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The frog model on non-amenable trees
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Abstract

We examine an interacting particle system on trees commonly referred to as the frog
model. For its initial state, it begins with a single active particle at the root and
i.i.d. Poiss(λ) many inactive particles at each non-root vertex. Active particles perform
discrete time simple random walk and in the process activate any inactive particles
they encounter. We show that for every non-amenable tree with bounded degree there
exists a phase transition from transience to recurrence (with a non-trivial intermediate
phase sometimes sandwiched in between) as λ varies.
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1 Introduction

The frog model is a particular system of interacting random walks on a rooted
graph. It starts with a single active particle at the root, and some collection of inactive
particles distributed among the non-root vertices. Active particles perform mutually
independent discrete-time simple random walk, and any time an active particle meets
a group of inactive particles, the inactive particles become active. In this system the
particles are often referred to as “frogs,” where active particles are considered “awake”
and inactive particles “sleeping.” For infinite graphs, studies of the frog model often
involve establishing whether it is recurrent (meaning almost surely infinitely many active
particles hit the root) or transient (meaning almost surely only finitely many active
particles ever hit the root). Much work has been done on the frog model, including work
on Zd [1, 2, 4, 5, 11, 13]; one representative result [1] shows that the model is recurrent
when there are i.i.d. frogs per vertex.

Results on trees paint a different picture: Hoffman, Johnson, and Junge in two works
[6, 7] studied two different frog models on regular trees—one considers one frog per
vertex while the other considers i.i.d. Poiss(λ) frogs per vertex—and concluded “that the
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frog model on trees is teetering on the edge between recurrence and transience.” In
particular, they showed that if Poiss(λ) frogs are placed on each vertex of a regular tree,
then there is a sharp transition from transience to recurrence as λ passes some nonzero
critical value λc [6]. For a more detailed background on the frog model, see [10] and the
references therein.

A running theme in the previous frog model work is that the underlying graph is
transitive or quasi-transitive, meaning that the set of vertices can be partitioned into
finitely many sets so that for each pair of vertices in the same set there exists a graph
automorphism mapping one to the other. In a recent work [10], the authors studied the
frog model with Poiss(λ) frogs per vertex on Galton-Watson trees; under mild assumptions
on the offspring distribution, we proved that there is a sharp transition Galton-Watson
almost-surely from transience to recurrence as λ varies. The goal of this work is to
continue to break free from the restriction of quasi-transitivity and prove the existence
of a phase transition for a wide class of deterministic trees.

1.1 Results

In the present work we examine the frog model with i.i.d. Poiss(λ) sleeping frogs
positioned at each non-root vertex for all non-amenable trees of bounded degree. In
particular, no self-similarity is imposed. Our main result involves showing that for each
tree T in this class, there are critical thresholds 0 < λ1(T ) ≤ λ2(T ) <∞ such that the
model is transient for λ < λ1(T ) and recurrent for λ > λ2(T ). Recall that an infinite
graph G = (V,E) of bounded degree is non-amenable if for all finite subsets S ⊂ V the
ratio |∂S|/|S| is uniformly bounded away from 0; here, |∂S| is the number of edges with
one vertex in S and one in V \ S and |S| is the number of vertices in S.

Theorem 1.1. For any non-amenable tree T of bounded degree, there exist 0 < λ1 ≤
λ2 < ∞, such that the frog model on T with i.i.d. Poiss(λ) frogs per non-root vertex is
transient for λ < λ1 and recurrent for λ > λ2.

Since regular trees are non-amenable and have bounded degree, this result general-
izes the results of [6] to a much wider class. Unlike the case of regular trees, however,
there indeed exist examples of non-amenable trees of bounded degree for which there
is a non-trivial intermediate regime, i.e. the parameters λ1 and λ2 from Theorem 1.1
satisfy the strict inequality λ1 < λ2; an example is provided in Lemma 4.2. Further,
the assumptions of non-amenability and bounded degree cannot be removed: on the
amenable tree Z, random walks are recurrent and thus the Poisson frog model has no
transient regime; conversely, Lemma 4.1 provides an example of a non-amenable tree of
unbounded degree without a recurrent regime.

As is the case in [10], in order to establish recurrence in the proof of Theorem 1.1,
we define a separate, more tractable, model on T that we refer to as the truncated frog
model. The main difference between the ordinary frog model and the truncated frog
model is that in the latter, trajectories are replaced with their loop-erased versions. The
number of returns to the root in the ordinary frog model will stochastically dominate
the number of visits in the truncated model, and so proving recurrence of the truncated
frog model will be sufficient to deduce recurrence of the ordinary frog model. Our proof
of recurrence will rely on a bootstrapping argument: we show that if a certain quantity
is large, then it can be shown to be even larger. While our reduction to a loop-erased
version certainly draws inspiration from [6] and [7], our proof of recurrence is entirely
different from those in [6, 7]. Notably, the proofs in [6, 7] track the number of particles
that visit a given vertex; however, in the case of irregular trees, knowing that a large
number of active particles are at, say, distance n from the root does not translate to a
usable bound for the number of particles that visit the root. Thus, for our model, we must
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instead weigh active particles by the probability that they visit the root. Note that this
part of the proof also takes advantage of two crucial properties of Poisson distributions;
these being Poisson thinning (i.e. the property that the distribution Bern

(
Poiss(λ), p

)
is

the same as Poiss(λp)), as well as the fact that the sum of independent Poisson random
variables is itself a Poisson random variable. In addition, since on non-amenable trees
of bounded degree, the harmonic measure—i.e. the law of a loop-erased random walk—
and return probabilities are roughly comparable (see Appendix A), we work with the
harmonic measure rather than a simple count. This translates to a new, robust method
of proving recurrence that not only works for regular trees, but all non-amenable trees
of bounded degree.

For the proof of transience, we couple the Poisson frog model on T with branching
random walk. We then use the fact that for a non-amenable graph of bounded degree, the
spectral radius is bounded away from 1. Then, using a more general result concerning
transience of branching Markov chains, we show that for sufficiently small Poisson mean
λ, the branching random walk model is transient on T , which by virtue of stochastic
dominance, implies that the original frog model is as well. In the process of obtaining
this result, we also derive lower bounds on λ1(T ). Comparison to branching random
walk dates back at least to [12] and is a standard technique in the analysis of interacting
particle systems [8].

1.2 Sketch of recurrence proof

The proof of recurrence for Theorem 1.1 relies on a delicate bootstrapping argument;
here, we enumerate some of the key ideas, with the objective of offering a useful
road-map through the proof.

1. We primarily focus on an altered version of the frog model which we detail in
Section 2.1; its main distinguishing feature is that frogs now perform loop-erased
walk instead of simple random walk.

2. Since the trees we are interested in have bounded degree and no long pipes, the
transition probabilities for loop-erased walk are uniformly bounded away from 0

and 1, as shown in (2.1) and (2.2).

3. The main stroke of the proof is to prove Proposition 2.5: this says that if

P(u activated |←−u activated) ≥ 1− e−λi/2 (1.1)

for all u—where←−u denotes the parent of u—then in fact the same inequality holds
with i replaced by i+ 1. The base case follows from step 2 of the sketch.

4. Choosing n as a function of i and applying (1.1) iteratively shows that a constant
fraction of vertices at depth n of the descendant tree of any activated vertex are
themselves activated with high probability (Claim 2 in the proof of Proposition 2.5).

5. By using the fact that hitting probabilities are nearly symmetric on the trees of
interest (see Appendix A), this implies that if a vertex is activated, on the order of n
particles return to it with high probability (Claim 3 in the proof of Proposition 2.5).

6. If←−u is activated and u is not, some sibling u′ of u is. By the previous step, on the
order of n particles return to u′ with high probability. By step 2, the probability
that any given one of these hits u is bounded below, and thus one hits u with high
probability, completing the inductive step.

1.3 Description of non-amenable trees

The class of non-amenable trees of bounded degree may be described without isoperi-
metric language:
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Lemma 1.2. For a given rooted tree T , define Tr to be the set of vertices in T through
which there exists a non-backtracking path from the root. If T is of bounded degree,
then T is non-amenable if and only if T satisfies both of the following conditions

• There exists an M so that for each v ∈ T , the connected components of (T \Tr)∪{v}
each have at most M vertices;

• There exists an M so that there does not exist a path v0, v1, . . . , vM in Tr with each
vj having degree 2 in Tr.

Proof. Necessity of the two conditions is easier to show: if connected components of
(T \ Tr) ∪ {v} can be arbitrarily large, then there exists a sequence Sn of subtrees with
|Sn ∩ Tr| = 1 and |Sn| → ∞. Such a set must have |∂Sn| bounded above by the maximum
degree of T , thereby yielding |∂Sn|/|Sn| → 0. Similarly, if paths of vertices of degree
2 in Tr can be arbitrarily large, let γn be a collection of such paths so that |γn| → ∞.
Define Sn to be γn together with vertices in T \ Tr reachable from γn. Then only the first
and last vertex of γn will be connected to elements of T \ Sn, thus showing again that
|∂Sn|/|Sn| → 0.

A quantitative proof of sufficiency is carried out in Lemma 3.4.

2 Recurrence

In this section, we will establish our recurrence result, which consists of the following
theorem.

Theorem 2.1. Let T ∗f represent the set of all rooted trees of bounded degree that satisfy
the second condition of Lemma 1.2. Then for any tree T ∈ T ∗f , the frog model on T with
i.i.d. Poiss(λo) frogs per non-root vertex is recurrent for all λo sufficiently large.

To prove Theorem 2.1, we begin in Section 2.1 by defining the truncated frog model
referenced in the introduction, and then constructing the coupling that is used to show
that it is dominated (in terms of the number of returns to the root) by the original model.
Then in Section 2.2 we examine some of the properties of loop erased random walk on
trees in T ∗f , achieving several bounds relating to transition probabilities that are needed
in order to employ the argument that will be used in the proof of Theorem 2.1. Finally in
Section 2.3 we present the proof of the theorem, which largely consists of an induction
argument relating to the average density of activated vertices on each level of the tree.

2.1 Simplifications and the truncated frog model

We begin by noting that if we have any tree T ∈ T ∗f and we attach some (possibly
infinite) collection of finite trees to its vertices in order to obtain the tree T ′, then the
frog model on T ′ with Poiss(λo) sleeping frogs per non-root vertex dominates the frog
model on T (for the same Poisson mean λo) with respect to the number of returns to
the root (we can see this by simply ignoring the excursions that activated particles
originating in T make into T ′ \ T ). Hence, if the model with Poisson mean λo is recurrent
on T , then it must also be recurrent on T ′. Now combining this with the fact that a
rooted tree T is in T ∗f if and only if its backbone Tr lies in T ∗f , we see that in order to
prove the existence of a recurrent regime for all T ∈ T ∗f , it will suffice to do so just for
those T ∈ T ∗f that do not have any leaves.

To further simplify the problem, we now start with a tree T ∈ T ∗f that does not have
any leaves, and we assign Poiss(λo) sleeping frogs to each non-root vertex in T that has
at least two children, while leaving all other non-root vertices unoccupied. Since the
interiors of all pipes now contain no sleeping frogs, this version of the frog model will
be unchanged, with respect to the distribution of the number of returns to the root, if
we replace each pipe with a single edge to which we assign a resistance equal to the
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length of the original pipe. Also noting that we can ignore the case where the root of T
has only one child (since infinitely many returns to the first descendant of the root with
at least two children will automatically imply almost surely infinitely many returns to the
root), as well as the case where the root has exactly two children (since the absence of a
recurrent regime on such a tree would suggest that adding an additional child to the
root to which we attach some arbitrary infinite subtree would still yield a tree without a
recurrent regime), we now see that in order to establish Theorem 2.1, it will suffice to
establish the existence of a recurrent regime for the frog model on any infinite rooted
tree T of bounded degree where all vertices have degree at least three, and to which we
assign uniformly bounded positive integer resistances to each of the edges of T .

Denoting the collection of rooted trees with weighted edges described in the previous
paragraph as Tw, we now proceed to define what we referred to as the truncated frog
model in the introduction, on the set of all T ∈ Tw. The dynamics of this model (as laid
out in [10]) are similar to the “self-similar frog model” of Hoffman-Johnson-Junge [6, 7]
and are as follows:

1. Like the first model, this model begins with a single active particle at the root, and
i.i.d. Poiss(λo) sleeping particles at all non-root vertices.

2. A sleeping particle is activated when the vertex at which it resides is landed on
by an active particle. Upon activation, particles perform independent loop-erased
random walks, which terminate upon hitting the root. Note that by “loop-erased”
we mean that the particle never backtracks, and the law of the path that it follows
is the same as that of the path generated by a simple random walk after eliminating
all loops.

3. In addition, any time an active particle takes a step away from the root and lands
on a vertex which has already been landed on by at least one other active particle,
the particle is eliminated. If more than one particle simultaneously land on a vertex
which had not previously been landed on by an active particle, all but one of these
particles are eliminated.

Lemma 2.2. The number of visits to the root in the frog model stochastically dominates
the number of visits in the truncated frog model.

This is proven in full detail in [10], but we provide a short sketch here for completion.

Proof. If we replace each trajectory with its loop-erased version, this only decreases the
set of particles that are activated. Similarly, removing particles can only decrease the
set of activated particles, thereby decreasing the set of particles that hit the root.

2.2 Loop erased random walk

In this section we will let {Xj} represent loop erased random walk on T , while
denoting the probability measure on non-backtracking paths associated with loop-erased
random walk beginning at a vertex v as Pv, and letting p(v, v′), for distinct vertices v
and v′, represent the probability that random walk beginning at v (and with transition
probabilities in accordance with the assigned edge resistances) ever hits v′. For an
introduction to random walks with resistances, see [9].

Lemma 2.3. If T is a weighted tree that has minimum degree δ ≥ 3, maximum degree
∆, and all edge resistances in [1, r], then for a loop-erased random walk {Xn} on T , we
have

1

2∆r
≤ Pv(X1 = vi) ≤

r

r + δ − 2
(2.1)

and P(Xn+1 = vi′ |Xn = v,Xn−1 = vi) ≥
1

2∆r2
(2.2)
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Proof. First note that

Pv(X1 = vi) =
r−1
i

(
1− p(vi, v)

)∑N
j=1 r

−1
j

(
1− p(vj , v)

) (2.3)

where v1, . . . , vN represent the neighbors of the vertex v and rj represents the resistance
of the edge connecting v to vj . In addition, for any n ≥ 1 and distinct integers i, i′

between 1 and N , we have that

P(Xn+1 = vi′ |Xn = v,Xn−1 = vi) = Pvi(X2 = vi′ |X1 = v)

=
r−1
i′

(
1− p(vi′ , v)

)(
1− p(v, vi)

)(
r−1
i +

∑
j 6=i
r−1
j

(
1− p(vj , v)

)) (2.4)

where the absence of a subscript in the expression on the left reflects the fact that
the equality holds regardless of the location of X0. We will work to obtain bounds on
the expressions in (2.3) and (2.4) with respect to δ, ∆, and r. To start, for any pair of
neighboring vertices v, v′ in T , we let Tv,v′ represent the connected component of v that
we get by removing all of the neighbors of v except for v′. Then note that the expression
for Pv(X1 = vi) given in (2.3) can be written as

Pv(X1 = vi) =

R−1
(
v ←→
Tv,vi

∞
)

∑
j≤N

R−1
(
v ←→
Tv,vj

∞
)

where R
(
v ←→

T ′
∞
)

denotes the effective resistance between v and∞ in the tree T ′.

To achieve a lower bound for R
(
v ←→
Tv,vj

∞
)

(subject to the constraints that all vertices

in the original tree T have degree between δ and ∆ and all edge resistances are between
1 and r), we take all edge resistances equal to 1 and assume all vertices in T have degree
∆, which gives us an effective resistance equal to ∆−1

∆−2 . Likewise, for an upper bound

on R
(
v ←→
Tv,vj

∞
)

, we take all edge resistances equal to r and assume all vertices in T

have degree δ, which gives us an effective resistance equal to r(δ−1)
δ−2 . Combining these

bounds, we obtain the following upper and lower bounds on the expression from (2.3):

1

2∆r
≤ 1

1 + r(δ−1)(∆−2)
δ−2

≤ Pv(X1 = vi) ≤
1

1 + (δ−2)(∆−1)
r(∆−2)

≤ r

r + δ − 2

where the lower bound follows from plugging in the maximum possible value for R
(
v ←→
Tv,vj

∞
)

for j = i and the minimum possible for j 6= i, while setting N = ∆, and the upper

bound follows from plugging in the minimum possible value of R−1
(
v ←→
Tv,vj

∞
)

for j = i

and the maximum possible for j 6= i, while setting N = δ. Similarly, using (2.4), along

with the bound R
(
v ←→

T
∞
)
≥ ∆−1

∆(∆−2) (in addition to the lower and upper bounds on

R
(
v ←→
Tv,vj

∞
)

derived above), we obtain a lower bound on P(Xn+1 = vi′ |Xn = v,Xn−1 =
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vi) via the following string of inequalities:

P(Xn+1 = vi′ |Xn = v,Xn−1 = vi) =

1
/

R
(
v ←→
Tv,v

i′
∞
)

ri

(
r−1
i +

∑
j 6=i
r−1
j

(
1− p(vj , v)

))/
R
(
v ←→
Tvi,v

∞
)

≥
R
(
v ←→
Tvi,v

∞
)

rR
(
v ←→
Tv,v

i′
∞
)(

1 + R−1
(
v ←→

T
∞
))

≥
∆−1
∆−2

r2 δ−1
δ−2

(
1 + ∆(∆−2)

∆−1

)
≥ 1

2∆r2
.

2.3 Proof of recurrence

Let T be a tree in Tw (as defined in Section 2.1) with maximum degree ∆ and
maximum edge resistance r. Denoting the vertex set of T as V, we now define the
probability space

Ω :=

(
N×

(
V(N\{0})×N

)
×
(

[0, 1](N\{0})×N
))V

with probability measure TFM(λ0) under which all coordinates are independent, and
where for each v ∈ V the three independent components are distributed in the following
way: The first component is a random variable with distribution Poiss(λo) represent-
ing the number of frogs originating at v (unless v is the root, in which case the first
component is just the constant 1). The second component represents the loop-erased
random walks that will be performed by the particles originating at v if they are activated
(note that as a formal matter, these walks persist past the time at which they potentially
terminate, and in fact each vertex is endowed with an infinite sequence of walks, rather
than just those that correspond to the actual particles originating at that vertex). Finally,
the third component is a collection of sequences of i.i.d. uniform [0, 1] random variables
designed to break ties, in the sense that if the jth particle originating at v jumps on its
ith step onto a previously unvisited vertex at the same time as some other particle(s),
then this particle terminates unless the value of the random variable associated with its
ith step is greater than those of these other particles.

Having now defined the probability space associated with the truncated frog model
on T , we begin with a basic lemma:

Lemma 2.4. Let v ∈ T be a vertex of distance at least 2 from the root and set λo = 2∆rλ.
Then

TFM(λo)(v is activated |←−v is activated) ≥ 1− e−λ .

Proof. Set p to be the probability that a loop-erased random walk starting at ←−v goes
to v. Then by Poisson thinning, the number of particles originating at ←−v that go to
v, conditioned on ←−v being activated, is Poiss(pλo). Alongside the bound from (2.1),
this implies that conditioned on ←−v being activated, the number of particles that hit v
stochastically dominates Poiss(λ), thus completing the proof.
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Now for each non-root vertex v of T , let TFM(λo)
v represent the measure associated

with the truncated model on T , conditioned on the vertex v eventually being landed on
by the particle starting at the root (note that when we restrict our focus to the behavior
of the truncated model inside T (v), we can without loss of generality define TFM(λo)

v

by conditioning on the weaker assumption that v is merely landed on by any particle).
Lemma 2.4 immediately implies that for every u ∈ T (v), we have

TFM(λo)
v (u is activated |←−u is activated) ≥ 1− e−λ. (2.5)

Ultimately, the inequality in (2.5) will be used as the base case for an induction argument.

Much of the remainder of the proof of Theorem 2.1 consists of establishing the
following proposition:

Proposition 2.5. Let T = T (δ,∆, r) denote the set of all weighted trees for which all
vertices have degree between δ ≥ 3 and ∆ and all resistances are between 1 and r. Then
for λ sufficiently large (and λo = 2∆rλ) and each i ≥ 2, the inequality

TFM(λo)
v (u is activated |←−u is activated) ≥ 1− e−iλ/2

for all trees T ∈ T , vertices v ∈ T \ {0}, and u ∈ T (v), in fact implies

TFM(λo)
v (u is activated |←−u is activated) ≥ 1− e−(i+1)λ/2

for all T ∈ T , v ∈ T \ {0}, and u ∈ T (v).

Proof. The law of the loop erased random walk beginning at the root on a tree T is called
the harmonic measure, which we will denote by HARMT . Now we take any α > λ (with λ
to be chosen later and λo again equal to 2∆rλ), and we assume that

TFM(λo)
v (u is activated |←−u is activated) ≥ 1− e−α (2.6)

for all T ∈ T , v ∈ T \ {0}, and u ∈ T (v). Subject to this assumption, we now proceed to
prove a series of three claims.

Claim 1: Let E(λo)
v represent expectation with respect to TFM(λo)

v , and let Tn(v) repre-
sent the vertices on level n of the tree T (v). Then

E(λo)
v

[ ∑
v′∈Tn(v)

v′ is activated

HARMT (v)(v
′)

]
≥ (1− e−α)n . (2.7)

Proof of Claim 1: Let v′ ∈ Tn(v) and v = u0, u1, . . . , un = v′ denote the path from v to v′.
Iterating assumption (2.6) implies

TFM(λo)
v (v′ is activated) =

n∏
i=1

TFM(λo)
v (ui is activated | ←−ui is activated) ≥ (1− e−α)n .

(2.8)
Utilizing

∑
v′∈Tn(v) HARMT (v)(v

′) = 1 and taking expectation completes the proof of the
claim. �

Now if we let α→∞ and n is chosen so it is o(eα), (2.7) shows that a large proportion
of vertices in Tn(v)–when weighted by the harmonic measure–are typically activated.
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For the proof of the proposition, we want to show that at least a constant proportion are
activated with high probability. This takes the form of the following claim:

Claim 2: Set β := 1− 2r
2r+δ−2 = δ−2

2r+δ−2 ; for n ≥ 0, if we condition on the non-root vertex
v of T being activated, then with probability at least

1− e−α
(

4n2e−α +
2ne−α

β
+

1

β

)
,

there exists a vertex v∗ ∈ T1(v) so that

∑
v′∈Tn(v∗)
v′ is activated

HARMT (v∗)(v
′) ≥ 1

2
. (2.9)

Proof of Claim 2: By the upper bound in (2.1), we see that HARMT (v)(v
′) ≤ 1 − β for

every vertex v′ ∈ T1(v) (observe that we’ve replaced r by 2r in this upper bound in order
to account for the fact that the vertex v may only have degree δ − 1 in T (v)). Hence, it
follows that if only one vertex in T1(v) is activated, then the sum in (2.7), for the case
where n = 1, is no greater than 1 − β. Combining this with the lower bound on the
expectation given in (2.7) (again for n = 1), we can then conclude that

TFM(λo)
v

(
#{activated vertices in T1(v)} ≤ 1

)
≤ TFM(λo)

v

( ∑
v′∈T1(v)

v′ is activated

HARMT (v)(v
′) ≤ 1− β

)

≤ e−α

β
. (2.10)

Next let vo represent the vertex in T1(v) that is hit by the particle which activated v, and
let A represent the event that at least two vertices in T1(v) are activated. If we now take
any positive integer n for which log n < α, then using (2.7) and (2.10), we get

TFM(λo)
v

( ∑
v′∈Tn(vo)
v′ is activated

HARMT (vo)(v
′) ≥ 1

2

∣∣∣∣A) ≥ 1− TFM(λo)
v (Ac)

−
∑

vi∈T1(v)

TFM(λo)
v (vo = vi) · TFM(λo)

vi

( ∑
v′∈Tn(vi)
v′ is activated

HARMT (vi)(v
′) <

1

2

)

≥ 1− e−α

β
− 2ne−α (2.11)

where the last term in the expression on the third line follows from (2.7), along with the
fact that (1− e−α)n ≥ 1− ne−α. Letting v′′ represent the left most vertex in T1(v) \ {vo}
that is hit by either a particle originating at v, or a particle originating in T (vo), and
denoting the events

∑
v′∈Tn(vo)
v′ is activated

HARMT (vo)(v
′) ≥ 1

2

 and


∑

v′∈Tn(v′′)
v′ is activated

HARMT (v′′)(v
′) ≥ 1

2


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as B and C respectively (note that C ⊆ A), we observe that

TFM(λo)
v (Bc ∩ Cc|A) = TFM(λo)

v (Bc|A) · TFM(λo)
v (Cc|A ∩Bc) (2.12)

= TFM(λo)
v (Bc|A) ·

∑
vj∈T1(v)

TFM(λo)
v (v′′ = vj |A ∩Bc)

× TFM(λo)
v

( ∑
v′∈Tn(v′′)
v′ is activated

HARMT (v′′)(v
′) <

1

2

∣∣∣∣∣v′′ = vj

)
.

Using the bound in (2.11) in conjunction with the equality in (2.12), we can now conclude
that

TFM(λo)
v (Bc ∩ Cc|A) ≤ 2ne−α

(e−α
β

+ 2ne−α
)

where the second term in the product bounds TFM(λo)
v (Bc|A), and the first term serves

as a bound, that follows from (2.7), on the sum in (2.12). Alongside the upper bound on
TFM(λo)

v (Ac) given in (2.10), this then implies that

TFM(λo)
v (B ∪ C) ≥ TFM(λo)

v ({B ∪ C} ∩A) ≥ 1− e−α
(

4n2e−α +
2ne−α

β
+

1

β

)
, (2.13)

thus completing the proof of the second claim. �

Claim 2 is actually stronger than it may initially appear; in fact, (2.9) implies

n∑
j=0

∑
v′∈Tj(v∗)

v′ is activated

HARMT (v∗)(v
′) ≥ n+ 1

2
(2.14)

since the value of the inner sum above is decreasing with respect to j.
We now want to look at the number of particles from inside T (v) that return to←−v .

Claim 3: Let Vv represent the number of active particles originating inside T (v) that
eventually hit←−v and let S denote the event (2.14). Then there exists C ′ > 0 such that(

Vv|S
)
� Poiss

(
C ′λo

n+ 1

2

)
. (2.15)

Proof of Claim 3: For a vertex v′ ∈ Tj(v∗) for j ≤ n, let pv(v′) denote the probability
that a loop-erased random walk beginning at v′ hits←−v . Then again by Poisson thinning,
conditioned on v′ being activated, the number of particles originating at v′ that hit
←−v is Poiss(pv(v

′)λo). Call this random variable Nv,v′ ; since no particles in T (v∗) that
reach ←−v activate any other particles along the way, we in fact have that conditioned
on some subset S ⊂ T (v∗) being activated, the family of random variables {Nv,v′}v′∈S
are mutually independent. Further, pv(v′) and HARMT (v∗)(v

′) differ by only a bounded
multiplicative constant (this follows from applying Lemma A.1 if we formally designate
←−v as the new root of T ), i.e. there exists a constant C ′ > 0 so that for all v′ ∈ T (v∗) we
have pv(v′) ≥ C ′ · HARMT (v∗)(v

′). Combining this with the fact that we’re conditioning
on (2.14), we then see that∑

v′∈S
pv(v

′) ≥ C ′
∑
v′∈S

HARMT (v∗)(v
′) ≥ C ′ · n+ 1

2
.

Since, as noted, the random variables {Nv,v′}v′∈S are independent whenever we condi-
tion on the set of activated vertices in T (v∗) being a fixed set S, and because the sum of
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independent Poisson random variables is itself a Poisson random variable, we can then
conclude that, conditioning on such a set S, we have(

Vv|S
)
≈
∑
v′∈S

Nv,v′ ≈
∑
v′∈S

Poiss(pv(v
′)λo) ≈ Poiss

( ∑
v′∈S

pv(v
′)λo

)
� Poiss

(
C ′λo

n+ 1

2

)
(where ≈ denotes equality of distributions). Summing over all sets S that satisfy (2.14)
then completes the proof of the claim. �

In order to use (2.15) to complete the proposition, we start by letting u ∈ T (v) with
u 6= v. Recall by (2.5), if←−u is activated, then the probability that u is hit by either the
particle that activated←−u , or one of the particles originating at←−u , is at least 1− e−λ. If
none of these particles hit u, then the particle that activated←−u must travel to one of the
siblings u′ of u since the particles never backtrack. We then find that

TFM(λo)
v (u activated |←−u activated)

≥ 1− e−λ + e−λTFM(λo)
v (u hit by particle from T (u′) |u′ activated). (2.16)

Since Claims 2 and 3 together imply that, if u′ is activated, then with probability at

least 1− e−α
(

4n2e−α + 2ne−α

β + 1
β

)
, the number of particles originating in T (u′) that hit

←−u stochastically dominates Poiss
(
C ′λo

n+1
2

)
, and because (2.2) implies that a particle

that travels from u′ to←−u , then hits u with probability at least 1
2∆r2 > 0, this means that

there exists C ′′ > 0 such that, with probability at least 1− e−α
(

4n2e−α + 2ne−α

β + 1
β

)
, the

number of particles originating in T (u′) that hit u (conditioned on u′ being activated)

stochastically dominates Poiss
(
C ′′λo

n+1
2

)
. Hence, this implies that (2.16) becomes

TFM(λo)
v (u activated |←−u activated)

≥ 1− e−λ
(
e−α

(
4n2e−α +

2ne−α

β
+

1

β

)
+ e−C

′′λo
n+1
2

)
. (2.17)

Selecting n = beα/4c, (2.17) then gives us

TFM(λo)
v (u activated |←−u activated) ≥ 1− e−λ

(
4e−

3α
2 +

2e−
7α
4

β
+
e−α

β
+ e−

C′′λo
2 eα/4

)
≥ 1− e−(α+λ

2 ) (2.18)

where the second inequality holds for all α ≥ λ, for λ sufficiently large. Therefore, this
completes the proof of the proposition.

Proof of Theorem 2.1: Combining Proposition 2.5 with (2.5), we now see that, for λo
sufficiently large (recall λo = 2∆rλ),

TFM(λo)
v (u activated |←−u activated) = 1

for every u ∈ T (v). Hence, if we let v represent the first vertex hit by the particle origi-
nating at the root, then the entire subtree rooted at v is activated with probability 1, or
equivalently, the inequality in (2.14) holds for every n with probability 1. Combining this
with (2.15), we then see that the number of returns to the root almost surely dominates
a Poisson random variable of arbitrarily large mean, thus establishing recurrence and
completing the proof.
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3 Transience

In this section we establish a transient regime for a wide class of frog models on
non-amenable graphs. This completes the second half of the proof of Theorem 1.1, and
in the process proves a lower bound on λ1(T ).

3.1 Transience and the edge expansion constant

Central to our analysis in this section will be the notion of edge non-amenability. We
review some definitions first:

Definition 3.1 (Isoperimetric language from Chapter 6 of [9]). Let G be a connected,
locally finite graph.

• For a finite subset K ⊂ G, define |∂K| to be the number of edges with precisely
one vertex in K and one in Kc.

• Define |K|D =
∑
v∈K deg(v).

• Define the edge-expansion constant to be

ΦE(G) := inf

{
|∂K|
|K|D

: ∅ 6= K ⊂ G is finite and connected

}
.

• G is edge amenable if ΦE(G) = 0. Otherwise, G is edge non-amenable.

Non-amenability will be enough to establish a transient regime of the frog model:

Theorem 3.2. Let G be a connected, locally finite, and edge non-amenable graph. Fix a
vertex 0 in G and at each vertex v ∈ G \ {0}, place Xv ≥ 0 sleeping frogs where {Xv}
are jointly independent, and place a single awake frog at 0. Then there exists λ0 > 0

so that if E[Xv] ≤ λ0 for all v, then only finitely many frogs visit the root almost surely.

Further, λ0 = ΦE(G)2

2−ΦE(G)2 is sufficient.

Our strategy for proving Theorem 3.2 will involve coupling the frog model with a
branching random walk. The isoperimetric property of edge non-amenable graphs comes
into play due to the following relationship with simple random walk:

Lemma 3.3 (Theorem 6.7 of [9]). Let G be a locally finite connected graph and fix
some vertex 0 ∈ G. Let {Yn} denote a simple random walk on G starting at 0, and set
ρ(G) = lim supn→∞P[Y2n = 0]1/2n. Then

ΦE(G)2/2 ≤ 1− ρ(G) ≤ ΦE(G) .

The quantity ρ(G) is known as the spectral radius of G, and is in fact independent of
the choice of 0. An important consequence of Lemma 3.3 is that edge non-amenability
is equivalent to ρ(G) < 1. From here, a proof of Theorem 3.2 follows from comparison
to a branching random walk. Heuristically, the average number of frogs at time 2n will
be at most (1 + λ)2n and the probability of being at the origin will be roughly ρ2n. If λ
is small enough, then the average number of particles at the root at time 2n will decay
exponentially, and thus be summable.

Proof of Theorem 3.2: We will compare the frog model to a branching random walk.
Begin with a single particle at 0, which will perform a simple random walk. When a
particle lands on a vertex v, independently sample a copy of Xv, and add Xv many
particles at v, which in turn perform simple random walks. The number of particles that
return to 0 in this model stochastically dominates the number of frogs that return to 0 in
the frog model, and thus it is sufficient to show that only finitely many particles visit the
root in our new branching model. This is a branching Markov chain, where the mean at
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each vertex is 1 + E[Xv] ≤ 1 + λ0. By Theorem 3.2 of [3], there are only finitely many
visits to the root, provided 1 + λ0 ≤ 1

ρ(G) . Lower bounding

1

ρ(G)
=

1

1− (1− ρ(G))
≥ 1

1− Φ(G)2/2

by Lemma 3.3 completes the proof.

For our main application of Theorem 3.2, we will apply it to the class of trees T ∗∗f :
defined as ∪

L≥1
T ∗L , where T ∗L represents the set of all trees satisfying the two conditions

in Lemma 1.2 each with M = L, and with no degree restriction. To do this, we start by
showing that the edge-expansion constant can be uniformly bounded below for trees in
T ∗L .

Lemma 3.4. For each T ∈ T ∗L , ΦE(T ) ≥ 1
9L2 .

Proof. Let K be a finite connected subset of T . Suppose that K contains elements
v1, . . . , vk of Tr so that each vj has degree at least 3 in Tr. We will prove the lemma
by inducting on k, first starting with the case of k = 0. For each v ∈ T , the connected
component of v in (T \ Tr) ∪ {v} is a tree with at most L vertices, i.e. at most L − 1

edges. Therefore, the sum of degrees in this tree is at most 2(L− 1). In the case where
K ∩ Tr = ∅, we have |K|D ≤ 2(L− 1); otherwise,

|K|D ≤
∑

v∈K∩Tr

(2 + 2(L− 1)) ≤ 2L2 .

Noting |∂K| ≥ 1 shows the lemma in this case.
We will also need to address the k = 1 case; we may decompose K into a single

vertex v ∈ Tr with degree at least 3 in Tr together with paths in Tr coming off of v, with
all of these vertices possibly decorated with finite trees. Note that |∂K| ≥ degTr (v). For
an upper bound on |K|D note first that the degree of v plus the sums of the degrees
of all the other vertices in the connected component of v in (T \ Tr) ∪ {v} is at most
2L+ degTr (v). Together with the degTr (v) many paths in K ∩ Tr, we have

|K|D ≤ 2L+ degTr (v) + degTr (v)
(
2L2

)
≤ (3L2) degTr (v)

where the first inequality follows from the k = 0 case.
Next, assume that the lemma holds if K contains at most k ≥ 1 elements in Tr with

degree at least 3 (in Tr); suppose K now contains k + 1 such elements. Label them
v1, . . . , vk+1 in such a way that each vi is connected to vj in K \ {vk+1} for i, j ≤ k. Set
K1 to be the connected component in K \ vk+1 that contains v1, . . . , vk. By the inductive
hypothesis, |∂K1|/|K1|D ≥ 1

9L2 . When adding the remaining portion of K, we decrease
the size of the boundary by 1 since we’ve added vk+1, but also add at least degTr (vk+1)−1

elements to the boundary, so

|∂K| ≥ |∂K1|+ degTr (vk+1)− 2 .

Similarly, the total addition to the degree can be bounded above via

|K|D ≤ |K1|D + 2L+ degTr (vk+1) + degTr (vk+1)(2L2)

≤ |K1|D + (3L2) degTr (vk+1) .

Utilizing the inequality x− 2 ≥ x/3 for x ≥ 3 completes the inductive step, and thus the
lemma.
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A transient regime for the frog model on trees in T ∗L follows immediately from
Theorem 3.2 and Lemma 3.4.

Corollary 3.5. For each T ∈ T ∗L , the frog model on T is transient provided the distribu-
tion of frogs has mean at most 1

162L4 .

4 Examples and open questions

We close by providing a couple of examples to show that the assumptions in Theorem
1.1 cannot be removed, and by posing some open questions.

4.1 Examples

In Theorem 1.1, the assumption of non-amenability cannot be removed: the graph Z
is a tree of bounded degree and since simple random walk is recurrent on Z, the frog
model will be as well for any non-trivial i.i.d. distribution of frogs. On the other hand, if
we drop the assumption that T is of bounded degree, then there need not be a recurrent
regime. We prove this Lemma in [10], but import the example here:

Lemma 4.1 ([10]). Let T be the rooted tree where all vertices at depth n have n + 2

children. Then the frog model with i.i.d. Poiss(λ) frogs per vertex is transient on T for all
λ.

Further, it need not be the case that λ1 and λ2 are equal in Theorem 1.1. Indeed, it
may be the case that there is a non-trivial region between the two on which infinitely
many frogs visit the root with probability strictly between 0 and 1. Again, we import the
example from [10]

Lemma 4.2 ([10]). Let T denote the rooted tree formed by joining each of the roots of
the 2-ary tree and d-ary tree to a single root by a pair of distinct edges. For d sufficiently
large, λ1(T ) < λ2(T ).

4.2 Further questions

There are many natural questions that emerge from Theorem 1.1; we highlight a
couple that seem out of reach using the methods of this work:

Question 4.3. In the case of trees, can the assumption of non-amenability be weakened?
More concretely, suppose T is a tree on which simple random walk a.s. has speed bounded
uniformly away from 0. Must there exist a transient regime for the frog model on all
such trees?

The assumption that T is a tree is central to our analysis here. It is therefore natural
to ask whether these results can be extended to other families of graphs.

Question 4.4. On what classes of graphs is non-amenability sufficient to establish a
recurrent regime?

A Harmonic measure and return probability

The following lemma closely resembles Lemma A.1 from our paper [10]. While large
segments of the two proofs are in fact identical, the results are nevertheless distinct,
with the result from [10] applying to trees of unbounded degree, and this result applying
to trees of bounded degree with weighted edges. In the statement of the lemma, Tw
represents the set of weighted trees defined in Section 2.1, and for any weighted tree
T and vertex u ∈ T , p0(u) is defined as the probability that loop erased random walk,
starting at u, ever reaches the root of T .
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Lemma A.1. If a tree T ∈ Tw has minimum degree δ ≥ 3, maximum degree ∆ <∞, and
edge resistances between 1 and r <∞, then there exists a value C > 0 (depending only
on ∆ and r) such that for every v on level 2 of T and every u ∈ T (v), we have

p0(u) ≥ C · HARMT (v)(u).

Proof. We begin by defining the following quantities: First, let p̃(v, u) represent the
probability that random walk on T (v) beginning at v (and performed in accordance
with the assigned edge weights) ever hits u. In addition, we define p̃(u,∞) to be the
probability that random walk on T (v) beginning at u eventually escapes through one
of the children of u. Turning to random walk on T , we let p(u, v) be defined as at the
beginning of Section 2.2, and we define p(v,−∞) to be the probability that random walk
beginning at v eventually escapes through one of the children of the root other than the
parent of v. Now noting that HARMT (v)(u) = p̃(v, u)·p̃(u,∞) and p0(u) = p(u, v)·p(v,−∞),

we see that we can prove the lemma by showing that p(u,v)
p̃(v,u) · p(v,−∞) is bounded away

from 0.
Looking first at p(u,v)

p̃(v,u) , we define p∗(u, v) and p̃∗(v, u) to be the probabilities that

random walk on T (v) beginning at u (v respectively) reaches v (u respectively) without
first returning to its starting position. Noting that

p(u, v)

p̃(v, u)
≥ p∗(u, v)

p̃∗(v, u)
· p̃
∗(v, u)

p̃(v, u)
, (A.1)

and observing that
p∗(u, v)

p̃∗(v, u)
=

∑
c(ẽi)∑
c(ej)

(A.2)

(where the ẽi’s represent the edges that touch v in T (v) and the ej ’s represent the edges
that touch u in T ), we see that since both T (v) and T have bounded degrees and edge
weights between 1

r and 1, it follows that, in order to show that p(u,v)
p̃(v,u) is bounded away

from 0, it will suffice to prove this for p̃∗(v,u)
p̃(v,u) . Now we let p represent the probability that

random walk on T (v) beginning at v ever returns to v, and let p′ represent the probability
that random walk on T (v) beginning at v returns to v without first hitting u. Observing

that p̃(v, u) = p̃∗(v,u)
1−p′ ≤

p̃∗(v,u)
1−p , we see that

p̃∗(v, u)

p̃(v, u)
≥ 1− p =

R−1
(
v ←→
T (v)

∞
)

∑
c(ẽi)

. (A.3)

Since T (v) has bounded degree, all vertices have at least two children, and all edge

weights are less than or equal to 1, this then implies that both R
(
v ←→
T (v)

∞
)

and
∑
c(ẽi)

are bounded above, thus implying that p̃∗(v,u)
p̃(v,u) (and therefore p(u,v)

p̃(v,u) ) is bounded away

from 0. Finally, to show that p(v,−∞) is bounded away from 0, and thus complete the
proof of the lemma, we observe that

p(v,−∞) = Pv(X1 =←−v ) ·P(X2 = 0|X1 =←−v ,X0 = v) ≥ 1

4∆2r3

(where the second inequality follows from combining the lower bounds in (2.1) and
(2.2)).
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