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Abstract

In this work we develop stochastic control methods for the study of large deviation
principles (LDP) for certain interacting particle systems. Although such methods have
been well studied for analyzing large deviation properties of small noise stochastic
dynamical systems [7] and of weakly interacting particle systems [6], this is the first
work to implement the approach for Brownian particle systems with a local interaction.
As an application of these methods we give a new proof of the large deviation principle
from the hydrodynamic limit for the Ginzburg-Landau model studied in [10]. Along the
way, we establish regularity properties of the densities of certain controlled Markov
processes and certain results relating large deviation principles and Laplace principles
in non-Polish topological spaces that are of independent interest. The proof of the LDP
is based on characterizing subsequential hydrodynamic limits of controlled diffusions
with nearest neighbor interaction that arise from a variational representation of
certain Laplace functionals. This proof also yields a new representation for the rate
function which is very natural from a control theoretic point of view. Proof techniques
are very similar to those used for the law of large number analysis, namely in the
proof of convergence to the hydrodynamic limit (cf. [15]). Specifically, the key step
in the proof is establishing suitable bounds on relative entropies and Dirichlet forms
associated with certain controlled laws. This general approach has the promise to be
applicable to other interacting Brownian systems as well.
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Large deviations for the Ginzburg-Landau model

1 Introduction and notation

We consider the Ginzburg-Landau model in finite volume, namely the following system
of interacting diffusions in RN :

dXN
i (t) = dZNi (t)− dZNi+1(t),

dZNi (t) =
N2

2

[
φ′
(
XN
i−1(t)

)
− φ′

(
XN
i (t)

)]
dt+NdBi(t) (1.1)

on some finite time horizon 0 ≤ t ≤ T for 1 ≤ i ≤ N . The random variable XN
i (t) is

thought of as the amount of charge at the site i/N on the periodic lattice {1/N, . . . , (N −
1)/N, 1}, and we identify ZNN+1 and XN

N+1 with ZN1 and XN
1 respectively. Here {Bi(t)}∞i=1

are independent standard one-dimensional Brownian motions given on some probability
space (V,F ,P) and φ : R→ R is a twice continuously differentiable function such that∫

R

exp(−φ(x))dx = 1,

M(λ)
.
=

∫
R

exp(λx− φ(x)) <∞ for all λ ∈ R, (1.2)

and ∫
R

exp(σ|φ′(x)| − φ(x))dx <∞ for all σ > 0. (1.3)

The process XN = (XN
i )Ni=1 is a RN -valued Markov process with generator given by

LN .
=
N2

2

N∑
i=1

V 2
i −

N2

2

N∑
i=1

[φ′(xi)− φ′(xi+1)]Vi, (1.4)

where Vi = ∂i − ∂i+1 and ∂i denotes the partial derivative with respect to xi. Let Φ be
the probability measure on R defined by Φ(dx)

.
= e−φ(x)dx, and let ΦN be the measure

on RN defined by ΦN (dx)
.
= Φ(dx1)Φ(dx2) . . .Φ(dxn). One may check via integration by

parts that LN is a symmetric operator on L2(RN ,Φ) and that therefore, ΦN defines an
invariant measure for the diffusion XN . Throughout this work, XN will be the stationary
process obtained by taking XN (0) distributed according to ΦN .

Associated with the collection (XN
i (t))Ni=1 for t ≥ 0, consider the signed measure on

the circle S (namely the interval [0, 1] with its end points identified), defined by

µN (t, dθ)
.
=

1

N

N∑
i=1

XN
i (t)δi/N (dθ). (1.5)

In this work we establish a large deviation principle for the stochastic process {µN (t)}N∈N
that takes values in the spaceMS of signed measures on S.

Hydrodynamic limits for the sequence of signed measure valued stochastic processes
given by (1.5) were first investigated in the seminal work of [15] using techniques based
on estimates on relative entropies and Dirichlet forms (governing the rate of change of
relative entropies). A subsequent paper [10] laid the mathematical foundations of the
large deviation theory for such interacting particle systems. The methods developed
in [10] for the large deviation analysis have been used and extended in a variety of
interacting particle system settings such as the nongradient Ginzburg-Landau model
[22], the Ginzburg-Landau ∇φ-interface model [14], the infinite volume versions of the
Ginzburg-Landau model and the zero range processes [2] [21], the weakly asymmetric
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Large deviations for the Ginzburg-Landau model

simple exclusion process [18], the symmetric exclusion process in dimension at least
three [23] and interacting spin systems [9], to name a few. The analysis in all these
works proceeds via a precise control of moments for exponential martingales. The key
ingredient is a superexponential estimate (see, for example, Theorem 2.2 of [21]) that is
used to replace the correlation fields appearing in the exponential martingales by suitable
functions of the density field. In general, superexponential probability estimates are the
most technical parts of the large deviation proofs for such systems. We note however
that such estimates have been established for some infinite volume and non-equilibrium
settings (see [21], [2]) using the so-called “one-block” and “two-block” estimates. In
other works, large deviation problems for some weakly asymmetric models have been
addressed via model-specific computations [12].

The goal of this work is to develop stochastic control methods for studying large
deviation properties of interacting particle systems of the form discussed above. Specif-
ically, we give a new proof of the large deviation principle originally obtained in [10]
using certain stochastic control representations and weak convergence techniques. This
proof also yields a new representation for the rate function which is very natural from a
control theoretic point of view. The weak convergence techniques used in this work are
very similar to those developed for the proof of the law of large numbers in [15] (see for
example the proofs of Lemma 3.7 and Theorem 3.12). These techniques allow us to prove
tightness of certain controlled processes and to characterize the weak subsequential
limits. Proofs in [10] (see e.g. Lemmas 2.1, 2.2, 2.3, 2.7 and Theorem 2.5 therein), rely
on detailed superexponential probability estimates and exponential moment bounds. In
the proof presented here, we make use of one key such estimate that is given in [15,
Lemma 6.1] (see (2.8)). Besides that, most of our analysis replaces the use of detailed
exponential probability estimates like [10, Lemmas 2.1 and 2.2] by weak convergence
arguments for controlled processes. The starting point of our proof is the Bryc-Varadhan
equivalence between the Laplace principle and the large deviations principle for random
variables taking values in a Polish space. In the current work, the state space in which
LDP is established is not Polish. Nevertheless we show in Proposition 2.1, which is a
result of an independent interest, that it in fact suffices to establish a Laplace principle.
Using a stochastic control representation for exponential functionals of Brownian mo-
tions ([3], see also [8] and Lemma 3.2 in this work), the Laplace formulation reduces
the problem of large deviations to the study of asymptotics of costs associated with
certain controlled stochastic processes. Characterization of the limits of the controlled
processes and the costs relies on a qualitative understanding of properties such as
existence, uniqueness, and continuity (in the control) of solutions of certain controlled
analogues of the hydrodynamic limit PDE associated with the system (see Lemmas 3.13
and 3.14). We note that hydrodynamic limits of certain ‘mildly perturbed systems’ are
studied in [10], however the form of the perturbations and the role they play in the
analysis is somewhat different. In particular, the perturbations analyzed in [10] are
non-random and they appear only in the proof of the lower bound. In contrast, the
controlled systems studied in the current work correspond to random perturbations and
are central ingredients in the proofs of both the upper and the lower bound.

The general framework of the proof suggests that for any given system of interacting
particles the large deviation analysis hinges on a good understanding of the associated
hydrodynamic limit theory (i.e. law of large number behavior). In particular, for the
current setting, the weak convergence arguments that allow the characterization of
costs and controlled processes in the stochastic control representations rely on similar
estimates, on relative entropies and Dirichlet forms associated with probability densities
of the controlled processes, that form the basis of the hydrodynamic limit proof in [15] for
the uncontrolled system. Obtaining these estimates, which are relatively straightforward
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Large deviations for the Ginzburg-Landau model

for the uncontrolled system, is the most demanding part of the proof. One key technical
step in getting these estimates (Lemma 6.1) is establishing suitable regularity of the
density of the controlled process. Although many steps in the proof of this lemma are
classical in PDE literature, we have provided a full proof for keeping the presentation
self-contained. This lemma is crucial in the proof of Lemma 3.5 which relies on an
application of Itô’s formula. The proof framework developed in the current work will
be a starting point for the study of more general systems such as models with jumps,
nonreversible systems and infinite volume systems, and will be taken up in future work.

Finally we remark that although many of the arguments in the paper are standard
in the weak convergence approach to the theory of large deviations, we have given full
details in order to keep the presentation self-contained and readable.

Notation. We will use the following notation. For a Polish space E , P(E) will denote the
space of probability measures on E which will be equipped with the topology of weak
convergence; C(E) will denote the space of real valued continuous functions on E; and
C([0, T ] : E) will denote the space of continuous functions from [0, T ] to E equipped with
the topology of uniform convergence. A collection of P(E)-valued random variables will
be called tight if their probability distributions form a relatively compact collection in
P(P(E)). We will denote by L2([0, T ] : RN ) and L2([0, T ]×S) the Hilbert spaces of square
integrable functions from [0, T ] (resp. [0, T ]× S) to RN (resp. R). Given two probability
measures γ, θ on some measurable space, the relative entropy of γ with respect to θ will
be denoted as R(γ‖θ). For any subset A in the sigma-algebra of a measurable space
R, IA : R → R will denote the indicator function which takes the value one on A and
takes the value zero on the complement of A. We will denote by κ, κ1, κ2, . . . generic
finite constants that appear in the course of a proof. The values of these constants may
change from one proof to the next.

In order to give a precise statement of the result we begin by discussing the topology
on the spaceMS and on the space ofMS-valued continuous paths.

1.1 Topology on the space of signed measures

The spaceMS equipped with the topology of weak convergence is not metrizable
and therefore this topology is not convenient to work with. Instead we proceed as in
[15]. Consider the spaces {Ml

S}l∈N, whereMl
S is the space of signed measures on S

with total variation bounded by l, namelyMl
S consists of γ ∈MS such that

‖γ‖TV
.
= sup
f∈B1(S)

〈γ, f〉 ≤ l, (1.6)

where B1(S) is the space of real functions on S with ‖f‖∞
.
= supθ∈S |f(θ)| ≤ 1 and for

a signed measure γ and a bounded real function f on S, 〈γ, f〉 .=
∫
S
f(θ)γ(dθ). Note

thatMS = ∪l∈NMl
S . The spaceMl

S equipped with the topology of weak convergence
is a Polish space and one convenient metric (see Lemma 1.1) on this space is the
bounded-Lipschitz distance defined as

dBL(γ1, γ2)
.
= sup
f∈BL1(S)

|〈γ1 − γ2, f〉|, γ1, γ2 ∈Ml
S ,

where BL1(S) is the space of Lipschitz functions on S with ‖f‖BL
.
= max{‖f‖∞, ‖f‖L} ≤

1, and

‖f‖L
.
= sup
θ1,θ2∈S,θ1 6=θ2

∣∣∣∣f(θ1)− f(θ2)

d(θ1, θ2)

∣∣∣∣ ,
where d(θ1, θ2) is the length of the arc [θ1, θ2] of the circle S viewed as the interval
[0,1] with its endpoints identified. Let Ωl

.
= C([0, T ] :Ml

S) be the space ofMl
S-valued
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continuous paths. This is a Polish space with distance d∗ given as

d∗(µ1, µ2)
.
= sup

0≤t≤T
dBL(µ1(t, ·), µ2(t, ·)), µ1, µ2 ∈ Ωl. (1.7)

Let Ω = ∪l∈NΩl. Let C([0, T ] : MS) denote the space of all paths in MS that are
continuous in the topology of weak convergence. It is easy to check that for any
µ ∈ C([0, T ] : MS) and any continuous function f on S sup0≤t≤T

∫
S
f(θ)µ(t, dθ) < ∞.

Therefore, by the uniform boundedness principle (see for example [24])

sup
0≤t≤T

‖µ(t, ·)‖TV = sup
0≤t≤T

sup
f∈B1(S)

∫
S

f(θ)µ(t, dθ) <∞,

and thus Ω = C([0, T ] :MS). In particular, for any µ ∈ Ω such that for every t ∈ [0, T ],
µ(t, ·) has a density m(t, θ) (namely, µ(t, dθ) = m(t, θ)dθ),

sup
0≤t≤T

∫
S

|m(t, θ)|dθ <∞. (1.8)

The space Ω will be equipped with the direct limit topology, namely a set G ⊂ Ω is open
if and only if for every l ∈ N, Gl

.
= G ∩ Ωl is open in Ωl. Similarly, MS = ∪l∈NMl

S is
equipped with the corresponding direct limit topology.

The stochastic processes {µN (t)}N∈N introduced in (1.5) has sample paths in Ω,
i.e. {µN}N∈N is a sequence of Ω-valued random variables. The goal of this work is to
establish a large deviation principle for {µN}N∈N on Ω (equipped with the direct limit
topology). We record below a few useful facts about the topology used here. For x ∈ Ω

and a set A ∈ Ω, let d∗(x,A)
.
= inf{d∗(x, y) : y ∈ A}. For proofs of these facts, see

Appendix D.

Lemma 1.1. The following hold.

(a) For each l ∈ N, the weak convergence topology onMl
S is equivalent to the topology

induced by the bounded Lipschitz metric.

(b) Let {µn}n∈N ⊆ Ω be a sequence which converges to µ ∈ Ω. Then the following hold.

(i) For every f ∈ C(S), sup0≤t≤T |〈µn(t), f〉 − 〈µ(t), f〉| → 0 as n→∞.

(ii) For some l <∞, µn, µ ∈ Ωl for all n ∈ N.

(iii) d∗(µn, µ)→ 0 as n→∞.

(c) Let F be a closed set in Ω. Let for l ∈ (0,∞) and x ∈ Ω, h(x)
.
= d∗(x, F

l). Then h is a
continuous function on Ω.

1.2 Rate function

We now introduce the rate function associated with the collection {µN}N∈N. The
form of this rate function is different from that given in [10] (see Remark 1.3). Let for
λ ∈ R, ρ(λ)

.
= logM(λ), and let h(x)

.
= supλ∈R{λx−ρ(λ)} be the Legendre transform of ρ.

Let Ω̃ denote the collection of all µ in Ω such that for all 0 ≤ t ≤ T, µ(t, dθ) has a density
m(t, θ) (namely µ(t, dθ) = m(t, θ)dθ) that is weakly differentiable in θ and satisfies∫

[0,T ]×S
h(m(t, θ))dtdθ <∞, (1.9)∫

[0,T ]×S
[h′(m(t, θ))]2θdtdθ <∞, (1.10)
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where [·]θ denotes differentiation with respect to θ.
Let π ∈ P(R × S) such that, writing its disintegration as π(dx dθ) = π1(dx | θ)dθ,∫

R
|x|π1(dx|θ) < ∞ for a.e. θ, and with m0(θ) =

∫
R
xπ1(dx|θ),

∫
S
h(m0(θ))dθ < ∞. We

denote the collection of all such π as P∗(R× S).
Consider the P(R× S) valued random variable

LN (dx dθ)
.
=

1

N

N∑
i=1

δXNi (0)(dx)δi/N (dθ).

Then one can see that LN converges in probability to the deterministic measure π0

defined as
π0(dx dθ) = Φ(dx)dθ. (1.11)

Roughly speaking π ∈ P(R×S) of the form introduced above correspond to the collection
of probability measures for which the rate function associated with the LDP for LN ,
namely, R(π‖π0) is finite (see Remark 1.3 below).

For (u, π) ∈ L2([0, T ]× S : R)× P∗(R× S) we defineM∞(u, π) to be the collection of
all µ ∈ Ω̃, µ(t, dθ) = m(t, θ)dθ, such that m solves

∂tm(t, θ) =
1

2
[h′(m(t, θ))]θθ − ∂θu(t, θ), m(0, θ) = m0(θ) (1.12)

where the equation is interpreted in the weak sense, namely for any smooth function J
on S and any t ∈ [0, T ],∫

S

J(θ)m(t, θ)dθ −
∫
S

J(θ)m(0, θ)dθ

=
1

2

∫ t

0

∫
S

J ′′(θ)h′(m(s, θ))dθds+

∫ t

0

∫
S

J ′(θ)u(s, θ)dθds. (1.13)

Define I : Ω→ [0,∞] by

I(µ) = inf
{(u,π):µ∈M∞(u,π)}

[
1

2

∫ T

0

∫
S

|u(s, θ)|2dθds+R(π‖π0)

]
(1.14)

for µ ∈ Ω̃, where the infimum is over (u, π) ∈ L2([0, T ] × S : R) × P∗(R × S), and set
I(µ) =∞ for µ ∈ Ω \ Ω̃. By convention, infimum over an empty set is taken to be∞.

1.3 Statement of the main result

The following is the main result of this work. The proof is given in Section 2.

Theorem 1.2. I is a rate function on Ω, namely for every M <∞ {µ ∈ Ω : I(µ) ≤M} is
compact, and {µN}N∈N satisfies a large deviations principle on Ω with speed N and rate
function I.

Remark 1.3. In [10], Donsker and Varadhan proved a large deviations principle for
{µN}N∈N with rate function

Ĩ(µ) =

∫
S

h(m(0, θ))dθ +

∫ T

0

|∂tm(t, θ)− [h′(m(t, θ))]θθ|−1dt,

if µ has a density such that µ(t, dθ) = m(t, θ)dθ, and I(µ) = ∞ otherwise. Here, | · |−1

denotes the Sobolev H−1 semi-norm, i.e. the dual of the Sobolev H1 semi-norm (see [1]).
By the uniqueness of rate functions (see for example [11, Theorem 1.3.1]) and Theorem
1.2, it follows that I = Ĩ . This fact can also be verified directly by using the identities∫
S

h(m(0, θ))dθ=inf

{
R(π‖π0) : π∈P∗(R×S) and

∫
R

xπ1(dx|θ)=m(0, θ) for every θ∈S
}
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and∫ T

0

|∂tm(t, θ)− [h′(m(t, θ))]θθ|−1dt

= inf

{∫ T

0

∫
S

|u(t, θ)|2dθdt : u ∈ L2([0, T ]× S) and ∂θu = ∂tm−
1

2
[h′(m(t, θ)]θθ

}
.

The form of the rate function given in (1.14) emerges naturally from the weak conver-
gence approach to the proof of the large deviation principle when one identifies the
limit points of controls and controlled processes in the variational representation in
(3.3). It combines features of cost representations for rate functions associated with
Sanov’s theorem and small noise problems for stochastic dynamical systems. This form
also suggests how to approach the proof of the lower bound using stochastic control
representations. We note that representations for rate functions in terms of control
problems is not new and similar representations have been given for many different
large deviation problems in the literature (see [11, 5] for many such examples).

Organization. Rest of the paper is organized as follows. In Section 2 we provide the
proof of our main result, namely Theorem 1.2. The proof relies on Proposition 2.1 which
says that it suffices to prove certain Laplace asymptotics and compactness properties
of level sets of I. These properties are established in Theorem 2.2 and Lemma 2.3.
Proofs of Proposition 2.1, Theorem 2.2, and Lemma 2.3 are given in Sections B, 3, and 4
respectively.

Section 3 that establishes the desired Laplace asymptotics (namely Theorem 2.2)
relies on several other results. The first two key lemmas are Lemma 3.4 and 3.5 that
give suitable bounds on relative entropies and Dirichlet forms. The proofs of these two
lemmas and of a key lemma on regularity of densities of controlled processes (Lemma
6.1) are given in Section 6. The proof of Theorem 2.2 also uses a potpourri of tightness
and weak convergence results (Lemmas 3.7–3.11) some of which are quite standard.
The proof of Lemma 3.7 is in Section 7 while Lemmas 3.8–3.11 are proved in Section
8. Another important result needed in the proof of Theorem 2.2 is the characterization
of weak limits of controls and controlled processes. This result, formulated in Theorem
3.12 is proved in Section 5. The final set of results needed for the proof of Theorem 2.2
are Lemmas 3.13 and 3.14 that give existence, uniqueness and continuity properties of
the controlled hydrodynamic PDE (equation (1.12)). These lemmas are proved in Section
C. Based on the above results, the proof of Theorem 2.2 is completed in Sections 3.2.4
and 3.3.2.

Thus the overall organization is as follows. Section 3: Proof of Theorem 2.2; Section 4:
Proof of Lemma 2.3; Section 5: Proof of Theorem 3.12; Section 6: Proofs of Lemmas 3.4
and 3.5 and the regularity lemma, Lemma 6.1; Section 7: Proof of Lemma 3.7; Section 8:
Proofs of Lemmas 3.8, 3.9, 3.10, and 3.11; Section B: Proof of Proposition 2.1; Section C:
Proofs of Lemmas 3.13 and 3.14. Finally Section D gives the proof of Lemma 1.1.

2 Proof of Theorem 1.2

In this section we present the proof of Theorem 1.2. The main ingredient in the
approach we take is the following result which says that in order to prove the large
deviation principle it suffices to prove certain Laplace asymptotics and certain compact-
ness properties of the function I. Recall that a function I : E → [0,∞] is called a rate
function if it has compact sublevel sets, i.e. for every M < ∞, the set {x : I(x) ≤ M}
is a compact subset of E . For a sequence of random variables {ZN}N∈N taking values
in a Polish space E , it is well known that (cf. [11, Theorem 1.2.3]) the large deviations
principle is equivalent to the Laplace principle, that is, {ZN}N∈N satisfies the large

EJP 25 (2020), paper 26.
Page 7/51

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP434
http://www.imstat.org/ejp/


Large deviations for the Ginzburg-Landau model

deviations principle with rate function I if and only if I has compact sub-level sets and
for all bounded and continuous functions F ,

lim
N→∞

1

N
logE exp(−NF (ZN )) = − inf

x∈E
{I(x) + F (x)}. (2.1)

Since Ω is not a Polish space, but instead an infinite union of Polish spaces, we will need
the following generalization of the above result. The proof is given in Appendix B.

For a set A ⊂ Ω, Al will denote A ∩ Ωl. For A ⊂ Ω and I : Ω → [0,∞], let I(A)
.
=

infx∈A I(x).

Proposition 2.1. Suppose that {ZN}N∈N is a sequence of Ω-valued random variables
such that

lim
l→∞

lim sup
N→∞

1

N
log
(
P(ZN ∈ Ω \ Ωl)

)
= −∞. (2.2)

Let I : Ω→ [0,∞]. Then the following hold.

(a) If for all continuous and bounded g : Ω→ R

lim inf
N→∞

1

N
logE[exp(−Ng(ZN ))] ≥ − inf

µ∈Ω
{g(µ) + I(µ)}, (2.3)

then for every open set G ⊂ Ω,

lim inf
N→∞

1

N
logP(ZN ∈ G) ≥ −I(G). (2.4)

(b) Suppose that for every M < ∞, the set ΓM
.
= {µ ∈ Ω : I(µ) ≤ M} is a compact

subset of Ω. If for all continuous and bounded g : Ω→ R

lim sup
N→∞

1

N
logE[exp(−Ng(ZN ))] ≤ − inf

µ∈Ω
{g(µ) + I(µ)}, (2.5)

then for every closed set F ⊂ Ω

lim sup
N→∞

1

N
logP(ZN ∈ F l) ≤ −I(F l), for all l ∈ N, (2.6)

and

lim sup
N→∞

1

N
logP(ZN ∈ F ) ≤ −I(F ). (2.7)

The following result shows that for the collection {µN}N∈N introduced in (1.5), the
Laplace asymptotics of the form needed in Proposition 2.1 are satisfied. The proof is
given in Section 3.

Theorem 2.2. For all bounded and continuous g : Ω→ R,

lim
N→∞

− 1

N
logE exp(−Ng(µN )) = inf

µ∈Ω
[I(µ) + g(µ)]

where I is defined by (1.14).

The following result gives a compactness property of sub-level sets of I. The proof is
given in Section 4.

Lemma 2.3. Let I be as in (1.14). For all l ∈ N and M < ∞ the set Γl,M
.
= {µ ∈ Ωl :

I(µ) ≤M} is a compact subset of Ωl.
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2.1 Completing the Proof of Theorem 1.2

In order to prove the first statement of Theorem 1.2, namely I is a rate function on
Ω, it suffices in view of Lemma 2.3 to show that for every M <∞, there exists a l ∈ N
such that ΓM

.
= {µ ∈ Ω : I(µ) ≤ M} ⊂ Γl,M . We argue via contradiction. Suppose that

there exists M <∞ such that for every l ∈ N there exists µl /∈ Ωl such that I(µl) ≤M.

From the lower semi-continuity of total variation it follows that Ωl is closed in Ωl
′

for
all l′ ≥ l. Thus, (Ωl)c is open in Ω. The proof of [15, Lemma 6.1] shows that there exist
C1, C2, l0 ∈ (0,∞) such that

P(µN /∈ Ωl) ≤ C1e
−C2Nl for all l ≥ l0 and N ∈ N. (2.8)

In particular (2.2) holds with ZN replaced with µN . It now follows from Proposition
2.1(a) and Theorem 2.2 that for each l ∈ N

lim inf
N→∞

1

N
logP(µN ∈ (Ωl)c) ≥ −I((Ωl)c) ≥ −I(µl) ≥ −M. (2.9)

However this contradicts (2.8) and therefore the proof that I is a rate function on Ω is
complete. The second part of the theorem is now immediate from (2.8) (which, as noted
previously, implies (2.2) with ZN replaced with µN ), Proposition 2.1 and Theorem 2.2.

3 Proof of Theorem 2.2

3.1 Variational representation

The following representation formula for exponential functionals of F (µN ) follows
from [8, Proposition 4.1]. The latter result builds upon ideas in the proof of a similar
representation for functionals of a finite dimensional Brownian motion in [3]. Let
(V̄, F̄ , P̄) be a complete probability space on which we are given an N -dimensional
Brownian motion, which we denote once more as (B1, . . . BN ) = BN , and a RN -valued
random variable X̄N (0) independent of BN and with probability law ΠN . Let {F̄t} be
any filtration satisfying the usual conditions (namely the filtration is right-continuous
and F̄0 contains all P̄-null sets) such that BN is a {F̄t}-Brownian motion and X̄N (0) is F̄0

measurable. Let SΠN
.
= (V̄, F̄ , {F̄t}, P̄, X̄N (0),BN ) and consider the following collection

of processes

AN (SΠN )
.
= {ψ : ψ = (ψi)

N
i=1 and each ψi is a real-valued

F̄t progressively measurable process}.

Let ANb (SΠN ) denote the collection ψN ∈ AN (SΠN ) such that for some M ∈ (0,∞),∫ T
0
|ψN (s)|2ds ≤M a.s. For a ψN ∈ ANb (SΠN ), let

B̄Ni (t)
.
= Bi(t) +

∫ t

0

ψNi (s)ds, t ∈ [0, T ], i = 1, . . . N.

Let X̄N (t)
.
= (XN

i (t))Ni=1 be the solution to the system of equations defined the same way
as (1.1) but with B̄Ni (t) in place of Bi(t), i.e.

dX̄N
i (t)

.
= dZ̄Ni (t)− dZ̄Ni+1(t),

dZ̄Ni (t)
.
=
N2

2

[
φ′
(
X̄N
i−1(t)

)
− φ′

(
X̄N
i (t)

)]
dt+NdB̄i(t). (3.1)

We shall refer to X̄N as the controlled process and to XN as the uncontrolled process.
Let µ̄N (t) denote the signed measure on the unit circle associated with the controlled
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process X̄N
t , defined in a manner analogous to (1.5). Given a probability measure

ΠN ∈ P(RN ), we consider the disintegration

ΠN (dx)
.
= Π1(dx1)Π2(dx2|x1) . . .ΠN (dxN |x1, . . . , xN−1)

.
=

N∏
i=1

Φ̄Ni (x, dxi),

and with X̄N (0) distributed as ΠN , we define a family of P(R)-valued random variables
by

Φ̄N
i (dx)

.
= Φ̄Ni (X̄N (0), dx). (3.2)

In order to emphasize the initial distribution ΠN , we will sometimes write the probability
measure P̄ as P̄ΠN and denote the corresponding expectation by ĒΠN . The following
representation is a consequence of [8, Proposition 4.1] (see also Lemma 5.1 therein).

Lemma 3.1. Let F : Ω→ R be a continuous and bounded function. Then for all N ∈ N

− 1

N
logE exp(−NF (µN ))

= inf
ΠN ,SΠN

inf
ψN∈ANb (SΠN )

ĒΠN

[
1

N

N∑
i=1

(
R(Φ̄N

i ‖Φ) +
1

2

∫ T

0

|ψNi (s)|2ds

)
+ F (µ̄N )

]
, (3.3)

where the outer infimum is over all ΠN ∈ P(RN ) and all systems SΠN .

An examination of the proof of [8, Proposition 4.1] and [3] (see [4, Lemma 3.5]) shows
that the class of controls on the right side above can be restricted as follows. For N ∈ N,
let ANs (SΠN ) denote the class of simple adapted processes ψN ∈ ANb (SΠN ), namely for
each i = 1, . . . , N , ψNi is of the form

ψNi (t)
.
=
∑
j

UijI(tj ,tj+1](t) (3.4)

where 0 = t0 ≤ t1 ≤ . . . ≤ tK = T is a partition of [0, T ] and Uij is a family of real random
variables such that Uij is measurable with respect to σ({BN (t) : 0 ≤ t ≤ tj , X̄N (0)}) and
for some C ∈ (0,∞)

max
i,j
|Uij | ≤ C (3.5)

almost surely. Note that the partition and the constant C are allowed to depend on
N and the control ψN . The following result says that ANb (SΠN ) in Lemma 3.1 can be
replaced by the smaller class ANs (SΠN ).

Lemma 3.2. Let F : Ω→ R be a continuous and bounded function. Then for all N ∈ N

− 1

N
logE exp(−NF (µN ))

= inf
ΠN ,SΠN

inf
ψN∈ANs (SΠN )

ĒΠN

[
1

N

N∑
i=1

(
R(Φ̄N

i ‖Φ) +
1

2

∫ T

0

|ψNi (s)|2ds

)
+ F (µ̄N )

]
, (3.6)

where the outer infimum is over all ΠN ∈ P(RN ) and all systems SΠN .

Remark 3.3. The starting point for the proofs of Lemmas 3.1 and 3.2 is the celebrated
representation formula due to Donsker and Varadhan (cf. [5, Proposition 2.2]). The
paper [3] used this result together with Girsanov theorem and martingale representation
theorem to give a stochastic control representation for exponential functionals of a finite
dimensional Brownian motion. The paper [8] extended this representation to the case of
functionals that depend, in addition to a Brownian motion, on an independent random
variable with values in a Polish space. The proof of this extension combined ideas of
proofs for variational representations given in [3] with those in the proofs of variational
representations used in Sanov’s theorem proof based on weak convergence methods (cf.
[5, Proposition 3.1]).
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3.2 The Laplace upper bound

In this section we will prove the inequality

lim sup
N→∞

1

N
logE exp(−NF (µN )) ≤ − inf

µ∈Ω
[I(µ) + F (µ)] (3.7)

for all bounded and continuous F : Ω→ R, where I is defined by (1.14). This inequality,
together with the complementary inequality given in Section 3.3 will complete the proof
of Theorem 2.2. We begin with some key bounds on certain relative entropies and
Dirichlet forms.

3.2.1 Bounds on relative entropy and an associated Dirichlet form

In this section we present two technical lemmas. Lemma 3.4 tells us that if the relative
entropy HN (0) of the initial measure ΠN with respect to ΦN grows linearly with N , then
so does the relative entropy HN (t) between the law of the controlled process X̄N (t) and
that of the uncontrolled (stationary) process XN (t) at time t, for suitable collection of
controls. This lemma will be key in proving tightness of the signed measure valued
processes {µ̄N}N∈N as well as in characterizing the subsequential hydrodynamic limits
of these controlled processes.

Lemma 3.4. Let ΠN ∈ P(RN ) for each N ∈ N. Consider a sequence of controls
{ψN}N∈N such that ψN ∈ ANs (SΠN ), for some system SΠN , for each N . Suppose that for
some C0 ∈ (0,∞)

sup
N∈N

1

N

N∑
i=1

∫ T

0

|ψNi (s)|2ds ≤ C0, sup
N∈N

1

N
HN (0)

.
= sup
N∈N

1

N
R(ΠN‖ΦN ) ≤ C0. (3.8)

Denote the controlled process associated with the controls ψN and initial distribution
ΠN as X̄N and let for t ∈ [0, T ], Q̄ΠN (t) denote the law of the controlled random variable
X̄N (t). Then, there exists CT ∈ (0,∞) such that for every t ∈ [0, T ],

HN (t)
.
= R(Q̄ΠN (t)‖ΦN ) ≤ CTN for all N ∈ N. (3.9)

For any function f on RN that is continuously differentiable along the vector fields
V1, . . . , VN , we define the Dirichlet form

DN (f)
.
=

N∑
i=1

∫
RN

(Vif(x))2ΦN (dx),

where as before Vi = ∂i − ∂i+1. If, in addition, f is positive, we define IN (f), given in
terms of the Dirichlet form of the square root of f , as follows:

IN (f) = 4DN (
√
f) =

N∑
i=1

∫
RN

(Vif(x))2

f(x)
ΦN (dx).

Lemma 3.5 gives an upper bound on IN (f).

Lemma 3.5. For N ∈ N, let ΠN , ψN , X̄N be as in Lemma 3.4. Then for each t ∈ [0, T ]

and N ∈ N, X̄N (t) has a density {p̄N (t, x) : x ∈ RN} with respect to ΦN which is
continuously differentiable along the vector fields V1, . . . , VN and satisfies the following
bound for some C ∈ (0,∞):

IN

(
1

T

∫ T

0

p̄N (s, ·)ds

)
≤ C

N
for all N ≥ 1. (3.10)
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Lemmas 3.4 and 3.5 provide the key technical estimates in proving that subsequential
hydrodynamic limits of controlled processes are weak solutions of (1.12) via the ‘block
estimate method’ of [15]. More precisely, these two lemmas will allow us to apply [15,
Theorem 4.1], which will be the main ingredient in the proof of part (v) of Theorem 3.12
stated in Section 3.2.3 below (see proof of (5.8)). Lemmas 3.4 and 3.5 will be proved in
Section 6.

Remark 3.6. The use of entropy and Dirichlet form bounds as above in proving hydro-
dynamic limits of interacting particle systems is not new [19]. However, in our case, we
need these estimates for controlled processes which, a priori, lack regularity properties
that come for free in the classical models. Indeed, a major technical step in obtaining
the estimate in Lemma 3.5 is proving a regularity lemma for the density of controlled
processes (see Lemma 6.1).

3.2.2 Tightness results

In this section, we collect several lemmas that provide certain tightness properties and
characterizations of limit points. Lemma 3.7 establishes the tightness of the controlled
processes {µ̄N}N∈N in Ω for a suitable class of controls.

Lemma 3.7. For N ∈ N, let ΠN , ψN , X̄N be as in Lemma 3.4. Then the associated
sequence of controlled signed measure valued processes {µ̄N}N∈N is a tight sequence of
Ω-valued random variables.

Lemma 3.7 will be proved in Section 7.

For N ∈ N, fix ΠN ∈ P(RN ) and let X̄N (0) be a RN -valued random variable with
distribution ΠN . Let Φ̄N

i be P(R)-valued random variables as defined in (3.2). Define a
collection of P(R× S)-valued random variables by

νNi (dxdθ)
.
= Φ̄N

i (dx)δi/N (dθ), i = 1, . . . N, N ∈ N (3.11)

and let νN (dxdθ) = 1
N

∑N
i=1 ν

N
i (dxdθ). Also consider a related random probability mea-

sure on R× S given by

L̄N (dxdθ)
.
=

1

N

N∑
i=1

δX̄Ni (0)(dx)δi/N (dθ). (3.12)

The random measures νN can be intrepreted as certain (conditional) means of L̄N . Al-
though (as shown in Lemma 3.9) νN and L̄N are asymptotically the same, it is convenient
to consider both sequences of random measures. Note that µ̄N (0, dθ) =

∫
R
xL̄N (dxdθ)

and subsequential limits of L̄N can thus be used to produce subsequential limits of
µ̄N (0, dθ) (see Lemma 3.10 below). However, the measures {νN}N∈N are easier to work
with as tighness for these measures can be shown by simple relative entropy arguments.
The following lemmas establish tightness of {L̄N , νN}N∈N and also characterize the
subsequential limits, showing in particular that tightness of {L̄N}N∈N is related to that
of {νN}N∈N and their weak limits along a common subsequence, if they both exist, are
necessarily the same.

Lemma 3.8. For N ∈ N, let Φ̄N
i , L̄N and νN be as above. Suppose that for some

C ∈ (0,∞)

E

(
1

N

N∑
i=1

R(Φ̄N
i ‖Φ)

)
≤ C. (3.13)

Then
{(
L̄N , νN

)}
N∈N is a tight collection of (P(R× S))2-valued random variables.
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Lemma 3.9. ForN ∈ N, let Φ̄N
i , L̄N and νN be as in Lemma 3.8. Suppose {(L̄N , νN )}N∈N

converges in distribution to (L̄, ν) along some subsequence. Then L̄ = ν with probability
1. Furthermore, the second marginal of L̄ is equal to λ, the Lebesgue measure on S.

Lemma 3.10. For N ∈ N, let Φ̄N
i , L̄N and νN be as in Lemma 3.8. Suppose that

{L̄N}N∈N converges in distribution to L̄ along a subsequence. Then,∫
S

∫
R

|x|L̄(dxdθ) <∞, a.s. (3.14)

Furthermore, {µ̄N (0, dθ)}N∈N = {
∫
R
xL̄N (dxdθ)}N∈N converges in distribution inMS to

some limit µ̄(0, dθ) along the same subsequence, and

µ̄(0, dθ) =

∫
R

xL̄(dxdθ), a.s. (3.15)

Lemma 3.11. Let π∗ ∈ P(R × S) be such that its second marginal is the Lebesgue
measure on S. For N ∈ N, define

Φ̄Ni (dx)
.
= N

∫ i/N

(i−1)/N

π∗1(dx|θ)dθ, 1 ≤ i ≤ N, (3.16)

where π∗(dx, dθ) = π∗1(dx|θ)dθ. Suppose that R(π∗‖π0) < ∞, where π0 was defined in
(1.11). Let X̄N (0)

.
= (X̄1(0), . . . , X̄N (0)) be a RN -valued random variable with distribu-

tion

ΠN (dx)
.
= Φ̄N1 (dx1) . . . Φ̄NN (dxN ).

Then {L̄N}N∈N defined by (3.12) converges in probability to π∗.

The proofs of Lemmas 3.8, 3.9, 3.10 and 3.11 are quite standard, however for
completeness, details are given in Section 8.

3.2.3 Characterizing subsequential limits of controlled processes

The following theorem characterizes subsequential hydrodynamic limits of the controlled
processes {µ̄N}N∈N and, in particular, establishes that any subsequential hydrodynamic
limit has a density which is a solution to (1.12). Let for N ∈ N, ψN = (ψN1 , . . . ψ

N
N ) ∈

L2([0, T ] : RN ). Associated with such a ψN , define uN = uN (ψN ) ∈ L2([0, T ]× S) by

uN (t, θ)
.
=

N∑
i=1

ψNi (t)I((i−1)/N,i/N ](θ), (t, θ) ∈ [0, T ]× S. (3.17)

Note that ∫
[0,T ]×S

|uN (t, θ)|2dtdθ =
1

N

N∑
i=1

∫ T

0

|ψNi (t)|2dt.

In particular if {ψN} is a sequence as in Lemma 3.4 satisfying the first bound in (3.8),
then the associated sequence {uN}, uN = uN (ψN ) takes values in the set

SC0

.
=

{
u ∈ L2([0, T ]× S) :

∫
[0,T ]×S

|u(t, θ)|2dθdt ≤ C0

}
.

Equipped with the topology of weak convergence on the Hilbert space L2([0, T ] × S),
SC0

is a compact metric space and thus {uN}N∈N regarded as a sequence of SC0
-valued

random variables is automatically tight.
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Theorem 3.12. Suppose that ΠN , ψN , X̄N are as in Lemma 3.7 and suppose that along
some subsequence

{(
µ̄N , uN

))
}N∈N converges in distribution to (µ̄, u) as Ω×SC0

-valued
random variables. Then the following hold almost surely.

(i) There is a measurable function m̄ on [0, T ]× S such that for almost every t ∈ [0, T ],
m̄(t, ·) ∈ L1(S) is the density of µ̄(t, dθ), namely µ̄(t, dθ) = m̄(t, θ)dθ.

(ii) m̄(0, θ) is the density of µ̄(0, dθ), namely µ̄(0, dθ) = m̄(0, θ)dθ.

(iii)
∫

[0,T ]×S h(m̄(t, θ))dtdθ <∞ and
∫
S
h(m̄(0, θ))dθ <∞.

(iv) For a.e. t ∈ [0, T ], the map θ 7→ h′(m̄(t, θ)) is weakly differentiable and∫
[0,T ]×S

[∂θ (h′(m̄(t, θ)))]
2
dtdθ <∞.

(v) m̄ is a weak solution to (1.12), i.e. for any smooth J on S and t ∈ [0, T ], (1.13) is
satisfied with m replaced by m̄, m0 = m̄(0, ·), and u as above.

Theorem 3.12 will be proved in Section 5.

3.2.4 Completing the proof of Laplace upper bound

We now complete the proof of the inequality in (3.7). Fix F bounded and continuous on
Ω and let ε ∈ (0, 1). Using Lemma 3.2 we can choose for each N ∈ N, ΠN ∈ P(RN ), a
system SΠN and ψN ∈ ANs (SΠN ) such that

− 1

N
logE exp(−NF (µN )) ≥ ĒΠN

[
1

N

N∑
i=1

(
R(Φ̄N

i ‖Φ) +
1

2

∫ T

0

|ψNi (s)|2ds

)
+ F (µ̄N )

]
− ε.

(3.18)
Since F is bounded, there is a C ∈ (0,∞) such that

sup
N∈N

ĒΠN

(
1

N

N∑
i=1

R(Φ̄N
i ‖Φ)

)
≤ C, sup

N∈N
ĒΠN

(
1

2N

N∑
i=1

∫ T

0

|ψNi (s)|2ds

)
≤ C. (3.19)

Now fix M = C ∨ (2(‖F‖∞C + 1)/ε). Define stopping times

τN,M
.
= inf

{
t ≥ 0 :

1

2N

N∑
i=1

∫ t

0

|ψNi (s)|2ds ≥M

}

and controls ψN,Mi (s)
.
= ψNi (s)1[0,τN,M ](s). Denote the controlled measure valued process

µ̄N obtained by replacing ψNi with ψN,Mi as µ̄N,M . Then

ĒΠN

[
1

2N

N∑
i=1

∫ T

0

|ψNi (s)|2ds+ F (µ̄N )

]

≥ ĒΠN

[
1

2N

N∑
i=1

∫ T

0

|ψN,Mi (s)|2ds+ F (µ̄N,M )

]
+ ĒΠN [F (µ̄N )− F (µ̄N,M )]

≥ ĒΠN

[
1

2N

N∑
i=1

∫ T

0

|ψN,Mi (s)|2ds+ F (µ̄N,M )

]
− 2‖F‖∞P̄ΠN [µ̄N 6= µ̄N,M ]

≥ ĒΠN

[
1

2N

N∑
i=1

∫ T

0

|ψN,Mi (s)|2ds+ F (µ̄N,M )

]
− ε, (3.20)
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where the last inequality follows from our choice of M and observing that

P̄ΠN [µ̄N 6= µ̄N,M ] ≤ P̄ΠN

[
1

2N

N∑
i=1

∫ T

0

|ψNi (s)|2ds ≥M

]
≤ C

M
.

Using (3.20) in (3.18) we have that

− 1

N
logE exp(−NF (µN ))

≥ ĒΠN

[
1

N

N∑
i=1

(
R(Φ̄N

i ‖Φ) +
1

2

∫ T

0

|ψN,Mi (s)|2ds

)
+ F (µ̄N,M )

]
− 2ε. (3.21)

For the rest of the argument we will suppress M from the notation and write ψN,M and
µ̄N,M simply as ψN and µ̄N respectively. Note that with the new defintion of ψN and µ̄N

we have that

sup
N∈N

1

2N

N∑
i=1

∫ T

0

|ψNi (s)|2ds ≤M a.s. (3.22)

Define uN = uN (ψN ) as in (3.17). By the lemmas in Section 3.2.2, we may find a
common subsequence along which {(uN , L̄N , νN , µ̄N )}N∈N converge in distribution, in
SM × (P(R × S))2 × Ω to (u, L̄, ν, µ̄). Using Fatou’s Lemma and the fact that the map

f 7→
∫ T

0

∫
S
|f(s, θ)|2dsdθ is lower semicontinuous on L2([0, T ] × S) with respect to the

weak topology, we have

lim inf
N→∞

ĒΠN

∫ 1

0

∫
S

|uN (s, θ)|2dsdθ ≥ Ē
∫ 1

0

∫
S

|u(s, θ)|2dsdθ. (3.23)

Note that L̄ = ν by Lemma 3.9 and that µ̄(0, dθ) =
∫
R
xL̄(dxdθ) by Lemma 3.10. Further-

more, from Theorem 3.12, ν ∈ P∗(R× S) and µ̄ ∈M∞(u, ν) a.s.
Define the random measure on R× S as

mN (dx dθ)
.
=

N∑
i=1

Φ̄N
i (dx)I(i/N,(i+1)/N ](θ)dθ.

By integrating against uniformly continuous test functions on R× S, it is clear that mN

converges weakly to the same limit as νN , namely ν. Moreover, by the chain rule for
relative entropies (see for example [11, Theorem C.3.1]), 1

N

∑N
i=1R(Φ̄N

i ‖Φ) = R(mN‖π0).

Therefore, by the lower semicontinuity of R(·‖π0),

lim inf
N→∞

1

N

N∑
i=1

R(Φ̄N
i ‖Φ) = lim inf

N→∞
R(mN‖π0) ≥ R(ν‖π0). (3.24)

Thus, by (3.21), (3.23), (3.24) and the continuity of F , we have

lim inf
N→∞

− 1

N
logE exp

(
−NF

(
µN
))

+ 2ε

≥ lim inf
N→∞

ĒΠN

(
F
(
µ̄N
)

+
1

N

N∑
i=1

(
R(Φ̄N

i ‖Φ) +
1

2

∫ T

0

|ψNi (s)|2ds

))

= lim inf
N→∞

ĒΠN

(
F
(
µ̄N
)

+R(mN‖π0) +
1

2

∫ T

0

∫
S

|uN (s, θ)|2dsdθ

)

≥ Ē

(
F (µ̄) +R(ν‖π0) +

1

2

∫ T

0

∫
S

|u(s, θ)|2dsdθ

)
≥ inf
µ∈Ω

[F (µ) + I(µ)] ,
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where the last inequality uses the fact that µ̄ ∈ M∞(u, ν) a.s. Since ε > 0 is arbitrary,
this completes the proof of (3.7).

3.3 Laplace lower bound

In this section we establish the complementary bound to (3.7), namely we show that
for every bounded and continuous F : Ω→ R,

lim inf
N→∞

1

N
logE exp(−NF (µN )) ≥ − inf

µ∈Ω
{F (µ) + I(µ)}. (3.25)

The two bounds together will complete the proof of Theorem 2.2. We begin with some
results on existence and uniqueness of solutions of controlled PDE in (1.12).

3.3.1 Existence and uniqueness of solutions to (1.12)

In this subsection, we present two lemmas which establish the existence, uniqueness
and continuity of solutions (with respect to u) of the “controlled hydrodynamic limit”
equation given in (1.12). The first lemma shows the existence of a solution to (1.12) if u is
smooth. The second lemma shows that if if m1 and m2 are solutions to (1.12) with same
initial condition and u1 and u2 in place of u, then the distance between the corresponding
elements of Ω is controlled by the L2-distance between u1 and u2. In particular, if we
choose u1 = u2, this will imply that any solution to (1.12) is unique (within a suitable
class).

Lemma 3.13. Let u ∈ C∞([0, T ]×S). Then for anym0 ∈ L1(S) satisfying
∫
S
h (m0(θ)) dθ <

∞, there exists a unique solution to the PDE (1.12). Furthermore, µ(t, dθ) = m(t, θ)dθ,
t ∈ [0, T ], defines an element of Ω, the function θ → m(t, θ) is weakly differentiable and
satisfies (1.9) and (1.10).

Lemma 3.14. (i) Suppose that µ1, µ2 ∈ Ω are such that for 0 ≤ t ≤ T, µi(t, dθ) has a
density mi(t, θ), namely, µi(t, dθ) = mi(t, θ)dθ, and that mi satisfies (1.9) and (1.10)
for i = 1, 2. Let u1, u2 ∈ L2([0, T ] × S), let m0 ∈ L1(S) satisfy

∫
S
h (m0(θ)) dθ < ∞,

and suppose that m1 and m2 are weak solutions to (1.12) with u replaced with u1

and u2 respectively and initial density m0 as above. Then

d∗(µ1, µ2) = sup
0≤t≤T

dBL(µ1(t, ·), µ2(t, ·)) ≤ eT/2‖u1 − u2‖2.

In particular, for any u ∈ L2([0, T ]× S), there is at most one µ ∈ Ω with a density
m(t, ·) for 0 ≤ t ≤ T that satisfies (1.9), (1.10) and solves (1.12) with m0 as above.

(ii) Suppose {un}n∈N is a sequence in C∞([0, T ]×S) that converges to u in L2([0, T ]×S).
Define µn ∈ Ω associated to un by µn(t, dθ) = mn(t, θ)dθ where mn is the weak
solution to (1.12) with un in place of u and m0 as in part (i). Suppose there exists a
weak solution m to (1.12) associated with the limiting u and the chosen m0. Define
µ ∈ Ω by µ(t, dθ) = m(t, θ)dθ. Then d∗(µn, µ) → 0 and the sequence {µn}n∈N is
uniformly bounded in total variation norm, namely supn∈N sup0≤t≤T ‖µn(t)‖TV <∞.
In particular, {µn}n∈N converges to µ in Ω.

Lemmas 3.13 and 3.14 will be proved in Appendix C.

3.3.2 Completing the proof of Laplace lower bound

The goal of this section is to show the bound in (3.25) for all bounded and continuous F .
We begin with the following lemma.

EJP 25 (2020), paper 26.
Page 16/51

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP434
http://www.imstat.org/ejp/


Large deviations for the Ginzburg-Landau model

Lemma 3.15. Suppose π∗ ∈ P∗(R× S) such that R(π∗‖π0) <∞ and u ∈ C∞([0, T ]× S).
Define for i = 1, . . . , N , Φ̄Ni ∈ P(R) as in (3.16) and ψNi ∈ L2([0, T ] : R) as

ψNi (t)
.
=

N∑
j=1

u

(
jT

N
,
i

N

)
I(jT/N,(j+1)T/N ](t), t ∈ [0, T ]. (3.26)

Define ΠN (dx) = Φ̄N1 (dx1) . . . Φ̄NN (dxN ) and Φ̄N
i
.
= Φ̄Ni . Associated with ΠN and {ψNi } as

above, let µ̄N be defined as in Section 3.1. Then

lim
N→∞

1

N

∫ T

0

N∑
i=1

|ψNi (t)|2dt =

∫ T

0

∫
S

|u(t, θ)|2dθdt, (3.27)

1

N

N∑
i=1

R(Φ̄N
i ‖Φ) ≤ R(π∗‖π0), for all N ∈ N (3.28)

and {µ̄N}N∈N converges to µ̄ in distribution in Ω where µ̄(t, dθ) = m(t, θ)dθ and m is the
unique weak solution of (1.12) with u as above and m0(θ)

.
=
∫
R
xπ∗1(dx|θ), θ ∈ S.

Proof. The first statement in the lemma is immediate from the uniform continuity of u.
The second is a consequence of Jensen’s inequality:

1

N

N∑
i=1

R(Φ̄N
i ‖Φ) =

1

N

N∑
i=1

R

(
N

∫ i/N

(i−1)/N

π∗1(dx|θ)dθ‖Φ

)

≤
N∑
i=1

∫ i/N

(i−1)/N

R(π∗1(dx|θ)‖Φ)dθ = R(π∗‖π0). (3.29)

Now consider the final statement. From the convergence in (3.27) and from the chain
rule for relative entropies,

1

N
R(ΠN‖ΦN ) =

1

N

N∑
i=1

R(Φ̄N
i ‖Φ) ≤ R(π∗‖π0) <∞,

and thus, by Lemma 3.7, {µ̄N}N∈N is tight.
Let µ̄ be any subsequential weak limit of {µ̄N}N∈N. By Lemma 3.10 and Lemma 3.11,

µ̄(0, dθ) = m0(θ)dθ, and by construction uN converges to u in L2([0, T ]× S). By Theorem
3.12 we now see that µ̄(t, dθ) has a density m̄(t, θ) for 0 ≤ t ≤ T and that m̄(t, θ) solves
(1.12) with u as above and initial condition m0. The unique solvability of this equation is
a consequence of Lemma 3.14. The result follows.

We now complete the proof of the Laplace lower bound (3.25). Fix F bounded and
continuous, and let ε > 0. Choose µ̄∗ ∈ Ω such that

F (µ̄∗) + I(µ̄∗) ≤ inf
µ∈Ω
{F (µ) + I(µ)}+ ε, (3.30)

and then choose u∗ ∈ L2([0, T ]× S) and π∗ ∈ P∗(R× S) such that µ̄∗ ∈M∞(u∗, π∗) and

I(µ̄∗) + ε ≥ 1

2

[∫ T

0

∫
S

|u∗(s, θ)|2dθds

]
+R(π∗‖π0). (3.31)

Fix δ ∈ (0, 1) and let u∗∗ ∈ C∞([0, T ]× S) be such that ‖u∗∗ − u∗‖2 ≤ δ
2(1+‖u∗‖2) . Let

m0(θ)
.
=
∫
R
xπ∗1(dx|θ) for θ ∈ S. Note that∫

S

h(m0(θ))dθ ≤
∫
S

R(π∗1(·|θ)‖Φ)dθ = R(π∗‖π0) <∞.
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Therefore, by Lemma 3.13 there exists µ̄∗∗ ∈ Ω such that µ̄∗∗(t, dθ) has a density m̄∗∗(t, θ)
for 0 ≤ t ≤ T, that satisfies (1.9) and (1.10), and is the unique weak solution of (1.12)
(with m replaced with m̄∗∗) with the above choice of m0 and u replaced by u∗∗. In
particular, µ̄∗∗ ∈M(u∗∗, π∗). By the last statement in Lemma 3.14 and the continuity of
F we have that |F (µ̄∗) − F (µ̄∗∗)| ≤ ε if δ is chosen to be sufficiently small. Define Φ̄Ni
and ψNi by (3.16) and (3.26), respectively, with (π, u) replaced with (π∗, u∗∗). Let ΠN be
defined using π∗ as in the statement of Lemma 3.15. From Lemma 3.15 it then follows
that the sequence of µ̄N associated with (ΠN , ψN ) converges to µ̄∗∗ in distribution and
(3.27), (3.28) are satisfied. Thus, by (3.6),

lim sup
N→∞

− 1

N
logE exp

(
−NF

(
µN
))

≤ lim sup
N→∞

ĒΠN

(
F
(
µ̄N
)

+
1

N

N∑
i=1

(
R(Φ̄N

i ‖Φ) +
1

2

∫ T

0

|ψNi (s)|2ds

))

≤ F (µ̄∗∗) +R(π∗‖π0) +
1

2

∫
S

∫ T

0

|u∗∗(s, θ)|2dsdθ

≤ F (µ̄∗) +R(π∗‖π0) +
1

2

∫
S

∫ T

0

|u∗(s, θ)|2dsdθ + ε+ 2δ

≤ F (µ̄∗) + I(µ̄∗) + 2ε+ 2δ

≤ inf
µ∈Ω
{F (µ) + I(µ)}+ 3ε+ 2δ,

where the second inequality uses the convergence µ̄N → µ̄∗∗, the continuity of F , (3.27),
and (3.28), the third inequality makes use of our choice of δ, the fourth follows on using
(3.31) and the last inequality uses (3.30). Sending δ and ε to 0 completes the proof of
the Laplace lower bound.

4 Proof of Lemma 2.3

Let {µn}n∈N ⊂ Γl,M . For each n ≥ 1,we can find πn ∈ P∗(R×S) and un ∈ L2([0, T ]×S)

such that µn ∈M∞(un, πn) and

R(πn‖π0) +
1

2

∫ T

0

∫
S

|un(t, θ)|2dθds ≤ I(µn) +
1

n
. (4.1)

Let for n ∈ N, mn
0 (θ) =

∫
R
xπn1 (dx|θ), θ ∈ S. Then, for all n ∈ N,

∫
S
h(mn

0 (θ))dθ ≤
R(πn‖π0) ≤ M + 1. Using Lemmas 3.13 and 3.14 we may choose δn ∈ (0, 1/n) and
un,∗ ∈ C∞([0, T ] × S) such that ‖un − un,∗‖22 ≤ δn, and the unique weak solution mn,∗

of (1.12) with m0 = mn
0 and u = un,∗ has the property that d∗(µn, µn,∗) ≤ 1

n , where

µn,∗(t, dθ) = mn,∗(t, θ)dθ for t ∈ [0, T ]. For N ∈ N, define {Φ̄N,ni }Ni=1 and {ψN,ni }Ni=1 by
(3.16) and (3.26), respectively, replacing (u, π) with (un,∗, πn). Define ΠN,n as we defined
ΠN in the statement of Lemma 3.15, with Φ̄Ni replaced with Φ̄N,ni , and let for each n ∈ N,
the sequences {X̄N,n}N∈N, {µ̄N,n}N∈N be constructed using {(ΠN,n, ψN,n)}N∈N as in
Section 3.1. For each fixed n, from Lemma 3.15, {µ̄N,n}N∈N converges in probability, in
Ω, as N →∞ to µn,∗. From Lemma 1.1(b) we must have d∗(µ̄N,n, µn,∗)→ 0 in probability
as n → ∞. Also, defining L̄N,n as in (3.12) with X̄N replaced with X̄N,n we see from
Lemma 3.11 that for each n, {L̄N,n}N∈N converges to πn in probability as N →∞. So
for each n we may choose Nn such that

P̄
(
d∗(µ̄

Nn,n, µn,∗) > 2−n
)
< 2−n, (4.2)

‖un,∗ − un,Nn‖22 ≤
1

n
(4.3)
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where un,Nn is defined by the right side of (3.17) by replacing ψN with ψNn,n, and

P̄
(
dBL(L̄Nn,n, πn) > 2−n

)
< 2−n, (4.4)

where dBL here denotes the bounded-Lipschitz distance on P(R × S). Note that the
sequence (ΠNn,n)∞n=1 satisfies R(ΠNn,n‖ΦNn) ≤ Nn(M + 1) and, due to (4.3) and (4.1),

sup
n∈N

1

Nn

Nn∑
i=1

∫ T

0

|ψNn,ni (s)|2ds ≤ 4(M + 3).

So again using Lemma 3.7, the sequence {µ̄Nn,n}n∈N is tight. Consider a subsequence,
denoted again as n, along which {µ̄Nn,n}n∈N converges in distribution, in Ω, to some
limit µ∗. By (4.1), {un}n∈N is uniformly bounded in L2([0, T ] × S) and πn are tight, so
we may restrict attention to a further subsequence (denoted again as n) along which
un (and therefore also un,∗ and un,Nn) converge weakly in L2([0, T ] × S) to some u∗

and πn converge weakly to some limit π∗. Note that from (4.4) we also have that L̄Nn,n

converges in probability to π∗. From the lower semi-continuity of relative entropy and
(4.1) we see that π∗ ∈ P∗(R×S). Thus from Theorem 3.12 we have that µ∗ ∈M∞(u∗, π∗)

a.s. Furthermore,

I(µ∗) ≤ R(π∗‖π0) +
1

2

∫ T

0

∫
S

|u∗(t, θ)|2dθdt

≤ lim inf
n→∞

(
R(πn‖π0) +

1

2

∫ T

0

∫
S

|un,∗(t, θ)|2dθdt

)
≤M

and therefore µ∗ ∈ Γl,M . Finally, from (4.2) and the fact that along the subsequence
{µ̄Nn,n}n∈N converges in distribution, in Ω, to µ∗ we have that, along the same subse-
quence, d∗(µn,∗, µ∗) → 0 (in particular µ∗ is non-random) and combining this with the
fact that d∗(µn, µn,∗) ≤ 1

n , we now have that d∗(µn, µ∗)→ 0 along the subsequence. Thus
we have constructed a subsequence of the original sequence {µn}n∈N that converges in
Ωl to µ∗ ∈ Γl,M which proves the result.

5 Proof of Theorem 3.12

Proof. The proof is based on the proof of [15, Theorem 5.1], which is an analogous result
for the uncontrolled process, and therefore we will only comment on steps that are
different. Parts (i)-(iii) follow from [15, Lemma 6.3] using the entropy bound (3.9) given
in Lemma 3.4 and Fubini’s Theorem.

Part (iv) follows from [15, Lemma 6.6] using in addition to the entropy bound in
Lemma 3.4, the Dirichlet form bound in Lemma 3.5, Fubini’s Theorem and the observa-
tion that

EQ̄

[∫ T

0

∫
S

[∂θ (h′(m̄(t, θ)))]
2
dθdt

]
= TE 1

T

∫ T
0
Q̄sds

[∫
S

[∂θ (h′(m(θ)))]
2
dθ

]
,

where Q̄ is the law of µ̄, Q̄t denotes the marginal of Q̄ at time t and EQ̄ denotes
expectation with respect to the underlying measure Q̄ (similarly for E 1

T

∫ T
0
Q̄sds

). In

particular, on the right side, µ(dθ) = m(θ)dθ is a MS-valued random variable with

probability law 1
T

∫ T
0
Q̄sds.

We now prove (v). Define for l ∈ N, the cutoff function φ′l given by

φ′l(x)
.
=


φ′(x) if |φ′(x)| ≤ l
l if φ′(x) > l

−l if φ′(x) < −l,
(5.1)
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and let

φ̃′l(x) =
1

eρ(λ)

∫
R

eλy−φ(y)φ′l(y)dy, where λ = h′(x).

Note that for N ∈ N, uN defined by (3.17) is a SC0 -valued random variable and thus
we can extract a subsequence which converges weakly, in distribution, to some u with
values in SC0 .

Let ε > 0. For fixed t ∈ [0, T ] and a smooth function J on S, define

HN,t
l,ε

.
=

∫
S

J(θ)µ̄N (t, dθ)−
∫
S

J(θ)µ̄N (0, dθ)

− 1

2N

∫ t

0

N∑
i=1

J ′′(i/N)φ̃′l

∑j=i+[Nε]
j=i−[Nε] X̄

N
j (s)

1 + [2Nε]

 ds−
∫ t

0

∫
S

J ′(θ)uN (s, θ)dθds.

(5.2)

Note that, as N →∞, HN,t
l,ε converges in distribution to

Ht
l,ε

.
=

∫
S

J(θ)µ̄(t, dθ)−
∫
S

J(θ)µ̄(0, dθ)

− 1

2

∫ t

0

∫
S

J ′′(θ)φ̃′l

(
µ̄(s, [θ − ε, θ + ε])

2ε

)
dθds−

∫ t

0

∫
S

J ′(θ)u(s, θ)dθds

and therefore for each l ∈ N and ε ∈ (0,∞)

Ē
[
|Ht

l,ε|
]
≤ lim sup

N→∞
ĒΠN

[
|HN,t

l,ε |
]
. (5.3)

To prove (v) of the theorem, we first show that

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

ĒΠN

[
|HN,t

l,ε |
]

= 0. (5.4)

To see this, write∫
S

J(θ)µ̄N (t, dθ)−
∫
S

J(θ)µ̄N (0, dθ)−
∫ t

0

∫
S

J ′(θ)uN (s, θ)dθds

=
1

N

N∑
i=1

J(i/N) X̄
N
i (t)− 1

N

N∑
i=1

J(i/N) X̄
N
i (0)−

∫ t

0

∫
S

J ′(θ)uN (s, θ)dθds

=
N

2

∫ t

0

N∑
i=1

(J((i+ 1)/N)− 2J(i/N) + J((i− 1)/N))φ′(X̄
N
i (s))ds+MN (t) (5.5)

where MN is a martingale given by

MN (t)
.
=

∫ t

0

N∑
i=1

(J(i/N)− J((i− 1)/N)) dBi(s).

Using a straightforward estimate on the second moment of MN (see [15, equation (5.3)])
we see from (5.5), as in the proof of [15, equation (5.4)], that

lim
N→∞

ĒΠN

∣∣∣∣∣ 1

N

N∑
i=1

J(i/N) X̄
N
i (t)− 1

N

N∑
i=1

J(i/N) X̄
N
i (0)−

∫ t

0

∫
S

J ′(θ)uN (s, θ)dθds

− 1

2N

∫ t

0

N∑
i=1

J ′′(i/N)φ′(X̄
N
i (s))ds

∣∣∣∣∣ = 0. (5.6)
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Also, [15, equation (5.6)] carries over verbatim (with ψl replaced by φ′l) and we obtain

lim
l→∞

lim
N→∞

ĒΠN

∣∣∣∣∣ 1

N

N∑
i=1

J(i/N) X̄
N
i (t)− 1

N

N∑
i=1

J(i/N) X̄
N
i (0)−

∫ t

0

∫
S

J ′(θ)uN (s, θ)dθds

− 1

2N

∫ t

0

N∑
i=1

J ′′(i/N)φ′l(X̄
N
i (s))ds

∣∣∣∣∣ = 0. (5.7)

Recall that for t ∈ [0, T ], Q̄ΠN (t) denotes the probability law of X̄N (t) = (X̄N
1 (t), . . . X̄N

N (t)).
From Lemmas 3.4 and 3.5 we see that for some C1, C2 ∈ (0,∞) the density of
1
T

∫ T
0
Q̄ΠN (t)dt lies in the class AN,C1,C2

defined in [15, page 43] for all N ∈ N. Thus, we
can apply [15, Theorem 4.1] to obtain

lim
ε→∞

lim sup
N→∞

ĒΠN

∣∣∣∣∣ 1

2N

∫ t

0

N∑
i=1

J ′′(i/N)φ′l(X̄
N
i (s))ds

−1

2

∫ t

0

N∑
i=1

J ′′(i/N)φ̃′l

∑j=i+[Nε]
j=i−[Nε] X̄

N
j (s)

1 + [2Nε]

 ds

∣∣∣∣∣∣ = 0 (5.8)

for every l. Using (5.7) and (5.8) in (5.2), we obtain (5.4). This, combined with
(5.3), yields liml→∞ lim supε→0 Ē|Ht

l,ε| = 0. The limit as ε → 0 can be taken inside
the expectation because the third term in Ht

l,ε is uniformly bounded and converges

to 1
2

∫ t
0

∫
S
J ′′(θ)φ̃′l (m̄(s, θ)) dθds. Together with part (i), this yields

lim inf
l→∞

∣∣∣∣∫
S

J(θ)m̄(t, θ)dθ −
∫
S

J(θ)m̄(0, θ)dθ

−1

2

∫ t

0

∫
S

J ′′(θ)φ̃′l (m̄(s, θ)) dθds−
∫ t

0

∫
S

J ′(θ)u(s, θ)dθds

∣∣∣∣ = 0.

From the proof of [15, Lemma 6.4], for every σ > 0

|φ̃′l(x)| ≤ 1

σ
log

∫
eσ|φ

′(y)|−φ(y)dy +
h(x)

σ
.

Also, from [15, Lemma 6.4], φ̃′l(x) → h′(x) as l → ∞. Combining these two facts with
part (iii) of the theorem, and sending l→∞, we see that∫

S

J(θ)m̄(t, θ)dθ −
∫
S

J(θ)m̄(0, θ)dθ

− 1

2

∫ t

0

∫
S

J ′′(θ)h′ (m̄(s, θ)) dθds−
∫ t

0

∫
S

J ′(θ)u(s, θ)dθds = 0

by the dominated convergence theorem which proves part (v).

6 Entropy and Dirichlet form bounds

In this section, we establish the key bounds on relative entropy and Dirichlet forms
stated in Lemmas 3.4 and 3.5. A key ingredient in the proof of Lemma 3.5 is a suitable
regularity of the density of the controlled process X̄N (t). This is studied in Section 6.1
and proofs of Lemmas 3.4 and 3.5 are given in Section 6.2. Throughout this section
ΠN , ψN and X̄N are as in the statement of Lemma 3.4.
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6.1 Regularity of the density of X̄N (t)

In this subsection we will show that X̄N (t) has a density p̄N (t, x) with respect to the
measure ΦN (dx) which is continuously differentiable in time and twice continuously
differentiable in space along the vector fields V1, . . . , VN . This will allow us to apply Itô’s
formula in the following subsection. The following is the main regularity lemma of this
subsection.

Recall that Q̄ΠN (t) denotes the probability law of X̄N (t). The following lemma holds
for each fixed N ∈ N. Recall that for each N , the control ψN ∈ ANs (SΠN ) is defined in
terms of a partition 0 = t0 ≤ · · · ≤ tk = T and random variables {Uij} as in (3.4), and that
these random variables satisfy a uniform bound as in (3.5). The partition and the uniform
bound may depend on the control. This special structure of the control is important in
the proof. The following lemma, which is proved in Appendix A, shows that Q̄ΠN (t) is
absolutely continuous with respect to ΦN and establishes the required regularity on the
density p̄N (t, ·).
Lemma 6.1. For every t > 0, Q̄ΠN (t) is absolutely continuous with respect to ΦN . Let
p̄N (t, ·) denote the corresponding density with respect to the measure ΦN (dx). Then
p̄N (·, ·) is continuously differentiable in time and twice continuously differentiable in
space along the vector fields V1, . . . , VN for {t ∈ (tj , tj+1) : 0 ≤ j ≤ K − 1} and x ∈ RN .

6.2 Proofs of Lemma 3.4 and Lemma 3.5

To avoid cumbersome notation, in this section we will write L for the operator LN
introduced in (1.4) and consider for a function η : [0, T ]→ RN the ‘controlled generator’
Lη defined as

(Lηf)(s, x)
.
= Lf(x)−N

N∑
i=1

ηi+1(s)(Vif)(x), f : RN → R, (s, x) ∈ [0, T ]×RN , (6.1)

where η = (ηi)
N
i=1 and ηN+1 = η1.

Let for t ≥ 0, p̄N (t, x) be the density with respect to the measure ΦN (dx) of X̄N (t),
given as in Lemma 6.1. Recall from (3.8) that ΠN (dx) = p̄N (0, dx)ΦN (dx) satisfies the
relative entropy bound for all N ∈ N:

HN (0) =

∫
RN

p̄N (0, x) log(p̄N (0, x))ΦN (dx) ≤ C0N. (6.2)

Proof of Lemma 3.4. Recall the system SΠN
.
= (V̄, F̄ , {F̄t}, P̄, X̄N (0),BN ) from Section

3.1 on which the process {X̄N (t)} is given. Also recall that we denote the measure P̄
as P̄ΠN to emphasize its dependence on the initial measure ΠN . Define a probability
measure PΠN on (V̄, F̄) through the relation.

dPΠN

dP̄ΠN
= exp

{
−

N∑
i=1

∫ T

0

ψNi (s)dBi(s) +
1

2

N∑
i=1

∫ T

0

|ψNi (s)|2ds

}
.

Let QΦN denote the probability law of XN on C([0, T ] : RN ). We can disintegrate QΦN

as QΦN (dω) = ΦN (dω0)Qω0
(dω). Denote the probability law of X̄N on C([0, T ] : RN ) by

Q̄ΠN . Then Q̄ΠN can be disintegrated as Q̄ΠN (dω) = ΠN (dω0)Q̄ω0
(dω). By chain rule of

relative entropies

R(Q̄ΠN ‖QΦN ) = R(ΠN‖ΦN ) +

∫
RN

R(Q̄x‖Qx)ΠN (dx).
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By (6.2) R(ΠN‖ΦN ) ≤ C0N . Also, by Girsanov theorem∫
RN

R(Q̄x‖Qx)ΠN (dx) = R(Q̄· ⊗ΠN‖Q· ⊗ΠN )

≤ R(P̄ΠN ‖PΠN ) ≤ ĒΠN

(
1

2

N∑
i=1

∫ T

0

ψ2
i (s)ds

)
≤ 1

2
C0N.

Finally, denoting by ω(t) the coordinate projection on C([0, T ] : RN ) at time t,

HN (t) = R(Q̄ΠN (t)||ΦN ) = R(Q̄ΠN ◦ (ω(t))−1||QΦN ◦ (ω(t))−1) ≤ R(Q̄ΠN ||QΦN ) ≤ 3

2
C0N

which completes the proof of Lemma 3.4.

The following lemma shows that if, for a fixed N , the initial density of the controlled
process p̄N (0, ·) is bounded, then the densities p̄N (t, ·) are uniformly bounded in L2(ΦN ),
over [0, T ].

Lemma 6.2. Fix N ∈ N and suppose there is a M ∈ (0,∞) such that p̄N (0, x) ≤ M for
all x ∈ RN . Then there exists a C∗ = C∗(N,M) ∈ (0,∞) such that for all t ∈ [0, T ],∫
RN

p̄2
N (t, x)ΦN (dx) ≤ C∗.

Proof. Recalling that ψN ∈ ANs (SΠN ), we have for some κN ∈ (0,∞) and all non-negative
measurable g : RN → R

ĒΠN (g(X̄N (t))) = EΠN

(
g(X̄N (t))

dP̄ΠN

dPΠN

)
≤ κN

(
EΠN (g(X̄N (t)))2

)1/2
.

Also, since QΦN is the probability measure on C([0, T ] : RN ) induced by XN , we have by
Girsanov’s theorem

EΠN (g(X̄N (t)))2 =

∫
C([0,T ]:RN )

g2(ω(t))p̄N (0, ω(0))QΦN (dω)

≤M
∫
RN

g2(ω(t))QΦN (dω) = M

∫
RN

g2(x)ΦN (dx),

where the last equality is from the stationarity of QΦN . Thus for all non-negative g∫
RN

g(x)p̄N (t, x)ΦN (dx) ≤M1/2κN

(∫
RN

g2(x)ΦN (dx)

)1/2

.

Taking g(x) = p̄N (t, x) ∧ L for fixed L <∞, we have∫
RN

(p̄N (t, x) ∧ L)2ΦN (dx) ≤
∫
RN

(p̄N (t, x) ∧ L)p̄N (t, x)ΦN (dx)

≤M1/2κN

(∫
RN

(p̄N (t, x) ∧ L)2ΦN (dx)

)1/2

.

The result now follows on dividing by
(∫
RN

(p̄N (t, x) ∧ L)2ΦN (dx)
)1/2

and then sending
L→∞.

Proof of Lemma 3.5. By Lemma 6.1, we know that p̄N (·, ·) is C1,2 for {t ∈ (tj , tj+1) : 1 ≤
j ≤ K} and x ∈ RN . Therefore, we will assume without loss of generality that p̄N (t, x) is
C1,2 for t ∈ (0, T ) and x ∈ RN . In the general case, the same proof can be employed by
applying Itô’s formula on the time intervals (tj , tj+1) to give us the desired result.

EJP 25 (2020), paper 26.
Page 23/51

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP434
http://www.imstat.org/ejp/


Large deviations for the Ginzburg-Landau model

To avoid cumbersome notation, we will suppress the N dependence in the notation
and write the functional IN as I. The first step will be to show that∫ T

0

I(p̄N (s, ·))ds <∞. (6.3)

First assume that there exists M > 0 such that p̄N (0, x)) ≤M for all x ∈ RN . We begin
by observing that one can find an increasing sequence of smooth functions (ηn)n≥1 on
RN with compact support such that, (i) ηn(x) = 1 when |x| ≤ n, (ii) 0 < η(x) ≤ 1 when
|x| < n + 1 and ηn(x) = 0 when |x| ≥ n + 1, (iii) there exists γ(η) ∈ (0,∞) such that for
all n,N ∈ N, |∂iηn(x)| ≤ γ(η), |∂i∂jηn(x)| ≤ γ(η) for all x ∈ RN and all 1 ≤ i, j ≤ N . In
what follows we write X̄N

t as X̄t. Define the ‘localized entropy’

Hn,N (t) :=

∫
RN

p̄N (t, x) log(p̄N (t, x))ηn(x)ΦN (dx)= ĒΠN
(
log(p̄N (t, X̄t))ηn(X̄t)

)
, 0≤ t≤T.

For ε > 0, define p̄(ε)
N (t, x) = p̄N (t, x) + ε and

H
(ε)
n,N (t) :=

∫
RN

p̄N (t, x) log(p̄
(ε)
N (s, x))ηn(x)ΦN (dx)= ĒΠN

(
log(p̄

(ε)
N (t, X̄t))ηn(X̄t)

)
, 0≤ t≤T.

By the continuity of p̄N and the monotone convergence theorem, for each t,
limε→0H

(ε)
n,N (t) = Hn,N (t). As p̄N is C1,2 and ηn is smooth, we can apply Itô’s formula to

log(p̄
(ε)
N (t, X̄t))ηn(X̄t) to obtain for 0 < t1 < t2 < T ,

H
(ε)
n,N (t2)−H(ε)

n,N (t1)

= ĒΠN

(∫ t2

t1

(∂s + Lψ)
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, X̄s)ds+

∫ t2

t1

N∑
i=1

ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

dBi(s)

)
,

where
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, x) = log p̄

(ε)
N (s, x)ηn(x). As p̄(ε)

N (t, x) ≥ ε for all (t, x), the local

martingale part in the above equation is, in fact, a martingale and we deduce

H
(ε)
n,N (t2)−H(ε)

n,N (t1) = ĒΠN

(∫ t2

t1

(∂s + Lψ)
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, X̄s)ds

)
. (6.4)

By the entropy bound obtained in Lemma 3.4, there is a γ(p̄) ∈ (0,∞) such that for all
t ∈ [0, T ], N ∈ N, and M ∈ (0,∞) (recall that M is the bound on the initial density)∫

RN
p̄N (t, x)| log(p̄N (t, x))|ΦN (dx) ≤ γ(p̄)N. (6.5)

In fact γ(p̄) can be taken to be 3C0/2 where C0 is as in (3.8). Therefore, by the dominated
convergence theorem,

lim
n→∞

lim
ε→0

(H
(ε)
n,N (t2)−H(ε)

n,N (t1)) = lim
n→∞

(Hn,N (t2)−Hn,N (t1)) = HN (t2)−HN (t1), (6.6)

where HN is as defined in (3.9). Recalling that Lψ = L −N
∑N
i=1 ψi+1Vi, we write

ĒΠN

(∫ t2

t1

(∂s + Lψ)
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, X̄s)ds

)
= ĒΠN

(∫ t2

t1

∂s

(
log p̄

(ε)
N (·, ·)ηn(·)

)
(s, X̄s)

)
+ ĒΠN

(∫ t2

t1

L
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, X̄s)ds

)
− ĒΠN

(
N

∫ t2

t1

N∑
i=1

ψi+1(s)Vi

(
log p̄

(ε)
N (·, ·)ηn(·)

)
(s, X̄s)ds

)
. (6.7)
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For the middle term on the right side we have

ĒΠN

(
L
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, X̄s)

)
= ĒΠN

(
ηn(X̄s)

Lp̄(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

+ (log p̄
(ε)
N (s, X̄s))Lηn(X̄s) +N2

N∑
i=1

Viηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)

− ĒΠN

(
N2

2
ηn(X̄s)

N∑
i=1

(Vip̄
(ε)
N )2(s, X̄s)

(p̄
(ε)
N )2(s, X̄s)

)

and for the third term in (6.7) we have

ĒΠN

(
N

N∑
i=1

ψi+1(s)Vi

(
log p̄

(ε)
N (·, ·)ηn(·)

)
(s, X̄s)

)

= ĒΠN

(
N

N∑
i=1

ψi+1(s)(Viηn)(X̄s) log p̄
(ε)
N (s, X̄s)

)

+ ĒΠN

(
N

N∑
i=1

ψi+1(s)ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
.

From the above expressions, we can write

ĒΠN

(∫ t2

t1

(∂s + Lψ)
(

log p̄
(ε)
N (·, ·)ηn(·)

)
(s, X̄s)ds

)
.
= T

(ε)
1 (n) + T

(ε)
2 (n),

where

T
(ε)
1 (n) = ĒΠN

(∫ t2

t1

∂s

(
log p̄

(ε)
N (·, ·)ηn(·)

)
(s, X̄s)

)
+

∫ t2

t1

ĒΠN

(
ηn(X̄s)

Lp̄(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

+ (log p̄
(ε)
N (s, X̄s))Lηn(X̄s)

)
ds

−
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)(Viηn)(X̄s) log p̄
(ε)
N (s, X̄s)

)
ds

+

∫ t2

t1

ĒΠN

(
N2

N∑
i=1

Viηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds (6.8)

and

T
(ε)
2 (n) = −

∫ t2

t1

ĒΠN

(
N2

2
ηn(X̄s)

N∑
i=1

(Vip̄
(ε)
N )2(s, X̄s)

(p̄
(ε)
N )2(s, X̄s)

)
ds

−
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds. (6.9)

We will now show that

lim sup
n→∞

lim
ε→0

T
(ε)
1 (n) ≤ 0. (6.10)
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As
∫
RN

p̄N (t, x)ΦN (dx) = 1 for all t ∈ [0, T ], by the dominated convergence theorem,

lim
n→∞

lim
ε→0

ĒΠN

(∫ t2

t1

∂s

(
log p̄

(ε)
N (·, ·)ηn(·)

)
(s, X̄s)

)
= lim
n→∞

lim
ε→0

∫ t2

t1

ĒΠN

(
∂sp̄

(ε)
N (·, ·)

p̄
(ε)
N (·, ·)

ηn(·)(s, X̄s)

)

= lim
n→∞

lim
ε→0

∫ t2

t1

∫
RN

∂sp̄N (s, x)ηn(x)
p̄N (s, x)

p̄
(ε)
N (s, x)

ΦN (dx)ds

= lim
n→∞

∫ t2

t1

∫
RN

∂sp̄N (s, x)ηn(x)I{p̄N (s,x)>0}Φ
N (dx)ds

= lim
n→∞

∫ t2

t1

∫
RN

∂sp̄N (s, x)ηn(x)ΦN (dx)ds

= lim
n→∞

(∫
RN

p̄N (t2, x)ηn(x)ΦN (dx)−
∫
RN

p̄N (t1, x)ηn(x)ΦN (dx)

)
=

∫
RN

p̄N (t2, x)ΦN (dx)−
∫
RN

p̄N (t1, x)ΦN (dx) = 0. (6.11)

In the fourth equality above, we have used the fact that if p̄N (s, x) = 0 for some (s, x),
global non-negativity of p̄N will imply that ∂sp̄N (s, x) = 0. Again by the dominated
convergence theorem,

lim
ε→0

∫ t2

t1

ĒΠN

(
ηn(X̄s)

Lp̄(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds = lim

ε→0

∫ t2

t1

∫
RN

ηn(x)Lp̄(ε)
N (s, x)

p̄N (s, x)

p̄
(ε)
N (s, x)

ΦN (dx)ds

=

∫ t2

t1

∫
RN

ηn(x)Lp̄N (s, x)I{p̄N (s,x)>0}Φ
N (dx)ds

≤
∫ t2

t1

∫
RN

ηn(x)Lp̄N (s, x)ΦN (dx)

=

∫ t2

t1

∫
RN
Lηn(x)p̄N (s, x)ΦN (dx)ds. (6.12)

In obtaining the inequality above, we have used the fact that if p̄N (s, x) = 0 for some
(s, x), then from non-negativity of p̄N it follows that Vip̄N (s, x) = 0 for each i, and, as
such an (s, x) is a local minimum, V 2

i p̄N (s, x) ≥ 0 for each i and therefore

∫ t2

t1

∫
RN

ηn(x)Lp̄N (s, x)I{p̄N (s,x)=0}Φ
N (dx)ds

=

∫ t2

t1

∫
RN

ηn(x)
N2

2

N∑
i=1

(V 2
i p̄N )(s, x)I{p̄N (s,x)=0}Φ

N (dx)ds ≥ 0.

The last equality in (6.12) follows from the fact that L is symmetric with respect to the
measure ΦN (dx).

By part (iii) of the set of conditions satisfied by (ηn)n≥1, there is a γ1(η) ∈ (0,∞)

such that for all n,N ∈ N and x ∈ RN |Lηn(x)| ≤ γ1(η)N2
∑N
i=1 |φ′(xi)|. Moreover, by

(1.3) and the entropy bound (6.5), there is a κ1 ∈ (0,∞) such that for all n,N ∈ N and
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0 < t1 < t2 < T ,∫ t2

t1

∫
RN

N∑
i=1

|φ′(xi)|p̄N (s, x)ΦN (dx)ds

≤
∫ t2

t1

log

(∫
RN

e
∑N
i=1 |φ

′(xi)|ΦN (dx)

)
ds+ γ(p̄)N ≤ κ1N.

Therefore, as Lηn converges to zero pointwise as n→∞, by the dominated convergence
theorem and (6.12),

lim sup
n→∞

lim
ε→0

∫ t2

t1

ĒΠN

(
ηn(X̄s)

Lp̄(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds≤ lim

n→∞

∫ t2

t1

∫
RN
Lηn(x)p̄N (s, x)ΦN (dx)ds=0.

(6.13)

Next, we consider the third term in (6.8). By the monotone convergence theorem,

lim
ε→0

∫ t2

t1

ĒΠN

(
log p̄

(ε)
N (s, X̄s)Lηn(X̄s)

)
ds

= lim
ε→0

∫ t2

t1

∫
RN
Lηn(x)p̄N (s, x) log p̄

(ε)
N (s, x)ΦN (dx)ds

=

∫ t2

t1

∫
RN
Lηn(x)p̄N (s, x) log p̄N (s, x)ΦN (dx)ds.

Also

|Lηn(x)|p̄N (s, x)| log p̄N (s, x)| ≤ γ1(η)N2

(
N∑
i=1

|φ′(xi)|

)
p̄N (s, x)| log p̄N (s, x)|.

Since p̄N (0, ·) ≤M , we have by Lemma 6.2 that for each N ∈ N,

sup
t∈[0,T ]

∫
RN

p̄2
N (t, x)ΦN (dx) <∞.

Thus, applying Hölder’s inequality with p > 2 and p−1 + q−1 = 1, along with (1.3), yields
for each N ∈ N∫ t2

t1

∫
RN

N∑
i=1

|φ′(xi)|p̄N (s, x)| log p̄N (s, x)|ΦN (dx)ds

≤
∫ t2

t1

(∫
RN

(
N∑
i=1

|φ′(xi)|

)p
ΦN (dx)

)1/p(∫
RN

(p̄N (s, x)| log p̄N (s, x)|)q ΦN (dx)

)1/q

ds<∞.

Therefore, by the dominated convergence theorem,

lim
n→∞

lim
ε→0

∫ t2

t1

ĒΠN

(
log p̄

(ε)
N (s, X̄s)Lηn(X̄s)

)
ds

= lim
n→∞

∫ t2

t1

∫
RN
Lηn(x)p̄N (s, x) log p̄N (s, x)ΦN (dx)ds = 0. (6.14)

Consider now the fourth term in the definition of T (ε)
1 (n). From (3.5) and the Cauchy-

Schwarz inequality, we conclude that for each N ∈ N there is a c1(N) ∈ (0,∞) such that
for all n ∈ N

N∑
i=1

N |ψi+1(s)(Viηn)(X̄s) log p̄
(ε)
N (s, X̄s)| ≤ c1(N)

(
N∑
i=1

(Viηn)2(X̄s)

)1/2

| log p̄
(ε)
N (s, X̄s)|.

EJP 25 (2020), paper 26.
Page 27/51

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP434
http://www.imstat.org/ejp/


Large deviations for the Ginzburg-Landau model

Again from part (iii) of the set of conditions satisfied by (ηn)n≥1, there is a γ2(η) ∈ (0,∞)

such that for all n,N ∈ N and x ∈ RN
∑N
i=1(Viηn)2(x) ≤ Nγ2(η). Therefore, by (6.5) and

the dominated convergence theorem, we conclude that

lim
n→∞

lim
ε→0

∣∣∣∣∣
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)(Viηn)(X̄s) log p̄
(ε)
N (s, X̄s)

)
ds

∣∣∣∣∣
≤ lim
n→∞

lim
ε→0

∫ t2

t1

∫
RN

c1(N)

(
N∑
i=1

(Viηn)2(x)

)1/2

| log p̄
(ε)
N (s, x)|p̄N (s, x)ΦN (dx)ds

= lim
n→∞

∫ t2

t1

∫
RN

c1(N)

(
N∑
i=1

(Viηn)2(x)

)1/2

| log p̄N (s, x)|p̄N (s, x)ΦN (dx)ds = 0. (6.15)

Finally, for the last term in (6.8) observe that, from the dominated convergence theorem,
the form of the operator L, and (6.13),

lim
n→∞

lim
ε→0

∫ t2

t1

ĒΠN

(
N2

N∑
i=1

Viηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds

= lim
n→∞

lim
ε→0

∫ t2

t1

N2
N∑
i=1

Viηn(x)Vip̄
(ε)
N (s, x)

p̄N (s, x)

p̄
(ε)
N (s, x)

ΦN (dx)ds

= lim
n→∞

∫ t2

t1

N2
N∑
i=1

Viηn(x)Vip̄N (s, x)I{p̄N (s,x)>0}Φ
N (dx)ds

= lim
n→∞

∫ t2

t1

N2
N∑
i=1

Viηn(x)Vip̄N (s, x)ΦN (dx)ds

= lim
n→∞

−2

∫ t2

t1

Lηn(x)p̄N (s, x)ΦN (dx)ds = 0. (6.16)

In the third equality above, we have once more used the fact that if p̄N (s, x) = 0 for some
(s, x), then Vip̄N (s, x) = 0 for each i.

From (6.11), (6.13), (6.14), (6.15) and (6.16), we conclude that (6.10) is satisfied. We
will now obtain an upper bound on T (ε)

2 (n) in terms of I(ε)
n defined as

I(ε)
n =

∫ t2

t1

∫
RN

ηn(x)

N∑
i=1

(Vip̄N )2(s, x)

(p̄
(ε)
N )2(s, x)

p̄N (s, x)ΦN (dx)ds. (6.17)

Observe that ∫ t2

t1

ĒΠN

(
N2

2
ηn(X̄s)

N∑
i=1

(Vip̄
(ε)
N )2(s, X̄s)

(p̄
(ε)
N )2(s, X̄s)

)
ds =

N2

2
I(ε)
n . (6.18)

Using the Cauchy-Schwarz inequality,∣∣∣∣∣
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds

∣∣∣∣∣
≤ N

∫ t2

t1

ĒΠN

√ηn(X̄s)

(
N∑
i=1

|ψi+1(s)|2
)1/2( N∑

i=1

ηn(X̄s)
(Vip̄

(ε)
N )2(s, X̄s)

(p̄
(ε)
N )2(s, X̄s)

)1/2
 ds.
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Large deviations for the Ginzburg-Landau model

By (3.5) and parts (i) and (ii) of conditions on (ηn)n≥1 applied to the right-hand side
above, for each N ∈ N there is a c2(N) ∈ (0,∞) such that for all n ∈ N, 0 < t1 < t2 < T

and M ∈ (0,∞) (the bound on the initial density)∣∣∣∣∣
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds

∣∣∣∣∣
≤ c2(N)

∫ t2

t1

ĒΠN

(
N∑
i=1

ηn(X̄s)
(Vip̄

(ε)
N )2(s, X̄s)

(p̄
(ε)
N )2(s, X̄s)

)1/2

ds

≤ c2(N)
√
T

√
I

(ε)
n , (6.19)

From (6.18) and (6.19), we obtain

T
(ε)
2 (n) ≤ −N

2

2
I(ε)
n + c2(N)

√
T

√
I

(ε)
n . (6.20)

We have from Lemma 3.4, (6.5) and (6.6) that for all 0 < t1 < t2 < T , N ∈ N and
M ∈ (0,∞)

lim
n→∞

lim
ε→0

(H
(ε)
n,N (t2)−H(ε)

n,N (t1)) = HN (t2)−HN (t1) ≥ −γ(p̄)N. (6.21)

Recalling that
H(ε)
n (t2)−H(ε)

n (t1) = T
(ε)
1 (n) + T

(ε)
2 (n) (6.22)

and using (6.10), we have

− γ(p̄)N ≤ lim inf
n→∞

lim
ε→0

T
(ε)
1 (n) + lim inf

n→∞
lim inf
ε→0

T
(ε)
2 (n) ≤ lim inf

n→∞
lim inf
ε→0

T
(ε)
2 (n). (6.23)

From the bound on T (ε)
2 (n) obtained in (6.20), observe that lim infn→∞ lim infε→0 T

(ε)
2 (n) =

−∞ if lim supn→∞ limε→0 I
(ε)
n =∞, which yields a contradiction by virtue of (6.23). Thus,

we have

lim
n→∞

lim
ε→0

I(ε)
n =

∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds <∞.

Moreover, from (6.20) and (6.21), it follows that for each N ∈ N there is a c3(N) ∈ (0,∞)

such that for all 0 < t1 < t2 < T and M ∈ (0,∞)∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds ≤ c3(N).

Taking limits t1 ↓ 0 and t2 ↑ T , we obtain that for each N ∈ N∫ T

0

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds ≤ c3(N),

which proves (6.3) when the initial density p̄N (0, ·) of the controlled process is bounded.
Now, we address the general case, where the initial density may be unbounded. First,

it follows from a variational representation of the function I (see [15]) that I is lower
semicontinuous under the topology of weak convergence of measures, i.e., if a sequence
of measures {µ[k](dx) = p[k](x)dx}k∈N converges weakly to µ(dx) = p(x)dx, then

I(p(·)) ≤ lim inf
k→∞

I(p[k](·)).
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Consider the sequence of densities

p̄
[k]
N (0, x) =

p̄N (0, x) ∧ k∫
RN

(p̄N (0, z) ∧ k)ΦN (dz)
, k ≥ k0

where k0 is chosen large enough to ensure that the denominator in the above expression
is positive for all k ≥ k0. It is straightforward to check that for fixed N , the law at time t
of the controlled process with initial measure having density p̄[k]

N (0, ·) replacing p̄N (0, ·),
written as X̄

N,[k]
(t), converges weakly as k →∞ to that of our original controlled process

at time t, namely X̄
N

(t). We will write p̄[k]
N (t, x) to denote the density of the law of X̄

N,[k]
(t)

for t ∈ [0, T ]. Note that, for fixed N ,

lim
k→∞

∫
RN

p̄
[k]
N (0, x)| log(p̄

[k]
N (0, x))|ΦN (dx) =

∫
RN

p̄N (0, x)| log(p̄N (0, x))|ΦN (dx) ≤ C0N

and therefore, exactly as in the proof of Lemma 3.4, there is K ∈ N and γ1(p̄) ∈ (0,∞)

such that for all t ∈ [0, T ], N ∈ N and k ≥ K∫
RN

p̄
[k]
N (t, x)| log(p̄

[k]
N (t, x))|ΦN (dx) ≤ γ1(p̄)N. (6.24)

The proof of the case with bounded initial density given above now gives that there is a
c4(N) ∈ (0,∞) such that for each k ≥ K,

∫ T

0

N∑
i=1

∫
RN

(Vip̄
[k]
N )2(s, x)

p̄
[k]
N (s, x)

ΦN (dx)ds ≤ c4(N).

Using lower semicontinuity of the functional I and Fatou’s lemma, we obtain

∫ T

0

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds ≤

∫ T

0

lim inf
k→∞

N∑
i=1

∫
RN

(Vip̄
[k]
N )2(s, x)

p̄
[k]
N (s, x)

ΦN (dx)ds

≤ lim inf
k→∞

∫ T

0

N∑
i=1

∫
RN

(Vip̄
[k]
N )2(s, x)

p̄
[k]
N (s, x)

ΦN (dx)ds ≤ c4(N),

which proves (6.3) for the general case.

Now, we proceed to prove the bound claimed in the lemma, namely (3.10). As before,
we first assume that there exists M > 0 such that p̄N (0, x) ≤ M for all x ∈ RN . We

recall the expression T (ε)
2 (n) from (6.9). To estimate the last term in the expression for

T
(ε)
2 (n), we use parts (i) and (ii) of the set of conditions satisfied by (ηn)n≥1 and apply

Cauchy-Schwarz inequality to obtain∣∣∣∣∣
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds

∣∣∣∣∣
≤ N

(∫ t2

t1

ĒΠN

N∑
i=1

|ψi(s)|2ds

)1/2(∫ t2

t1

ĒΠN

N∑
i=1

(Vip̄
(ε)
N )2(s, X̄s)

(p̄
(ε)
N )2(s, X̄s)

ds

)1/2

= N

(∫ t2

t1

ĒΠN

N∑
i=1

|ψi(s)|2ds

)1/2(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄
(ε)
N )2(s, x)

(p̄
(ε)
N )2(s, x)

p̄N (s, x)ΦN (dx)ds

)1/2

.
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Using the bound in (3.8) and monotone convergence theorem in the bound above, we get

lim sup
n→∞

lim sup
ε→0

∣∣∣∣∣
∫ t2

t1

ĒΠN

(
N

N∑
i=1

ψi+1(s)ηn(X̄s)
Vip̄

(ε)
N (s, X̄s)

p̄
(ε)
N (s, X̄s)

)
ds

∣∣∣∣∣
≤
√
C0N

3/2

(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)1/2

. (6.25)

Using (6.25), (6.3) and monotone convergence theorem,

lim sup
n→∞

lim sup
ε→0

T
(ε)
2 (n) ≤ −N

2

2

(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)

+
√
C0N

3/2

(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)1/2

. (6.26)

Note that by (6.3) the terms on the right side are finite. Now, using (6.23) and (6.26) in
(6.22) we obtain

−γ(p̄)N ≤ −N
2

2

(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)

+
√
C0N

3/2

(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)1/2

. (6.27)

Letting

y
.
= N1/2

(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)1/2

,

(6.27) can be rewritten as y2 − 2
√
C0y − 2γ(p̄) ≤ 0. This in turn implies that y ≤ γ2(p̄)

where γ2(p̄) =
√
C0 +

√
C0 + 2γ(p̄), namely(∫ t2

t1

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds

)1/2

≤ γ2(p̄)

N1/2
.

By taking limits t1 ↓ 0 and t2 ↑ T in the above bound, we get∫ T

0

I(p̄N (s, ·))ds =

∫ T

0

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds ≤ [γ2(p̄)]2

N
.

For the general case when p̄N (0, ·) is not bounded, approximate p̄N (0, ·) by p̄[k]
N (0, ·) as

before and let K and γ1(p̄) be as above (6.24). The proof given above for the case when
p̄N (0, ·) is bounded and the bound (6.24) now give, for each k ≥ K,∫ T

0

N∑
i=1

∫
RN

(Vip̄
[k]
N )2(s, x)

p̄
[k]
N (s, x)

ΦN (dx)ds ≤ [γ3(p̄)]2

N
,

where γ3(p̄) =
√
C0 +

√
C0 + 2γ1(p̄). Using lower semicontinuity and Fatou’s lemma, we

obtain∫ T

0

N∑
i=1

∫
RN

(Vip̄N )2(s, x)

p̄N (s, x)
ΦN (dx)ds≤ lim inf

k→∞

∫ T

0

N∑
i=1

∫
RN

(Vip̄
[k]
N )2(s, x)

p̄
[k]
N (s, x)

ΦN (dx)ds≤ [γ3(p̄)]2

N
.
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Finally, we obtain (3.10) from the above bound by noting that the functional I is convex
in its argument and hence,

I

(
1

T

∫ T

0

p̄N (s, ·)ds

)
≤ 1

T

∫ T

0

I(p̄N (s, ·))ds ≤ [γ3(p̄)]2

NT
.

7 Tightness of {µ̄N}N∈N in C([0, T ] :MS)

In this section, we will prove Lemma 3.7 which establishes the tightness of {µ̄N}N∈N
in Ω = C ([0, T ] :MS) when the sequence {ψN ,ΠN} is as in Lemma 3.4.

Proof of Lemma 3.7. Tightness of {µ̄N}N∈N in Ω will be established by showing the
following two equalities:

lim
l→∞

lim sup
N→∞

P̄ΠN (µ̄N /∈ Ωl) = 0, (7.1)

and for every ε > 0 and smooth function J on S,

lim
δ↘0

lim sup
N→∞

P̄ΠN

(
sup

0≤t,s≤1,|t−s|≤δ
|〈J, µ̄N (t)〉 − 〈J, µ̄N (s)〉| > ε

)
= 0. (7.2)

The equation in (7.1) gives the tightness of the marginals of {µ̄N}N∈N and (7.2) gives an
equicontinuity estimate. Together, (7.1) and (7.2) imply that {µ̄N}N∈N is tight.

7.1 Proof of (7.1)

Recall that {X̄N (t)} is given on the probability space (V̄, F̄ , P̄) associated with a
system SΠN

.
= (V̄, F̄ , {F̄t}, P̄, X̄N (0),BN ). Further, recall that the probability measure

P̄ is also denoted as P̄ΠN . By enlarging the space if needed, we can construct a F̄0

measurable RN -valued random variable V̄ N (0) with probability law ΦN and construct
the controlled process {V̄ N (t)} on this probability space as {X̄N (t)} was defined in
Section 3.1 using the same control processes {ψNi }. We denote the probability law of
V̄ N on C([0, T ] : RN ) as Q̄ΦN . Also recall the measure QΦN introduced in the proof
of Lemma 6.2. For t ∈ [0, T ] and i = 1, . . . N , let wit : C([0, T ] : RN ) → R be the
canonical coordinate process, namely wit(ω) = ωi(t), for ω = (ω1, . . . ωN ) ∈ C([0, T ] : RN ).
Let, abusing notation, µN (t, dθ)

.
= 1

N

∑N
i=1 w

i
tδi/N (dθ). We begin by establishing an

exponential estimate on Q̄ΦN (µN /∈ Ωl). By the Cauchy-Schwarz inequality

Q̄ΦN (µN /∈ Ωl) =

∫
C([0,T ]:RN )

I{µN /∈Ωl}
dQ̄ΦN

dQΦN
dQΦN

≤
[
QΦN (µN /∈ Ωl)

]1/2 [∫
C([0,T ]:RN )

[(
dQ̄ΦN

dQΦN

)2
]
dQΦN

]1/2

.

From (2.8) recall that for some C1, C2, l0 ∈ (0,∞), P(µN /∈ Ωl) ≤ C1e
−C2Nl for all l ≥ l0

and N ∈ N. By Girsanov’s theorem and recalling that ψN satisfy the bound in (3.8), we
have that for some C3 ∈ (0,∞) and all N ∈ N∫

C([0,T ]:RN )

[(
dQ̄ΦN

dQΦN

)2
]
dQΦN ≤ eC3N . (7.3)

Thus, combining (2.8) and (7.3) we have for all l ≥ l0 and N ∈ N Q̄ΦN (µN /∈ Ωl) ≤
C1e

N(−C2l+C3). Assume without loss of generality that l0 > 2C3/C2. Then, with C4 = 1
2C2

we have for all l ≥ L and N ∈ N

Q̄ΦN (µN /∈ Ωl) ≤ C1e
−C4Nl. (7.4)
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The rest of the proof is the same as [15]. We give the details for the sake of complete-
ness. Let A be the event {µN /∈ Ωl}, let g = θIA where θ = log

(
1 + 1/Q̄ΦN (A)

)
. Applying

the chain rule for relative entropy we have

R(Q̄ΠN ‖Q̄ΦN ) = R(ΠN‖ΦN ) ≤ C0N, (7.5)

where Q̄ΠN is as introduced in the proof of Lemma 3.4 and the inequality is from (3.8).
Therefore using the Donsker-Varadhan variational formula (see for example [11, Lemma
1.4.3]) ∫

C([0,T ]:RN )

g(ω)dQ̄ΠN ≤ log

∫
C([0,T ]:RN )

eg(ω)dQ̄ΦN + C0N.

By the definition of g and θ and (7.4) we have

P̄ΠN (µ̄N /∈ Ωl) = Q̄ΠN (A) ≤ log(2) + C0N

log
(
1 + 1/Q̄ΦN (A)

) ≤ log(2) + C0N

log
(
1 + C−1

1 eC4Nl
) .

Letting N → ∞ and then l → ∞ we have liml→∞ lim supN→∞ P̄ΠN (µ̄N /∈ Ωl) = 0 which
completes the proof of (7.1).

7.2 Proof of (7.2)

Fix a smooth test function J on S. Then

〈J, µ̄N (t)〉 =
1

N

N∑
i=1

J

(
i

N

)
X̄N
i (t), t ∈ [0, T ].

Recalling the definition of X̄N from (3.1) we see that it suffices to show that

lim
δ↘0

lim sup
N→∞

P̄ΠN

 sup
0≤t,s≤1,|t−s|≤δ

∣∣∣∣∣∣
∫ t

s

1

N

N∑
j=1

J ′′
(
j

N

)
φ′(X̄N

j (σ))dσ

∣∣∣∣∣∣ > ε

 = 0, (7.6)

lim
δ↘0

lim sup
N→∞

P̄ΠN

 sup
0≤t,s≤1,|t−s|≤δ

∣∣∣∣∣∣ 1

N

N∑
j=1

J ′
(
j

N

)
(Bj(t)−Bj(s))

∣∣∣∣∣∣ > ε

 = 0, (7.7)

lim
δ↘0

lim sup
N→∞

P̄ΠN

 sup
0≤t,s≤1,|t−s|≤δ

∣∣∣∣∣∣
∫ t

s

1

N

N∑
j=1

J ′
(
j

N

)
ψj(σ)dσ

∣∣∣∣∣∣ > ε

 = 0. (7.8)

The proofs of (7.7) and (7.8) are straightforward. In particular, (7.7) follows from Lévy’s
modulus of continuity theorem and for (7.8) note that∣∣∣∣∣∣

∫ t

s

1

N

N∑
j=1

J ′
(
j

N

)
ψj(σ)dσ

∣∣∣∣∣∣ ≤ (t− s)1/2‖J ′‖∞

 1

N

N∑
j=1

∫ T

0

|ψj(s)|2ds

1/2

≤ (t− s)1/2‖J ′‖∞C0,

where C0 is as in (3.8).
The proof of (7.6) follows by the same argument as in [15], however we give the

details for completeness. Once again we abbreviate X̄N , XN as X̄, X, respectively.
Since J ′′ is bounded, it suffices to show

lim
δ↘0

lim sup
N→∞

P̄ΠN

 sup
0≤t,s≤1,|t−s|≤δ

∫ t

s

1

N

N∑
j=1

∣∣φ′(X̄j(σ))
∣∣ dσ > ε

 = 0.
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Recall the cutoff function φ′l from (5.1) and note that (7.6) holds clearly when φ′ is
replaced by φ′l. Thus to prove (7.6) it suffices to show that

lim
l→∞

lim sup
N→∞

P̄ΠN

(∫ T

0

1

N

N∑
i=1

|φ′l(X̄i(t))− φ′(X̄i(t))|dt > ε

)
= 0

for all ε > 0. Note that

P̄ΠN

(∫ T

0

1

N

N∑
i=1

|φ′l(X̄i(t))− φ′(X̄i(t))|dt > ε

)
≤ 1

ε

∫ 1

0

1

N

N∑
i=1

ĒΠN |φ′l(X̄i(t))−φ′(X̄i(t))|dt,

and by the Donsker-Varadhan variational formula and Lemma 3.4, for any 0 ≤ t ≤ T and
any γ > 0

ĒΠN

(
γ

N∑
i=1

|φ′l(X̄i(t))− φ′(X̄i(t))|

)
≤ logE

(
exp

(
γ

N∑
i=1

|φ′l(Xi(t))− φ′(Xi(t))|

))
+R(Q̄ΠN (t)‖ΦN )

≤ N logE (exp (γ|φ′l(X1(0))− φ′(X1(0))|)) + C0N,

where the last inequality follows from the stationarity of {X(t)} and C0 is as in (3.8).
Dividing by Nγ we have

ĒΠN

(
1

N

N∑
i=1

|φ′l(X̄i(t))− φ′(X̄i(t))|

)
≤ C0

γ
+

1

γ
log
(
E
(
exp(γ|φ′(X1(0))|)I|φ′(X1(0))|>l

)
+ 1
)
,

since ΦN is the stationary measure for Xt. Assumption (1.3) implies that for all l suffi-
ciently large

log
(
E
(
exp(γ|φ′(X1(0))|)I|φ′(X1(0))|>l

))
≤ 0.

Therfore,

lim
l→∞

lim sup
N→∞

P̄ΠN

(∫ 1

0

1

N

N∑
i=1

|φ′l(X̄i(t))− φ′(X̄i(t))|dt > ε

)
≤ C0 + log 2

γε
.

Letting γ →∞ completes the proof of (7.6) and hence also the proof of (7.2).

8 Tightness and subsequential limits of (L̄N , νN)

In this section, we will prove Lemmas 3.8, 3.9, 3.10, and 3.11 which establish
tightness and characterize subsequential limits of (L̄N , νN ), where L̄N (defined in (3.12))
and νN = N−1

∑N
i=1 ν

N
i (with νNi defined as in (3.11)) are random measures constructed

from the initial collection {X̄N
i (0)}Ni=1.

8.1 Proof of Lemma 3.8

Let λN ∈ P(S) be defined as λN (A) = 1
N

∑N
i=1 δi/N (A) for A ∈ B(S). Note that

R(ĒΠN ν
N‖Φ× λN ) ≤ ĒΠNR(νN‖Φ× λN ) ≤ EΠN

(
1

N

N∑
i=1

R(νNi ‖Φ× δi/N )

)

= EΠN

(
1

N

N∑
i=1

R(Φ̄N
i ‖Φ)

)
≤ C,
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where in moving the relative entropy inside the expectation in the first inequality and
moving the relative entropy inside 1

N

∑N
i=1 in the second inequality we have used the

the convexity of relative entropy and Jensen’s inequality, for the first equality we have
used the chain rule for relative entropy and used (3.13) for the last bound. Since for all
α ∈ R,

∫
R
eαyΦ(dy) < ∞ by (1.2), we have from the above relative entropy bound that{

ĒΠN ν
N
}
N∈N is a relatively compact sequence in P(R×S) see e.g. [11, Lemma 1.4.3.d]).

Consequently, {νN}N∈N is a tight sequence of P(R×S)-valued random variables (namely
their probability laws form a relatively compact sequence in P(P(R× S))) (see e.g. [5,
Theorem 2.11]). Next we claim that ĒΠN L̄

N = ĒΠN ν
N , from which it will then follow

that {L̄N}N∈N is a tight sequence of P(R× S)-valued random variables as well. Let f be
a bounded, continuous function on R× S. Then,

ĒΠN

∫
R×S

f(x, θ)L̄N (dxdθ) = ĒΠN
1

N

N∑
i=1

f

(
X̄N
i (0),

i

N

)

= ĒΠN
1

N

N∑
i=1

∫
R×S

f (x, θ) νNi (dxdθ)

= ĒΠN

∫
R×S

f (x, θ) νN (dxdθ).

This proves the claim and hence completes the proof of the lemma.

8.2 Proof of Lemma 3.10

From Lemma 3.7, {µ̄N}N∈N is a tight sequence of Ω-valued random variables. We
restrict attention to a subsequence along which {(µ̄N (0, ·), L̄N )}N∈N converges in distri-
bution to (µ̄(0, ·), L̄) inMS × P(S ×R). It suffices to show that∫

R

|x|L̄(dxdθ) <∞ a.s., (8.1)

and that for all continuous f : S → R

lim sup
N→∞

∣∣∣∣ĒΠN

∫
S

∫
R

f(θ)xL̄N (dxdθ)− Ē
∫
S

∫
R

f(θ)xL̄(dxdθ)

∣∣∣∣ = 0. (8.2)

For M ∈ (0,∞), let gM (x)
.
= (x ∧M) ∨ (−M). Then for every M∫

S

∫
R

f(θ)gM (x)L̄N (dxdθ)→
∫
S

∫
R

f(θ)gM (x)L̄(dxdθ),

in distribution. Let L̄N0 (dx) be the measure onR defined by L̄N0 (dx)
.
= 1

N

∑N
i=1 δX̄Ni (0)(dx).

In order to prove (8.1) and (8.2) it then suffices to show that

lim
M→∞

lim sup
N→∞

E

∫
R

|x|I{|x|≥M}L̄N0 (dx) = 0. (8.3)

To prove (8.3), we use the inequality that for all a, b ≥ 0, σ ≥ 1, ab ≤ eσa+ 1
σ (b log b−b+1).

Write Φ̄N = 1
N

∑N
i=1 Φ̄Ni . Recall from the definition of relative entropy that R(Φ̄N‖Φ) <∞

implies Φ̄N is absolutely continuous with respect to Φ. Moreover, by (3.13) and the
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convexity of relative entropy, R(Φ̄N‖Φ) <∞ almost surely. Thus,

ĒΠN

(∫
R

|x|I{|x|≥M}L̄N0 (dx)

)
= ĒΠN

(∫
R

|x|I{|x|≥M}Φ̄N (dx) IR(Φ̄N‖Φ)<∞

)
= ĒΠN

(∫
R

|x|I{|x|≥M}
dΦ̄N

dΦ
(x)Φ(dx) IR(Φ̄N‖Φ)<∞

)
≤
∫
R

eσ|x|I{|x|≥M}Φ(dx) +
1

σ
ĒΠNR(Φ̄N‖Φ)

≤
∫
R

eσ|x|I{|x|≥M}Φ(dx) +
C

σ
,

where the last inequality is from (3.13). The equality in (8.3) now follows on sending
first N , then M →∞ and and finally σ to∞.

8.3 Proof of Lemma 3.11

By (3.28), 1
N

∑N
i=1R(Φ̄Ni ‖Φ) ≤ R(π∗‖π0), and therefore by Lemma 3.8, L̄N is tight. It

thus suffices to show that if L̄ is any subsequential limit of {L̄N}N∈N, then L̄ = π∗. For
that, it in turn suffices to show that for every bounded uniformly continuous f on R× S

P̄

(∫
R×S

f(x, θ)L̄(dxdθ) =

∫
R×S

f(x, θ)π∗(dxdθ)

)
= 1.

Let δ > 0 and N0 ∈ N be such that |f(x, θ)− f(x, θ′)| < δ whenever |θ − θ′| ≤ 1
N0

. Let for
N ≥ N0

∆N
i
.
= N

∫
R×((i−1)/N,i/N ]

f(x, θ)π∗(dxdθ)− f
(
X̄i(0),

i

N

)
so that ∫

R×S
f(x, θ)π∗(dxdθ)−

∫
R×S

f(x, θ)L̄N (dxdθ) =
1

N

N∑
i=1

∆N
i .

By Markov’s inequality,

P̄ΠN

(∣∣∣∣∫
R×S

f(x, θ)π∗(dxdθ)−
∫
R×S

f(x, θ)L̄N (dxdθ)

∣∣∣∣ > ε

)
≤ 1

N2ε2
ĒΠN

∑
i,j

∆N
i ∆N

j

 .

(8.4)
Note that ĒΠN |∆N

i |2 ≤ 4‖f‖2∞. We claim that for i 6= j |ĒΠN∆i∆j | ≤ 2δ‖f‖∞.
To see this note that for i > j, and with Gi = σ{X̄k(0) : k ≤ i}, ĒΠN (∆N

i ∆N
j ) =

ĒΠN (∆N
j ĒΠN (∆N

i |Gi−1)), and

|ĒΠN (∆N
i |Gi−1)| =

∣∣∣∣∣N
∫
R×((i−1)/N,i/N ]

f(x, θ)π∗(dxdθ)−
∫
R

f

(
x,

i

N

)
Φ̄Ni (dx)

∣∣∣∣∣
=

∣∣∣∣∣N
∫
R

∫ i/N

(i−1)/N

f(x, θ)π∗1(dx|θ)dθ −N
∫
R

f

(
x,

i

N

)∫ i/N

(i−1)/N

π∗1(dx|θ)dθ

∣∣∣∣∣
≤ N

∫
R

∫ i/N

(i−1)/N

∣∣∣∣f(x, θ)− f
(
x,

i

N

)∣∣∣∣π∗1(dx|θ)dθ

≤ δ.

The claim now follows since |∆N
j | ≤ 2‖f‖∞. Using the above observations on the right

side of (8.4), we have

1

N2ε2
ĒΠN

∑
i,j

∆N
i ∆N

j ≤
1

ε2N2
(4N‖f‖2∞ + 2N(N − 1)δ‖f‖∞).
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Letting N →∞ and then δ → 0 we have that

P̄

(∣∣∣∣∫
R

∫ 1

0

f(x, θ)π∗(dxdθ)−
∫
R

∫ 1

0

f(x, θ)L̄(dxdθ)

∣∣∣∣ > ε

)
= 0.

The result follows since ε > 0 is arbitrary.

8.4 Proof of Lemma 3.9

Since the second marginal of νN is the uniform measure on {i/N}Ni=1, it is clear that
the the second marginal of ν must be λ (namely the Lebesgue measure on S). To see
that L̄ = ν, let

∆N
i
.
= f

(
X̄N
i (0),

i

N

)
−
∫
R×[0,1]

f(x, θ)νNi (dxdθ).

Note that

ĒΠN (∆N
i |Gi−1) =

∫
R×[0,1]

f(x, θ)νNi (dxdθ)−
∫
R×[0,1]

f(x, θ)νNi (dxdθ) = 0,

where Gi−1 is defined as in the previous subsection. Therefore, ĒΠN (∆N
i ∆N

j ) = 0 for all
i 6= j, and so

P̄ΠN

(∣∣∣∣∫
R

∫ 1

0

f(x, θ)νN (dxdθ)−
∫
R

∫ 1

0

f(x, θ)L̄N (dxdθ)

∣∣∣∣ > ε

)
≤ 1

N2ε2
ĒΠN

(
N∑
i=1

|∆N
i |2
)
≤ 4‖f‖2∞

Nε2
.

The result follows on sending N →∞.

A Proof of Lemma 6.1

Some steps in the proof are standard PDE estimates but we give full details to keep
the presentation self-contained. As φ is twice continuously differentiable, the mea-

sure ΦN (dx) has a twice continuously differentiable density fN (x) = exp
(
−
∑N
i=1 φ(xi)

)
with respect to Lebesgue measure. It will be convenient to work with the law of
(X̄N

1 (t), . . . , X̄N
N−1(t), S̄N (t)) where S̄N (t) = X̄N

1 (t)+· · ·+X̄N
N (t). Let ΣS = {(x1, . . . , xN ) ∈

RN : x1 + · · · + xN = S}. As the vector fields V1, . . . , VN are tangent to ΣS , S̄N (t) =

S̄N (0) for all t ≥ 0. Therefore, the process (X̄N
1 (t), . . . , X̄N

N−1(t), SN (t)) started at
(y1, . . . , yN−1, s) lives in the hyperplane Σs for all time and by Girsanov’s Theorem
(see for example [17, Section 5 of Chapter 3]), for t > 0, (X̄N

1 (t), . . . , X̄N
N−1(t)) has a

density {q̄(t, x1, . . . , xN−1 | (y1, . . . , yN−1, s)) : (x1, . . . , xN−1) ∈ RN−1} with respect to the
Lebesgue measure on RN−1. Denoting the density of (X̄N

1 (0), . . . , X̄N
N−1(0), S̄N (0)) by

ζN (y1, . . . , yN−1, s), it is straightforward to check that the law of (X̄N
1 (t), . . . , X̄N

N−1(t),

S̄N (t)) has a density with respect to Lebesgue measure on RN given by

q̄(t, x1, . . . , xN−1, s)

=

∫
RN−1

q̄(t, x1, . . . , xN−1 | y1, . . . , yN−1, s)ζN (y1, . . . , yN−1, s)dy1 . . . dyN−1. (A.1)

In particular, (X̄N
1 (t), . . . , X̄N

N (t)) has a density with respect to the Lebesgue measure
which we write as fN (·)p̄(t, ·). Now, consider for j = 0, 1, . . . k − 1 the time interval
(tj , tj+1). For brevity, write y(N−1) = (y1, . . . , yN−1) and x(N−1) = (x1, . . . , xN−1). As
V1, . . . , VN are tangent to Σs for any s ∈ R, to prove Lemma 6.1, it suffices to prove
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that (t, x(N−1), s) 7→ q̄(t, x(N−1), s) is continuously differentiable in time and twice con-
tinuously differentiable in the space variables x1, . . . , xN−1. By the representation (A.1)
and the dominated convergence theorem, it suffices to prove that for each (y(N−1), s),
(t, x(N−1)) 7→ q̄(t, x(N−1) | y(N−1), s) is once continuously differentiable in t and twice
continuously differentiable in x(N−1), and for any three compact intervals I ⊂ (tj , tj+1),
J ∈ R and K ⊂ RN−1,

sup
y(N−1)∈RN−1

sup
(t,s,x(N−1))∈I×J×K

(
|q̄(t, x(N−1) | y(N−1), s)|+ |∂tq̄(t, x(N−1) | y(N−1), s)|

+

N−1∑
i=1

|∂iq̄(t, x(N−1) | y(N−1), s)|+
N−1∑
i,k=1

|∂i∂kq̄(t, x(N−1) | y(N−1), s)|
)
<∞, (A.2)

where ∂i denotes partial derivative with respect to xi. Let α(dx
(N−1)
j , duj | y(N−1), s) be

the joint distribution of (X̄N
1 (tj), . . . , X̄

N
N−1(tj)) and (Uij)1≤i≤N with initial configuration

(X̄N
1 (0), . . . , X̄N

N−1(0), SN (0)) = (y1, . . . , yN−1, s). Recall from (3.5) that |Uij | ≤ C for

all 1 ≤ i, j ≤ N . We will denote the box [−C,C]N by BN . For t ∈ (tj , tj+1) and
x(N−1) ∈ RN−1, q̄ has the representation

q̄(t, x(N−1) | y(N−1), s)=

∫
RN−1×BN

q̄(x
(N−1)
j , s,uj ; t− tj , x(N−1))α(dx

(N−1)
j , duj | y(N−1), s).

(A.3)

Here q̄(x(N−1)
j , s,uj ; t, ·) is the density with respect to Lebesgue measure of the process

on RN−1 at time t started from x
(N−1)
j whose generator is given by

Luj ,s(x1, . . . , xN−1)
.
=
N2

2

N∑
i=1

V̂ 2
i −

N2

2

N∑
i=1

[φ′(xi)− φ′(xi+1)] V̂i −N
N∑
i=1

u(i+1)j V̂i

where V̂i = ∂i − ∂i+1 for 1 ≤ i ≤ N − 2, V̂N−1 = ∂N−1 and V̂N = −∂1 are the projections
of the vector fields V1, . . . , VN onto RN−1, xN = s − x1 − · · · − xN−1, and uN+1,j =

u1j . Thus, by the representation (A.3) and the dominated convergence theorem, in
order to prove the lemma it suffices to show that (t, x) 7→ q̄(z(N−1), s,u; t, x) is once
continuously differentiable in the t variable and twice continuously differentiable in x,
on (tj , tj+1) × RN−1 for every z(N−1), s,u and j, and for any three compact intervals
I ⊂ (tj , tj+1), J ⊂ R and K ⊂ RN−1,

sup
u∈BN

sup
z(N−1)∈RN−1

sup
(t,s,x(N−1))∈I×J×K

(
|q̄(z(N−1), s,u; t, x(N−1))|+ |∂tq̄(z(N−1), s,u; t, x(N−1))|

+

N−1∑
i=1

|∂iq̄(z(N−1), s,u; t, x(N−1))|+
N−1∑
i,k=1

|∂i∂kq̄(z(N−1), s,u; t, x(N−1))|
)
<∞. (A.4)

In order to prove the above statements we will use the broad outline of the proof of
part (a) on page 21 of [16]. Fix u = (u1, . . . , uN ) ∈ BN . To avoid cumbersome notation,
we will write x for x(N−1) ∈ K and z for z(N−1) ∈ RN−1. For any t∗ ∈ (tj , tj+1) and any
compactly supported smooth function ζ on [tj , t

∗]×RN−1,∫
RN−1

ζ(t∗, x)q̄(z, s,u; t∗, x)dx =

∫ t∗

tj

∫
RN−1

(∂tζ + Lu,sζ) q̄(z, s,u; t, x)dxdt

+

∫
RN−1

ζ(tj , x)q̄(z, s,u; tj , x)dx. (A.5)
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Let η be a smooth compactly supported function on RN−1 such that η(x) = 1 for all
x ∈ K. Then for any smooth ζ on [tj , t

∗]×RN−1, we have on substituting ηζ in place of ζ
in the above equation,∫

RN−1

ζ(t∗, x)η(x)q̄(z, s,u; t∗, x)dx

=

∫ t∗

tj

∫
RN−1

(
∂tζ +

N2

2

N∑
i=1

V̂ 2
i ζ

)
q̄(z, s,u; t, x)η(x)dxdt

+

∫ t∗

tj

∫
RN−1

(Lu,sη(x)) q̄(z, s,u; t, x)ζ(t, x)dxdt

+

∫ t∗

tj

∫
RN−1

N∑
i=1

(
N2V̂iη(x) +

N2

2
(Vi log fN )(x)η(x)−Nuiη(x)

)
× q̄(z, s,u; t, x)V̂iζ(t, x)dxdt

+

∫
RN−1

η(x)ζ(tj , x)q̄(z, s,u; tj , x)dx, (A.6)

where we have used the fact that fN (x) = exp
(
−
∑N
i=1 φ(xi)

)
is the density of ΦN (dx)

with respect to Lebesgue measure on RN . Next consider the equation

∂tG(t, x) =
N2

2

N∑
i=1

V̂ 2
i G(t, x), G(0, x) = δ0(x). (A.7)

It can be checked that (A.7) is solved by the density, with respect to Lebesgue measure
on RN−1, of the process N(B1 −BN , B2 −B1, . . . , BN−1 −BN−2) (where (B1, . . . , BN ) is
an N -dimensional Brownian motion), given by

G(t, x)
.
=

1

|Σ|1/2(2πtN2)
N−1

2

exp

(
− 1

2tN2
xTΣ−1x

)
where Σ = (Σij)1≤i,j≤N−1 is given by Σii = 2,Σij = −1 if |i−j| = 1 and Σij = 0 otherwise.

For fixed x∗ ∈ RN−1 and each δ > 0, using the function

ζδ(t, x)
.
= G(t∗ + δ − t, x∗ − x), t ∈ [tj , t

∗], x ∈ RN−1,

in place of ζ in (A.6) and taking the limit δ ↓ 0 in L1(RN−1), we have for a.e. x∗

η(x∗)q̄(z, s,u; t∗, x∗) =

∫ t∗

tj

∫
RN−1

Lu,sη(x)q̄(z, s,u; t, x)G(t∗ − t, x∗ − x)dxdt

+

∫ t∗

tj

∫
RN−1

N∑
i=1

(
N2V̂iη(x) +

N2

2
(Vi log fN )(x)η(x)−Nuiη(x)

)
× q̄(z, s,u; t, x)V̂iG(t∗ − t, x∗ − x)dxdt

+

∫
RN−1

η(x)q̄(z, s,u; tj , x)G(t∗ − tj , x∗ − x)dx. (A.8)

One can readily obtain the following estimates on G

||G(t, ·)||m = γmt
( 1
m−1)N−1

2 , ||∂iG(t, ·)||m = γmt
N−1
2m −

N
2 , i = 1, . . . N, (A.9)

for m > 1, where γm ∈ (0,∞) depends only on m and || · ||m denotes the Lm norm on RN .
Write

fu,s1 (x) = Lu,sη(x), f
u,s,(i)
2 (x) = N2V̂iη(x)− N

2

2
(Vi log fN )(x)η(x)−Nuiη(x), f3(x) = η(x).
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Note that fu,s1 and f3 are compactly supported smooth functions and fu,s,(i)2 are compactly
supported C1 functions (as φ, and hence fN , is a C2 function). Moreover, the functions
fu,s1 , f

u,s,(i)
2 , f3 and their derivatives are uniform bounded for (u, s) ∈ BN ×J .

We will now show that for any m > 1 and compact K ⊂ RN−1, I ⊂ (tj , tj+1), there is
a θm ∈ (0,∞) such that

sup
(s,u,z)∈J×BN ×RN−1

sup
t∗∈I
||IK(·)q̄(z, s,u; t∗, ·)||m ≤ θm. (A.10)

This will be done by a standard bootstrapping procedure and an iterative application
of Young’s inequality. Fix a m ∈ (1, N−1

N−2 ), then from (A.8) we have by an application of
Young’s inequality, for any t∗ ∈ (tj , tj+1)

||η(·)q̄(z, s,u; t∗, ·)||m ≤ κ1

∫ t∗

tj

||fu,s1 (·)q̄(z, s,u; t, ·)||1||G(t∗ − t, ·)||mdt

+ κ1

∫ t∗

tj

N∑
i=1

||fu,s,(i)2 (·)q̄(z, s,u; t, ·)||1||V̂iG(t∗ − t, ·)||mdt

+ κ1||f3(·)q̄(z, s,u; tj , ·)||1||G(t∗ − tj , ·)||m.

As fu,s1 , fu,s,(i)2 and f3 are compactly supported functions that do not depend on z and
are bounded by a finite constant that does not depend on u, s; η(x) = 1 for all x ∈ K; and
||q̄(z, s,u; t, ·)||1 = 1 for all t ∈ (tj , tj+1) and all s,u, z, we have from the estimates in (A.9)
and the above equation, that (A.10) holds for any m ∈ (1, N−1

N−2 ). Next, for m,n ∈ (1, N−1
N−2 )

and l satisfying 1 + 1
l = 1

m + 1
n , applying Young’s inequality in (A.8) gives us, for any

t′j ∈ (tj , t
∗)

||η(·)q̄(z, s,u; t∗, ·)||l ≤ κ2

∫ t∗

t′j

||fu,s1 (·)q̄(z, s,u; t, ·)||m||G(t∗ − t, ·)||ndt

+ κ2

∫ t∗

t′j

N∑
i=1

||fu,s,(i)2 (·)q̄(z, s,u; t, ·)||m||V̂iG(t∗ − t, ·)||ndt

+ κ2||f3(·)q̄(z, s,u; tj , ·)||m||G(t∗ − t′j , ·)||n.

From the estimate in (A.9) and that (A.10) holds for every compact I ⊂ (tj , tj+1), the right-
hand side in the above equation is seen to be bounded by a finite constant independent
of u ∈ BN , z ∈ RN−1 t∗ ∈ I, s ∈ J . Thus we have proved (A.10) for any m ∈ (1, N−1

N−3 ).
This bootstrapping argument can be applied repeatedly to establish (A.10) for all m > 1.

Now, applying Hölder’s inequality in (A.8) with m,n such that n ∈ (1, N−1
N−2 ) and

1
m + 1

n = 1, we get that for any x∗ ∈ K, t∗ ∈ I, and t′j > tj such that I ⊂ (t′j , tj+1)

|q̄(z, s,u; t∗, x∗)| ≤ κ3

∫ t∗

t′j

||fu,s1 (·)q̄(z, s,u; t, ·)||m||G(t∗ − t, ·)||ndt

+ κ3

∫ t∗

t′j

N∑
i=1

||fu,s,(i)2 (·)q̄(z, s,u; t, ·)||m||V̂iG(t∗ − t, ·)||ndt

+ κ3||f3(·)q̄(z, s,u; t′j , ·)||m||G(t∗ − t′j , ·)||n ≤ κ4, (A.11)

where κ4 does not depend on u ∈ BN , z ∈ RN−1, t∗ ∈ I, s ∈ J , x∗ ∈ K, and the last
bound holds since (A.10) holds for all compact K and I.

To establish the existence of the derivatives (∂iq̄(z, s,u; t, ·))1≤i≤N−1 and a result
analogous to (A.11) for the derivatives, we will need to establish the Hölder continuity of
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q̄(z, s,u; t, ·) on K. For x1, x2 ∈ K, we use the representation (A.8) to write

q̄(z, s,u; t∗, x1)− q̄(z, s,u; t∗, x2)

=

∫ t∗

t′j

∫
RN−1

fu,s1 (y)q̄(z, s,u; t, y) (G(t∗ − t, x1 − y)−G(t∗ − t, x2 − y)) dydt

+

∫ t∗

t′j

N∑
i=1

∫
RN−1

f
u,s,(i)
2 (y)q̄(z, s,u; t, y)

(
V̂iG(t∗ − t, x1 − y)− V̂iG(t∗ − t, x2 − y)

)
dydt

+

∫
RN−1

f3(y)q̄(z, s,u; tj , y)
(
G(t∗ − t′j , x1 − y)−G(t∗ − t′j , x2 − y)

)
dy.

Take n ∈ (1, N−1
N−2 ) andm such that 1

m+ 1
n = 1. Using the estimate (A.10) (for a compact set

K̃ which contains the support of η) and Hölder’s inequality in the above representation,
we have that for some κ5 ∈ (0,∞) and all u ∈ BN , z ∈ RN−1, t∗ ∈ I, s ∈ J,

|q̄(z, s,u; t∗, x1)− q̄(z, s,u; t∗, x2)| ≤ κ5

∫ t∗

t′j

||G(t∗ − t, x1 − ·)−G(t∗ − t, x2 − ·)||ndt

+ κ5

∫ t∗

t′j

N∑
i=1

||V̂iG(t∗ − t, x1 − ·)− V̂iG(t∗ − t, x2 − ·)||ndt

+ κ5||G(t∗ − t′j , x1 − ·)−G(t∗ − t′j , x2 − ·)||n. (A.12)

Now, by standard computations (for example, see [20, Chapter 4, Section 2]), we see
that there exist γ̃n ∈ (0,∞) and θ > 0 such that for any x1, x2 ∈ K, t∗ ∈ (tj , tj+1) and
t ∈ [tj , t

∗),

||G(t∗ − t, x1 − ·)−G(t∗ − t, x2 − ·)||n ≤ γ̃n|x1 − x2|θ,

||V̂iG(t∗ − t, x1 − ·)− V̂iG(t∗ − t, x2 − ·)||n ≤ γ̃n|x1 − x2|θ, 1 ≤ i ≤ N.

This, in view of (A.12) implies that for every compact K ⊂ RN−1 there exists κ6 ∈ (0,∞)

such that for all u ∈ BN , z ∈ RN−1 t∗ ∈ I, s ∈ J , and x1, x2 ∈ K,

|q̄(z, s,u; t∗, x1)− q̄(z, s,u; t∗, x2)| ≤ κ6|x1 − x2|θ. (A.13)

To see how Hölder continuity implies the existence of the derivatives (∂iq̄(z, s,u;

t, ·))1≤i≤N−1, note that although
∫ t∗
tj
||∂i∂kG(t∗ − t, ·)||1dt = ∞, for any θ > 0, there

is a γθ ∈ (0,∞) such that for all t̄ ∈ [tj , t
∗]∫ t∗

t̄

∫
RN−1

|z|θ|∂i∂kG(t∗ − t, z)|dzdt = γθ

∫ t∗

t̄

1

(t∗ − t)1− θ2
dt <∞. (A.14)

We will use this fact to prove the existence of the partial derivatives of q̄. For 0 < h <

t∗ − t′j , (where as before t′j > tj such that I ⊂ (t′j , tj+1)) define the function

q̄h(z, s,u; t∗, x∗)
.
=

∫ t∗−h

t′j

∫
RN−1

fu,s1 (x)q̄(z, s,u; t, x)G(t∗ − t, x∗ − x)dxdt

+

∫ t∗−h

t′j

∫
RN−1

N∑
i=1

f
u,s,(i)
2 (x)q̄(z, s,u; t, x)V̂iG(t∗ − t, x∗ − x)dxdt

+

∫
RN−1

f3(x)q̄(z, s,u; tj , x)G(t∗ − t′j , x∗ − x)dx.
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From (A.10) it is clear that q̄h(z, s,u; t∗, ·) converges uniformly to q̄(z, s,u; t∗, ·) on K as
h → 0. By the smoothness of the map (t, x) 7→ G(t∗ − t, x) in an open set containing
[tj , t

∗ − h]×K and using the estimate (A.10) once again, we obtain for 1 ≤ k ≤ N − 1,

∂kq̄h(z, s,u; t∗, x∗) =

∫ t∗−h

tj

∫
RN−1

fu,s1 (x)q̄(z, s,u; t, x)∂kG(t∗ − t, x∗ − x)dxdt

+

∫ t∗−h

tj

∫
RN−1

N∑
i=1

(f
u,s,(i)
2 (x)q̄(z, s,u; t, x)−fu,s,(i)2 (x∗)q̄(z, s,u; t, x∗))∂kV̂iG(t∗−t, x∗−x)dxdt

+

∫
RN−1

f3(x)q̄(z, s,u; tj , x)∂kG(t∗ − tj , x∗ − x)dx.

Here, the adjustment in the second term is justified because
∫
RN−1 ∂j V̂iG(t∗ − t, x∗ −

x)dx = 0 as G(t∗ − t, ·) is a probability density. By the uniform Hölder continuity of q̄ on
K for an arbitrary compact K given in (A.13), the C1 property of f2, and the estimate
(A.14), we conclude that ∂kq̄h(z, s,u; ·, ·) converges uniformly to the right-hand side of
the above equation with h = 0 on I × K as h ↓ 0. From this and the continuity of
(t, x) 7→ q̄h(z, s,u; t, x), we conclude that ∂kq̄(z, s,u; ·, ·) exists, is continuous, and for
every (t∗, x∗) ∈ I ×K takes the form,

∂kq̄(z, s,u; t∗, x∗) =

∫ t∗

t′j

∫
RN−1

fu,s1 (x)q̄(z, s,u; t, x)∂kG(t∗ − t, x∗ − x)dxdt

+

∫ t∗

t′j

∫
RN−1

N∑
i=1

(f
u,s,(i)
2 (x)q̄(z, s,u; t, x)−fu,s,(i)2 (x∗)q̄(z, s,u; t, x∗))∂kV̂iG(t∗−t, x∗−x)dxdt

+

∫
RN−1

f3(x)q̄(z, s,u; tj , x)∂kG(t∗ − t′j , x∗ − x)dx. (A.15)

Using the above equation, (A.11), and (A.13), we obtain that for some κ7 ∈ (0,∞) and all
u ∈ BN , z ∈ RN−1, t∗ ∈ I, s ∈ J and x∗ ∈ K.

|∂kq̄(z, s,u; t∗, x∗)| ≤ κ7

∫ t∗

t′j

∫
RN−1

|∂kG(t∗ − t, x∗ − x)|dxdt

+ κ7

∫ t∗

t′j

N∑
i=1

∫
RN−1

|x∗ − x|θ|∂kV̂iG(t∗ − t, x∗ − x)|dxdt

+ κ7

∫
RN−1

|∂kG(t∗ − t′j , x∗ − x)|dx.

Finally, using (A.9) and (A.14) in the above, we obtain for all compact I, J,K

sup
u∈BN

sup
z∈RN−1

sup
(t,s,x)∈I×J×K

|∂kq̄(z, s,u; t, x)| <∞, 1 ≤ k ≤ N − 1. (A.16)

To deduce the existence of the second derivatives (∂l∂kq̄(z, s,u; t, ·))1≤l,k≤N−1, note that
using integration by parts, we can rewrite (A.15) as

∂kq̄(z, s,u; t∗, x∗) = −
∫ t∗

t′j

∫
RN−1

∂k (fu,s1 (·)q̄(z, s,u; t, ·)) (x)G(t∗ − t, x∗ − x)dxdt

−
∫ t∗

t′j

∫
RN−1

N∑
i=1

∂k

(
f
u,s,(i)
2 (·)q̄(z, s,u; t, ·)

)
(x)V̂iG(t∗ − t, x∗ − x)dxdt

−
∫
RN−1

∂k (f3(·)q̄(z, s,u; tj , ·)) (x)G(t∗ − t′j , x∗ − x)dx.
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Now, along the same line of argument used to prove the existence of the partial
derivatives (∂kq̄(z, s,u; t, ·))1≤k≤N−1, we prove the Hölder continuity of the derivatives
(∂kq̄(z, s,u; t, ·))1≤k≤N−1 and use it to deduce that (∂l∂kq̄(z, s,u; ·, ·))1≤l,k≤N−1 exist, are
continuous, and satisfy

∂l∂kq̄(z, s,u; t∗, x∗) = −
∫ t∗

t′j

∫
RN−1

∂k (fu,s1 (·)q̄(z, s,u; t, ·)) (x)∂lG(t∗ − t, x∗ − x)dxdt

−
∫ t∗

t′j

∫
RN−1

N∑
i=1

(
∂k

(
f
u,s,(i)
2 (·)q̄(z, s,u; t, ·)

)
(x)

−∂k
(
f
u,s,(i)
2 (·)q̄(z, s,u; t, ·)

)
(x∗)

)
∂lV̂iG(t∗−t, x∗−x)dxdt

−
∫
RN−1

∂k (f3(·)q̄(z, s,u; tj , ·)) (x)∂lG(t∗ − t′j , x∗ − x)dx, (A.17)

for 1 ≤ l, k ≤ N − 1. Next, using (A.11), (A.16), and the Hölder estimates for ∂lG and
∂lV̂iG in (A.17), we conclude the following for all compact I, J,K

sup
u∈BN

sup
z∈RN−1

sup
(t,s,x)∈I×J×K

|∂l∂kq̄(z, s,u; t, x)| <∞, 1 ≤ l, k ≤ N − 1. (A.18)

Finally, for the existence and regularity of the time derivative ∂tq̄, we rewrite (A.8) for
x∗ ∈ K as

q̄(z, s,u; t∗, x∗) =

∫ t∗

t′j

∫
RN−1

fu,s1 (x)q̄(z, s,u; t, x)G(t∗ − t, x∗ − x)dxdt

−
∫ t∗

t′j

∫
RN−1

N∑
i=1

V̂i

(
f
u,s,(i)
2 (·)q̄(z, s,u; t, ·)

)
(x)G(t∗ − t, x∗ − x)dxdt

+

∫
RN−1

f3(x)q̄(z, s,u; tj , x)G(t∗ − t′j , x∗ − x)dx.

Using this representation and exploiting the Hölder continuity of the partial derivatives
(∂kq̄(z, s,u; t, ·))1≤k≤N−1, we can argue along the same lines as before to derive the
existence and continuity of ∂tq̄ and the following representation:

∂tq̄(z, s,u; t∗, x∗)

=

∫ t∗

t′j

∫
RN−1

(fu,s1 (x)q̄(z, s,u; t, x)− fu,s1 (x∗)q̄(z, s,u; t, x∗)) ∂tG(t∗ − t, x∗ − x)dxdt

−
∫ t∗

t′j

∫
RN−1

N∑
i=1

(
V̂i

(
f
u,s,(i)
2 (·)q̄(z, s,u; t, ·)

)
(x)− V̂i

(
f
u,s,(i)
2 (·)q̄(z, s,u; t, ·)

)
(x∗)

)
× ∂tG(t∗ − t, x∗ − x)dxdt

+

∫
RN−1

(
f3(x)q̄(z, s,u; t′j , x)− f3(x∗)q̄(z, s,u; t′j , x

∗)
)
∂tG(t∗ − t′j , x∗ − x)dx

+ fu,s1 (x∗)q̄(z, s,u; t∗, x∗)−
N∑
i=1

V̂i

(
f
u,s,(i)
2 (·)q̄(z, s,u; t∗, ·)

)
(x∗). (A.19)

Once more, using (A.11), (A.16) and the Hölder estimate for ∂tG in (A.19), we conclude
for all compact I, J,K

sup
u∈BN

sup
z∈RN−1

sup
(t,s,x)∈I×J×K

|∂tq̄(z, s,u; t, x)| <∞. (A.20)

This finishes the proof of (A.4) and therefore of the lemma.
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B Proof of Proposition 2.1

In this appendix we provide the proof of Proposition 2.1. Part (a) of the proposition
will be proved in Section B.1 and part (b) will be completed in Section B.2.

B.1 Proof of Proposition 2.1(a)

Let {ZN}N∈N be as in the statement of Proposition 2.1 and I be a [0,∞]-valued
function on Ω such that for all continuous and bounded g on Ω, (2.3) holds. We begin
with the following lemma.

Lemma B.1. Let M < ∞ and let {hl}l∈N be a sequence of continuous functions on Ω

such that 0 ≤ hl(y) ≤M for all y ∈ Ω and all l. Then

lim
l→∞

(
lim inf
N→∞

1

N
logE[exp(−Nhl(ZN ))]− lim inf

N→∞

1

N
logE[exp(−Nhl(ZN ))IΩl(Z

N )]

)
= 0.

In particular, for every ε > 0 there exists L ∈ N such that l ≥ L implies

lim inf
N→∞

1

N
logE[exp(−Nhl(ZN ))IΩl(Z

N )] ≥ lim inf
N→∞

1

N
logE[exp(−Nhl(ZN ))]− ε.

Proof. Since 0 ≤ hl(y) ≤M ,

1

N
logE[exp(−Nhl(ZN ))]− 1

N
logE[exp(−Nhl(ZN ))IΩl(Z

N )]

=
1

N
log

(
1 +

E[exp{−Nhl(ZN )}I(Ωl)c(ZN )]

E[exp(−Nhl(ZN ))IΩl(ZN )]

)

≤ 1

N
log

(
1 + eNM

P(ZN ∈ (Ωl)c)

P(ZN ∈ Ωl)

)
.

By (2.2) there exists L such that l ≥ L implies

lim sup
N→∞

1

N
log(P(ZN ∈ (Ωl)c)) ≤ −3M.

Therfore, for any l ≥ L there exists N0 = N0(l) such that N ≥ N0 implies P(ZN ∈
(Ωl)c) ≤ exp{−2NM}, which also implies P(ZN ∈ Ωl) ≥ 1 − e−2M .

= CM > 0. Thus, for
all l ≥ L,

lim inf
N→∞

1

N
logE[exp(−Nhl(ZN ))]− lim inf

N→∞

1

N
logE[exp(−Nhl(ZN ))IΩl(Z

N )]

≤ lim sup
N→∞

1

N
log(1 + C−1

M e−NM ) = 0.

The result follows.

Proof of Proposition 2.1(a). The proof is adapted from [11, Theorem 1.2.3]. Let G ⊂ Ω

be open. Assume I(G) <∞ (otherwise, (2.4) is trivially true). Fix ε ∈ (0, 1
2 ). Let x ∈ G be

such that I(x) < I(G) + ε. Let M
.
= I(G) + 1. Recall Gl = G ∩ Ωl. Since Gl ↗ G, there

exists l0 such that x ∈ Gl for all l ≥ l0. For each such l there exists δl > 0 such that
Bl

.
= {y ∈ Ωl : d∗(x, y) < δl} ⊂ Gl. Define hl on Ω by

hl(y)
.
= M min

{
d∗(x, y)

δl
, 1

}
, y ∈ Ω.

From Lemma 1.1(c), hl is continuous on Ω and 0 ≤ hl(y) ≤M for all y ∈ Ω and all l. Also
observe that hl(x) = 0 and hl(y) = M if d∗(x, y) ≥ δl. Therefore,

E[exp(−Nhl(ZN ))IΩl(Z
N )] = E[exp(−Nhl(ZN ))IBl(Z

N )] + E[exp(−Nhl(ZN ))IΩl\Bl(Z
N )]

≤ P(ZN ∈ Bl) + e−NM .
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Thus, by Lemma B.1, there exists l1 ≥ l0 such that for all l ≥ l1,

max

{
−M, lim inf

N→∞

1

N
logP(ZN ∈ Bl)

}
≥ lim inf

N→∞

1

N
logE[exp(−Nhl(ZN ))IΩl(Z

N )]

≥ lim inf
N→∞

1

N
logE[exp(−Nhl(ZN ))]− ε

≥ − inf
y∈Ω
{hl(y) + I(y)} − ε

≥ −hl(x)− I(x)− ε
= −I(x)− ε > −I(G)− 2ε,

where the third inequality is from (2.3). But by assumption, −M = −I(G) − 1 <

−I(G)− 2ε, so

lim inf
N→∞

1

N
logP(ZN ∈ G) ≥ lim inf

N→∞

1

N
logP(ZN ∈ Bl) > −I(G)− 2ε.

As the choice of ε ∈ (0, 1
2 ) was arbitrary, this proves the lemma.

B.2 Proof of Proposition 2.1(b)

We begin by showing that (2.6) implies (2.7).

Lemma B.2. Suppose that {ZN}N∈N is a sequence of Ω-valued random variables such
that (2.2) is satisfied. Also let I : Ω → [0,∞]. Suppose that F is a closed set in Ω and
there is a l0 ∈ N such that for all l ≥ l0

lim sup
N→∞

1

N
logP(ZN ∈ F l) ≤ −I(F l). (B.1)

Then

lim sup
N→∞

1

N
logP(ZN ∈ F ) ≤ −I(F ). (B.2)

Proof. Since for any A ⊂ Ω, Al ↗ A as l → ∞, liml→∞ I(Al) = I(A). Let F be a closed
set in Ω satisfying (B.1) for l ≥ l0 for some l0 ∈ N. Then

lim sup
N→∞

1

N
logP(ZN ∈F ) ≤ max

{
lim sup
N→∞

1

N
logP(ZN ∈F l), lim sup

N→∞

1

N
logP(ZN ∈Ω \ Ωl)

}
≤ max

{
−I(F l), lim sup

N→∞

1

N
logP(ZN ∈Ω \ Ωl)

}
.

Sending l →∞, lim supN→∞
1
N logP(ZN ∈ F ) ≤ max {−I(F ),−∞} = −I(F ). The result

follows.

We now complete the proof of part (b) of Proposition 2.1. Once more, the proof is
adapted from [11, Theorem 1.2.3]. Let F be closed set in Ω. By Lemma B.2, it suffices
to show that (2.6) holds for all l. Fix l ∈ N, and let ϕ(µ)

.
= I(F l)c(µ) · ∞ so that for all

N ∈ N, e−Nϕ(µ) = IF l(µ). For j ∈ N let hj(µ)
.
= jmin{d∗(µ, F l), 1}. From Lemma 1.1(c)

hj is a continuous function on Ω. Clearly 0 ≤ hj(µ) ≤ j and hj(µ) ≤ ϕ(µ) for all µ ∈ Ω.
Therefore, for each fixed j,

lim sup
N→∞

1

N
logP(ZN ∈ F l) = lim sup

N→∞

1

N
logE exp(−Nϕ(ZN ))

≤ lim sup
N→∞

1

N
logE exp(−Nhj(ZN ))

= − inf
µ∈Ω
{hj(µ) + I(µ)},
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where the last equality holds since hj is a bounded and continuous function on Ω. Thus
it suffices to show that

lim inf
j→∞

inf
µ∈Ω
{hj(µ) + I(µ)} ≥ I(F l). (B.3)

Suppose that (B.3) does not hold. Then there exists M <∞ such that

lim inf
j→∞

inf
µ∈Ω
{hj(µ) + I(µ)} < M < I(F l).

Therefore there exists an infinite subsequence of j such that infµ∈Ω{hj(µ) + I(µ)} < M,

and for each j along this subsequence there exists µj ∈ Ω such that hj(µj) + I(µj) < M.

Note that d∗(µj , F l)→ 0 as j →∞ along the chosen subsequence since otherwise hj(µj)
would diverge to ∞. Therefore, there exists a sequence νj of points in F l such that
d∗(µj , νj) → 0 along the subsequence. By assumption the set {x ∈ Ω : I(x) ≤ M} is
compact. Thus we can extract a further subsequence of µj along which µj converges
in Ω to some µ∗ satisfying I(µ∗) ≤M . From Lemma 1.1(b) (part (iii)) we now have that
d∗(µj , µ

∗) → 0. Therefore, d∗(νj , µ∗) → 0. Since F l is closed in Ωl, this implies that
µ∗ ∈ F l. But, I(µ∗) ≤M < I(F l), which is a contradiction. Thus (2.6) holds.

C Existence, uniqueness and continuity of solutions to (1.12)

In this appendix we provide the proofs of Lemmas 3.13 and 3.14.

C.1 Proof of Lemma 3.13

Proof. Let

ψNi (t)
.
=

N∑
j=1

u

(
jT

N
,
i+ 1

N

)
I(jT/N,(j+1)T/N ](t),

and

uN (t, θ)
.
=

N∑
i=1

ψNi (t)I(i/N,(i+1)/N ](θ),

so that

uN (t, θ) =

N∑
i,j=1

u

(
jT

N
,
i

N

)
I(jT/N,(j+1)T/N ](t)I(i/N,(i+1)/N ](θ).

Note that ψNi satisfies (3.4) and (3.5), and it also satisfies the first inequality in (3.8)
for some C0 ∈ (0,∞). Observe that {uN}N∈N converges to u in L2 since u is uniformly
continuous. By [11, Lemma 6.2.3.g], we can obtain a probability measure π ∈ P(R× S)

whose second marginal is the uniform measure on S and which satisfies the following:

(i)
∫
R
xπ1(dx|θ) = m0(θ), where π(dxdθ) = π1(dx|θ)dθ is the atomization of π,

(ii) R(π1(·|θ)||Φ(·)) = h(m0(θ)) for each θ ∈ S.

As in (3.16), let

Φ̄Ni (dx) = N

∫ i/N

(i−1)/N

π1(dx|θ)dθ,

for 1 ≤ i ≤ N and let ΠN (dx) = Φ̄N1 (dx1) . . . Φ̄NN (dxN ). By the calculations leading to
(3.28), R(ΠN ||ΦN ) ≤ NR(π||π0) where from (ii) above R(π||π0) =

∫
S
h(m0(θ))dθ < ∞.

Therefore, by Lemma 3.7, the sequence of µ̄N constructed as in Section 3.1 using
the ΠN and the ψNi is tight and consequently we can find a subsequence along which
{µ̄N}N∈N converges to some limit µ̄. Thus, by Theorem 3.12, µ̄(t, dθ) has a density m(t, θ),
namely µ(t, dθ) = m(t, θ)dθ for a.e. t which solves (1.12) with the given u and satisfies
integrability conditions (1.9), (1.10), and (1.8).
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C.2 Proof of Lemma 3.14

Proof. For any ε > 0 and any bounded, Lipschitz function J on the unit circle, there
exists a smooth function J̃ such that ‖J − J̃‖∞ ≤ ε and ‖J̃‖L ≤ ‖J‖L. Therefore, since
sup0≤t≤T ‖mi(t, ·)‖1 <∞, it suffices to restrict attention to smooth test functions, J , in
which case, ‖J‖L = ‖J ′‖∞.

If m(t, θ) is any weak solution to (1.12) with sup0≤t≤T ‖m(t, ·)‖1 < ∞, then for all
smooth functions J on S,

∫
S

J(θ)m(t, θ)dθ−
∫
S

J(θ)m(0, θ)dθ =

∫ t

0

∫
S

J ′′(θ)h′(m(s, θ))dθds+

∫ t

0

∫
S

J ′(θ)u(s, θ)dθds.

(C.1)
Observe, by setting J(θ)

.
= 1, that

∫
S
m(t, θ)dθ =

∫
S
m(0, θ)dθ

.
= a for all 0 ≤ t ≤ T. Let

m̃
.
= m− a and let M̃ be defined as

M̃(t, θ) =

∫ θ

0

m̃(t, y)dy, 0 ≤ θ ≤ 1. (C.2)

Integrating by parts and using (C.2), we have that∫
S

J ′(θ)M̃(t, θ)dθ −
∫
S

J ′(θ)M̃(0, θ)dθ

=

∫ t

0

∫
S

J ′(θ)[h′(m(s, θ))]θdθds+

∫ t

0

∫
S

J ′(θ)u(s, θ)dθds. (C.3)

For any smooth function ξ on S, we can use J(θ) =
∫ θ

0
ξ(y)dy −

∫
S
ξ(y)dy in the above

equation and conclude that (C.3) holds for any smooth function ξ on S in place of J ′. For
any g ∈ L2(S : R), we can approximate g by smooth functions in L2(S : R) and use the
fact that M̃(t, ·), [h′(m(t, ·))]θ and u(t, ·) are in L2(S : R) for a.e. t to conclude that (C.3)
holds for any function g ∈ L2(S : R) in place of J ′. Thus, we have for each t ∈ [0, T ],

M̃(t, θ) = M̃(0, θ) +

∫ t

0

([h′(m(s, θ))]θ + u(s, θ)) ds

for a.e. θ. From this equality, we conclude that t→ M̃(t, ·) is differentiable as a map into
L2(S : R) in the weak sense (see definition in [13, Section 5.9.2]) and

∂tM̃ =
1

2
[h′(m)]θ − u. (C.4)

It then follows that the map t→ ‖M̃(t, ·)‖22 is absolutely continuous and

∂t‖M̃(t, ·)‖22 =

∫
S

2M̃(t, θ)∂tM̃(t, θ)dθ, a.e. t ∈ [0, T ]. (C.5)

Now let m1 and m2 be as in the statement of the lemma and let m3
.
= m1−m2. Define

m̃i and M̃i in a manner analogous to above and let M̃3 = M̃1 − M̃2. Then M̃3 solves

∂tM̃3 =
1

2
[h′(m1)]θ −

1

2
[h′(m2)]θ − (u1 − u2).
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Using (C.5), for a.e. t

∂t‖M̃3(t, ·)‖22 =

∫
S

2M̃3(t, θ)∂tM̃3(t, θ)dθ

=

∫
S

M̃3(t, θ)([h′(m1(t, θ))− h′(m2(t, θ))]θ − 2(u1(t, θ)− u2(t, θ)))dθ

= −
∫
S

∂θM̃3(t, θ)[h′(m1(t, θ))− h′(m2(t, θ))]dθ

− 2

∫
S

M̃3(t, θ)(u1(t, θ)− u2(t, θ))dθ

= −
∫
S

(h′(m1(t, θ))− h′(m2(t, θ)))(m1(t, θ)−m2(t, θ))dθ

− 2

∫
S

M̃3(t, θ)(u1(t, θ)− u2(t, θ))dθ

≤ 2

∫
S

M̃3(t, θ)(u1(t, θ)− u2(t, θ))dθ

≤ 2‖M̃3(t, ·)‖2‖u1(t, ·)− u2(t, ·)‖2.

where the inequality in the next to last line is from the convexity of h and the inequality
in the last line is by Cauchy-Schwarz inequality. Thus for t ∈ [0, T ]

sup
0≤s≤t

‖M̃3(s, ·)‖22 ≤ 2

∫ t

0

sup
0≤r≤s

‖M̃3(r, ·)‖2‖u1(s, ·)− u2(s, ·)‖2ds

≤
∫ t

0

sup
0≤r≤s

‖M̃3(r, ·)‖22ds+ ‖u1 − u2‖22.

By Gronwall’s inequality,

sup
0≤s≤T

‖M̃3(s, ·)‖2 ≤ eT/2‖u1 − u2‖2.

Therefore, for all J ∈ C∞(S)∣∣∣∣∫
S

J(θ)(m1(t, θ)−m2(t, θ))dθ

∣∣∣∣ =

∣∣∣∣∫
S

J ′(θ)M̃3(t, θ)dθ

∣∣∣∣
≤ ‖J ′‖∞‖M̃3(t, ·)‖2
≤ eT/2‖J ′‖∞‖u1 − u2‖2.

This completes the proof of part (i) of the lemma.
Suppose {un}n∈N is a sequence of smooth functions that converges to u in L2([0, T ]×

S) and let {µn}n∈N, µ be the signed measures associated to {un}n∈N, u respectively as
defined in statement of the lemma. Then from (i) d∗(µn, µ)→ 0 as n→∞. To complete
the proof of (ii) it suffices to show that {µn}n∈N is uniformly bounded in the total variation
norm. Suppose otherwise, then there is a subsequence (labeled again as n) and {tn}n∈N ∈
[0, T ] such that ||µn(tn)||TV is unbounded. By the uniform boundedness principle, there
exists a continuous function f on S such that |

∫
S
f(θ)µn(tn, dθ)| is unbounded. Without

loss of generality, assume |
∫
S
f(θ)dµn(tn, dθ)| → ∞ as n → ∞. As in the proof of

Lemma 3.13, associated with the function m0 on S, we can find π ∈ P(R × S) such
that π(dxdθ) = π1(dx|θ)dθ, and R(π1(dx|θ)||Φ(dx)) = h(m0(θ)),

∫
R
xπ1(dx|θ) = m0(θ),

for each θ ∈ S. Define Φ̄Ni by (3.16) and {ψN,ni } by (3.26) on replacing u with un.
Let ΠN (dx) = Φ̄N1 (dx1) . . . Φ̄NN (dxN ). Using these {ψN,ni } and ΠN define µ̄Nn as µ̄N was
defined in Section 3.1. For each fixed n, by the same argument used in (3.28), the
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paragraph following it, and the uniqueness established in part (i) of the current lemma,
{µNn }N∈N converges weakly to µn as Ω-valued random variables as N →∞. In particular,
for each fixed n,

∫
S
fdµNn (tn, dθ) converges in probability (since the limit is non-random)

to
∫
S
f(θ)µn(tn, dθ) as N →∞. Choose Nn <∞ such that

P̄ΠNn

(∣∣∣∣∫
S

fdµNn,n(tn)−
∫
S

fdµn(tn)

∣∣∣∣ > 1

)
<

1

2
.

Therefore, as |
∫
S
fdµn(tn)| → ∞, for any M > 0 we can find nM such that for all n ≥ nM ,

P̄ΠNn

(∣∣∣∣∫
S

fdµNnn (tn)

∣∣∣∣ > M

)
≥ 1

2
.

But by the uniform L2-boundedness of un, the fact that

1

N
R(ΠN ||ΦN ) ≤ R(π||π0) =

∫
S

h(m0(θ))dθ <∞,

and Lemma 3.7, we have that the collection {µNnn }n∈N is tight (as a sequence of Ω-valued
random variables). Thus we have a contradiction and therefore {µn}n∈N is uniformly
bounded in total variation norm.

D Proof of Lemma 1.1

To see part (a), consider the new Polish space (S̃, d) with S̃ = S ∪ P where P is an
external point with d(x, P ) = 1 for all x ∈ S and the restriction of d to S is the intrinsic
metric on S. Suppose a sequence of {µn}n∈N ⊂ Ml

S converges to µ weakly. Then we
must have ‖µ‖TV ≤ supn ‖µn‖TV ≤ l and so µ ∈Ml

S . Consider the “balanced” measures

µ̃+
n = µ+

n +
(
l − µ+

n (S)
)
I{P}, µ̃−n = µ−n +

(
l − µ−n (S)

)
I{P}. (D.1)

Note that µ̃±n are finite (nonnegative) measures with total mass l for each n. By the
compactness of S̃, the collection µ̃±n is tight and thus any subsequence of µ̃±n has a further
subsequence µ̃±nk that converges weakly on S̃ to respective measures µ̃± with total mass
l. As the restriction of µ̃±nk to S is µ±nk , µ = µ̃+|S − µ̃−|S . Furthermore, as any bounded

Lipschitz f on S with ‖f‖BL ≤ 1 can be extended to a bounded Lipschitz f̃ on S̃ with
‖f̃‖BL ≤ 1 by assigning f̃(P ) = 0, we have

sup
f∈BL1(S)

∣∣∣∣∫
S

fdµnk −
∫
S

fdµ

∣∣∣∣
≤ sup
f̃∈BL1(S̃)

∣∣∣∣∫
S̃

f̃dµ̃+
nk
−
∫
S̃

f̃dµ̃+

∣∣∣∣+ sup
f̃∈BL1(S̃)

∣∣∣∣∫
S̃

f̃dµ̃−nk −
∫
S̃

f̃dµ̃−
∣∣∣∣→ 0

as k →∞. Thus, supf∈BL1(S) |〈f, µn − µ〉| → 0 as n→∞.

Conversely, suppose supf∈BL1(S) |〈f, µn − µ〉| → 0 as n → ∞ and µn ∈ Ml
S for all n.

Define the measures µ̃±n on S̃ as before. For any subsequence of µ̃±n , obtain a further
subsequence µ̃±nk converging weakly to µ̃±. Set µ̃ = µ̃+ − µ̃−. We will also denote by
µ̃ the restriction of this measure onto S. As for any continuous function f on S, its
extension f̃ onto S̃ obtained by defining f̃(P ) = 0 remains continuous on S̃, we conclude
that µnk converge weakly to µ̃ as measures on S. Since weak convergence is equivalent
to bounded Lipschitz convergence for non-negative measures of total mass l > 0, we
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have

sup
f∈BL1(S)

∣∣∣∣∫
S

fdµnk −
∫
S

fdµ̃

∣∣∣∣
≤ sup
f̃∈BL1(S̃)

∣∣∣∣∫
S̃

f̃dµ̃+
nk
−
∫
S̃

f̃dµ̃+

∣∣∣∣+ sup
f̃∈BL1(S̃)

∣∣∣∣∫
S̃

f̃dµ̃−nk −
∫
S̃

f̃dµ̃−
∣∣∣∣→ 0

as k → ∞. As supf∈BL1(S) |〈f, µn − µ〉| → 0, we have
∫
S
fdµ =

∫
S
fdµ̃ for all bounded

Lipschitz functions f on S and hence, µ = µ̃. Hence, µnk converges weakly to µ. Since
the choice of subsequence is arbitrary, the whole sequence µn converges weakly to µ.
Also, µ ∈Ml

S . This establishes equivalence of weak convergence and bounded Lipschitz
convergence for measures inMl

S .
We now prove (b). In order to prove (i) it suffices to show that for every f ∈ C(S) and

ε > 0

F
.
= {µ̃ ∈ Ω : sup

0≤t≤T
|〈µ̃(t), f〉 − 〈µ(t), f〉| ≥ ε}

is closed in Ω. Suppose for some l > 0, µ̃n ∈ F l = F ∩Ωl and µ̃n → µ̃ in Ωl. Then we must
have from part (a) that sup0≤t≤T |〈µ̃n(t), f〉 − 〈µ̃(t), f〉| → 0. This shows that µ̃ ∈ F ∩ Ωl.

For part (ii) note that by part (i) and uniform boundedness principle, for some
l ∈ (0,∞), µn ∈ Ωl for all n. Thus µ ∈ Ωl as well. Finally, part (iii) now follows from
noting that from the definition of the direct limit topology, for every ε > 0, and l′ > 0

Gl
′ .

= {µ̃ ∈ Ω : d∗(µ̃, µ) < ε} ∩ Ωl
′

is open in Ωl
′

and since µn → µ we must have µn ∈ {µ̃ ∈ Ω : d∗(µ̃, µ) < ε} for large n. Therefore, part
(iii) is now a consequence of part (ii).

Finally consider (c). Suppose µn → µ in Ω. From (b) (ii) there exists l′ > l such
that µn, µ ∈ Ωl

′
and d∗(µn, µ) → 0. Also note that F l is closed in Ωl

′
. Thus since

h(µ) = d∗(µ, F
l) for µ ∈ Ωl

′
and the right side is a continuous function on Ωl

′
, we have

that h(µn)→ h(µ) as n→∞.
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