P
(
Af ∩

( ⋃
n∈Z

En

)c)
= P

(
Af ∩

{ ⋂
n∈Z

Ecn

}
∩
{ ⋃
n∈Z

Fn

})
≤
∑
n∈Z

P
(
Ecn ∩ Ecn+1 ∩ Fn

)
. (3.8)

We obtain an upper bound of the r.h.s. of (3.8) in the following lemma.

Lemma 3.3. There exists s2 = s2(ε) > 0 such that for all s ≥ s2∑
n∈Z

P
(
Ecn ∩ Ecn+1 ∩ Fn

)
≤ e−s

3+δ

. (3.9)

Combining (3.8) with (3.9) of Lemma 3.3 yields

P
(
Af ∩

( ⋃
n∈Z

En

)c)
≤ e−s

3+δ

(3.10)

for some δ > 0. Plugging the bounds (3.2) and (3.10) into the r.h.s. of (3.1) yields (1.6).
To complete the proof of Theorem 1.2, it only remains to prove Lemma 3.3 which we
show below.

Proof of Lemma 3.3. We aim to bound P(Ecn ∩Ecn+1 ∩Fn). By Proposition 2.3, ΥT equals

in law the curve Υ
(1)
T of the scaled KPZ line ensemble {2− 1

3 Υ
(n)
T (x)}n∈N,x∈R. Hence,

without loss of generality, we replace ΥT by Υ
(1)
T in the definitions of En and Fn for the

rest of this proof. By the H2T -Brownian Gibbs property of {2− 1
3 Υ

(n)
T (x)}n∈N,x∈R,

P(Ecn ∩ Ecn+1 ∩ Fn) = E
[
1(Ecn ∩ Ecn+1) · E

[
1(Fn)|Fext({1}, (ζn, ζn+1))

]]
= E

[
1(Ecn ∩ Ecn+1) · P1,1,(ζn,ζn+1),2−

1
3 Υ

(1)
T (ζn),2−

1
3 Υ

(1)
T (ζn+1),+∞,2−

1
3 Υ

(2)
T

H2T
(Fn)

]
.
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Recall Fext({1}, (ζn, ζn+1)) is the σ-algebra generated by {Υ(n)
T (x)}n∈N,x∈R outside the set

{Υ(1)
T (x) : x ∈ (ζn, ζn+1)}. Via Proposition 2.4, there exists a monotone coupling between

the probability measures PH2T
:= P

1,1,(ζn,ζn+1),2−
1
3 Υ

(1)
T (ζn),2−

1
3 Υ

(1)
T (ζn+1),+∞,2−

1
3 Υ

(2)
T

H2T
and

P̃H2T
:=P

1,1,(ζn,ζn+1),2−
1
3 Υ

(1)
T (ζn),2−

1
3 Υ

(1)
T (ζn+1),+∞,−∞

H2T
=P

1,1,(ζn,ζn+1),2−
1
3 Υ

(1)
T (ζn),2−

1
3 Υ

(1)
T (ζn+1)

free

such that

PH2T
(Fn) ≤ P̃H2T

(Fn). (3.11)

The r.h.s. of (3.11) is a probability with respect a Brownian bridge measure. For the rest
of the proof, we use shorthand notation θn := (1− ε)s+ 2−

2
3 (1 + 2−1ν)ζ2

n for n ∈ Z. The
probability of the event Fn increases under the pointwise decrease of the end points of
Υ

(1)
T . Using {Ecn ∩Ecn+1} = {Υ(1)

T (ζn) ≥ −θn}∩ {Υ(1)
T (ζn+1) ≥ −θn+1} and Proposition 2.3,

1(Ecn ∩ Ecn+1)× P̃H2T
(Fn) ≤ P1,1,(ζn,ζn+1),−2−

1
3 θn,−2−

1
3 θn+1

free (Fn). (3.12)

Combining (3.11) and (3.12) yields

1(Ecn ∩ Ecn+1)×P1,1,(ζn,ζn+1),2−
1
3 Υ

(1)
T (ζn),2−

1
3 Υ

(1)
T (ζn+1),+∞,2−

1
3 Υ

(2)
T

H2T
(Fn)

≤ P
(

min
x∈[ζn,ζn+1]

B(t) ≤ 2−
1
3 {θn ∧ θn+1} −

εs

24/3
− νζ2

n

4

)
(3.13)

where B(·) is a Brownian bridge such that B(ζn) = −2−
1
3 θn and B(ζn+1) = −2−

1
3 θn+1.

Applying Lemma 2.2 yields r.h.s. of (3.13) ≤ e−21/3s1+δ
(

εs

24/3
+
νζ2n
4

)2
. Combining this upper

bound with (3.13) and taking the expectations, we arrive at

P(Ecn ∩ Ecn+1 ∩ Fn) ≤ e−21/3s1+δ
(

εs

24/3
+ νn2

4s2(1+δ)

)2
. (3.14)

Summing both side of (3.14) over n ∈ Z, we obtain (3.9). �

3.2 Proof of Theorem 1.13

This proof is similar to that of Theorem 1.2. We use the same notations ζn, En and Fn
introduced in the beginning of the proof of Theorem 1.2 and additionally define

ABr =

{∫ ∞
−∞

eT
1/3
(

ΥT (y)+B(−y)
)
dy ≤ e−T

1
3 s

}
where B is a two sided Brownian motion with diffusion coefficient 2

1
3 and B(0) = 0. In

particular, B(y)
d
= B̃(2

2
3 y) where B̃(·) is standard two sided Brownian motion. Owing to

(1.9), P(hBr(0) ≤ −s) = P(BBr) which we need to bound. As in (3.1), we write

P
(
ABr

)
≤
∑
n∈Z

P(En) + P
(
ABr ∩

( ⋂
n∈Z

En

)c)
. (3.15)

We can use (3.2) of Lemma 3.1 to bound
∑
nP(En). While the conclusion of Lemma 3.2

does not hold in the present case, we will show that it does hold with high probability.

Lemma 3.4. There exist s1 = s1(ε, δ), c1 = c1(ε), c2 = c2(ε) > 0 such that for all s ≥ s1,

P
( ⋂
n∈Z

{
Ecn ∩ F cn

}
∩ ABr

)
≤ c1e−c2s

3+δ

. (3.16)
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Combining (3.9) of Lemma 3.3 and (3.16) of Lemma 3.4 yields

P

(
ABr ∩

( ⋃
n∈Z

En

)c)
≤ c2e−c1s

3+δ

. (3.17)

Applying (3.17) and (3.2) to (3.15), we obtain (1.14). To complete the proof of Theo-
rem 1.13, we now need to prove Lemma 3.4 which is given as follows.

Proof of Lemma 3.4. Observe first that⋂
n∈Z

{
Ecn ∩ F cn

}
∩ ABr ⊆

{∫ ∞
−∞

e
−T 1/3

(
(1+ν)y2

22/3
− εs2 −B2(y)

)
dy ≤ 1

}
. (3.18)

Note that if B(y) ≥ − ε
4s for all y ∈ [−1/s1+δ, 1/s1+δ], then, (1+ν)y2

22/3 − εs
2 −B(y) ≤ − ε

8s for
all y ∈ [−1/s1+δ, 1/s1+δ] which implies∫ ∞

−∞
e
−T 1/3

(
(1+ν)y2

22/3
− εs2 −B(y)

)
dy ≥ 2

s1+δ
e
εs
8 T

1/3

> 1

when s is large. Hence, there exists s1 = s1(ε, δ) such that for all s ≥ s1, one has{∫ ∞
−∞

e
−T 1/3

(
(1+ν)y2

22/3
− εs2 −B(y)

)
dy ≤ 1

}
⊆
{

min
y∈[−1/s1+δ,1/s1+δ]

B(y) < − ε
4
s

}
.

Thanks to this containment, we get

P
( ⋂
n∈Z

{
Ecn ∩ F cn

}
∩ ABr

)
≤ P

(
min

y∈[− 1

s1+δ
, 1

s1+δ
]
B(y) < − ε

4
s
)
. (3.19)

We bound the r.h.s. of (3.19), via the reflection principle as

P
(

min
y∈[− 1

s1+δ
, 1

s1+δ
]
B(y) ≤ − ε

4
s
)
≤ P

(
2|X1|+ 2|X2| ≥

ε

4
s
)

(3.20)

where X1, X2 are independent Gaussians with variance 2
1
3 s−(1+δ). By tail estimates,

it follows that the r.h.s. of (3.20) is bounded above by c1e−c2s
3+δ

for some constants
c1, c2 > 0 which only depend on ε. Plugging this into (3.19) and combining with (3.18),
we find (3.16). �

4 Upper Tail under narrow wedge initial data

The aim of this section is to prove Theorem 1.11. To achieve this, we first state a few
auxiliary results which combine together to prove Theorem 1.11. These auxiliary results
are proved in the end of Section 4. Recall the definition of ΥT from (1.8). Our first
result of this section (Proposition 4.1) gives an upper and lower bound for the probability
P(ΥT (0) ≥ s). These bounds are close to optimal when s � T

2
3 . When s = O(T

2
3 ) or

s� T
2
3 , those bounds are not optimal (see Remark 4.2). In those cases, we obtain better

bounds using Proposition 4.3.

Proposition 4.1. Fix some ζ ≤ ε ∈ (0, 1) and T0 > 0. There exists s0 = s0(ε, ζ, T0) such
that for all s ≥ s0 and T ≥ T0,

P (ΥT (0) > s) ≤ e−T
1/3ζs + e−

4
3 (1−ε)s3/2 , (4.1)

1− exp
(
− e−ζsT

1/3)
P (ΥT (0) ≤ s) ≥ e−T

1/3(1+ζ)s + e−
4
3 (1+ε)s3/2 . (4.2)
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Remark 4.2. Proposition 4.1 implies that for s� T
2
3

exp
(
− 4

3
(1 + ε)s

3
2

)
≤ P

(
ΥT (0) > s

)
≤ exp

(
− 4

3
(1− ε)s 3

2

)
.

To see this, we first note that

r.h.s. of (4.1) ≤ exp
(
− 4

3
(1− ε)s 3

2

)
, when s� T

2
3 .

Using the approximation 1− exp
(
− e−ζsT 1/3) ≈ exp(−ζsT 1/3), we see that (4.2) implies

P
(
ΥT (0) > s

)
≥ exp

(
e−ζsT

1
3
)(
e−(1+ζ)sT

1
3 − e−ζsT

1
3 + e−

4
3 (1+ε)s

3
2
)
. (4.3)

The r.h.s. of (4.3) is bounded below by exp(− 4
3 (1 + ε)s

3
2 ) when s � T

2
3 . Note, when

s� T
2
3 , the dominating term of the r.h.s. of (4.1) is exp(−ζsT 1/3) which we show in our

next theorem is the not correct order of decay of P(ΥT (0) > s).

Proposition 4.3. Fix ε ∈ (0, 1). Then, for all pairs (s, T ) satisfying s ≥ 9
16ε
−2T

2
3 and

T > π,

P(ΥT (0) > s) ≤ e−
4(1−ε)

3 s3/2 (4.4)

P(ΥT (0) > s) ≥ e−4
√

3(1+3ε)s3/2 (4.5)

Furthermore, for all s ∈
[

1
8ε

2T
2
3 , 9

16ε
−2T

2
3

]
,

P
(
ΥT (0) > s

)
≥ 1

2
e−27/2ε−3s3/2 . (4.6)

Moreover, for any 0 < T0 ≤ π and ε ∈ (0, 3/5), there exist c1 = c1(T0) > c2 = c2(T0) > 0

such that for all T ∈ [T0, π] and s ≥ 9
16ε
−2T

2
3 + 24T

− 1
3

0 (1− ε)−1| log(T0/π)|,

e−c1s
3/2

≤ P(ΥT (0) > s) ≤ e−c2s
3/2

. (4.7)

Proposition 4.4. Fix ε ∈ (0, 1), T > π and c > 4
3

(
1 + 1

3ε
)
. Then, there exists {sn}n such

that sn →∞ as n→∞ and P(ΥT (0) > sn) ≥ e−cs3/2n for all n ∈ N.

4.1 Proof of Theorem 1.11

We first show (1.12) when T0 ∈ (0, π). Fix ε ∈ (0, 3
4 ) and define s0 = 9

16ε
−2π

2
3 + 3(1−

ε)−1T
1
3

0 | log T0|. Then, for all T ∈ [T0, π] and s ≥ s0, (1.12) follows from (4.7).

Now, we show (1.12) for T0 > π. Fix ζ = ε ∈
(
0, 1

2

)
. Proposition 4.1 says that there

exists s0 = s0(ε, T0) such that (4.1) and (4.2) holds for all s ≥ s0 and T > T0.
(i) For all s ∈ (0, 1

8ε
2T

2
3 ), we note

4

3
(1 + ε)s

3
2 ≤ 2s

3
2 ≤ 1√

2
εsT

1
3 (4.8)

where the first and second inequalities follow from ε ≤ 1
2 and s ≤ 1

8ε
2T

2
3 respectively.

Furthermore, there exists s′0 = s′0(ε, T0) such that for all s ≥ s′0, one has

exp
(
− 1√

2
εsT

1
3

)
≥ 2 exp

(
− εsT 1

3

)
. (4.9)
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Combining (4.8) and (4.9) yields

exp(−4

3
(1 + ε)s

3
2 ) ≥ 2 exp(−εsT 1

3 ), ∀s ∈ (s′0,
1

8
ε2T

2
3 ). (4.10)

Plugging this into the r.h.s. of (4.1) yields

P(ΥT (0) > s) ≤ 2 exp
(
− 4

3
(1− ε)s 3

2

)
(4.11)

for all s ∈ (max{s0, s
′
0}, 1

8ε
2T

2
3 ) where s0 = s0(ε, T0) comes with Proposition 4.1. More-

over, applying (4.10) in (4.3), we observe

P(ΥT (0) > s) ≤ 1

2
exp

(
− 4

3
(1 + ε)s3/2

)
. (4.12)

Combining (4.11) and (4.12), we obtain (1.12) with c1 ≤ 4
3 (1 + ε) and c2 ≥ 4

3 (1− ε) for all

s ∈ (s′′0 ,
1
8ε

2T
2
3 ) for some s′′0 = s′′0(ε, T0).

(ii) When s ≥ 9
16ε
−2T

2
3 , we first apply Proposition 4.3. Using (4.4) and (4.5), yields

(1.12) with c1 ≤ 4
√

3(1 + ε) and c2 ≥ 4
3 (1− ε). The second part of the claim follows from

Proposition 4.4.

(iii) For all s ∈ ( 1
8ε

2T
2
3 , 9

16ε
−2T

2
3 ), appealing to (4.6) of Lemma 4.3, we get c1 ≤ 2

7
2 ε−3.

Furthermore, one has the following bound on the r.h.s. of (4.1)

exp
(
− εsT 1

3

)
+ exp

(
− 4

3
(1− ε)s 3

2

)
≤ 2 exp

(
−min

{
εsT

1
3 ,

4

3
(1− ε)s 3

2

})
. (4.13)

For all ε ≤ 1
2 and s ∈ ( 1

8ε
2T

2
3 , 9

16ε
−2T

2
3 ), the r.h.s. of (4.13) is bounded above by

exp(− 4
3εs

3
2 ). Plugging this bound into (4.5), we get

P(ΥT (0) > s) ≤ 2e−
4
3 εs

3/2

, ∀s ∈
(

max{s0,
1

8
ε2T

2
3 },max{s0,

9

16
ε−2T

2
3 }
)
.

Therefore, (1.12) holds when s lies in the interval (max{s0,
1
8ε

2T
2
3 },max{s0,

9
16ε
−2T

2
3 })

with c1 ≤ 2
7
2 ε−3 and c2 ≥ 4

3ε. This completes the proof of Theorem 1.11.

4.2 Proof of Proposition 4.3

To prove Proposition 4.3, we need the following lemma. Let

ψT (k) =


k!e

Tk3

12

2
√
πTk

3
2
, when T ≥ π

π(k−1)/2k!e
Tk3

12

2Tk/2k
3
2

when T < π.

Lemma 4.1. Fix k ∈ N and T0 ∈ R+. Then, we have

CψT (k) ≤ E
[

exp
(
kT

1
3 ΥT (0)

)]
≤ 69ψT (k) (4.14)

where C = C(k, T0) > 0 is bounded below by 1 for all T > T0 > π and by T (k−1)/2
0 π−k/2

for all T ∈ [T0, π].

Proof. Recall that Z(2T, 0) = exp(T
1
3 ΥT (0) − T

12 ). The moments of Z(2T, 0) are given
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by9:

E
[exp(kT

1
3 ΥT (0))

k!

]
=

∑
λ`k

λ=1m12m2 ...

1

m1!m2! . . .

∫ i∞

−i∞

dw1

2πi
. . .

∫ i∞

−i∞

dw`(λ)

2πi
det

[
1

wj + λj − wi

]`(λ)

i,j=1

× exp

T `(λ)∑
j=1

(λ3
j

12
+ λj

(
wj +

λj
2
− 1

2

)2) . (4.15)

Here, λ ` k denotes that λ = (λ1 ≥ λ2 ≥ . . .) partitions k, `(λ) = #{i : λi > 0} and
mj = #{i : λi = j}. By Cauchy’s determinant formula,

det
[ 1

wi + λi − wj

]
=

`(λ)∏
i=1

1

λi

`(λ)∏
i<j

(
wi − wj + λi − λj

)(
wj − wi

)(
wi + λi − wj

)(
wj + λj − wi

) . (4.16)

Applying (4.16) to (4.15) followed by substituting izj = T
1
3 (wj +

λj
2 −

1
2 ) in (4.15) and

deforming the contours to the real axis (note that no pole will be crossed) implies that

r.h.s. of (4.15)

=
∑
λ`k

λ=1m12m2 ...

∏`(λ)
i=1 e

Tλ3i
12 /2π

m1!m2! . . .

∫ ∞
−∞
. . .

∫ ∞
−∞

`(λ)∏
i=1

dzie
−T

1
3 λiz

2
i

T
1
3λi

`(λ)∏
i<j

T
2
3 (λi−λj)2

4 + (zi − zj)2

T
2
3 (λi+λj)2

4 + (zi − zj)2

Taking λ = (k) (i.e., λ1 = k and λi = 0 for all i ≥ 2), evaluating the single integral and
noting that all the terms on the r.h.s. above are positive yields the lower bound in (4.14)
when T0 > π. In the case when T0 < π, the term corresponding to λ = (k) is bounded

below by T (k0−1)/2
0 πk/2ψT (k) for all T ∈ [T0, π]. This yields the lower bound in (4.14)

when T0 < π.

For the upper bound, we first show that if λ is a partition of k not equal to (k) then

k3

12
−
`(λ)∑
j=1

λ3
j

12
≥ k2 − k

4
(4.17)

with equality only when λ = (k − 1, 1). We prove this by induction. It is straightforward
to check that (4.17) holds when k = 1, 2. Assume (4.17) holds when k = k0 − 1. Now we
show it for k = k0. Let us assume that λ is a partition of k0 and write

k3
0

12
−
`(λ)∑
j=1

λ3
j

12
=
k3

0

12
− (k0 − 1)3 + 1

12
+

(k0 − 1)3 + 1

12
−
`(λ)∑
j=1

λ3
j

12
.

The right hand side of the above display is equal to k30
12 −

(k0−1)3+1
12 =

k20−k0
4 when

λ = (k0 − 1, 1). It suffices to show

(k0 − 1)3 + 1

12
−
`(λ)∑
j=1

λ3
j

12
≥ 0 (4.18)

9These formulas were formally derived in [BC14] with a proof given as [Gho, Theorem 2.1].
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when λ 6= (k0), (k0 − 1, 1). In the case when λ`(λ) = 1, the above inequality follows by our
assumption since (λ1, . . . , λ`(λ)−1) is a partition of k0 − 1. For λ`(λ) > 1, we write

(k0 − 1)3 + 1

12
−
`(λ)∑
j=1

λ3
j

12
=

(k0 − 1)3

12
−
`(λ)−1∑
j=1

λ3
j

12
−

(λ`(λ) − 1)3

12
−

(λ`(λ) − 1)(λ`(λ) − 2)

4
.

Note that (λ1, . . . , λ`(λ) − 1) is a partition of k0 − 1. Since λ`(λ) < k0 and (4.17) holds for
k = k0 − 1, the right hand side of the above display is greater than 0. This shows (4.18)
and hence, proves (4.17).

We return to the proof of the upper bound in (4.14). Observe that by bounding the
cross-product over i < j by 1 and using Gaussian integrals, we may bound

∫ ∞
−∞

. . .

∫ ∞
−∞

`(λ)∏
i=1

dzie
−T

1
3 λiz

2
i

T
1
3λi

`(λ)∏
i<j

T
2
3 (λi−λj)2

4 + (zi − zj)2

T
2
3 (λi+λj)2

4 + (zi − zj)2

≤
`(λ)∏
i=1

√
2π

√
2Tλ

3
2
i

(4.19)

When T > π, the r.h.s. of (4.19) ≤ 1. Otherwise, the r.h.s. of (4.19) is bounded above by
(π/T )k/2. Owing to this, (4.17), and m1!m2! . . . ≤ k!, we get

E
[

exp(kT
1
3 ΥT (0))

]
≤
(

1 + k
3
2 e−

k2−k
4 #{λ : λ ` k}

)
×


k!e

k3T
12

2
√
πTk

3
2

T ≥ π

π(k−1)/2k!e
k3T
12

2Tk/2k
3
2

T < π.
(4.20)

Applying Siegel’s bound (see [Apo76, pp. 316–318], [Kno70, pp. 88–90]) on the number
partition of any integer k ≥ 1, we find that

k
3
2 e−

k2−k
4 #{λ : λ ` k} ≤ k 3

2 e−
k2−k

4 +π
√

2k/3 ≤ 68 ∀k ∈ N. (4.21)

Combining (4.21) with (4.20) completes the proof of the upper bound in (4.14). �

Proof of (4.4). Combining Markov’s inequality and the second inequality of (4.14), we
get

P(ΥT (0) ≥ s) ≤ 69 exp
(
−max

k∈N

[
ksT

1
3 − logψT (k)

])
. (4.22)

By Stirling’s formula ψT (k) = exp
(Tk3(1+O(k−3/2))

12

)
. Set k0 = b2s 1

2T−
1
3 c. When s ≥

9
16ε
−2T

2
3 ,

k0sT
1
3 − logψT (k0) ≥ k0sT

1
3 − Tk3

0(1 +O(ε
3
2 ))

12
≥

4
(
1− ε

)
s

3
2

3
. (4.23)

The first inequality of (4.23) follows by noting that k0 ≥ cε−1 for some positive constant
c. We get the second inequality of (4.23) by noticing that b2s 1

2T−
1
3 c ≥ 2s

1
2T−

1
3 − 1 ≥

2s
1
2T−

1
3

(
1− 2ε

3

)
. Finally, (4.4) follows by plugging (4.23) into the r.h.s. of (4.22). �

Proof of (4.5). Fixing now k0 = d2 · (3(1 + 5ε/6)s)
1
2T−

1
3 e, we observe that

exp
(
k0sT

1
3

)
≤ 1

2

k0!

2
√
πTk

3
2
0

exp

(
k3

0T

12

)
. (4.24)

To prove this inequality first note that

k0sT
1
3 ≤

(
2 ·
(
3(1 +

5ε

6
)s
) 1

2T−
1
3 + 1

)
sT

1
3 ≤ 2

√
3
(

1 +
5ε

12
+

2ε

3
√

3

)
s

3
2 . (4.25)
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where the first inequality follows from dke ≤ k + 1 and the second inequality is obtained
using s ≥ 9

16ε
−2T

2
3 . Moreover, using k! ≥ k 3

2 which holds for all k ∈ Z≥3, we see

r.h.s. of (4.24) ≥ 1

4
√
πT

exp
(

2
√

3
(
1 +

5ε

4

)
s

3
2

)
. (4.26)

Now, (4.24) follows from (4.25) and (4.26) by noting that 5
4 ≥

5
12 + 2

3
√

3
and T ≤ 64

27 (ε2s)
3
2 .

Combining the first inequality of (4.14) with (4.24) yields

P
(
ΥT (0) > s

)
≥ P(E), with E =

{
exp

(
k0T

1
3 ΥT (0)

)
>

1

2
E[exp(k0T

1
3 ΥT (0))]

}
.

(4.27)

Claim 4.2. Fix p, q > 1 such that p−1 + q−1 = 1. Then,

P(E) ≥ 2−q E
[

exp(k0T
1
3 ΥT (0))

]q
E
[

exp(pk0T
1
3 ΥT (0))

]−q/p
(4.28)

Proof. Let us write

E
[

exp(k0T
1
3 ΥT (0))

]
= E

[
exp(k0T

1
3 ΥT (0))1

(
Ec
)]

+ E
[

exp(k0T
1
3 ΥT (0))1

(
E
)]
. (4.29)

The first term on the r.h.s. of (4.29) is bounded above by 1
2E
[

exp(k0T
1
3 ΥT (0))

]
. To bound

the second term, we use Hölder’s inequality

E
[

exp(k0T
1
3 ΥT (0))1

(
E
)]
≤
[
E
[

exp(pk0T
1
3 ΥT (0))

]] 1
p

P(E)
1
q (4.30)

where p−1 + q−1 = 1. Plugging the upper bound of (4.30) into the r.h.s. of (4.29) and
simplifying yields (4.28) and proves the claim. �

Returning to the proof of (4.5), thanks to (4.14), we find that

r.h.s. of (4.28) ≥ exp
(
− q(p2 − 1)k3

0T (1 +O(ε3/2))

12

)
.

From p−1 + q−1 = 1, it follows that q(p2 − 1) = p(p+ 1). Taking p = 1 + ε/6 and recalling
that k0 = d2 · (3(1 + 5ε/6)s)

1
2T−

1
3 e, we get l.h.s. of (4.28) ≥ 2−q exp

(
− 4
√

3(1 + 3ε/2)s
3
2

)
.

Since q = 6ε−1 + 1, we find that the r.h.s. of the above inequality is bounded below by
exp(−4

√
3(1 + 3ε)s

3
2 ) for all s ≥ 9

16ε
−2T and T ≥ T0 ≥ π. This completes the proof. �

Proof of (4.6). Fix k0 = d2 · (3(1 + 5ε/6)s)
1
2T−

1
3 e. Our aim is to obtain a lower bound for

the r.h.s. of (4.27). Applying (4.28) with p = q = 2 yields

P(ΥT (0) > s) ≥ 1

2
exp

(
− 7k3

0T

12

)
. (4.31)

For k0 ≥ 2, we have k0 ≤ 2(k0 − 1) which implies k0 ≤ 4 · (3(1 + ε))
1
2T−

1
3 and hence

P(ΥT (0) > s) ≥ 1
2 exp(−26s

3
2 ). When k0 = 1, r.h.s. (4.31)≥ 1

2 exp(−2
7
2 ε−3s

3
2 ) for all

s ≥ 1
8εT

2
3 . �

Proof of (4.7). We first prove the second inequality of (4.7). Fix T ∈ [T0, π]. Applying
Markov’s inequality yields

P(ΥT (0) ≥ s) ≤ 69 exp
(
−max

k∈N

[
ksT

1
3 − logψT (k)

])
. (4.32)
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Owing to Stirling’s formula, we get ψT (k) = exp(Tk3(1 + O(k−3/2)) − k
2 log T0). Set

k0 = b2s 1
3T−

1
3 c and when s ≥ 9

16ε
−2T

2
3 + 24T

− 1
3

0 (1− ε)−1| log(T0/π)|, we have

k0sT
1
3 − logψT (k0) ≥ k0sT

1
3 − Tk3

0(1 +O(ε
3
2 ))

12
+
k

2
log T0 ≥

4(1− ε)
3

s
3
2 +

k0

2
log T0.

(4.33)

for some constant c = c(ε, T0) > 0. The first inequality of (4.33) follows since k0 ≥ cε−1

for some positive constant c > 0 and the second inequality follows since b2s 1
2T−

1
3 c ≥

2s
1
2T−

1
3 (1− 2ε

3 ). Now, we claim that the r.h.s. of (4.33) is bounded below by (1− ε)s 3
2 . To

see this, we write

k0

2
log T0 ≥ min{s 1

2T−
1
3 log T0, 0} ≥ −

1

24
s

3
2 (1− ε)(T0/T )1/3 ≥ − 1

24
(1− ε)s 3

2

where the first inequality follows since k0 ≤ 2s
1
2T−

1
3 , the second inequality holds since

s ≥ 24T
− 1

3
0 (1− ε)−1| log(T0/π)| and the last inequality is obtained by noting that T0 ≤ T .

Substituting the inequalities in the above display in the r.h.s. of (4.33) proves the claim.
As a consequence, for all T ∈ [T0, π],

max
k∈N

[
ksT

1
3 − logψT (k)

]
≥ k0sT

1
3 − logψT (k0) ≥ (1− ε)s 3

2 .

Applying the inequality in the above display in the r.h.s. of (4.32) yields the second
inequality of (4.7).

Now, we turn to show the first inequality of (4.7). Fix k0 = d4s 1
2T−

1
3 e. We claim that

for all T ∈ [T0, π]

exp
(
k0sT

1
3

)
≤ 1

2

(
T0/T

) k0−1
2

k0!

2
√
πTk

3
2
0

exp
(k3

0T

12

)
. (4.34)

To prove (4.34) we note

k0sT
1
3 ≤

(
4s

1
2T−

1
3 + 1

)
sT

1
3 ≤ 4

(
1 +

ε

3

)
s

3
2 (4.35)

where the first inequality follows since dke ≤ k + 1 and the second inequality is obtained
using s ≥ 9

16ε
−2T 2/3. Since we know T0 ≤ T ≤ π and k3

0T = (d4s 1
2T−

1
3 e)3T ≥ 64s

3
2 ,

r.h.s. of (4.34) ≥
(T0

π

) k0−1
2 k0!

4πk
3
2
0

exp
(64

12
s

3
2

)
=
(T0

π

) k0−1
2 k0!

4πk
3
2
0

exp
(
(5 + 3−1)s

3
2

)
(4.36)

By using the fact that s ≥ 9
16ε
−2T 2/3 + 24T

− 1
3

0 (1− ε)| log(T0/π)| and ε < 3/5, we get

k0 = d4s 1
2T−

1
3 e ≥ 4s

1
2T−

1
3 > 3ε−1 > 5,

1

3
s

3
2 > 2s

1
2T
− 1

3
0 | log(T0/π)| ≥ k0 − 1

2
| log(T0/π)|.

Now, (4.34) follows from (4.35), (4.36) and the inequalities of the above display by noting
that 4(1 + ε/3) ≤ 5, k0 ≥ 6 and (T0/π)(k0−1)/2 exp(3−1s3/2) ≥ 1.

For any T ∈ [T0, π], combining the first inequality of (4.14) with (4.34) yields

P
(
ΥT (0) > s

)
≥ P(Ẽ), where Ẽ =

{
exp

(
k0T

1
3 ΥT (0)

)
>

1

2
E
[

exp
(
k0T

1
3 ΥT (0)

)]}
.

Applying (4.28) with p = q = 2 shows

P
(
ΥT (0) > s

)
≥ 1

2
exp

(
− 7k3

0T

12

)
≥ exp

(
− cs 3

2

)
(4.37)

for some absolute constant c > 0. The last inequality of the above display follows since
k0 = d4s 1

2T−
1
3 e. Note that (4.37) implies the first inequality of (4.7). This completes the

proof. �
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4.3 Proof of Proposition 4.4

We prove this by contradiction. Assume there exists M > 0 such that P(ΥT (0) > s) ≤
e−cs

3
2 for all s ≥ M . Dividing the expectation integral into (−∞, 0], [0,M ] and (M,∞),

we have

E
[

exp(kΥT (0)T
1
3 )
]
≤ 1 +MkT

1
3 ekMT

1
3 +

∫ ∞
M

kT
1
3 eksT

1
3−cs

3
2 ds. (4.38)

Observing that

argmax
s≥0

{
ksT

1
3 − cs 3

2

}
=

4k2T
2
3

9c2
, (4.39)

we may choose k to be a sufficiently large integer such that the r.h.s. of (4.39) exceeds
M . Then, approximating the integral of (4.38) by C ′kT

1
3 exp(maxs≥0

{
ksT

1
3 − cs 3

2

}
) for

some absolute constant C ′ = C ′(k) and plugging in the value of the maximizer from
(4.39), we find

E
[

exp(kΥT (0)T
1
3 )
]
≤ (M + 1)kT

1
3 + C ′kT

1
3 e

4k3T
27c2 . (4.40)

Applying c > 4
3

(
1 + 1

3ε
)

into (4.40) shows that the r.h.s. of (4.40) is less than e(1−ε) k3T12

which contradicts (4.14). Hence, the claim follows.

4.4 Proof of Proposition 4.1

Our proof of Proposition 4.1 relies on a Laplace transform formula for Znw(T, 0)

which was proved in [BG16] and follows from the exact formula for the probability
distribution of ΥT (0) of [ACQ11]. It connects Znw(T, 0) with the Airy point process
a1 > a2 > . . .. The latter is a well studied determinantal point process in random matrix
theory (see, e.g., [AGZ10, Section 4.2]).

For convenience, we introduce following shorthand notations:

Is(x) :=
1

1 + exp(T
1
3 (x− s))

, Js(x) := log
(
1 + exp(T

1
3 (x− s))

)
.

It is worth noting that Is(x) = exp(−Js(x)).

Proposition 4.5 (Theorem 1 of [BG16]). For all s ∈ R,

EKPZ

[
exp

(
− exp

(
T

1
3 (ΥT (0)− s)

))]
= EAiry

[ ∞∏
k=1

Is(ak)

]
. (4.41)

We start our proof of Proposition 4.1 with upper and lower bounds on the r.h.s. of
(4.41).

Proposition 4.6. Fix some ζ ≤ ε ∈ (0, 1) and T0 > 0. Continuing with the notation of
Proposition 4.5, there exists s0 = s0(ε, ζ, T0) such that for all s ≥ s0,

1− E
[ ∞∏
k=1

Is(ak)
]
≤ e−ζsT

1/3

+ e−
4
3 (1−ε)s3/2 , (4.42)

1− E
[ ∞∏
k=1

Is(ak)
]
≥ e−(1+ζ)sT 1/3

+ e−
4
3 (1+ε)s3/2 . (4.43)

We defer the proof of Proposition 4.6 to Section 4.4.1.
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Proof of Proposition 4.1. Define s̄ := (1 + ζ)s and θ(s) := exp
(
− exp

(
T

1
3 (ΥT (0) − s)

))
.

Thanks to (4.41), we have EKPZ[θ(s)] = EAiry[
∏∞
k=1 Is(ak)]. Note that

θ(s) ≤ 1(ΥT (0) ≤ s̄) + 1(ΥT (0) > s̄) exp(− exp(ζsT 1/3)).

Rearranging, taking expectations and applying (4.41), we arrive at

P(ΥT (0) > s̄) ≤
(

1− exp(− exp(ζsT
1
3 ))
)−1(

1− EAiry

[ ∞∏
k=1

Is(ak)]
)
. (4.44)

By taking s sufficiently large and T ≥ T0, we may assume that 1− exp(− exp(ζsT
1
3 )) ≥ 1

2 .
Plugging this bound and (4.42) into the r.h.s. of (4.44) yields

P(ΥT (0) ≥ s̄) ≤ e−ζsT
1/3

+ e−
4
3 (1−ε)s3/2

for all s ≥ s0 where s0 depends on ε, ζ and T0. This proves (4.1).
We turn now to prove (4.2). Using Markov’s inequality,

P(ΥT (0) ≤ s) = P
(
θ(s̄) ≥ exp

(
− e−ζsT

1/3))
≤ exp

(
e−ζsT

1/3)
· E[θ(s̄)].

Rearranging yields 1 − exp
(
− e−ζsT 1/3

)
P(ΥT (0) ≤ s) ≥ 1 − E [θ(s̄)]. Finally, applying

(4.41) and (4.43) to the r.h.s. of this result, we get (4.2). �

4.4.1 Proof of Proposition 4.6

Proof of (4.42). We start by noticing the following trivial lower bound

EAiry

[ ∞∏
k=1

Is(ak)
]
≥ EAiry

[ ∞∏
k=1

Is(ak)1(A)
]

(4.45)

where A =
{
a1 ≤ (1− ζ)s

}
. Setting k0 := b 2

3π s
9
4 +2εc we observe that

k0∏
k=1

Is(ak)1(A) = exp
(
−

k0∑
k=1

Js(ak)
)
1(A) ≥ exp

(
− 2

3π
s

9
4 +2εe−T

1
3
sζ
)
. (4.46)

where inequality is obtained via Js(ak) ≤ e−T
1
3 sζ which follows on the event A. Our next

task is to bound
∏
k>k0

Is(ak) from below. To achieve this, we recall the result of [CG,
Proposition 4.5] which shows that for any ε, δ ∈ (0, 1) we can augment the probability
space on which the Airy point process is defined so that there exists a random variable
CAi
ε satisfying

(1 + ε)λk − CAi
ε ≤ ak ≤ (1− ε)λk + CAi

ε for all k ≥ 1 and P(CAi
ε ≥ s) ≤ e−s

1−δ

for all s ≥ s0 where s0 = s0(ε, δ) is a constant. Here, λk is the k-th zero of the Airy

function (see [CG, Proposition 4.6]) and we fix some δ ∈ (0, ε). Define φ(s) := s
3+8ε/3
2(1−δ) .

Now, we write∏
k>k0

Is(ak) ≥
∏
k>k0

Is(ak)1(CAi
ε ≤ φ(s)) ≥ exp

(
−
∑
k>k0

Js
(
(1− ε)λk + φ(s)

))
. (4.47)

Appealing to the tail probability of CAi
ε , we have P(CAi

ε ≤ φ(s)) ≥ 1− e−s
3
2
+ 4

3
ε

. We now
claim that for some constant C > 0,∑

k>k0

Js((1− ε)λk + φ(s)) ≤ C

T
1
3

exp(−sT 1
3 ). (4.48)
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To prove this note that for all k ≥ k0,

λk ≤ −
(3πk

2

) 3
2

and, (1− ε)(3πk

2

) 3
2 − φ(s) ≥ (1− ε)

(3π

2
(k − k0)

) 1
3

. (4.49)

The first inequality of (4.49) is an outcome of [CG, Proposition 4.6] and the second
inequality follows from [CG, Lemma 5.6]. Applying (4.49), we get

Js
(

(1− ε)λk + φ(s)
)
≤ eT

1/3
(
−s−(1−ε)(3πk/2)2/3+φ(s)

)
≤ eT

1/3
(
−s−(1−ε)(k−k0)2/3

)
. (4.50)

Summing over k > k0 in (4.50), approximating the sum by the corresponding integral,
and evaluating yields (4.48).

Now, we turn to complete the proof of (4.42). Plugging (4.48) into the r.h.s. of (4.47)
yields ∏

k>k0

Is(ak)1(CAi
ε ≤ φ(s)) ≥ exp

(
− C

T
1
3

exp(−sT 1
3 )

)
. (4.51)

Combining (4.46) and (4.51) yields

l.h.s. of (4.45) ≥ exp
(
− 2

3π
s

9
4 +2εe−ζsT

1
3 − C

T
1
3

e−sT
1
3
)
P
(
CAi
ε ≤ φ(s),A

)
. (4.52)

To finish the proof, we observe that

P
(
CAi
ε ≤ φ(s),A

)
≥ 1− P(CAi

ε ≥ φ(s))− P(Ac) ≥ 1− e−s
3
2
+ 4

3
ε

− e− 4
3 (1−ε)s

3
2 (4.53)

for all s ≥ s0. The second inequality above used P(Ac) = P(a1 ≥ (1− ζ)s) ≤ exp(− 4
3 (1−

ε)s
3
2 ) which holds when s is sufficiently large (see [RRV11, Theorem 1.3]). Plugging (4.53)

into the r.h.s. of (4.52) and rearranging yields e−(1−ε)ζsT
1
3 ≤ 1− exp

(
− 2

3π s
9
4 +2εe−ζsT

1
3 −

C

T
1
3
e−sT

1
3

)
≤ e−(1+ε)ζsT

1
3 for sufficiently large s. Hence (4.42) follows. �

Proof of (4.43). Here, we need to get an upper bound on E
[∏∞

k=1 Is(ak)
]
. We start by

splitting E
[∏∞

k=1 Is(ak)
]

into two different parts (again set A =
{
a1 ≤ (1 + ζ)s

}
):

E
[ ∞∏
k=1

Is(ak)
]
≤ E

[ ∞∏
k=1

Is(ak)1(A)
]

+ P(Ac) · exp(−ζsT 1
3 ). (4.54)

Let us define χAi(s) := #{ai ≥ s} and, for c ∈ (0, 2
3π ) fixed, define

B :=
{
χAi(−ζs)− E

[
χAi(−ζs)

]
≥ −c(ζs) 3

2

}
We split the first term on the r.h.s. of (4.54) as follows

E
[ ∞∏
k=1

Is(ak)1(A)
]
≤ E

[ ∞∏
k=1

Is(ak)1
(
B ∩A

)]
+ E

[
1(Bc ∩A)

]
. (4.55)

On the event B, we may bound

∞∏
k=1

Is(ak)1(B) ≤ exp
(
−
( 2

3π
− c
)

(ζs)
3
2 e−(1+ζ)sT

1
3
)

so that

E
[ ∞∏
k=1

Is(ak)1
(
B ∩A

)]
≤ exp

(
−
( 2

3π
− c
)

(ζs)
3
2 e−(1+ζ)sT

1
3
)
· P(A). (4.56)
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For large s, the r.h.s. of (4.56) is bounded above by exp
(
− e−(1+ζ)sT

1
3
)
P(A). Thanks

to Theorem 1.4 of [CG], we know that for any δ > 0, there exists sδ such that P(Bc) ≤
e−c(ζs)

3−δ
for all s ≥ sδ. Now, we plug these bounds into (4.55) which provides an upper

bound to the first term on the r.h.s. of (4.54). As a result, we find

1− E
[ ∞∏
k=1

Is(ak)
]
≥ 1− e−e

−(1+ζ)sT
1
3

− e−c(ζs)
3−δ

+ P(Ac)
(
e−e

−(1+ζ)sT
1
3

− e−ζsT
1
3
)
.

(4.57)

Finally, we note that P(Ac) ≥ exp
(
− 4

3 (1 + ε)s
3
2

)
(again thanks to [RRV11, Theorem 1.3]).

Thus, the r.h.s. of (4.57) is lower bounded by 1
2e
−(1+ζ)sT 1/3

+ e−
4
3 (1+ε)s3/2 for sufficiently

large s. This completes the proof of (4.43) and hence also of Proposition 4.6. �

5 Upper tail under general initial data

This section contains the proofs of Theorems 1.4 and 1.14.

5.1 Proof of Theorem 1.4

Theorem 1.4 will follow directly from the next two propositions which leverage
narrow wedge upper tail decay results to give general initial data results. The cost of
this generalization is in terms of both the coefficients in the exponent and the ranges
on which the inequalities are shown to hold. Recall hfT and ΥT from (1.5) and (1.8)
respectively.

The following proposition has two parts which correspond to T being greater or,
less than equal to π. The main goal of this proposition is to provide a recipe to deduce
upper bounds on P(hfT (0) > s) by employing the upper bounds on P(ΥT (0) > s). We
have noticed in Theorem 1.11 that the latter bounds vary as s lies in different intervals
and furthermore, those intervals vary with T . This motivates us to choose a generic
set of intervals of s based on a given T and assume upper bounds on P(ΥT (0) > s) in
those intervals. In what follows, we show how those translate to the upper bounds on
P(hfT (0) > s).

Proposition 5.1. Fix ε, µ ∈ (0, 1
2 ), ν ∈ (0, 1), C, θ, κ,M > 0 and assume that f belongs to

Hyp(C, ν, θ, κ,M) (see Definition 1.1).

(1) Fix T0 > π. Suppose there exists s0 = s0(ε, T0) and for any T ≥ T0 there exist
s1 = s1(ε, T ) and s2 = s2(ε, T ) with s1 ≤ s2 such for any s ∈ [s0,∞),

P(ΥT (0) > s) ≤

{
e−

4
3 (1−ε)s3/2 if s ∈ [s0, s1] ∪ (s2,∞),

e−
4
3 εs

3/2

if s ∈ (s1, s2].
(5.1)

Let

s0 :=
s0

1− 2µ
3

, s1 :=
εs1

1− 2µ
3

, s2 :=
s2

1− 2µ
3

. (5.2)

Then, there exists s′0 = s′0(ε, µ, C, ν, θ, κ,M, T0) such that for any T > T0 and any
s ∈ [max{s′0, s0},∞), we have

P
(
hfT (0) > s

)
≤

{
e−
√

2
3 (1−ε)(1−µ)s3/2 if s ∈ [s0, s1] ∪ (s2,∞),

e−
√

2
3 ε(1−µ)s3/2 if s ∈ (s1, s2],

(5.3)
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(2) Fix T0 ∈ (0, π). Then, there exists s′0 = s′0(C, ν, θ, κ,M, T0) satisfying the following: if

there exist s0 = s0(T0) > 0 and c = c(T0) > 0 such that P(ΥT (0) > s) ≤ e−cs3/2 for all
s ∈ [s0,∞) and T ∈ [T0, π], then,

P
(
hfT (0) > s

)
≤ e−

1
2
√

2
cs3/2

, ∀s ∈ [max{s′0, s0},∞), T ∈ (T0, π]. (5.4)

The next proposition provides a lower bound on P
(
hfT (0) > s

)
in terms of the upper

tail probability of the narrow wedge solution.

Proposition 5.2. Fix µ ∈ (0, 1
2 ), n ∈ Z≥3, ν ∈ (0, 1), C, θ, κ,M > 0 and T0 > π and

assume that f ∈ Hyp(C, ν, θ, κ,M). Then, there exist s0 = s0(µ, n, T0, C, ν, θ, κ,M) and
K = K(µ) > 0 such that for all s ≥ s0 and T ≥ T0,

P
(
hfT (0) > s

)
≥
(
P
(
ΥT (0) >

(
1 + 2µ

3

)
s
))2

− e−Ks
n

. (5.5)

We prove Propositions 5.1 and 5.2 in Sections 5.1.1 and 5.1.2 respectively. In what
follows, we complete the proof of Theorem 1.4 assuming Propositions 5.1 and 5.2.

Proof of Theorem 1.4. By Theorem 1.11, for any ε ∈ (0, 1
2 ) and T0 > π, there exists

s0 = s0(ε, T0) such that for all T > T0 and s ∈ [s0,∞)

P(ΥT > s) ≤

{
e−

4
3 (1−ε)s3/2 if s ∈ [s0,

1
8ε

2T ] ∪ ( 9
16ε
−2T,∞),

e−
4
3 εs

3/2

if s ∈ ( 1
8ε

2T, 9
16ε
−2T ].

(5.6)

For any ε ∈ (0, 1
2 ) and T > T0, (5.6) shows that the hypothesis of part (1) of Propo-

sition 5.1 is satisfied with s1 = 1
8ε

2T and s2 = 9
16ε
−2T . Proposition 5.1 yields s′0 =

s′0(ε, µ, T0, C, ν, θ, κ,M) such that for all T ≥ T0 and s ∈ [max{s′0, s0/(1− 2µ
3 )},∞)

P
(
hfT (0) > s

)
≤

e
−
√

2
3 (1−ε)(1−µ)s3/2 if s ∈

[
s0

1− 2µ
3

, ε3T
8(1− 2µ

3 )

]
∪
(

9ε−2T
16(1− 2µ

3 )
,∞
)
,

e−
√

2
3 ε(1−µ)s3/2 if s ∈

(
ε3T

8(1− 2µ
3 )
, 9ε−2T

16(1− 2µ
3 )

]
.

(5.7)

This shows the upper bound on P
(
hfT (0) > s

)
when T0 > π. For any T0 ∈ (0, π), the upper

bound on P
(
hfT (0) > s

)
follows from (5.4) for all T ∈ [T0, π].

Now, we turn to show the lower bound. Let us fix n = 3. Owing to Proposition 5.2 and
the lower bound on the probability P(ΥT (0) ≥ s) in (1.12) of Theorem 1.11, we observe
that the second term e−Ks

3

of the r.h.s. of (5.5) is less than the half of the first term
when s is large enough. Hence, there exist s′0 = s′0(ε, µ, C, ν, θ, κ,M, T0) such that for all
T ≥ T0 > π and s ∈ [max{s′0, s0/(1 + 2µ

3 )},∞)

P
(
hfT (0) > s

)
≥


1
2e
− 8

3 (1+ε)(1+µ)s3/2 if s ∈
[

s0
1+ 2µ

3

, ε2T
8(1+ 2µ

3 )

]
,

1
2e
−2

9
2 ε−3(1+µ)s3/2 if s ∈

(
ε2T

8(1+ 2µ
3 )
, 9ε−2T

16(1+ 2µ
3 )

]
,

1
2e
−8
√

3(1+ε)(1+µ)s3/2 if s ∈
(

9ε−2T
16(1+ 2µ

3 )
,∞
)
.

(5.8)

The sets of three intervals of (5.7) and (5.8) are not same. Note10 that ε3T
8(1− 2µ

3 )
< ε2T

8(1+ 2µ
3 )

and 9ε−2T
16(1− 2µ

3 )
> 9ε−2T

16(1+ 2µ
3 )

. From this we see that
(

ε2T
8(1+ 2µ

3 )
, 9ε−2T

16(1+ 2µ
3 )

]
⊂
(

ε3T
8(1− 2µ

3 )
, 9ε−2T

16(1− 2µ
3 )

]
,[

s0
1− 2µ

3

, ε3T
8(1− 2µ

3 )

]
⊂
[

s0
1+ 2µ

3

, ε2T
8(1+ 2µ

3 )

]
, and

(
9ε−2T

16(1− 2µ
3 )
,∞
)
⊂
(

9ε−2T
16(1+ 2µ

3 )
,∞
)

.

10The first inequality uses ε ≤ (1− 2µ
3

)(1 + 2µ
3

)−1 for any ε, µ ∈ (0, 1
2

) and the second inequality uses µ > 0.
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By these containments and (5.7)–(5.8), for all s ∈
[

max
{
s′0, s0/(1 − 2µ

3 ), s0/(1 +
2µ
3 )
}
,∞
)

and T ≥ T0 > π, we have exp(−c1s
3
2 ) ≤ P

(
hfT (0) > s

)
≤ exp(−c2s

3
2 ) where

√
2

3 (1− µ)(1− ε)√
2

3 (1− µ)ε√
2

3 (1− µ)(1− ε)

 ≤ c2 < c1 ≤


8
3 (1 + ε)(1 + µ) if s ∈

[
s0

1− 2µ
3

, ε3T
8(1− 2µ

3 )

]
,

2
9
2 ε−3(1 + µ) if s ∈

(
ε3T

8(1− 2µ
3 )
, 9ε−2T

16(1− 2µ
3 )

]
,

8
√

3(1 + ε)(1 + µ) if s ∈
(

9ε−2T
16(1− 2µ

3 )
,∞
)
.

The lower bound P(hfT (0) > s) ≥ e−2c1s
3/2

for all T ∈ [T0, π] when T0 ∈ (0, π) follows
by combining the first inequality of (1.7) with (5.5) (with n = 3). This completes the
proof. �

5.1.1 Proof of Proposition 5.1

Recall hfT and ΥT from (1.5) and (1.8). By Proposition 1.10, P(hfT (0) ≥ s) = P(Ãf ) where

Ãf :=
{∫ ∞
−∞

e
T

1
3

(
ΥT (y)+f(−y)dy

)
dy ≥ eT

1
3 s
}
.

Let ζn := n
s1+δ

, n ∈ Z and fix τ ∈ (0, 1) such that ν + τ < 1. We define the following
events:

Ẽn :=
{

ΥT (ζn) ≥ −1− 2−1τ

22/3
ζ2
n +

(
1− 2µ

3

)
s
}

F̃n :=
{

ΥT (y) ≥ −1− τ
22/3

y2 +
(
1− µ

3

)
s for some y ∈ [ζn, ζn+1]

}
.

In the same way as in (3.1), we write

P
(
Ãf
)
≤
∑
n∈Z

P(Ẽn) + P
(
Ãf ∩

( ⋃
n∈Z

Ẽn
)c)

. (5.9)

From now on, we will fix some T > T0 > π and assume that there exist s0 = s0(ε, T0),
s1 = s1(ε, T ) and s2 = s2(ε, T ) with s1 ≤ s2 such that for all s ∈ [s0,∞) (5.1) is satisfied.
In the next result, we demonstrate some upper bound on the first term on the r.h.s. of
(5.9).

Lemma 5.1. There exist s̄ = s̄(ε, T0) and Θ = Θ(ε, T0) such that for all s ∈ [max{s̄, s0},∞),

∑
n∈Z

P
(
Ẽn
)
≤

{
Θe−

4
3 (1−ε)(1−µ)s3/2 if s ∈ [s0, s1] ∪ (s2,∞),

Θe−
4
3 ε(1−µ)s3/2 if s ∈ (s1, s2],

(5.10)

where s0, s1 and s2 are defined in (5.2).

Proof. We first prove (5.10) when s ∈ [s0, s1]. If [s0, s1] is an empty interval, then, nothing
to prove. Otherwise, fix any s ∈ [s0, s1]. Let us denote

S1 := [0, (1− ε)s1], S2 := ((1− ε)s1, s2 − s0], S3 := (s2 − s0,∞).

Claim 5.2.

P
(
Ẽn
)
≤

exp
(
− 4

3 (1− ε)
((

1− 2µ
3

)
s+

τζ2n
25/3

) 3
2
)

when τζ2n
25/3 ∈ S1 ∪ S3,

exp
(
− 4

3ε
((

1− 2µ
3

)
s+

τζ2n
25/3

) 3
2
)

when τζ2n
25/3 ∈ S2.

(5.11)
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Proof. Note that s0 ≤ (1− 2µ
3 )s ≤ εs1. This implies

(
1− 2µ

3

)
s+2−5/3τζ2

n is bounded above
by εs1 + (1 − ε)s1 = s1 whenever 2−5/3τζ2

n ≤ (1 − ε)s1 whereas it is bounded below by
s0 + s2 − s0 = s2 if 2−5/3τζ2

n > s2 − s0. Owing to this and (5.1), we have

P(Ẽn) ≤ exp
(
− 4

3
(1− ε)

((
1− 2µ

3

)
s+

τζ2
n

25/3

) 3
2
)

when
τζ2
n

25/3
∈ S1 ∪ S3. (5.12)

Furthermore, (1− 2µ
3 )s+ 2−5/3τζ2

n is greater than s0 when s ≥ s0. Thanks to ε < 1
2 , one

can now see the following from (5.1):

P(Ẽn) ≤ exp
(
− 4

3
ε
((

1− 2µ
3

)
s+

τζ2
n

25/3

) 3
2
)

when
τζ2
n

25/3
∈ S2. (5.13)

Combining (5.12) and (5.13), we get (5.11). �

Let n0 = n0(s, δ, τ) < n′0 = n′0(s, δ, τ) ∈ N be such that 2−5/3τζ2
n ∈ S2 for all integer n

in [n0, n
′
0] ∪ [−n′0,−n0]. Using the reverse Minkowski’s inequality,

τζ2
n

25/3
≥
τζ2
n0

25/3
+
τζ2
|n|−n0

25/3
, ∀n ∈ {[n0, n

′
0] ∪ [−n′0,−n0]} ∩Z. (5.14)

Owing to s1 ≥ ε−1(1− 2µ
3 )s, we get

τζ2
n0

25/3
≥ (1− ε)s1 ≥ ε−1

(
1− 2µ

3

)
(1− ε)s. (5.15)

Combining (5.14) with (5.15) and invoking the reverse Minkowski’s inequality yields

(
(1− 2µ

3 )s+
τζ2
n

25/3

) 3
2 ≥

(
ε−1
(
1− 2µ

3

)
(1− ε)s

) 3
2

+
τ3/2ζ3

|n|−n0

25/2
, when

τζ2
n

25/3
∈ S2.

Plugging this into (5.11), summing in a similar way as in the proof of Lemma 3.1 and
noticing

ε
(
ε−1(1− 2µ

3
)(1− ε)

) 3
2

> ε−
1
2 (1− ε) 1

2 (1− µ)(1− ε) > (1− µ)(1− ε),

we arrive at ∑
n:2−5/3τζ2n∈S2

P
(
Ẽn
)
≤ C1 exp

(
− 4

3
(1− ε)(1− µ)s

3
2

)
(5.16)

for some C1 = C1(ε, T0) when s is large enough. From the reverse Minkowski’s inequality,

((
1− 2µ

3

)
s+

τζ2
n

25/3

) 3
2 ≥

(
1− 2µ

3

) 3
2 s

3
2 +

τ3/2ζ3
|n|

25/2
. (5.17)

Applying (5.17) to the r.h.s. of (5.11) for all n such that 2−5/3τζ2
n ∈ S1 ∪ S3 and summing

in a similar way as in the proof of Lemma 3.1 yields∑
n:2−5/3τζ2n∈S1∪S3

P
(
Ẽn
)
≤ C2 exp

(
− 4

3
(1− ε)

(
1− 2µ

3

)3/2
s

3
2

)
(5.18)

for some C2 = C2(ε, T0). Adding (5.16) and (5.18) and noticing that
(
1− 2µ

3

) 3
2 ≥ (1− µ),

we obtain (5.10) if s ∈ [s0, s1] ∩ [s̄,∞) where s̄ depends on ε and T0.
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Now, we turn to the case when s ∈
{

(s1, s2] ∪ (s2,∞)
}
∩ [s0,∞). Owing to (5.1), for

all n ∈ Z and s ∈ [s0,∞),

P(Ẽn) ≤

exp
(
− 4

3ε
((

1− 2µ
3

)
s+

τζ2n
25/3

) 3
2
)

if s ∈ (s1, s2],

exp
(
− 4

3 (1− ε)
((

1− 2µ
3

)
s+

τζ2n
25/3

) 3
2
)

if s ∈ (s2,∞).
(5.19)

Applying (5.17) and summing the r.h.s. of (5.19) in the same way as (5.18), we find
(5.10). �

Now, we show an analogue of Lemma 3.2.

Lemma 5.3. There exists s′ = s′(ε, T0, C, ν, θ, κ,M) such that for all s ≥ s′,( ⋃
n∈Z

Ẽn

)c
∩
( ⋃
n∈Z

F̃n

)c
⊆ (Ãf )c. (5.20)

Proof. Assume the event of the l.h.s. of (5.20) occurs. By (1.2) of Definition 1.1 and
τ + ν < 1,∫ ∞
−∞

eT
1/3
(

ΥT (y)+f(−y)
)
dy ≤

∫ ∞
−∞

e
T 1/3

(
C− 1−τ

22/3
y2+(1−µ3 )s+ ν

22/3
y2
)
dy ≤ K

T 1/6
e(1−µ3 )sT 1/3

.

for some K = K(C, T, τ, ν) > 0. There exists s′ = s′(µ, T0, C, ν, θ, κ,M) such that the
right hand side of the above inequality is bounded above by exp(sT

1
3 ), thus confirming

(5.20). �

Applying (5.20) and Bonferroni’s union bound, (see (3.8) for a similar inequality)

P
(
Ãf ∩

( ⋃
n∈Z

Ẽn

)c)
≤
∑
n∈Z

P
(
Ẽcn−1 ∩ Ẽcn+1 ∩ F̃n

)
. (5.21)

Lemma 5.4. There exists s′′ = s′′(ε, µ, T0) and Θ = Θ(ε, T0) such that for all s ∈
[max{s′′, s0},∞),

∑
n∈Z

P
(
Ẽcn−1 ∩ Ẽcn+1 ∩ F̃n

)
≤

{
Θe−

√
2

3 (1−ε)(1−µ)s3/2 if s ∈ [s0, s1] ∪ (s2,∞),

Θe−
√

2
3 ε(1−µ)s3/2 if s ∈ (s1, s2].

(5.22)

See (5.2) for the definitions of s0, s1 and s2.

Proof. We need to bound P
(
Ẽcn−1 ∩ Ẽcn+1 ∩ F̃n

)
for all n ∈ Z. Define

Ẽn :=
{

ΥT (ζn) ≥ −1 + 2−1τ

22/3
ζ2
n − s

2
3

}
, for n ∈ Z.

We begin with the following inequality

P
(
Ẽcn−1 ∩ Ẽcn+1 ∩ F̃n

)
≤ P

(
(Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n

)
+ P(Ẽcn−1) + P(Ẽcn+1).

We will bound each term on the r.h.s. above. Proposition 1.10 provides s′′ := s′′(ε, T0),
K = K(ε, T0) > 0 and the following upper bound11 for s ≥ s′′ and T ≥ T0

P(Ẽcn) ≤ exp
(
− T 1

3
4

15π
(1− ε)

(
s

2
3 +

τζ2
n

25/3

) 5
2

)
+ exp

(
−K

(
s

2
3 +

τζ2
n

25/3

)3−ε)
.

Summing over all n ∈ Z (in the same way as in Lemma 3.1) yields∑
n∈Z

(
P(Ẽcn−1) + P(Ẽcn+1)

)
≤ e−T

1/3 4
15π (1−ε)s5/3 + e−Ks

2−2ε/3

. (5.23)

11Taking ε = δ in Proposition 1.10 the r.h.s. of (1.11) ≤ exp(−T
1
3

4(1−ε)s5/2
15π

) + exp(−Ks3−ε).
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ζn−1 ζn ζn+1σn

M(·)

U(·)

L(·)

ΥT (·) B(·)

Figure 2: Illustration from the proof of (5.24). The three parabolas are U(·), M(·) and

L(·). The solid black curve is Υ
(1)
T (·) when Ẽcn−1 ∩ Ẽn−1 ∩ Ẽcn+1 ∩ Ẽn+1 ∩ F̃n occurs. Note

that Υ
(1)
T (·) stays in between M(·) and L(·) at ζn−1 and ζn+1. The rightmost point in

(ζn, ζn+1) where Υ
(1)
T (·) hits U(·) is labeled σn. The event that the black curve stays

above the square at ζn is B̃n and PH2T
(B̃n) (see (5.25) for PH2T

) is the probability
of B̃n conditioned on the sigma algebra Fext

(
{1} × (ζn−1, σn)

)
. On the other hand,

P̃H2T
(B̃n) (see (5.26) for P̃H2T

) is the probability of B̃n under the free Brownian bridge
(scaled by 2

1
3 ) measure on the interval (ζn−1, σn) with same starting and end point as

Υ
(1)
T (·). The dashed black curve is such a free Brownian bridge coupled to Υ

(1)
T (·) so that

B(y) ≤ Υ
(1)
T (y) for all y ∈ (ζn−1, σn). Owing to this coupling, PH2T

(B̃n) ≥ P̃H2T
(B̃n). The

probability of B(σn) staying above the bullet point is 1
2 which implies that P̃H2T

(B̃n) ≥ 1
2 .

Consequently, we can bound the probability of (Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n by

2P(B̃n) (see (5.28)). The expected value of P(B̃n) can be bounded above by the upper

tail probability of Υ
(1)
T (ζn) +

ζ2n
22/3 (see (5.32)). The upper bound in (5.24) follows then by

invoking Proposition 1.8.

Claim 5.5. There exists s′′ = s′′(ε, µ, T0), such that for all s ≥ s′′, T ≥ T0 and n ∈ Z,

P
(
(Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n

)
≤ 2P

(
ΥT (0) ≥ 2−

11
3 ζ2

n +
1

2

(
1− 2µ

3

)
s
)
. (5.24)

Proof. We parallel the proof of [CH14, Proposition 4.4] (see also [CH16, Lemma 4.1]).
Figure 2 illustrates the main objects in this proof and the argument (whose details we
now provide).

By Proposition 2.3 the curve 2−
1
3 Υ

(1)
T (·) from the KPZ line ensemble

{2− 1
3 Υ

(n)
T (x)}n∈N,x∈R has the same distribution as 2−

1
3 ΥT (·). For the rest of this proof,

we replace ΥT by Υ
(1)
T in the definitions of {Ẽn}n, {F̃n}n and {Ẽn}n. We define the

following three curves:

U(y) := − (1−τ)
22/3 y

2 +
(

1− µ
3

)
s, L(y) := − (1+2−1τ)

22/3 y2 − s 2
3 , M(y) := − (1−τ)

22/3 y
2 + (1− µ

3 )s.

If Ẽcn−1 ∩ Ẽn−1 and Ẽcn−1 ∩ Ẽn−1 occurs, then, Υ
(1)
T (·) stays in between the curves M(·)

and L(·) at the points ζn−1 and ζn+1 respectively. If F̃n occurs, then, Υ
(1)
T (·) touches the

curve U(·) at some point in the interval [ζn, ζn+1]. Therefore, on the event (Ẽcn−1∩Ẽn−1)∩
(Ẽcn+1 ∩ Ẽn+1)∩Fn, Υ

(1)
T (·) hits U(·) somewhere in the interval (ζn, ζn+1) whereas it stays

in between M(·) and L(·) at the points ζn−1 and ζn+1. Let us define σn := sup
{
y ∈

(ζn, ζn+1) : Υ
(1)
T (y) ≥ U(y)

}
.
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Recall that ζn−1 < ζn < ζn+1. Consider the following crossing event

B̃n :=
{

Υ
(1)
T (ζn) ≥ σn − ζn

σn − ζn−1
L(ζn−1) +

ζn − ζn−1

σn − ζn−1
U(σn)

}
.

We will use the following abbreviation for the probability measures

PH2T
:= P

1,1,(ζn−1,σn),2−
1
3 Υ

(1)
T (ζn−1),2−

1
3 Υ

(1)
T (σn),+∞,2−

1
3 Υ

(2)
T

H2T
, (5.25)

P̃H2T
:= P

1,1,(ζn−1,σn),2−
1
3 Υ

(1)
T (ζn−1),2−

1
3 Υ

(1)
T (σn),+∞,−∞

H2T
. (5.26)

Since, (ζn−1, σn) is a {1}-stopping domain (see Definition 2.1) for the KPZ line ensem-
ble, the strong H2T -Brownian Gibbs property (see Lemma 2.5 of [CH16]) applies to show
that

E
[
1
(
(Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n

)
· 1(B̃n)|Fext

(
{1} × (ζn−1, σn)

)]
(5.27)

=1
(
(Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n

)
· PH2T

(B̃n).

By Proposition 2.4, there exists a monotone coupling12 between the probability mea-
sures PH2T

and P̃H2T
. Using this and the fact that the probability of B̃n increases under

pointwise increase of its sample paths, we have PH2T
(B̃n) ≥ P̃H2T

(B̃n). Since P̃H2T
is

the law of a Brownian bridge on the interval (ζn−1, σn) with end points 2−
1
3 Υ

(1)
T (ζn−1)

and 2−
1
3 Υ

(1)
T (σn), the probability that it stays above the line joining the two end points at

a given intermediate point is 1
2 . Therefore P̃H2T

(B̃n) ≥ 1
2 . Plugging this into (5.27) and

taking expectation yields

P
(
(Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn−1) ∩ F̃n

)
≤ 2E

[
1((Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n) · 1(B̃n)

]
. (5.28)

Now, we bound the r.h.s. of (5.28). Note the following holds13 for all n ∈ Z:

(σn − ζn)ζ2
n−1 + (ζn − ζn−1)σ2

n

σn − ζn−1
− ζ2

n = (σn − ζn)(ζn − ζn−1) ≤ 1

s2+2δ
, (5.29)

− 1
2 (σn − ζn)ζ2

n−1 + (ζn − ζn−1)σ2
n

σn − ζn−1
+

1

2
ζ2
n = −1

2
(σn − ζn)(ζn − ζn−1) +

3

2

ζn − ζn−1

σn − ζn−1
σ2
n,

(5.30)

3

2

ζn − ζn−1

σn − ζn−1
σ2
n −

1

2
ζ2
n ≥

1

4
ζ2
n − 2

|ζn|
s1+δ

≥ 1

8
ζ2
n −

32

s2+2δ
. (5.31)

Combining (5.29), (5.30) and (5.31) yields

σn − ζn
σn − ζn−1

L(ζn−1) +
ζn − ζn−1

σn − ζn−1
U(σn) ≥ − (1− 8−1τ)

22/3
ζ2
n −

(4 + 34τ)

22/3s2+2δ
+

1

2

((
1− µ

3

)
s− s 2

3

)
.

This implies that when B̃n occurs, Υ
(1)
T (ζn) will be greater than the r.h.s above. The r.h.s

is bounded below by −2−
2
3 (1− 8−1τ) + 1

2

(
1− 2µ

3

)
s when s is large enough. Hence, we

have

r.h.s. of (5.28) ≤ 2P(B̃n) ≤ 2P

(
Υ

(1)
T (ζn) ≥ − (1− 8−1τ)

22/3
ζ2
n +

1

2

(
1− 2µ

3

)
s

)
. (5.32)

Now, the claim follows from (5.28) and (5.32) by recalling that Υ
(1)
T (ζ2

n)+
ζ2n

22/3

d
= ΥT (0). �

12If B is PH2T
distributed and B̃ is P̃H2T

distributed, then, under the coupling, B(y) ≥ B̃(y), ∀y ∈
(ζn−1, σn)

13To see the first inequality of (5.31), note that (ζn − ζn−1)/(σn − ζn−1) ≥ 1
2

and σ2
n ≥ ζ2n − 2|ζn|s−(1+δ);

the second inequality follows from 8−1ζ2n − 2|ζn|s−(1+δ) ≥ 0 for all |n| ≥ 16.
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Using (5.24) and a similar analysis as in Lemma 5.1, there exist s′′ = s′′(ε, µ, T0) and
C ′ = C ′(ε, T0) such that for all s ∈ [max{s′′, s0},∞),

∑
n∈Z

P
(
(Ẽcn−1 ∩ Ẽn−1) ∩ (Ẽcn+1 ∩ Ẽn+1) ∩ F̃n

)
≤

{
C ′e−

√
2

3 (1−ε)(1−µ)s3/2 if s ∈ (s1, s2],

C ′e−
√

2
3 ε(1−µ)s3/2 if s ∈ (s1, s2].

where (s1, s2] := [s0,∞)\(s1, s2]. Combining this with (5.23), we arrive at (5.22). �

Final step of the proof of Proposition 5.1: Define s′0 := max{s̄, s′, s′′} where s̄, s′, s′′ are
taken from Lemmas 5.1, 5.3 and 5.4 respectively.

(1) Owing to (5.21) and (5.22), when T0 > π, there exists Θ = Θ(ε, T0) such that for all
s ∈ [max{s′0, s0},∞)

P

(
Ãf ∩

(⋃
n∈Z

Ẽn

)c)
≤

{
Θe−

√
2

3 (1−ε)(1−µ)s3/2 when s ∈ [s0, s1] ∪ (s2,∞),

Θe−
√

2
3 ε(1−µ)s3/2 when s ∈ (s1, s2].

(5.33)

Plugging (5.33) and (5.10) of Lemma 5.1 into the r.h.s. of (5.9) yields (5.3).

(2) When T0 ∈ (0, π), the proof of (5.4) follows in the same way as in the proof of (5.3)

by assuming P(ΥT (0) > s) ≤ e−cs3/2 for all s ≥ s0 and T ∈ [T0, π].

5.1.2 Proof of Proposition 5.2

Let I be a subinterval of [−M,M ] with |I| = θ such that f(y) ≥ −κ for all y ∈ I. Assume
s is large enough such that s−n+2 ≤ θ. Let χ1 ≤ χ2 ∈ I be such that χ2 − χ1 = s−n+2.
Define

Wi :=
{

ΥT (−χi) ≥ −
χ2
i

22/3
+
(
1 + 2µ

3

)
s
}

for i = 1, 2,

Wint :=
{

ΥT (y) ≥ − y2

22/3
+
(
1 + µ

3

)
s for all y ∈ (−χ2,−χ1)

}
.

We claim that there exists s′ = s′(µ, θ, κ, T0) such that for all s ≥ s′ and T ≥ T0

P(W1 ∩W2 ∩Wint) ≤ P(hfT (0) ≥ s). (5.34)

To show this, assume that the eventW1 ∩W2 ∩Wint occurs. Then14,∫ ∞
−∞

eT
1/3(ΥT (y)+f(−y))dy ≥

∫
−I

eT
1/3(ΥT (y)+f(−y))dy ≥ 2θeT

1/3((1+µ/3)s−κ) ≥ eT
1/3s

where the last inequality holds when s exceeds some s′(µ, θ, κ, T0). This shows that

P
(
W1 ∩W2 ∩Wint

)
≤ P

(∫ ∞
−∞

eT
1/3(ΥT (y)+f(y))dy ≥ eT

1/3s
)

= P(hfT (0) ≥ s).

To finish the proof of (5.5) we combine (5.34) with (5.35) below and take s0 =

max{s′, s′′}.
Claim 5.6. There exist s′′ = s′′(µ, n, T0), K = K(µ) > 0 such that for all s ≥ s′′ and
T ≥ T0,

P (W1 ∩W2 ∩Wint) ≥
(
P
(
ΥT (0) >

(
1 + 2µ

3

)
s
))2

− e−Ks
n

. (5.35)

14We use below −I as a shorthand notation for {x : −x ∈ I}
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Proof. We start by writing P
(
W1 ∩W2 ∩Wint

)
= P(W1 ∩W2)−P(W1 ∩W2 ∩Wc

int). Using
the FKG inequality from (1.10),

P(W1 ∩W2) ≥ P(W1)P(W2) ≥
(
P
(
ΥT (0) >

(
1 + 2µ

3

)
s
))2

(5.36)

where the last inequality follows from Proposition 1.8. Note that (5.36) provides a
lower bound for the first term on the r.h.s. of (5.35). To complete the proof, we need
to demonstrate an upper bound on P(W1 ∩ W2 ∩ Wc

int) of the form e−Ks
n

. To achieve
this we go to the KPZ line ensemble and use its Brownian Gibbs property. We may
replace ΥT by Υ

(1)
T in all definitions without changing the value of P(W1 ∩W2 ∩Wc

int)

(see Proposition 2.3). Let us define

PH2T
:= P

1,1,(−χ2,−χ1),2−
1
3 Υ

(1)
T (−χ2),2−

1
3 Υ

(1)
T (−χ1),+∞,2−

1
3 Υ

(2)
T

H2T
,

P̃H2T
:= P

1,1,(−χ2,−χ1),2−
1
3 Υ

(1)
T (−χ2),2−

1
3 Υ

(1)
T (−χ1),+∞,−∞

H2T
.

Using the H2T -Brownian Gibbs property of the KPZ line ensemble {2− 1
3 Υ

(n)
T (x)}n∈N,x∈R,

P
(
W1 ∩W2 ∩Wc

int

)
= E

[
1(W1 ∩W2) · PH2T

(Wc
int)
]
. (5.37)

Via Proposition 2.4, there exists a monotone coupling between PH2T
and P̃H2T

so
that

PH2T
(Wc

int) ≤ P̃H2T
(Wc

int). (5.38)

Recall that P̃H2T
is the measure of a Brownian bridge on (−χ2,−χ1) with starting and

end points at 2−
1
3 Υ

(1)
T (−χ2) and 2−

1
3 Υ

(1)
T (−χ1). Applying (5.38) into the r.h.s. of (5.37)

implies

1(W1 ∩W2) · P̃H2T
(Wc

int) ≤ P
1,1,(−χ2,−χ1),−χ

2
2
2 +2−

1
3

(
1+

2µ
3

)
s,−χ

2
1
2 +2−

1
3

(
1+

2µ
3

)
s

free

(
Wc

int

)
.

Therefore (using Lemma 2.2 for the second inequality) there exists K = K(µ) such that

l.h.s. of (5.37) ≤ P
1,1,(−χ2,−χ1),−χ

2
2
2 +2−

1
3

(
1+

2µ
3

)
s,−χ

2
1
2 +2−

1
3

(
1+

2µ
3

)
s

free (Wc
int) ≤ e−Ks

n

. �

5.2 Proof of Theorem 1.14

Theorem 1.14 follows by combining all three parts of Theorem 1.11 with the following
results which are in the same spirit of Proposition 5.1 and 5.2 respectively.

Recall ΥT and hBr
T from (1.8) and (1.13) respectively.

Proposition 5.3. Fix ε, µ ∈ (0, 1
2 ).

(1) Fix T0 > π. Suppose there exists s0 = s0(ε, T0) and for any T ≥ T0, there exist
s2 = s2(ε, T ) and s3 = s3(ε, T ) with s1 ≤ s2 ≤ s3 such that for any s ∈ [s0,∞),

P
(
ΥT (0) > s

)
≤

e−
4
3 (1−ε)s

3
2 if s ∈ [s0, s1] ∪ (s2,∞),

e−
4
3 εs

3
2 if s ∈ (s1, s2].

(5.39)

Then, there exists s′0 = s′0(ε, µ, T0) such that for any T > T0 and s ∈ [max{s′0, s0},∞),
we have (recall s0, s1 and s2 from (5.2))

P
(
hBr
T (0) > s

)
≤

{
e−
√

2
3 (1−ε)(1−µ)s3/2 + e

− 1
9
√

3
(µs)3/2 if s ∈ [s0, s1] ∪ (s2,∞),

e−
√

2
3 ε(1−µ)s3/2 + e

− 1
9
√

3
(µs)3/2 if s ∈ (s1, s2].

(5.40)
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(2) For any T0 ∈ (0, π), there exists s′0 = s′0(T0) > 0 satisfying the following: if there

exists s0 = s0(T0) > 0 such that P(ΥT (0) > s) ≤ e−cs3/2 for all s ≥ s0 and T ∈ [T0, π],
then,

P
(
hfT (0) > s

)
≤ e−cs

3/2

, ∀s ∈ [max{s′0, s0},∞), T ∈ [T0, π]. (5.41)

Proposition 5.4. Fix µ ∈ (0, 1
2 ), n ∈ Z≥3 and T0 > π. Then, there exist s0 =

s0(µ, n, T0),K = K(µ, n) > 0 such that for all s ≥ s0 and T ≥ T0,

P(hBr
T (0) > s) ≥

(
P
(

ΥT (0) >
(
1 +

2µ

3

)
s
))2

− e−Ks
n

. (5.42)

We prove these propositions using similar arguments as in Section 5.1.1 and 5.1.2.
Propositions 5.3 and 5.4 are proved in Sections 5.2.1 and Section 5.2.2, respectively.

Proof of Theorem 1.14. This theorem is proved in the same way as Theorem 1.4 by
combining Proposition 5.3 and Proposition 5.4. We do not duplicate the details. �

5.2.1 Proof of Proposition 5.3

To prove this proposition, we use similar arguments as in Section 5.1.2. Let τ ∈ (0, 1
2 ) be

fixed (later we choose its value). Recall the events Ẽn and F̃n from Section 5.1.1 and
define

ÃBr :=

{∫ ∞
−∞

eT
1/3
(

ΥT (y)+B(−y)
)
dy > esT

1/3

}
where B is a two sided Brownian motion with diffusion coefficient 2

1
3 and B(0) = 0.

Appealing to Proposition 1.7, we see that P(hBr
T (0) > s) = P(ÃBr). Now, we write

P
(
ÃBr

)
≤
∑
n∈Z

P
(
Ẽn
)

+ P
(
ÃBr ∩

( ⋃
n∈Z

Ẽn
)c ∩ ( ⋃

n∈Z
F̃n
))

+ P
(
ÃBr ∩

( ⋃
n∈Z

Ẽn
)c ∩ ( ⋃

n∈Z
F̃n
)c)

. (5.43)

Using Lemma 5.1 (see (5.10)) and Lemma 5.4 (see (5.22)) we can bound the first two
terms on the right side hand side of (5.43). However, unlike in Theorem 5.1, the last
term in (5.43) is not zero. We now provide an upper bound to this term.

Claim 5.7. There exists s′ = s′(τ, µ) such that for all s ≥ s′,

P
(
ÃBr ∩

( ⋃
n∈Z

Ẽn
)c ∩ ( ⋃

n∈Z
F̃n
)c) ≤ exp

(
−
√

(1−2τ)

3
√

6

(
2µs
3 + log

(
(2π)−1τ(2T )

1
3

)) 3
2

)
.

(5.44)

Proof. Note that{
ÃBr ∩

( ⋃
n∈Z

Ẽn
)c ∩ ( ⋃

n∈Z
F̃n
)c} ⊆ {∫ ∞

−∞
e
T 1/3

(
− (1−τ)y2

22/3
+B(−y)

)
dy ≥ e3−1µsT 1/3

}
.

(5.45)

We claim that

r.h.s. of (5.45) ⊆
{

max
y∈R

{
− (1− 2τ)y2 +B(−y)

22/3

}
≥ 1

3µs+ 1
2 log((2π)−1τ(2T )

1
3 )
}
.

(5.46)
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To see this by contradiction, assume the complement of the r.h.s. of (5.46). This implies
that ∫ ∞

−∞
e
T 1/3

(
− (1−τ)y2

22/3
+B(−y)

)
dy <

√
(2π)−1τ(2T )1/3e3−1µsT 1/3

∫ ∞
−∞

e−τy
2T 1/3/2

2
3 dy

= e3−1µsT 1/3

.

Therefore, (5.46) holds. Applying Proposition 2.3 (with ξ = 1
2 ), we see that

P
(
r.h.s. of (5.46)

)
≤ 1√

3
exp

(
−
√

(1− 2τ)

3
√

6

(2µs

3
+ log((2π)−1τ(2T )

1
3 )
) 3

2

)
.

when s is large enough. Combining this with (5.45), we arrive at (5.44) showing the
claim. �

Now, we turn to complete the proof of Proposition 5.3. Choosing τ = 1
8 , we notice

r.h.s. of (5.44) ≤ exp
(
− 1

9
√

3

(
µs− 3 log(16π)

2

)3/2)
, ∀T > π.

For the rest of this proof, we will fix some T ≥ T0 and assume that there exist s0 =

s0(ε, T0), s1 = s1(ε, T ) and s2 = s2(ε, T ) with s1 ≤ s2 such that (5.39) is satisfied for
all s ∈ [s0,∞). Owing to (5.10) of Lemma 5.1 and (5.22) of Lemma 5.4, there exist
Θ = Θ(ε, T0) and s̃ = s̃(ε, µ, T0) such that for all s ∈ [max{s̃, s0)},∞),

P
( ⋃
n∈Z

Ẽn

)
+ P

(
ÃBr ∩

( ⋃
n∈Z

Ẽn
)c ∩ ( ⋃

n∈Z
F̃n
))
≤

{
Θe−

√
2

3 (1−ε)(1−µ)s3/2 if s ∈ (s1, s2],

Θe−
√

2
3 ε(1−µ)s3/2 if s ∈ (s1, s2]

where (s1, s2] = [s0,∞)\(s1, s2]. Combining this with (5.44) and plugging into (5.43), we
get (5.40) for all T > T0 ≥ π. In the case when T0 ∈ (0, π), we obtain (5.41) in a similar
way as in the proof of (5.4) of Proposition 5.1 by combining the inequality of the above
display with P(ΥT (0)) ≤ e−cs3/2 for all s ≥ s0 and T ∈ [T0, π].

5.2.2 Proof of Proposition 5.4

We use similar argument as in Proposition 5.2. The main difference from the proof of
Proposition 5.2 is that we do not expect (5.34) to hold because the initial data is now a
two sided Brownian motion, hence, (1.3) of Definition 1.1 is not satisfied. However, it
holds with high probability which follows from the following simple consequence of the
reflection principle for B (a two-sided Brownian motion with diffusion coefficient 2

1
3 and

B(0) = 0)

P
(
Ms

)
≤ e−

µ2

36 s
n

, where Ms =
{

min
y∈[−s−n+2,s−n+2]

B(t) ≤ −µ6 s
}
. (5.47)

To complete the proof, let us define:

W̃± :=

{
ΥT (±s−n+2) ≥ − 1

22/3s2(n−2)
+
(
1 + 2µ

3

)}
,

W̃int :=

{
ΥT (y) ≥ − y2

22/3
+
(
1 + µ

3

)
s, ∀y ∈ [−s−n+2, s−n+2]

}
.

We claim that there exists s′ = s′(µ, n, T0) such that for all s ≥ s′ and T ≥ T0,

P
(
hBr
T (0) > s

)
≥ P

(
W̃+ ∩ W̃− ∩ W̃int

)
− e−

µ2

36 s
n

. (5.48)
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To see this, assume W̃+ ∩ W̃− ∩ W̃int ∩Ms occurs. Then, for s large enough,∫ ∞
−∞

eT
1/3
(

ΥT (y)+B(−y)
)
dy ≥

∫ s−n+2

−s−n+2

e
T 1/3

(
− 1

22/3s2(n−2)
+(1+µ

6 )s
)
dy > esT

1/3

. (5.49)

By Proposition 1.7, the event {l.h.s. of (5.49) ≥ r.h.s. of (5.49)} equals {hBr
T (0) > s}.

Therefore (using (5.47) for the second inequality) we arrive at the claimed (5.48) via

P
(
{hBr

T (0) > s}
)
≥ P

(
W̃+ ∩ W̃− ∩ W̃int ∩Ms

)
≥ P

(
W̃+ ∩ W̃− ∩ W̃int

)
− e−

µ2

36 s
n

.

To finish the proof of Proposition 5.4 we use a similar argument as used to prove
(5.35). For any n ∈ Z≥3, there exists s′′ = s′′(µ, n, T0) such that for all s ≥ s′′ and T ≥ T0,

P
(
W̃+ ∩ W̃− ∩ W̃int

)
≥
(
P
(
ΥT (0) >

(
1 + 2µ

3

)
s
))2

− e−Ks
n

.

Combining this with (5.48) and taking s0 = max{s′, s′′}, we arrive at (5.42) for all s ≥ s0.
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