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Abstract

In this paper we obtain Berry–Esseén bounds on partial sums of functionals of heavy-
tailed moving averages, including the linear fractional stable noise, stable fractional
ARIMA processes and stable Ornstein–Uhlenbeck processes. Our rates are obtained
for the Wasserstein and Kolmogorov distances, and depend strongly on the interplay
between the memory of the process, which is controlled by a parameter α, and its
tail-index, which is controlled by a parameter β. In fact, we obtain the classical 1/

√
n

rate of convergence when the tails are not too heavy and the memory is not too strong,
more precisely, when αβ > 3 or αβ > 4 in the case of Wasserstein and Kolmogorov
distance, respectively.

Our quantitative bounds rely on a new second-order Poincaré inequality on the
Poisson space, which we derive through a combination of Stein’s method and Malliavin
calculus. This inequality improves and generalizes a result by Last, Peccati, Schulte
[Probab. Theory Relat. Fields 165 (2016)].
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1 Introduction

1.1 Overview

The main goal of this paper is to characterize the convergence rates associated with
asymptotic normality of a class of statistics of Lévy moving averages. For processes
with finite fourth moments, Theorem 8.2 in [17] obtains rates for a class of specific
examples. Its proof relies on second-order Poincaré inequalities on the Poisson space
[17, Theorem 1.1–1.2], which in turn are based on the celebrated Malliavin-Stein method.
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A Berry–Esseén theorem for heavy-tailed moving averages

The main novelty of our results and methodology is the study of convergence rates for
processes having heavy tails and strong memory, as e.g. the linear fractional stable
noise or fractional stable ARIMA processes. In fact, in our setting the upper bounds in
the second-order Poincaré inequalities obtained in [17] may converge to infinity after
the application of our standard estimate (4.4) to them. As a consequence, we develop
a new modified second-order Poincaré inequality on the Poisson space, which allows
us to efficiently bound Wasserstein and Kolmogorov distances associated with normal
approximation of a class of statistics of Lévy moving averages. The improved bounds are
important in their own right as they may prove to be useful in other contexts, where the
considered stochastic process exhibits heavy tails and strong memory.

1.2 Background

The Berry–Esseén theorem gives a quantitative bound for the convergence rate in
the classical central limit theorem. To be more precise, let (Xi)i∈N be a sequence of
independent and identically distributed (i.i.d.) random variables with mean zero, variance
one and finite third moment, and set Vn = n−1/2

∑n
i=1Xi and Z ∼ N (0, 1). Then, the

central limit theorem says that Vn
d−→ Z as n→∞, where

d−→ denotes convergence in
distribution. A natural next question is to ask for quantitative bounds between Vn and Z,
that is, how far is Vn from Z in a certain sense. An answer to this question is provided
by the Berry–Esseén theorem, which states that

dK(Vn, Z) := sup
x∈R

∣∣P(Vn ≤ x)− P(Z ≤ x)
∣∣ ≤ Cn−1/2, (1.1)

where dK denotes the Kolmogorov metric between two random variables and where C
is a constant depending on the third moment of the underlying random variables. The
Berry–Esseén bound (1.1) is optimal in the sense that there exist random variables as
above such that dK(Vn, Z) is bounded from below by a constant times n−1/2, see e.g. [11,
(5.26.2)].

The situation when the summands (Xi)i∈N are dependent is much more complicated,
compared to the classical i.i.d. setting. One of the most important models in this situation
is the fractional Gaussian noise, which we will describe in the following. For H ∈ (0, 1),
the fractional Brownian motion is the unique centered Gaussian process (Yt)t∈R with
covariance function

cov(Yt, Yu) =
1

2

(
|t|2H + |u|2H − |t− u|2H

)
, for all t, u ∈ R.

The fractional Gaussian noise (Xn)n∈Z is the corresponding increment process Xn =

Yn − Yn−1. Let

Vn =
1√
n

n∑
j=1

(
X2
j − 1

)
and vn =

√
var(Vn).

For H < 3/4, we have that v−1n Vn
d−→ Z as n→∞. The first Berry–Esseén bound for the

fractional Gaussian noise was obtained in Theorem 4.1 of [23] and reads as

dK

(
v−1n Vn, Z

)
≤ C

{
n−1/2 if H ∈ (0, 1/2],

n2H−3/2 if H ∈ (1/2, 3/4).
(1.2)

In (1.2) we observe the phenomenon that for strong memory in X (i.e. H ∈ (1/2, 3/4)),
we get a slower rate of convergence. Furthermore, when H > 3/4, the memory in X is
so strong that Vn after proper normalization converge to the Rosenblatt random variable
in distribution, and hence has a non-Gaussian fluctuation, see e.g. Theorem 7.4.1 of [24].
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1.3 Heavy-tailed moving averages

Let us now describe our results in more detail. We consider a two-sided Lévy process
L = (Lt)t∈R with no Gaussian component, L0 = 0 a.s. and Lévy measure ν, that is, for all
θ ∈ R, the characteristic function of L1 is given by

E[eiθL1 ] = exp
(∫

R

(
eiθx − 1− iθxχ(x)

)
ν(dx) + ibθ

)
, (1.3)

where b ∈ R, and χ is a truncation function, i.e. a bounded measurable function such
that χ(x) = 1 + o(|x|) as x→ 0 and χ(x) = O(|x|−1) as |x| → ∞. We assume that the Lévy
measure ν has a density κ satisfying

κ(x) ≤ C|x|−1−β for all x ∈ R \ {0}, (1.4)

for β ∈ (0, 2) and a constant C > 0. We consider a Lévy moving average of the form

Xt =

∫ t

−∞
g(t− s) dLs, t ∈ R, (1.5)

where g : R → R is a measurable function such that the integral exists, see [35] for
sufficient conditions. Lévy moving averages are stationary infinitely divisible processes,
and are often used to model long-range dependence and heavy tails. When the Lévy
process L is symmetric, i.e. when −L1 equals L1 in distribution, a sufficient condition
for X to be well-defined is that

∫
R
|g(s)|β ds <∞, due to assumption (1.4). Throughout

the paper we will assume that the kernel function g satisfies

|g(x)| ≤ K
(
xγ1{0<x<1} + x−α1{x≥1}

)
, for all x > 0, (1.6)

for some finite constants K > 0, α > 0 and γ ∈ R. We refer to Subsections 1.4.1–1.4.4
for four important examples in this setting. The statistics of interest are the partial sum
functionals Vn given by

Vn =
1√
n

n∑
t=1

(
f(Xt)− E[f(X1)]

)
, (1.7)

based on a measurable function f : R→ R with E[|f(X1)|] <∞. Typical examples, which
are important in statistics, are the empirical characteristic functions (f : x 7→ eiθx, where
θ ∈ R), the empirical distribution functions (f : x 7→ 1(−∞,t](x), where t ∈ R), and power
variations (f : x 7→ |x|p, where p > 0). For example, in a recent paper [22] the empirical
characteristic function has been successfully employed to estimate the parameters of a
linear fractional stable motion observed at high or low frequency.

The major breakthrough on establishing central limit theorems for Vn was achieved
in the paper Hsing [12, Theorem 1], and was extended in [32, 33, 22, 2, 1], whereas
non-central limit theorems for Vn are established in [1, 2, 41, 42]. From these results, it
follows that if (Xt) is given by (1.5) with L being a β-stable Lévy process and the kernel
function g satisfying (1.6) with γ ≥ 0 and αβ > 2 we have that

Vn
d−→ Z ∼ N (0, v2) with v2 =

∑
j∈Z

cov (f(X0), f(Xj)) ∈ [0,∞), (1.8)

for all bounded and measurable f : R → R, cf. [32, Theorem 2.1]. For αβ < 2, Vn has
a non-Gaussian fluctuation and a different scaling rate, see e.g. [2, Theorem 1.2], and
hence we will only consider the case αβ > 2.
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1.4 Main results

To present our main result let C2
b (R) denote the space of twice continuously differen-

tiable functions such that f , f ′ and f ′′ are bounded. Our result reads as follows:

Theorem 1.1. Let (Xt)t∈R be a Lévy moving average given by (1.5), satisfying (1.4)
for some 0 < β < 2, and (1.6) with αβ > 2 and γ > −1/β. Let Vn be the corresponding
partial sums of functionals, given by (1.7), based on f ∈ C2

b (R). Also, let Z ∼ N (0, 1)

be a standard Gaussian random variable, and set vn =
√

var(Vn) for all n ∈ N. Then,
vn → v, where v ≥ 0 is given by

v2 =
∑
j∈Z

cov (f(X0), f(Xj)) (1.9)

and the series (1.9) converges absolutely. Suppose that v > 0. Then, v−1n Vn
d−→ N (0, 1)

as n→∞. Moreover, for each n ∈ N,

dW
(
v−1n Vn, Z

)
≤ C


n−1/2 if αβ > 3,

n−1/2 log(n) if αβ = 3,

n(2−αβ)/2 if 2 < αβ < 3,

(1.10)

and

dK
(
v−1n Vn, Z

)
≤ C


n−1/2 if αβ > 4,

n−1/2 log(n) if αβ = 4,

n(2−αβ)/4 2 < αβ < 4,

(1.11)

where C > 0 is a constant that does not depend on n and dW denotes the Wasserstein
distance.

Remark 1.2. In the following we will make a few remarks on Theorem 1.1.

1. The bounds on the Wasserstein and Kolmogorov distances to the normal distri-
bution, depend on the interplay between memory of X, which is controlled by α,
and the tail-index of X, which is controlled by β. In fact, we obtain the classical
1/
√
n rate of convergence when the tails are not too heavy and the memory is not

too strong, more precisely, when αβ > 3 or αβ > 4 in the case of Wasserstein and
Kolmogorov distance, respectively. We conjecture that our bounds are optimal
in this case. We note also that all rates in Theorem 1.1 converge to zero. For
2 < αβ < 3, the bound on the Kolmogorov distance (1.11) follows from the bound
(1.10) on the Wasserstein distance via the inequality

dK(v−1n Vn, Z) ≤ 2

√
dW (v−1n Vn, Z) (1.12)

(cf. [24, (C.2.6)]), whereas the case αβ ≥ 3 requires a separate treatment.

2. Our main objective is to obtain the quantitative bounds (1.10) and (1.11). However,

we obtain the limit theorem Vn
d−→ N (0, v2) as a by-product, which is new whenever

L is not stable.

3. Our proof of Theorem 1.1 relies on new second-order Poincaré inequalities, which
provide general bounds between Poisson functionals and Gaussian random vari-
ables in the Wasserstein and Kolmogorov distances, see Section 3. We believe
that these inequalities, which are improvements of those obtained in [17], are of
independent interest. Our new bounds are, in particular, important in the regime
of strong heavy tails combined with strong memory, i.e. αβ ∈ (2, 3). In this setting,
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and applying the estimate (4.4) on DzVn (which we will used throughout the paper),
the upper bound from [17, Theorems 1.1 and 1.2] diverges to infinity, and hence
gives no information, whereas our new bounds converge to zero.

4. Our proof of Theorem 1.1 relies heavily on the smoothness of f ∈ C2
b (R) through the

estimates (4.4)–(4.5). However, since the CLT (1.8) holds whenever f is bounded
and measurable, it would be interesting to obtain quantitative bounds for less
regular f . Moreover, within the framework of Gaussian processes, there has been
recent advances in multivariate quantitative bounds and functional central limit
theorems, see [25, 3], and it would be of interest to obtain such extensions for
Poisson functionals also. In particular, we note that the CLT (1.8) holds in a multi-
variate setting, cf. [32, Theorem 2.1], but presently no multivariate quantitative
bounds exists.

In the following we will apply Theorem 1.1 to the four important examples: linear
fractional stable noises, fractional Lévy noises, stable fractional ARIMA processes, and
stable Ornstein–Uhlenbeck processes. Throughout we will fix the notation used in
Theorem 1.1, that is, Vn is given in (1.7) with f ∈ C2

b (R), vn =
√

var(Vn), v2 given in (1.9)
satisfies v2 > 0, and Z ∼ N (0, 1) is a standard Gaussian random variable.

1.4.1 Linear fractional stable noises

Our first example concerns the linear fractional stable noise. To define this process we
let L be a β-stable Lévy process with β ∈ (0, 2), and

Xt = Yt − Yt−1 where Yt =

∫ t

−∞

{
(t− s)H−1/β+ − (−s)H−1/β+

}
dLs, (1.13)

where H ∈ (0, 1). For β = 1 we assume furthermore that L is symmetric, that is, L1

equals −L1 in distribution. The linear fractional stable motion (Yt)t∈R has stationary
increments and is self-similar with indexH, and can be viewed as a heavy-tailed extension
of the fractional Brownian motion, see [39] for more details. In this setting we deduce
that α = 1−H + 1/β and the condition αβ > 2 translates to β ∈ (1, 2), 0 < H < 1− 1/β.
Since β > 1 we never have αβ ≥ 3.

Corollary 1.3. Let (Xt)t∈R be the linear fractional stable noise defined as in (1.13). For
β ∈ (1, 2) and 0 < H < 1− 1/β we have that

dW (v−1n Vn, Z) ≤ Cn(1+β(H−1))/2 and dK(v−1n Vn, Z) ≤ Cn(1+β(H−1))/4,

where C > 0 is a constant not depending on n.

1.4.2 Linear fractional Lévy noise

In the following we will consider the case of a linear fractional Lévy noise, which has
higher moments compared to the linear fractional stable noise. Let L be a mean zero Lévy
process with a Lévy density κ satisfying κ(x) ≤ |x|−1−ζ for all x ∈ [−1, 1], where ζ ∈ [0, 2),
and κ(x) ≤ |x|−3 for all x ∈ R with |x| > 1. The assumptions on L are e.g. satisfied for
tempered stable Lévy processes (with uniform tilting), cf. [36], and the assumptions
ensure that L has finite r-moments for all r ∈ (0, 2), and that the Blumenthal–Getoor
index

βBG := inf
{
p ∈ [0, 2] :

∫
{|x|≤1}

|x|p ν(dx) <∞
}
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satisfies βBG ≤ ζ. Let (Xt) be given by

Xt = Yt − Yt−1, where Yt =

∫ t

−∞

{
(t− s)−ρ+ − (−s)−ρ+

}
dLs, (1.14)

where ρ ∈ (0, 1/ζ). We use the convention 1/0 := ∞. The above assumptions ensures
that both X and Y are well-defined stochastic processes. See [34, Section 2.6.8] or [21]
for more details. The assumptions of Theorem 1.1 are satisfied for α = ρ + 1 and all
β ∈ [ζ, 2), and hence we obtain the following corollary:

Corollary 1.4. Let (Xt) be the linear fractional Lévy noise defined in (1.14) with ζ ∈ [0, 2)

and ρ ∈ (0, 1/ζ). For all ε > 0 we have that

dW (v−1n Vn, Z) ≤ C

{
n−1/2 if ρ > 1

2 ,

n−ρ+ε if ρ ≤ 1
2 ,

and

dK(v−1n Vn, Z) ≤ C

{
n−1/2 if ρ > 1,

n−ρ/2+ε if ρ ≤ 1.

1.4.3 Stable fractional ARIMA processes

In the following we will consider the stable fractional ARIMA process. To this end, we
let p, q ∈ N, and Φp and Θq be polynomials with real coefficients on the form

Φp(z) = 1− φ1z − · · · − φpzp, and Θq(z) = 1 + θ1z + · · ·+ θqz
q,

where we assume that Φp and Θq do not have common roots, and that Φp has no roots
in the closed unit disk {z ∈ C : |z| ≤ 1}. The stable fractional ARIMA(p, d, q) process
(Xn)n∈N is the solution to the equation

Φp(B)Xn = Θq(B)(1−B)−dεn (1.15)

where (εn)n∈N are independent and identically symmetric β-stable random variables
with β ∈ (0, 2), B denotes the backshift operator, and d ∈ R \Z. The equation should be
understood as in [13, Section 2]. For d < 1− 1/β, there exists a unique solution (Xn)n∈N
to (1.15), and it is a discrete moving average of the form

Xn =

n∑
j=−∞

bn−jεj

for a certain sequence (bj)j∈N with bj ∼ c0j
d−1 as j → ∞, where c0 denotes a positive

constant, cf. Theorem 2.1 of [13]. Notice that the process (Xn)n∈N can be written in
distribution as

Xn =

∫ n

−∞
g(n− s) dLs

with g(x) =
∑
j≥0 bj1[j,j+1)(x) and L being a symmetric β-stable Lévy process. Here

α = 1− d and by Theorem 1.1 we obtain the following result.

Corollary 1.5. Let (Xn)n∈N be the stable fractional ARIMA(p, d, q) process given by
(1.15), with β ∈ (0, 2) and d ∈ R \Z with d < 1− 2/β. Then,

dW
(
v−1n Vn, Z

)
≤ C


n−1/2 if d < 1− 3/β,

n−1/2 log(n) if d = 1− 3/β,

n1−(1−d)β/2 if d ∈ (1− 3/β, 1− 2/β),
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and

dK
(
v−1n Vn, Z

)
≤ C


n−1/2 if d < 1− 4/β,

n−1/2 log(n) if d = 1− 4/β,

n(1−(1−d)β/2)/2 if d ∈ (1− 4/β, 1− 2/β),

where C > 0 is a constant not depending on n.

1.4.4 Stable Ornstein–Uhlenbeck processes

In our last example we will consider a stable Ornstein–Uhlenbeck process (Xt)t∈R, given
by

Xt =

∫ t

−∞
e−λ(t−s) dLs, (1.16)

where L denotes a β-stable Lévy process with β ∈ (0, 2), and λ > 0 is a finite constant. In
this case α > 0 can be chosen arbitrarily large and we obtain the following result.

Corollary 1.6. Let (Xt)t∈R be a stable Ornstein–Uhlenbeck process given by (1.16).
Then

dW (v−1n Vn, Z) ≤ Cn−1/2 and dK(v−1n Vn, Z) ≤ Cn−1/2,

where C > 0 is a constant not depending on n.

1.5 Structure of the paper

The paper is structured as follows. Section 2 presents a related result and some
discussions. Basic notions of Malliavin calculus on Poisson spaces and the new bounds for
the Wasserstein and Kolmogorov distances are demonstrated in Section 3. In Section 4
we prove Theorem 1.1 based on the general bounds obtained in Section 3.

2 Related literature and discussion

Normal approximation of non-linear functionals of Poisson processes defined on
general state spaces has become a topic of increasing interest during the last years. In
particular, quantitative bounds for normal approximations were obtained by combining
Malliavin calculus on the Poisson space with Stein’s method. The resulting bounds have
successfully been applied in various contexts such as stochastic geometry (see, e.g.,
[8, 14, 15, 17, 20, 38]), the theory of U-statistics (see, e.g., [8, 9, 10, 38]), non-parametric
Bayesian survival analysis (see [28, 29]) or statistics of spherical point fields (see, e.g.,
[4, 5]). We refer the reader also to [26], which contains a representative collection of
survey articles.

The first quantitative bounds for asymptotically normal functionals of Lévy moving
averages have been derived in [17]. We briefly introduce their framework, but phrase
their results in an equivalent way through Lévy processes instead of Poisson random
measures. Let (Xt)t∈R denote a Lévy moving average of the form (1.5) where L is
centered. Assume that the Lévy measure ν satisfies the condition∫

R

|y|j ν(dy) <∞ for j ∈ {1, 2}, (2.1)

which implies that (Lt)t∈R is of locally bounded variation with a finite second moment.
Suppose that the kernel function g satisfies the condition∫

R

|g(x)|+ g(x)2 dx <∞. (2.2)
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The functional under consideration is defined by

FT =

∫
[0,T ]

f(Xt) dt, T > 0,

which can be interpreted as the continuous version of the statistic Vn. We now state
Theorem 8.2 of [17] in the case of p = 0.

Theorem 2.1. [17, Theorem 8.2] Suppose that conditions (2.1) and (2.2) hold. Assume
that

var(FT ) ≥ cT, T ≥ t0

with c, t0 > 0. Furthermore, suppose that f ∈ C2
b (R). Assume that

∫
R
|y|4 ν(dy) <∞ and

E[|X1|4] <∞. Finally, assume that∫
R

(∫
R

|g(y − x)g(y)| dy
)4

dx <∞.

Let Z be a standard Gaussian random variable. Then there exists a constant C > 0 such
that for all T ≥ t0,

d

(
FT − E[FT ]√

var(FT )
, Z

)
≤ C√

T
,

for d = dW and d = dK .

While Theorem 2.1 (and its proof) relies heavily on a finite fourth moment, Theo-
rem 1.1 works for infinite variance models, as e.g. stable processes. The heavy tails
of these processes force us to introduce the improved version of the bounds in [17,
Theorems 1.1 and 1.2] in the next section, and they are also responsible for slower rates
of convergence in Theorem 1.1 compared to Theorem 2.1.

3 New bounds for normal approximation on Poisson spaces

The aim of this section is to introduce new bounds on the Wasserstein and the
Kolmogorov distances between a Poisson functional and a standard Gaussian random
variable. Although similar bounds were previously derived in [17, 27], they are not
sufficient in certain settings. For this reason, we shall provide an improved version,
which is adapted to our needs. Since such a bound might be useful in other contexts
as well, we formulate and prove it in a general set-up, which is specialised later in this
paper.

3.1 Poisson spaces and Malliavin calculus

We recall some basic notions of Malliavin calculus on Poisson spaces and refer the
reader to [18, 26] for further background information. We fix an underlying probability
space (Ω,A,P), let (X,X ) be a measurable space and λ be a σ-finite measure on X
(in the applications we consider here X will be of the form R × R). By η we denote a
Poisson process on X with intensity measure λ, see [18] for a formal definition and an
explicit construction of such a process. We often consider η as random element in the
space of integer-valued σ-finite measures on X, denoted by N, which is equipped with
the σ-algebra generated by all evaluations µ→ µ(A) for A ∈ X . A real-valued random
variable F is called a Poisson functional if there exists a measurable function φ : N→ R

such that P-almost surely F = φ(η). We let L2
η denote the space of all square-integrable

Poisson functionals F = φ(η).
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It is well known that each F ∈ L2
η admits a chaotic decomposition

F = EF +

∞∑
m=1

Im(fm), (3.1)

where Im denotes the mth order integral with respect to the compensated (signed)
measure η̂ = η − λ and fm : Xm → R are symmetric functions with fm ∈ L2(λm).
Here, for a measure µ on X and k ∈ N we write L2(µk) for the space of functions
f : Xk → R, which are square integrable with respect to the k-fold product measure of
µ, and ‖ · ‖L2(µk) for the corresponding L2-norm. For z ∈ X and a Poisson functional
F = φ(η) ∈ L2

η we denote by

DzF = φ(η + δz)− φ(η)

the Malliavin derivative of F in direction z, also known as the difference operator, or in
a geometric setting, the add-one cost operator. Here, δz stands for the Dirac measure
at z ∈ X. We can consider DF as a function on Ω × X acting as (ω, z) 7→ DzF (ω). If
DF is square integrable with respect to the product measure P ⊗ λ we shall write
DF ∈ L2(P ⊗ λ) in what follows. Finally, let us define the second-order Malliavin
derivative of F with respect to two points z1, z2 ∈ X by putting

D2
z1,z2F := Dz1(Dz2F ) = φ(η + δz1 + δz2)− φ(η + δz1)− φ(δz2) + φ(η)

(note that this definition is symmetric in z1 and z2).
The Kabanov-Skorohod integral δ maps random functions u from L2

η(P⊗λ) to random
variables in L2

η. To introduce the definition of the operator δ, let

u(z) =

∞∑
m=0

Im (hm(z, · )) , z ∈ X,

denote the chaos expansion of u(z), where hm : Xm+1 → R are measurable functions.
The domain dom δ of δ consists of all random functions u that satisfy the condition

∞∑
m=0

(m+ 1)!‖h̃m‖2L2(λm+1) <∞,

where h̃m denotes the symmetrisation of the function hm. For u ∈ dom δ the Kabanov-
Skorohod integral is defined by

δ(u) =

∞∑
m=0

Im+1(h̃m).

Finally, we introduce the Ornstein-Uhlenbeck generator L and its (pseudo) inverse L−1.
The domain domL of L consists of all elements F ∈ L2

η with chaotic decomposition (3.1)
that additionally satisfy the condition

∞∑
m=1

m2m!‖fm‖2L2(λm) <∞.

For F ∈ domL with chaotic decomposition (3.1) we define

LF = −
∞∑
m=1

mIm(fm), L−1F = −
∞∑
m=1

1

m
Im(fm).
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The important relationships between the introduced operators can be summarised as
follows:

(i) LL−1F = F, (if F is a centred Poisson functional)

(ii) LF = −δDF, (if F ∈ domL)

(iii) E[Fδ(u)] = E

∫
(DzF ) u(z)λ(dz), (integration-by-parts)

where u ∈ dom δ. We refer to [26] or [27] for a more detailed exposition.

3.2 Wasserstein distance

In this subsection we derive quantitative bounds for the Wasserstein distance. We
recall that the Wasserstein distance between two random variables F and G is defined
by

dW (F,Z) := sup
h∈Lip(1)

∣∣E[h(F )]− E[h(G)]
∣∣,

where the supremum is running over all Lipschitz functions h : R→ R with a Lipschitz
constant less than or equal to 1. To formulate the next result we introduce the three
quantities

γ21 := 4

∫
E[(Dz1F )2(Dz2F )2]1/2E[(D2

z1,z3F )2(D2
z2,z3F )2]1/2 λ3(d(z1, z2, z3)), (3.2)

γ22 :=

∫
E[(D2

z1,z3F )2(D2
z2,z3F )2]λ3(d(z1, z2, z3)), (3.3)

γ3 :=

∫
E[|DzF |3]1/3E[min(

√
8|DzF |3/2, |DzF |3)]2/3 λ(dz) (3.4)

(although γ1, γ2 and γ3 depend on the Poisson functional F , we suppress this dependency
in our notation for simplicity). The theorem below is an improved version of the second-
order Poincaré inequality for Poisson functionals from [17, Theorem 1.1], where the
main difference stems from the term γ3.

Theorem 3.1. Let F ∈ L2
η be a Poisson functional, which satisfies DF ∈ L2(P ⊗ λ),

E[F ] = 0 and E[F 2] = 1. Further, let Z ∼ N (0, 1) be a standard Gaussian random
variable. Then,

dW (F,Z) ≤ γ1 + γ2 + γ3.

Remark 3.2. Our bound γ3 improves the corresponding quantity in [17, Theorem 1.1],
which one can obtain by replacing the term E[min(

√
8|DzF |3/2, |DzF |3)] in γ3 through

E[|DzF |3]. It turns out that our improvement is absolutely crucial as the quantity
introduced in [17, Theorem 1.1] converges to infinity in our setting.

In our framework the main problem appears when the term |DzVn| becomes large, say,
larger than 1. Such an event has a relatively high weight under the measure λ. On the
contrary, in the setting of Theorem 2.1 large values of |DzVn| have a very low probability
under higher moment conditions on the Lévy measure imposed in Theorem 2.1. Hence,
the main improvement of the original bound introduced in [17, Theorem 1.1] stems from
carefully distinguishing between large and small values of |DzVn|.

Apart from the application of Malliavin calculus another ingredient on which the
proof of Theorem 3.1 is build is Stein’s method for normal approximation (we refer to
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[6] for a general account). The starting point is the following observation: a random
variable Z has a standard Gaussian distribution N (0, 1) if and only if

E[f ′(Z)− Zf(Z)] = 0

for all continuous and piecewise continuously differentiable functions f : R→ R with
E[|f ′(Z)|] < ∞. This characterization together with the definition of the Wasserstein
distance motivates to consider for given Borel function h : R → R with E[|h(Z)|] < ∞
the first-order differential equation

h(x)− E[h(Z)] = f ′(x)− xf(x) , x ∈ R, (3.5)

also known as the Stein equation for normal approximation. A solution to (3.5) is
an absolutely continuous function f : R → R such that there exists a version of the
derivative f ′ satisfying (3.5) for all x ∈ R. From [6] it is known that for given h ∈ Lip(1)

the (unique bounded) solution f = fh of this equation satisfies f ∈ C1 with f ′ absolutely
continuous and

‖f‖∞ ≤ 2, ‖f ′‖∞ ≤ 1, and ‖f ′′‖∞ ≤ 2,

where we write ‖ · ‖∞ for the supremum norm. Defining FW to be the class of functions
satisfying these two constraints, replacing x by F in the Stein equation and taking
expectations on both sides we arrive at

dW (F,Z) ≤ sup
f∈FW

∣∣E[f ′(F )− Ff(F )]
∣∣.

Starting with this estimate, we can now present the proof of Theorem 3.1.

Proof of Theorem 3.1. Let f ∈ FW and fix a, b ∈ R. Then using the bound for f ′ we
observe that

|f(b)− f(a)− f ′(a)(b− a)| ≤ |f(b)− f(a)|+ |f ′(a)||b− a| ≤ 2‖f ′‖∞|b− a| ≤ 2|b− a|.

Similarly, using the bound for f ′′ we have, by Taylor approximation,

|f(b)− f(a)− f ′(a)(b− a)| ≤ ‖f
′′‖∞
2

(b− a)2 ≤ (b− a)2

and so

|f(b)− f(a)− f ′(a)(b− a)| ≤ min(2|b− a|, (b− a)2).

Next, using the definition of the Malliavin derivative and a Taylor expansion of f around
F we see that

Dzf(F ) = f ′(F )(DzF ) +R(DzF ), z ∈ X,

where in view of the above considerations the remainder term R(·) satisfies the estimate
|R(y)| ≤ min(2|y|, y2) for all y ∈ R. Applying this together with the three relations for the
Malliavin operators presented in the previous subsection, we see that

E[Ff(F )] = E[LL−1Ff(F )] = −E[δ(DL−1F ) f(F )] = E

∫
(Dzf(F ))(−DzL

−1F )λ(dz)

= E
[
f ′(F )

∫
(DzF )(−DzL

−1F )λ(dz)
]

+ E

∫
R(DzF )(−DzL

−1F )λ(dz).
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As a consequence,

|E[f ′(F )− Ff(F )]| ≤
∣∣∣E[f ′(F )

(
1−

∫
(DzF )(−DzL

−1F )λ(dz)
)]∣∣∣

+ E

∫
min(2|DzF |, (DzF )2) |DzL

−1F |λ(dz)

≤ E
[∣∣∣1− ∫ (DzF )(−DzL

−1F )λ(dz)
∣∣∣]

+ E

∫
min(2|DzF |, (DzF )2) |DzL

−1F |λ(dz),

where we used that ‖f ′‖∞ ≤ 1. Next, we apply [17, Proposition 4.1] to conclude that

E

[∣∣∣1− ∫ (DzF )(−DzL
−1F )λ(dz)

∣∣∣] ≤ γ1 + γ2. (3.6)

For the term γ3 we use Hölder’s inequality with Hölder conjugates 3 and 3/2. Together
with [17, Lemma 3.4], which in our situation says that E[|DzL

−1F |3] ≤ E[|DzF |3] for all
z ∈ X, this leads to

E

∫
min(2|DzF |, (DzF )2) |DzL

−1F |λ(dz)

≤
∫

(E[|DzL
−1F |3])1/3(E[min(2|DzF |, (DzF )2)3/2])2/3 λ(dz)

≤
∫

(E[|DzF |3])1/3(E[min(
√

8|DzF |3/2, |DzF |3)])2/3 λ(dz) = γ3.

The proof is thus complete.

3.3 Kolmogorov distance

Now we turn our attention to the Kolmogorov distance between the two random
variables F and Z, which is defined as

dK(F,Z) = sup
x∈R
|P(F ≤ x)− P(Z ≤ x)| .

Let f = fx be the bounded solution of the Stein’s equation associated with the function
1(−∞,x] for a given x ∈ R. It is well known that this solution satisfies the inequalities

‖f‖∞ ≤
√

2π

4
and ‖f ′‖∞ ≤ 1 (3.7)

(we interpret f ′ as the left-sided derivative at the point x, where f is not differentiable).
Hence, with FK denoting the class of all absolutely continuous functions satisfying (3.7)
we have

dK(F,Z) ≤ sup
f∈FK

|E[f ′(F )− Ff(F )]|

where Z ∼ N (0, 1). To obtain modified bounds for the Kolmogorov distance we introduce
an arbitrary measurable function ϕ : R → R such that 0 ≤ ϕ ≤ 1. We may simply use
ϕ = 1[−1,1] or a smooth function with compact support. As discussed in Remark 3.2 we
will use the function ϕ to distinguish between large and small values of the quantity
|DzVn|.
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To formulate the analogue of Theorem 3.1 for the Kolmogorov distance we introduce
the quantities

γ3 := 2

∫
E[(DzF )2(1− ϕ(DzF ))2]1/2E[|DzF |2]1/2 λ(dz), (3.8)

γ4 :=

(
1

2
(EF 4)1/4 +

√
2π

8

)∫
E[(DzF )4ϕ(DzF )2]1/2E[|DzF |4]1/4 λ(dz),

γ5 :=

√∫
E[ϕ(DzF )2(DzF )4]1/2E[(DzF )4]1/2 λ(dz),

γ26 := 3

∫ (
E[(Dz2(ϕ(Dz1F )Dz1F ))4]1/2E[|Dz1F |4]1/2

+ E[ϕ(Dz1F )2(Dz1F )4]1/2E[|D2
z2,z1F |

4]1/2

+ E[(Dz2(ϕ(Dz1F )Dz1F ))4]1/2E[|D2
z2,z1F |

4]1/2
)
λ2(d(z1, z2)) (3.9)

(again, we suppress in our notation the dependency on the Poisson functional F ).

We are now prepared to present our general estimate for the Kolmogorov distance
between a Poisson functional and a standard Gaussian random variable.

Theorem 3.3. Let F ∈ L2
η be a Poisson functional which satisfies DF ∈ L2(P ⊗ λ),

E[F ] = 0 and E[F 2] = 1. Further, let Z ∼ N (0, 1) be a standard Gaussian random
variable. Then,

dK(F,Z) ≤ γ1 + γ2 + γ3 + γ4 + γ5 + γ6.

Remark 3.4. Theorem 3.3 improves the original bounds from [17, Theorem 1.2], which
correspond to the choice ϕ ≡ 1. We recall once again that the bound from [17, The-
orem 1.2] converges to infinity in our setting, and thus the improvement in Theorem
3.3 is absolutely crucial for the proof of Theorem 1.1. The natural choice of ϕ is a
fixed continuous differentiable function with compact support satisfying ϕ(x) = 1 for
all x ∈ [−1, 1], which we are going to use for the proof of Theorem 1.1. However, in
some situations, one might obtain a stronger bound by letting ϕ depend on the Poisson
functional F .

Proof of Theorem 3.3. As in the proof of Theorem 3.1 we need to bound the term

E[f ′(F )− Ff(F )] = E
[
f ′(F )

(
1−

∫
(DzF )(−DzL

−1F )λ(dz)
)]

− E

[∫
(−DzL

−1F )

∫ DzF

0

{f ′(F + t)− f ′(F )} dt λ(dz)

]
,

where the decomposition is derived in [10, Equation (3.4)]. We have already seen in (3.6)
that the inequality∣∣∣∣E[f ′(F )

(
1−

∫
(DzF )(−DzL

−1F )λ(dz)
)]∣∣∣∣ ≤ γ1 + γ2 (3.10)

holds, where we have used that ‖f‖∞ ≤ 1. To treat the second term of the decomposition
we need to distinguish whether DzF takes small or large values. In particular, we have
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that ∣∣∣∣∣E
[∫

(−DzL
−1F )

∫ DzF

0

{f ′(F + t)− f ′(F )} dt λ(dz)

]∣∣∣∣∣ (3.11)

≤ E

[∫
|DzL

−1F |
∣∣∣ ∫ DzF

0

{f ′(F + t)− f ′(F )} dt
∣∣∣λ(dz)

]

≤ 2E

[∫
|DzF |(1− ϕ(DzF ))|DzL

−1F |λ(dz)

]

+ E

[∫
|DzL

−1F |ϕ(DzF )

∣∣∣∣∣
∫ DzF

0

{f ′(F + t)− f ′(F )} dt

∣∣∣∣∣ λ(dz)

]
,

where the second inequality follows from the identity 1 = (1− φ(DzF )) + φ(DzF ), the
triangle inequality and ‖f ′‖∞ ≤ 1. Now, repeating the methods from the proof of [10,
Theorem 3.1] (see pages 7–9 therein) for the last term in (3.11), we conclude that∣∣∣∣∣E

[∫
(−DzL

−1F )

∫ DzF

0

{f ′(F + t)− f ′(F )} dt λ(dz)

]∣∣∣∣∣
≤ 2E

∫
|DzF |(1− ϕ(DzF ))|DzL

−1F |λ(dz)

+

√
2π

8
E

∫
ϕ(DzF )(DzF )2|DzL

−1F |λ(dz)

+
1

2
E

∫
ϕ(DzF )(DzF )2|F ×DzL

−1F |λ(dz)

+ sup
x∈R

E

∫
ϕ(DzF )(DzF )Dz(1{F>x})|DzL

−1F |λ(dz). (3.12)

In the next step, we need to apply the ideas from [17] to the new bound at (3.12). We
obtain that

2E

∫
|DzF |(1− ϕ(DzF ))|DzL

−1F |λ(dz)

≤ 2

∫
E[(DzF )2(1− ϕ(DzF ))2]1/2E[|DzL

−1F |2]1/2λ(dz)

≤ 2

∫
E[(DzF )2(1− ϕ(DzF ))2]1/2E[|DzF |2]1/2 λ(dz) = γ3.

Similarly, we have that

√
2π

8
E

∫
ϕ(DzF )(DzF )2|DzL

−1F |λ(dz)

≤
√

2π

8

∫
E[(DzF )4ϕ(DzF )2]1/2E[|DzF |2]1/2 λ(dz) =: γ

(1)
4 ,
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and

1

2
E

∫
ϕ(DzF )(DzF )2|F ×DzL

−1F |λ(dz)

≤ 1

2
(EF 4)1/4

∫
E[(DzF )4ϕ(DzF )2]1/2E[|DzF |4]1/4 λ(dz) =: γ

(2)
4 .

Moreover, we note that

γ
(1)
4 + γ

(2)
4 ≤ γ4.

Next, we treat the last term in (3.12). We set g(z) = ϕ(DzF )(DzF )|DzL
−1F | and observe

the inequality

E

∫
D(1{F>x})g(z)λ(dz) = E[1{F>x}δ(g)] ≤ E[δ2(g)]1/2

is valid, where we recall that δ(g) stands for the Kabanov-Skorohod integral of g. Fur-
thermore, we have the Kabanov-Skorohod isometric formula

E[δ2(g)] = E

∫
g2(z)λ(dz) + E

∫ ∫
(Dyg(z))2λ(dy)λ(dz) =: A1 +A2,

see [16, Theorem 5]. Applying the Cauchy-Schwarz inequality we deduce that

A1 ≤
∫
E[ϕ(DzF )2(DzF )4]1/2E[(DzF )4]1/2 λ(dz) = γ25 .

For the last term A2 we conclude, using the inequality

|Dy(GH)| ≤ |HDyG|+ |GDyH|+ |DyHDyG|,

that

A2 ≤ 3

∫ (
(Dz2(ϕ(Dz1F )Dz1F ))

2 |Dz1L
−1F |2 + ϕ(Dz1F )(Dz1F )2|D2

z2,z1L
−1F |2

+ (Dz2(ϕ(Dz1F )Dz1F ))
2 |D2

z2,z1L
−1F |2

)
λ2(d(z1, z2))

≤ 3

∫ (
E[(Dz2(ϕ(Dz1F )Dz1F ))4]1/2E[|Dz1F |4]1/2

+ E[ϕ(Dz1F )2(Dz1F )4]1/2E[|D2
z2,z1F |

4]1/2

+ E[(Dz2(ϕ(Dz1F )Dz1F ))4]1/2E[|D2
z2,z1F |

4]1/2
)
λ2(d(z1, z2))

= γ26 .

Combining (3.10) and (3.12), we conclude the assertion of Theorem 3.3.

4 Proof of Theorem 1.1

All positive constants, which do not depend on n, are denoted by C although they may
change from occasion to occasion. Furthermore, we assume without loss of generality
that K = 1 in condition (1.6). We extend the definition of the kernel g to the whole real
line by setting g(x) = 0 for x ≤ 0. To apply Theorems 3.1 and 3.3 it will be useful for us to
represent the process (Xt)t∈R, in (1.5), in terms of an integral with respect to a Poisson
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random measure. Namely, if η denotes a Poisson random measure on R2 constructed
from L, see e.g. [40, Theorem 19.2], then η has intensity measure λ given by

λ(ds, dy) = ds ν(dy),

where ν is the Lévy measure of L, defined in (1.3). We can re-write Xt =
∫ t
−∞ g(t− s) dLs

as

Xt =

∫
R2

g(t− s)x
(
η(ds, dx)− χ(g(t− s)x) ds ν(dx)

)
+ b̃ (4.1)

where the integral is defined as in [37, p. 3236], and

b̃ =

∫
R

[
g(s)b+

∫
R

(
χ(xg(s))− g(s)χ(x)

)
ν(dx)

]
ds. (4.2)

The integrals in (4.1) and (4.2) exist since Xt is well-defined, cf. [35, Theorem 2.7]. By
(4.1) it follows that Xt is a Poisson functional for all t ∈ R, i.e. there exists a measurable
mapping φ = φt : N→ R such that Xt = φ(η). Throughout this section we will repeatedly
use that for any measurable positive function f : R2 → R+ we have that∫

R2

f(z)λ(dz) ≤ C
∫
R

(∫
R

f(s, x) ds
)
|x|−1−β dx,

which follows by assumption (1.4) on ν. Here and below, C will denote a strictly positive
and finite constant whose value might change from occasion to occasion.

4.1 Preliminary estimates

We let z = (x, s) ∈ R2, zj = (xj , sj) ∈ R2 for j ∈ {1, 2, 3}, and f ∈ C2
b (R). By the

mean-value theorem and (4.1), we have that

|Dzf(Xj)| = |f(Xj + xg(j − s))− f(Xj)| ≤ C min(1, |xg(j − s)|), (4.3)

since f and f ′ are bounded. By (4.3) we obtain that

|DzVn| ≤
C√
n

n∑
t=1

min(1, |xg(t− s)|) =: An(z). (4.4)

Furthermore,

D2
z1,z2Vn =

1√
n

n∑
t=1

{
f
(
x1g(t− s1) + x2g(t− s2) +Xt

)
− f

(
x1g(t− s1) +Xt

)
− f

(
x2g(t− s2) +Xt

)
+ f(Xt)

}
.

Again, by applying the mean-value theorem and using that f, f ′ and f ′′ are bounded we
obtain the estimate

|D2
z1,z2Vn| ≤

C√
n

n∑
t=1

min(1, |x1g(t− s1)|) min(1, |x2g(t− s2)|) =: An(z1, z2). (4.5)

Notice that An(z1, z2) ≤ C min(An(z1), An(z2)).
We define the quantity

ρk :=

∫
R

|g(x)g(x+ k)|β/2 dx, k ∈ Z. (4.6)

We will show later that the terms γ1 and γ2 appearing in Theorems 3.1 and 3.3 are both
bounded by Cn−1/2 solely under the condition

∑∞
k=1 ρk <∞, cf. Lemma 4.1, while the

other terms require the stronger assumption (1.6).
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Lemma 4.1. With ρk given in (4.6) we have that ρk ≤ Ck−αβ/2 for all k ≥ 1. Further-
more,

∫
R

( 4∏
i=1

|g(ti − s)|
)β/4

ds ≤ C|t2 − t1|−αβ/4|t3 − t1|−αβ/4|t4 − t1|−αβ/4, (4.7)

for all t1, . . . , t4 ≥ 1, where we use the convention 0−r := 1 for all r > 0.

Proof. From the substitution u = k−1s we obtain

ρk ≤
∫ 1

0

sγβ/2(k + s)−αβ/2 ds+

∫ ∞
1

s−αβ(k + s)−αβ/2 ds

= k1+γβ/2−αβ/2
∫ 1/k

0

uγβ/2(1 + u)−αβ/2 du+ k1−αβ
∫ ∞
1/k

u−αβ/2(1 + u)−αβ/2 du

≤ Ck−αβ/2. (4.8)

Moreover, by the same procedure as in (4.8) and using succesive substitutions we obtain
the bound (4.7).

Lemma 4.2. The series v2 defined in Theorem 1.1 converges absolutely, and v2n → v2 as
n→∞.

Proof. In the following we will show that

∞∑
j=1

|cov(f(Xj), f(X0))| <∞. (4.9)

To prove (4.9) we use the covariance identity from Theorem 5.1 in [19] to get

cov(f(Xj), f(X0)) = E
[ ∫ 1

0

∫
E[Dzf(Xj) | Gu]E[Dzf(X0) | Gu]λ(dz) du

]
(4.10)

where (Gu)u∈[0,1] are certain σ-algebras (which will not be important for us). As noticed
in [19, Proof of Theorem 1.4] we may always assume that we are in the setting of
[19, Theorem 1.5]. By Cauchy–Schwarz inequality and the contractive properties of
conditional expectation it follows from (4.10) that

∣∣cov(f(Xj), f(X0))
∣∣ ≤ ∫ 1

0

∫
E
[∣∣∣E[Dzf(Xj) | Gu]E[Dzf(X0) | Gu]

∣∣∣]λ(dz) du

≤
∫
E[|Dzf(Xj)|2]1/2E[|Dzf(X0)|2]1/2 λ(dz)

≤ C
∫
R

(∫
R

min(|x2g(j − s)g(−s)|, 1) ν(dx)
)
ds

≤ C
∫
R

|g(j − s)g(−s)|β/2 ds

= Cρj ≤ Cj−αβ/2 (4.11)

where we have used (4.3) in the third inequality, the equality follows by the definition of
ρj , and the last inequality follows by Lemma 4.1. Since αβ > 2, (4.11) implies (4.9).
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A Berry–Esseén theorem for heavy-tailed moving averages

By (4.9), the series v2 converges absolutely. Moreover, the stationarity of (Xj)j∈N
implies that

v2n = E[V 2
n ] = n−1

n∑
j,i=1

cov(f(Xj), f(Xi))

= var(f(X0)) + 2

n∑
j=1

(1− j/n)cov(f(X0), f(Xj))

→ var(f(X0)) + 2

∞∑
j=1

cov(f(X0), f(Xj)) = v2 as n→∞,

where the convergence follows by Lebesgue’s dominated convergence theorem together
with (4.9).

4.2 Bounding the Wasserstein distance

Since v2n = var(Vn)→ v2 as n→∞, cf. Lemma 4.2, and v > 0 by assumption, we note
that vn is bounded away from zero. Let γ1, γ2, γ3 be defined in (3.2), (3.3) and (3.4) with
F = Vn. Then, by Theorem 3.1 and using that vn is bounded away from 0, we have that

dW (Vn/vn, Z) ≤ C(γ1 + γ2 + γ3). (4.12)

Using the estimates (4.4) and (4.5) we will now compute bounds for the quantities γ1,
γ2 and γ3 appearing in the bound for the Wasserstein distance in Theorem 3.1. Notice
that the right hand sides in both estimates (4.4) and (4.5) are deterministic, so the
expectations in the definitions of γ1, γ2, γ3 can be omitted. We start with the term γ1.

Lemma 4.3. There exists a constant C > 0 such that γ1 ≤ Cn−1/2.

Proof. To estimate

γ21 = 4

∫
E[(Dz1Vn)2(Dz2Vn)2]1/2E[(D2

z1,z3Vn)2(D2
z2,z3Vn)2]1/2λ3(d(z1, z2, z3)),

we deduce the following inequality by (4.4) and (4.5):

E[(Dz1Vn)2(Dz2Vn)2]1/2E[(D2
z1,z3Vn)2(D2

z2,z3Vn)2]1/2

≤ C

n2

n∑
t1,...,t4=1

{
min(1, x21|g(t1 − s1)g(t3 − s1)|) min(1, x22|g(t2 − s2)g(t4 − s2)|)

×min(1, x23|g(t3 − s3)g(t4 − s3)|)
}
.

By the substitution w2
i = x2i yi for i ∈ {1, 2, 3} we see that for any y1, y2, y3 > 0 it holds

that∫
R3

min(1, x21y1) min(1, x22y2) min(1, x23y3)|x1x2x3|−1−β dx1 dx2 dx3 = Cy
β/2
1 y

β/2
2 y

β/2
3 .

Indeed, we have that∫
R3

min(1, x21) min(1, x22) min(1, x23)|x1x2x3|−1−β dx1 dx2 x3

=
(∫

R

min(1, x2)|x|−1−β dx
)3

<∞,
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A Berry–Esseén theorem for heavy-tailed moving averages

since β ∈ (0, 2). Therefore, we deduce the estimate

γ21 ≤ C
∫
E[(Dz1Vn)2(Dz2Vn)2]1/2E[(D2

z1,z3Vn)2(D2
z2,z3Vn)2]1/2λ3(dz1, dz2, dz3)

≤ C

n2

n∑
t1,...,t4=1

{∫
R

|g(t1 − s1)g(t3 − s1)|β/2 ds1
∫
R

|g(t2 − s2)g(t4 − s2)|β/2 ds2

×
∫
R

|g(t3 − s3)g(t4 − s3)|β/2 ds3
}

=
C

n2

n∑
t1,...,t4=1

ρt1−t3ρt2−t4ρt3−t4 ≤
C

n

n∑
v1,v2,v3=−n

ρv1ρv2ρv3 ≤
C

n

( ∞∑
k=0

ρk

)3
(4.13)

where the first equality follows by substitution, the next inequality follows by the change
of variables v1 = t1 − t3, v2 = t2 − t4, v3 = t3 − t4, and the last inequality follows from
the symmetry ρ−k = ρk. By Lemma 4.1, we have that

∑∞
k=0 ρk < ∞, and hence, (4.13)

completes the proof of the estimate γ1 ≤ Cn−1/2.

Using a similar reasoning, we can also bound the term γ2.

Lemma 4.4. There exists a constant C > 0 such that γ2 ≤ Cn−1/2.

Proof. Recall that

γ22 =

∫
E[(D2

z1,z3Vn)2(D2
z2,z3Vn)2]λ3(d(z1, z2, z3)).

By the inequality (4.5) we immediately conclude that

E[(D2
z1,z3Vn)2(D2

z2,z3Vn)2] ≤ C

n2

n∑
t1,...,t4=1

{
min(1, x21|g(t1 − s1)g(t2 − s1)|)

×min(1, x22|g(t3 − s2)g(t4 − s2)|) min(1, x43|g(t1 − s3)g(t2 − s3)g(t3 − s3)g(t4 − s3)|)
}
.

As in the proof of Lemma 4.3 a substitution shows that for any y1, y2, y3 > 0,∫
R3

min(1, x21y1) min(1, x42y2) min(1, x23y3)|x1x2x3|−1−β dx1 dx2 dx3 = Cy
β/2
1 y

β/4
2 y

β/2
3 .

Therefore, we have the estimate

γ22 =

∫
E[(D2

z1,z3F )2(D2
z2,z3F )2]λ3(dz1, dz2, dz3)

≤ C

n2

n∑
t1,...,t4=1

{∫
R

|g(t1 − s1)g(t2 − s1)|β/2ds1
∫
R

|g(t3 − s2)g(t4 − s2)|β/2ds2

×
∫
R

|g(t1 − s3)g(t2 − s3)g(t3 − s3)g(t4 − s3)|β/4ds3
}
. (4.14)

Now, the inequality |xy| ≤ x2 + y2, valid for all x, y ∈ R, implies∫
R

|g(t1 − s3)g(t2 − s3)g(t3 − s3)g(t4 − s3)|β/4ds3

≤
∫
R

|g(t1 − s3)g(t3 − s3)|β/2ds3 +

∫
R

|g(t2 − s3)g(t4 − s3)|β/2ds3,
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A Berry–Esseén theorem for heavy-tailed moving averages

which by (4.14), shows that

γ22 ≤
C

n

(∑
k≥0

ρk

)3
, (4.15)

by the same arguments as in the proof of Lemma 4.3. Since
∑
k≥0 ρk <∞, cf. Lemma 4.1,

the estimate γ2 ≤ Cn−1/2 follows from (4.15).

The final term γ3 in the bound for the Wasserstein distance is more subtle. It is this
term, which decays slower than n−1/2 for certain parameter regimes.

Lemma 4.5. There exists a constant C > 0 such that

γ3 ≤ C


n−1/2 if αβ > 3,

n−1/2 log(n) if αβ = 3,

n(2−αβ)/2 if 2 < αβ < 3.

Proof. Recalling the inequality (4.4), we have that

γ3 ≤ C
∫
R2

min
(
|An(x, s)|2, |An(x, s)|3

)
λ(dx, ds). (4.16)

From the inequality (4.16), Lemma 4.5 follows from the result of Lemma 4.6 below.

Proof of Theorem 1.1 for the Wasserstein distance. The Wasserstein bound (1.10) is a
direct consequence of Lemmas 4.3, 4.4 and 4.5 and the second-order Poincaré inequality
(4.12)

dW (Vn/vn, Z) ≤ C(γ1 + γ2 + γ3) ≤ C


n−1/2 if αβ > 3,

n−1/2 log(n) if αβ = 3,

n(2−αβ)/2 if 2 < αβ < 3.

The following bound used in the proof of Lemma 4.5 is stated separately as a lemma,
since we will also use it in the proof of upper bound for the Kolmogorov distance.

Lemma 4.6. Let p ∈ [0, 2] and q > 2. There exists a finite constant C such that

∫
R2

min (|An(z)|p, |An(z)|q)λ(dz) ≤ C


n1−q/2 if αβ > q,

n1−q/2 log(n) if αβ = q,

n(2−αβ)/2 if 2 < αβ < q.

Proof of Lemma 4.6. To obtain the upper bound for the right hand side we need to
decompose the integral into different parts according to whether |x| ∈ (0, 1), |x| ∈ [1, nα]

or |x| ∈ (nα,∞). Using the symmetry in x this means that∫
R2

min (|An(x, s)|p, |An(x, s)|q)λ(ds, dx)

= 2

(∫ 1

0

∫
R

min (|An(x, s)|p, |An(x, s)|q)λ(ds, dx)

+

∫ nα

1

∫
R

min (|An(x, s)|p, |An(x, s)|q)λ(ds, dx)

+

∫ ∞
nα

∫
R

min (|An(x, s)|p, |An(x, s)|q)λ(ds, dx)

)
=: I1 + I2 + I3.
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We start by bounding the term I1. For x > 0 and s ∈ [0, n] \N we have that

n∑
t=1

min(1, |xg(t− s)|) ≤ min(1, |xg(1 + [s]− s)|) +

n∑
t=[s]+2

|xg(t− s)|

≤ min(1, x(1 + [s]− s)γ) + x

n∑
t=[s]+2

(t− s)−α

≤ min(1, x(1 + [s]− s)γ) + Cx =: f1(s, x) + f2(s, x),

where we used g(u) = 0 for all u < 0 in the first inequality and assumption (1.6) on g

in the second inequality. The third inequality follows from the fact that α > 1, which is
implied by the assumptions α > 2/β and β < 2. For γ < 0 we have∫ n

0

|f1(s, x)|q ds = n

∫ 1

0

|min(1, xsγ)|q ds

= n
(
xq
∫ 1

x−1/γ

sqγ ds+

∫ x−1/γ

0

1 ds
)
≤ Cnx−1/γ ,

where the first equality follows by substitution. For γ ≥ 0, we have the simple estimate∫ n
0
|f1(s, x)|qds ≤ Cnxq. Similarly, we have that

∫ n
0
|f2(s, x)|q ds ≤ Cnxq. By combining

the above estimates we obtain that∫ 1

0

x−1−β
(∫ n

0

|An(x, s)|q ds
)
dx

≤ Cn1−q/2
∫ 1

0

x−1−β(x−1/γ1{γ<0} + xq) dx ≤ Cn1−q/2, (4.17)

where the last inequality follows from the assumption γ > −1/β.
For s ∈ (−∞, 0) we use the assumption (1.6) on g to obtain

n∑
t=1

min(1, |xg(t− s)|) ≤ Cx
n∑
t=1

(t− s)−α ≤ Cx
(

(1− s)1−α − (n− s)1−α
)
.

For α > 1 + 1/q we have that∫ 0

−∞
|(1− s)1−α − (n− s)1−α|q ds ≤

∫ 0

−∞
(1− s)q(1−α) ds ≤ C,

and for α < 1 + 1/q we have that∫ 0

−∞
|(1− s)1−α − (n− s)1−α|q ds ≤

∫ ∞
1

|u1−α − (u+ n)1−α|q du

= nq(1−α)+1

∫ ∞
n−1

|v1−α − (v + 1)1−α|q dv

≤ Cnq(1−α)+1
(∫ 1

n−1

vq(1−α) dv +

∫ ∞
1

v−qα dv
)
≤ Cnq(1−α)+1, (4.18)

where we used 1 < α < 1 + 1/q in the last inequality. The above estimates imply for
α 6= 1 + 1/q that∫ 1

0

x−1−β
(∫ 0

−∞
|An(x, s)|q ds

)
dx (4.19)

≤ Cn−q/2
∫ 1

0

xq−1−β dx

∫ 0

−∞
|(1− s)1−α − (n− s)1−α|q ds

≤ C(n−q/2 + n1−qα+q/2) ≤ Cn1−q/2, (4.20)
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where the last inequality follows since α > 1. For α = 1 + 1/q, assumption (1.6) is
satisfied for α̃ = α− ε for all ε > 0 small enough. Hence, by (4.18) used with α̃ we obtain
that (4.19) is bounded by Cn1−q/2 by choosing ε small enough.

The assumption that g(x) = 0 for all x < 0, implies that An(x, s) = 0 for all s > n, and
hence (4.17) and (4.20) show that

I1 ≤ Cn1−q/2. (4.21)

Next, we treat the term I3. For the integral∫ ∞
nα

∫ −n
−∞

min (|An(x, s)|p, |An(x, s)|q)λ(ds, dx)

we need to distinguish different cases, namely s ≤ −x1/α, −x1/α < s ≤ n− x1/α − 1 and
n− x1/α − 1 < s ≤ n.

We start with the case s ≤ −x1/α. Note that

|An(x, s)| ≤ xn−1/2
n∑
t=1

|g(t− s)| ≤ Cx
√
n(−s)−α (4.22)

and observe that x
√
n(−s)−α > 1 if and only if s > −x1/αn1/(2α). We obtain the inequality∫ −x1/α

−x1/αn1/(2α)

(−s)−αp ds ≤ Cx(1−αp)/α
(

1 + n(1−αp)/(2α)
)
.

On the other hand, we have that∫ −x1/αn1/(2α)

−∞
(−s)−αq ds ≤ Cx(1−αq)/αn(1−αq)/(2α).

By (4.22) we thus conclude that∫ ∞
nα

∫ −x1/α

−∞
min (|An(x, s)|p, |An(x, s)|q)λ(ds, dx)

≤ C
∫ ∞
nα

x−1−β

(
xpnp/2

∫ −x1/α

−x1/αn1/(2α)

(−s)−αp ds+ xqnq/2
∫ −x1/αn1/(2α)

−∞
(−s)−αq ds

)
dx

≤ C
(
n1−αβ+1/(2α) + n1−αβ+p/2

)
.

For x > 1 and −x1/α < s ≤ n− x1/α − 1 we obtain

n∑
t=1

min(1, |xg(t− s)|) =

[s+x1/α]∑
t=1

1 +

n∑
t=[s+x1/α]+1

x(t− s)−α

≤ C
(

(s+ x1/α) + x
(

(x1/α)1−α − (n− s)1−α
))
. (4.23)

The substitution v = x−1/α(n− s) yields∫ n−x1/α−1

−x1/α

∣∣∣x((x1/α)1−α − (n− s)1−α
)∣∣∣p ds

= x(p+1)/α

∫ 1+nx−1/α

1+x−1/α

|1− v1−α|2 dv ≤ Cnxp/α, (4.24)
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and ∫ n−x1/α−1

−x1/α

|s+ x1/α|p ds ≤
∫ n

0

up du =
1

p+ 1
np+1. (4.25)

From (4.23), (4.24) and (4.25) we deduce that∫ ∞
nα

x−1−β
(∫ n−x1/α−1

−x1/α

|An(x, s)|p ds
)
dx

≤ Cn−p/2
(
np+1

∫ ∞
nα

x−1−β dx+ n

∫ ∞
nα

x−1−β+p/α dx
)

≤ Cn1−αβ+p/2,

where we used the assumption αβ > 2 in the second inequality.
Finally, for the last case n− x1/α − 1 < s ≤ n we have

n∑
t=1

min(1, |xg(t− s)|) ≤ n,

which leads to∫ ∞
nα

x−1−β
(∫ n

n−x1/α−1
|An(x, s)|p ds

)
dx ≤ Cnp/2

∫ ∞
nα

x−1−β+1/α dx ≤ Cn1−αβ+p/2.

Summarizing, we arrive at the bound

I3 ≤ C
(
n1−αβ+1/(2α) + n1−αβ+p/2

)
. (4.26)

Next, we will bound the term I2 as follows:

I2 ≤ C
{∫ nα

1

x−1−β
(∫ n

−n
min (|An(x, s)|p, |An(x, s)|q) ds

)
dx

+

∫ nα

1

x−1−β
(∫ −n
−∞

min (|An(x, s)|p, |An(x, s)|q) ds
)
dx
}

= J1 + J2,

where we recall that An(x, s) = 0 for s > n. To estimate J1 we have for s ∈ R and x > 1

that

n∑
t=1

min(1, |xg(t− s)|) ≤
[s+x1/α]∑
t=[s]+1

1 +

n∑
t=[s+x1/α]+1

x(t− s)−α

≤ C

{
x1/α + x

(
(x1/α)1−α − (n− s)1−α

)
if s+ x1/α ≤ n,

n− s if s+ x1/α > n,

≤ Cx1/α. (4.27)

We note that x1/αn−1/2 ≤ 1 if and only if x ≤ nα/2, and write J1 as J1 = J ′1 + J ′′1 . Note
that

J ′1 :=

∫ nα/2

1

x−1−β
(∫ n

−n
min (|An(x, s)|p, |An(x, s)|q) ds

)
dx

≤ C
∫ nα/2

1

(∫ n

−n
|x1/αn−1/2|q ds

)
x−1−β dx ≤ n1−q/2

∫ nα/2

1

x−1−β+q/α dx

≤ C


n1−q/2 if αβ > q

n1−q/2 log(n) if αβ = q

n(2−αβ)/2 if 2 < αβ < q,

(4.28)
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where we have used (4.27) in the first inequality. Furthermore,

J ′′1 :=

∫ nα

nα/2
x−1−β

(∫ n

−n
min (|An(x, s)|p, |An(x, s)|q) ds

)
dx

≤ C
∫ nα

nα/2

(∫ n

−n
|x1/αn−1/2|p ds

)
x−1−β dx ≤ Cn1−p/2

∫ nα

nα/2
x−1−β+p/α dx

= Cn1−αβ+p/2
∫ 1

n−1/2

vp−1−αβ dv ≤ Cn(2−αβ)/2, (4.29)

where we have applied (4.27) in the first inequality, and the substitution v = n−1x1/α in
the second equality.

To estimate J2, again we need to distinguish several cases. We recall the inequality
(4.22) and the statement below it, and notice that −x1/αn1/(2α) > −n if and only if
x < nα−1/2. We obtain the estimate∫ nα−1/2

1

x−1−β
(∫ −n
−∞

min (|An(x, s)|p, |An(x, s)|q) ds
)
dx

≤ Cn1−qα+q/2
∫ nα−1/2

1

x−1−β+q dx ≤ Cn1−αβ+β/2.

Recalling again the inequality (4.22) we deduce that∫ nα

nα−1/2

x−1−β
(∫ −x1/αn1/(2α)

−∞
min (|An(x, s)|p, |An(x, s)|q) ds

)
dx

≤ Cn1/(2α)
∫ nα

nα−1/2

x−1−β+1/α dx ≤ Cn1−αβ+β/2.

Finally, we also get for p 6= β that∫ nα

nα−1/2

x−1−β
(∫ −n
−x1/αn1/(2α)

min (|An(x, s)|p, |An(x, s)|q) ds
)
dx (4.30)

≤ Cn1−αp+p/2
∫ nα

nα−1/2

x−1−β+p dx ≤ C
(
n1−αβ+β/2 + n1−αβ+p/2

)
.

Next, we summarise our findings. Since α > 1 we have that 1− αβ + β/2 < (2− αβ)/2.
On the other hand, αβ > 2 ≥ p implies the inequality 1− αβ + p/2 < (2− αβ)/2 (when
p = β an additional log n factor appears in (4.30), but both rates are still dominated by
n(2−αβ)/2). Thus, we conclude from (4.28) and (4.29) that

I2 ≤ C


n1−q/2 if αβ > q,

n1−q/2 log(n) if αβ = q,

n(2−αβ)/2 if 2 < αβ < q.

Due to (4.21) and (4.26) we obtain the desired assertion since 1 − αβ + 1/(2α) < (2 −
αβ)/2.

4.3 Bounding the Kolmogorov distance

We let γ1, γ2, γ3, γ4, γ5 and γ6 be as defined in (3.2), (3.3) and (3.8)–(3.9) with F = Vn.
By our second-order Poincaré inequality Theorem 3.3, and using the fact that vn is
bounded away from zero we have that

dK (Vn/vn, Z) ≤ C(γ1 + γ2 + γ3 + γ4 + γ5 + γ6). (4.31)
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In this subsection we will bound the terms γ3, γ4, γ5 and γ6 to obtain the bound for the
Kolmogorov distance in Theorem 1.1. Throughout the proof we consider a continuously
differentiable function ϕ : R→ [0, 1] with bounded derivative, whose support supp(ϕ) is
contained in the interval [−2, 2], which satisfies ϕ(x) = 1 for x ∈ [−1, 1] and is such that
‖ϕ‖∞ = 1. In particular, this ensures that ‖ϕ′‖∞ <∞. We start with the term γ3, which
we handle as γ3 in Lemma 4.5.

Lemma 4.7. There exists a constant C > 0 such that

γ3 ≤ C


n−1 if αβ > 4

n−1 log(n) if αβ = 4

n(2−αβ)/2 if 2 < αβ < 4.

(4.32)

Proof. Applying the inequality (4.4) we conclude that

γ3 ≤ C
∫
R2

E[(DzVn)21{|DzVn|>1}]
1/2E[(DzVn)2]1/2 λ(dz)

≤ C
∫
R2

An(x, s)21{|An(x,s)|>1} λ(dx, ds)

≤ C
∫
R2

min
(
An(x, s)2, An(x, s)4

)
λ(dx, ds),

which together with Lemma 4.6 implies (4.32).

Lemma 4.8. There exists a finite constant C such that∫
An(z)2 λ(dz) ≤ C, (4.33)

and

∫
An(z)4 λ(dz) ≤ C


n−1 if αβ > 4,

n−1(log(n))3 if αβ = 4,

n2−
3
4αβ if 2 < αβ < 4.

(4.34)

Proof of Lemma 4.8. To show (4.33) we proceed as follows:∫
An(z)2 λ(dz)

=
1

n

n∑
t1,t2=1

∫ (∫
min(1, |xg(t1 − s)|) min(1, |xg(t2 − s)|)|x|−1−β dx

)
ds

≤ 1

n

n∑
t1,t2,=1

∫ (∫
min(1, |x2g(t1 − s)g(t2 − s)|)|x|−1−β dx

)
ds

≤ C

n

n∑
t1,t2,=1

∫
|g(t1 − s)g(t2 − s)|β/2 ds =

C

n

n∑
t1,t2,=1

ρt1−t2

≤ C
n∑
t=0

ρt ≤ C
n∑
t=1

t−αβ/2 ≤ C,

where the second inequality follows from the substitution u = x2g(t1 − s)g(t2 − s), and
the last inequality is a consequence of the assumption that αβ > 2.

Our proof of (4.34) relies on the estimate∫
An(z)4 λ(dz) ≤ C 1

n2

n∑
t1,...,t4=1

∫
R

(∫
R

4∏
i=1

min{1, |xg(ti − s)|} |x|−1−β dx
)
ds. (4.35)
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Moreover, we have∫
R

4∏
i=1

min{1, |xg(ti − s)|} |x|−1−β dx ≤
∫
R

min
{

1, x4
4∏
i=1

|g(ti − s)|
}
|x|−1−β dx

=
1

4

( 4∏
i=1

|g(ti − s)|
)β/4 ∫

R

min{1, |u|}|u|−1−β/4 du ≤ C
( 4∏
i=1

|g(ti − s)|
)β/4

, (4.36)

where the equality follows by the substitution u = x4
∏4
i=1 |g(ti − s)|. From the two

estimates (4.35) and (4.36) we obtain∫
An(z)4 λ(dz) ≤ C 1

n2

n∑
t1,...,t4=1

∫
R

( 4∏
i=1

|g(ti − s)|
)β/4

ds

≤ C

n

( n∑
r=1

r−αβ/4
)3
≤ C


n−1 if αβ > 4,

n−1(log(n))3 if αβ = 4,

n2−
3
4αβ if 2 < αβ < 4,

where the second inequality follows by (4.7). This completes the proof of the lemma.

Lemma 4.9. There exists a constant C such that

γ4 ≤ C


n−1 if αβ > 4,

n−1 log(n) if αβ = 4,

n(2−αβ)/2 if 8/3 ≤ αβ < 4,

n3−
5
4αβ if 2 < αβ < 8/3.

(4.37)

Proof. By our choice of the function ϕ we have that

γ4 ≤ C
(

(EV 4
n )1/4 + 1

)∫
E[(DzVn)41{|DzVn|≤1}]

1/2E[|DzVn|4]1/4 λ(dz).

The inequality x41{|x|≤1} ≤ min(x4, x2) implies that∫
E[|DzVn|41{|DzVn|≤1}]

1/2E[|DzVn|4]1/4 λ(dz)

≤
∫
E[min(|DzVn|2, |DzVn|4)]1/2E[|DzVn|4]1/4 λ(dz)

≤
∫

min(An(z)2, An(z)4)λ(dz) ≤ C


n−1 if αβ > 4,

n−1 log(n) if αβ = 4,

n(2−αβ)/2 if 2 < αβ < 4,

(4.38)

where the last inequality follows by Lemma 4.6.
Lemma 4.2 of [17] shows that

E[V 4
n ] ≤ C max

{∫
(E[(DzVn)4])1/2λ(dz),

∫
E[(DzVn)4]λ(dz), 1

}
. (4.39)

Hence, a combination of (4.39), the inequality |DzVn| ≤ An(z), cf. (4.4), and (4.33)–(4.34)
of Lemma 4.8 implies that

(E[V 4
n ])1/4 ≤ C

{
1 if αβ ≥ 8/3,

n(2−
3
4αβ)/4 if 2 < αβ < 8/3.

(4.40)

The two inequalities (4.38) and (4.40) yield the bound (4.37), which completes the proof
of the lemma.

In the next step we treat the term γ5.
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Lemma 4.10. There exists a constant C > 0 such that

γ5 ≤ C


n−1/2 if αβ > 4

n−1/2 log(n)1/2 if αβ = 4

n(2−αβ)/4 if 2 < αβ < 4

Proof. We use the inequality x41{|x|≤1} ≤ min(x4, 1) to obtain the upper bound

γ25 ≤
∫
E[(DzVn)41{|DzVn|≤1}]

1/2E[(DzVn)4]1/2 λ(dz)

≤
∫

min
(
An(z)4, An(z)2

)
λ(dz).

Lemma 4.6 completes the proof.

Finally, we derive an upper bound for the term γ6.

Lemma 4.11. There exists a constant C > 0 such that

γ6 ≤ C


n−1/2 if αβ > 4,

n−1/2 log(n) if αβ = 4,

n(2−αβ)/4 if 8
3 ≤ αβ < 4,

n(3−
5
4αβ)/2 if 2 < αβ < 8

3 .

(4.41)

Proof. Since the quantity γ26 consists of three terms, we use the decomposition

γ26 =: 3
(
γ26.1 + γ26.2 + γ26.3

)
,

with the terms γ6.1, γ6.2 and γ6.3 given by

γ26.1 :=

∫
E[(Dz2(ϕ(Dz1Vn)Dz1Vn))4]1/2E[|Dz1Vn|4]1/2 λ2(d(z1, z2)),

γ26.2 :=

∫
E[ϕ(Dz1Vn)2(Dz1Vn)4]1/2E[|D2

z2,z1Vn|
4]1/2 λ2(d(z1, z2)),

γ26.3 :=

∫
E[(Dz2(ϕ(Dz1Vn)Dz1Vn))4]1/2E[|D2

z2,z1Vn|
4]1/2 λ2(d(z1, z2)).

We first prove the inequality

M :=

∫
E[(Dz1Vn)4]1/2E[(D2

z2,z1Vn)4]1/2 λ2(d(z1, z2))

≤ C


n−1 if αβ > 4,

n−1(log(n))2 if αβ = 4,

n(2−αβ)/2 if 2 < αβ < 4.

(4.42)

Indeed, by applying the estimates (4.4) and (4.5), we conclude that

M ≤
∫
An(z1)2An(z1, z2)2 λ2(d(z1, z2)).

Following the same arguments as in the proofs of Lemma 4.3 and Lemma 4.4, we deduce
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the inequality

M ≤ C

n2

n∑
t1,...,t4=1

[ ∫ (∫
min

(
1, x4

4∏
i=1

|g(ti − s)|
)
|x|−1−β dx

)
ds

×
∫ (∫

min
(

1, x2|g(t3 − s)g(t4 − s)|
)
|x|−1−β dx

)
ds
]

≤ C

n2

n∑
t1,...,t4=1

[ ∫
R

|g(t1 − s)g(t2 − s)g(t3 − s)g(t4 − s)|β/4 ds

×
∫
R

|g(t3 − s)g(t4 − s)|β/2 ds
]
.

Hence, by Lemma 4.1 we have that

M ≤ C

n

( n∑
r=1

r−αβ/4
)2( n∑

r=1

r−
3
4αβ
)
≤ C


n−1 if αβ > 4,

n−1(log(n))2 if αβ = 4,

n1−αβ/2 if 2 < αβ < 4,

which shows (4.42).
Now, we start deriving the bounds for the terms γ26.1, γ26.2 and γ26.3. First, we consider

the quantity γ26.1. We have that

|Dz2(ϕ(Dz1Vn))| =
∣∣ϕ(Dz1Vn +D2

z1,z2Vn)− ϕ(Dz1Vn)
∣∣

≤ 1{|Dz1Vn|≤3}C|D
2
z1,z2Vn|+ 1{|Dz1Vn|>3}C1{|D2

z1,z2
Vn|>1}, (4.43)

where the inequality follows by using the mean-value theorem and the fact that ϕ′ is
bounded for the first term, and for the second term we use that ϕ is bounded and has
support in [−2, 2].

By (4.43) we obtain the decomposition

γ26.1 ≤ C
(∫

E[(1{|Dz1Vn|≤3}|D
2
z1,z2Vn|Dz1Vn)4]1/2E[|Dz1Vn|4]1/2 λ2(d(z1, z2))

+

∫
E[(1{|Dz1Vn|>3}1{|D2

z1,z2
Vn|>1}Dz1Vn)4]1/2E[|Dz1Vn|4]1/2 λ2(d(z1, z2))

)
≤ C

(
M +

∫
|An(z)|4 λ(dz)×

∫
1{|An(z)|>1} λ(dz)

)
, (4.44)

where the second inequality follows by the two estimates |D2
z1,z2Vn| ≤ An(z2), cf. (4.5)

and the line following it, and |Dz1Vn| ≤ An(z1), cf. (4.4). Lemma 4.8 shows that

∫
An(z)4 λ(dz) ≤ C


n−1 if αβ > 4,

n−1(log(n))3 if αβ = 4,

n2−
3
4αβ if 2 < αβ < 4,

(4.45)

and Lemma 4.6 implies that∫
1{An(z)>1} λ(dz) ≤

∫
R2

min
(
1, An(x, s)4

)
λ(dx, ds) (4.46)

≤ C


n−1 if αβ > 4,

n−1 log(n) if αβ = 4,

n(2−αβ)/2 if 2 < αβ < 4.
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Hence from (4.44), (4.45), (4.46) and (4.42) we deduce the inequality

γ26.1 ≤ C


n−1 if αβ > 4,

n−1(log(n))2 if αβ = 4,

n3−
5
4αβ if 2 < αβ < 4.

(4.47)

Since ϕ is bounded we have that

γ26.2 =

∫
E[ϕ(Dz1Vn)2(Dz1Vn)4]1/2E[|D2

z2,z1Vn|
4]1/2 λ2(d(z1, z2)) ≤ CM, (4.48)

and

γ26.3 =

∫
E[(Dz2(ϕ(Dz1Vn)Dz1Vn))4]1/2E[|D2

z2,z1Vn|
4]1/2 λ2(d(z1, z2))

≤ C
∫
E[(Dz1Vn)4]1/2E[|D2

z2,z1Vn|
4]1/2 λ2(d(z1, z2)) = CM. (4.49)

The inequalities (4.47), (4.48), (4.49) and (4.42) now imply (4.41), and the proof of
the lemma is complete.

Proof of Theorem 1.1 for the Kolmogorov distance. We now combine the statements of
our second-order Poincaré inequality (4.31), and Lemmas 4.3, 4.4, 4.7, 4.10 and 4.11.
For αβ ≥ 8/3 we have the inequality

dK(Vn/vn, Z) ≤ C(γ1 + γ2 + γ3 + γ4 + γ5 + γ6)

≤ C


n−1/2 if αβ > 4,

n−1/2 log(n) if αβ = 4,

n(2−αβ)/4 if 8
3 ≤ αβ < 4.

On the other hand, for 2 < αβ < 8/3 we will use the bound

dK (Vn/vn, Z) ≤ 2
√
dW (Vn/vn, Z) ≤ Cn(2−αβ)/4,

which follows from (1.12) and the result of Theorem 1.1 for the Wasserstein distance.
Thus, we obtain the assertion of Theorem 1.1 for the Kolmogorov distance.

All our corollaries, i.e., Corollaries 1.3–1.6, follow directly from Theorem 1.1.
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