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Modulus of continuity for polymer fluctuations and
weight profiles in Poissonian last passage percolation
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Abstract

In last passage percolation models, the energy of a path is maximized over all directed
paths with given endpoints in a random environment, and the maximizing paths are
called geodesics. The geodesics and their energy can be scaled so that transformed
geodesics cross unit distance and have fluctuations and scaled energy of unit order.
Here we consider Poissonian last passage percolation, a model lying in the KPZ
universality class, and refer to scaled geodesics as polymers and their scaled energies
as weights. Polymers may be viewed as random functions of the vertical coordinate
and, when they are, we show that they have modulus of continuity whose order is
at most t2/3

(
log t−1

)1/3
. The power of one-third in the logarithm may be expected

to be sharp and in a related problem we show that it is: among polymers in the
unit box whose endpoints have vertical separation t (and a horizontal separation
of the same order), the maximum transversal fluctuation has order t2/3

(
log t−1

)1/3
.

Regarding the orthogonal direction, in which growth occurs, we show that, when one
endpoint of the polymer is fixed at (0, 0) and the other is varied vertically over (0, z),
z ∈ [1, 2], the resulting random weight profile has sharp modulus of continuity of order

t1/3
(
log t−1

)2/3
. In this way, we identify exponent pairs of (2/3, 1/3) and (1/3, 2/3)

in power law and polylogarithmic correction, respectively for polymer fluctuation,
and polymer weight under vertical endpoint perturbation. The two exponent pairs
describe [9, 10, 8] the fluctuation of the boundary separating two phases in subcritical
planar random cluster models.
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1 Introduction and main results

In 1986, Kardar, Parisi, and Zhang [14] predicted universal scaling behaviour for
many planar random growth processes, including first and last passage percolation
as well as corner growth processes, though rigorous validation has been subsequently
provided for only a handful of them. In such models, fluctuation in the direction of
growth is governed by an exponent of one-third, with this fluctuation enduring on a scale
governed by an exponent of two-thirds in the orthogonal, or transversal, direction.

Poissonian last passage percolation illustrates these effects. We will define it shortly,
since it is our object of study; briefly, the model specifies a growth process whose height
at a given moment is the maximum number of points (or the energy) obtainable in a
directed path through a planar Poisson point process. Baik, Deift and Johansson [2]
established the n1/3-order fluctuation of the maximum number of Poisson points on
an increasing path from (0, 0) to (n, n), deriving the GUE Tracy-Widom distributional
limit of the scaled energy. Later Johansson [13] proved the transversal fluctuation
exponent of two-thirds in this model. These are exactly solvable models, for which
certain exact distributional formulas are available, and the derivations of these formulas
typically employ deep machinery from algebraic combinatorics or random matrix theory.
It is interesting to study geometric properties of universal KPZ objects by approaches
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Polymer fluctuations and weight profiles in last passage percolation

that, while they are reliant on certain integrable inputs, are probabilistic in flavour:
for example, [5], [4] and [3] are recent results and applications concerning geometric
properties of last passage percolation paths.

It is rigorously understood, then, that last passage percolation paths experience
fluctuation in their energy and transversal fluctuation governed by scaling exponents
of one-third and two-thirds. It is very natural to view such paths via the lens of scaled
coordinates, in which transversal fluctuation and path energy have unit order. We
will be more precise very shortly, when suitable notation has been introduced, but for
now we mention that our aim in this article is to refine rigorous understanding of the
magnitude and geometry of fluctuation in last passage percolation paths. We shall call
the scaled geodesics polymers, and refer to the scaled energy as weight. We will see that
polylogarithmic corrections to the scaled laws implied by the exponents of one-third and
two-thirds arise when we consider natural geometric problems concerning the weights
and the maximum fluctuation among polymers in a unit order region. The techniques for
verifying our claims will employ geometric and probabilistic tools rather than principally
integrable ones, since problems involving maxima as both endpoints of a last passage
percolation path are varied are not usually amenable to integrable techniques. We will
draw on the integrable approach in a way that, while essential, is limited to a simple
aspect of this theory, namely by applying bounds on the upper and lower tails of the
fluctuation of point-to-point polymer weights; the needed results will be recalled in
Section 2.

1.1 Model definition and main results

Let Π be a homogeneous rate one Poisson point process (PPP) on R2. We introduce
a partial order on R2: (x1, y1) � (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2. For u � v,
u, v ∈ R2, an increasing path γ from u to v is a piecewise affine path, viewed as a subset
of R2, that joins points u = u0 � u1 � u2 � . . . � uk = v such that ui ∈ Π for i ∈ J1, k− 1K.
Here and later, Ja, bK for a, b ∈ Z with a ≤ b denotes the integer interval {a, · · · , b}. Also
let |γ| denote the energy of γ, namely the number of points in Π \ {v} that lie on γ; (the
last vertex is excluded from the definition of energy so that the sum of the energies of
two paths equals the energy of the concatenated path, as we will see in Section 3.1).
Then we define the last passage time from u to v, denoted by Xv

u, to be the maximum of
|γ| as γ varies over all increasing paths from u to v. Any such maximizing path is called
a geodesic. There may be several such, but if Γvu denotes any one of them, we have

Xv
u = |Γvu| . (1.1)

Note that, in this notation, the starting and ending points of the geodesic, u and v,
are assigned subscript and superscript placements. We will often use this convention,
including in the case of the scaled coordinates that we will introduce momentarily.

When u � v, any geodesic from u to v may be viewed as a function of its horizontal
coordinate, since it contains a vertical line segment with probability zero. The operations
of maximum and minimum may be applied to any pair of such geodesics, and the results
are also geodesics. For this reason, we may speak unambiguously of Γ←;v

u , the uppermost
geodesic between u and v, and of Γ→;v

u , the lowermost geodesic between u and v. (The
notation← and→ is compatible with these two paths being equally well described as
the leftmost and rightmost geodesics. This choice of notation also anticipates the form
of these paths when viewed in the scaled coordinates that we are about to introduce.)
When the endpoints are (0, 0) and (n, n), we will call these geodesics Γ←n and Γ→n .
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Figure 1: The scaling map Tn applied to the left figure produces the figure on the right.
The point e in the geodesic Γ is the preimage of the point (ρ(t), t) in the polymer ρ.

1.1.1 Introducing scaled coordinates

We rotate the plane about the origin counterclockwise by 45 degrees, squeeze the vertical
coordinate by a factor 21/2n and the horizontal one by 21/2n2/3, thus setting

Tn : (x, y) 7→
(

2−1n−2/3(x− y), 2−1n−1(x+ y)
)
. (1.2)

The horizontal line at vertical coordinate t is the image under Tn of the anti-diagonal
line through (nt, nt). It is easy to see that, for (x, t) ∈ R2, T−1

n (x, t) = (nt + xn2/3, nt −
xn2/3).

Paths that are the image of geodesics under Tn will be called polymers; we might
say n-polymers, but the suppressed parameter will always be n. Geodesics from (0, 0) to
(n, n) transform to polymers (0, 0) to (0, 1). Figure 1 depicts a geodesic Γ and its image
polymer ρ. The polymer between planar points u and v that is the image of the uppermost
geodesic given the preimage endpoints will be denoted by ρ←;v

n;u , and, naturally enough,
called the leftmost polymer from u to v. The rightmost polymer from u to v is the image of
the corresponding lowermost geodesic and will be denoted by ρ→;v

n;u . The simpler notation
ρ←n and ρ→n will be adopted when u = (0, 0) and v = (0, 1). When u = (x1, t1), v = (x2, t2),
with x1, x2, t1, t2 ∈ R, t1 < t2, such that T−1

n (x1, t1) � T−1
n (x2, t2), we will, when it is

convenient, regard any polymer ρ from u to v as a function of its vertical coordinate:
that is, for t ∈ [t1, t2], ρ(t) will denote the unique point such that (ρ(t), t) ∈ ρ. (This
definition makes sense since an increasing path can intersect any anti-diagonal at most
once.) We regard the vertical coordinate as time, as the t-notation suggests, and will
sometimes refer to the interval [t1, t2] as the lifetime of the polymer. In particular, when
t1 = 0 and t2 = 1, writing C[0, 1] for the space of continuous real-valued functions on
[0, 1] (equipped for later purposes with the topology of uniform convergence), we may
thus view ρ = {ρ(t)}t∈[0,1] as an element of C[0, 1].

1.1.2 Condition for existence of polymers

For u = (x1, t1), v = (x2, t2) with x1, x2, t1, t2 ∈ R, t1 < t2, we have that T−1
n (u) =

(nt1+x1n
2/3, nt1−x1n

2/3) and T−1
n (v) = (nt2+x2n

2/3, nt2−x2n
2/3). Thus T−1

n (u) � T−1
n (v)

if and only if |x1 − x2| < n1/3(t2 − t1). Indeed, we will write u
n
� v to mean that
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|x1−x2| < n1/3(t2− t1); this condition ensures that polymers exist between the endpoints
u and v.

The first of our three main results shows that polymers, viewed as functions of the

vertical coordinate, enjoy modulus of continuity of order t2/3
(

log t−1
)1/3

.

Theorem 1.1. (a) The sequence {ρ←n }n∈N is tight in (C[0, 1], ‖ · ‖∞).

(b) There exists a constant C > 0 such that, for the weak limit ρ←∗ of any weakly
converging subsequence of {ρ←n }n∈N, almost surely,

lim sup
t↘0

sup
0≤z≤1−t

t−2/3
(

log t−1
)−1/3|ρ←∗ (z + t)− ρ←∗ (z)| ≤ C . (1.3)

The same result holds for the rightmost polymer.

Note that the constant C does not depend on the choice of the weakly converging
subsequence.

The exponent pair (2/3, 1/3) for power law and polylogarithmic correction is thus
demonstrated to hold in an upper bound on polymer fluctuation. We believe that a lower
bound holds as well, in the sense that the limit infimum counterpart to (1.3) is positive.
A polymer is an object specified by a global constraint, and it by no means clearly enjoys
independence properties as it traverses disjoint regions, even though the underlying
Poisson randomness does. In order to demonstrate the polymer fluctuation lower bound,
this subtlety would have to be addressed. We choose instead to demonstrate that the
exponent pair (2/3, 1/3) describes polymer fluctuation by proving a lower bound of this
form for the maximum fluctuation witnessed among a natural class of short polymers
in a unit region. This alternative formulation offers a greater supply of independent
randomness.

Indeed, we now specify a notion of maximum transversal fluctuation over a collection
of short polymers. Fix any two points u = (x1, t1), v = (x2, t2) such that t2 > t1. Let
Φvn;u denote the set of all polymers ρ from u to v. Let `vu denote the planar line segment
that joins u and v; extending an abuse of notation that we have already made, we write
`vu(t) for the unique point such that (`vu(t), t) ∈ `vu, where t ∈ [t1, t2]. Then, for any polymer
ρ, the transversal fluctuation TF(ρ) of ρ is specified to be

TF(ρ) := sup
t∈[t1,t2]

|ρ(t)− `vu(t)|, (1.4)

and the transversal fluctuation between the points u and v to be

TFvn;u := max
ρ∈Φv

n;u

TF(ρ) = max
{

TF(ρ←;v
n;u ),TF(ρ→;v

n;u )
}
. (1.5)

Now fix some large constant ψ > 0. Then, for any fixed parameter t ∈ (0, 1] and any
n ∈ N, n > ψ3, we define the set of admissible endpoint pairs

AEPn(t) = AEPn,ψ(t) :=
{

((x1, t1), (x2, t2)) : t2 − t1 ∈ (0, t] ,

∣∣∣∣x2 − x1

t2 − t1

∣∣∣∣ ≤ ψ,
x1, x2 ∈ [−1, 1] , t1, t2 ∈ [0, 1]

}
. (1.6)

Observe that x2−x1

t2−t1 denotes the reciprocal of the slope of the line joining (x1, t1) and
(x2, t2). Since n > ψ3,

|x2 − x1|n2/3 ≤ ψ(t2 − t1)n2/3 < (t2 − t1)n .

Recalling the notation at the start of Subsection 1.1.2, we thus have (x1, t1)
n
� (x2, t2), so

that polymers do exist between such endpoint pairs.
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We then define

MTFn(t) = MTFn,ψ(t) := sup
{

TFvn;u : (u, v) ∈ AEPn,ψ(t)
}
, (1.7)

so that MTFn(t) is the maximum transversal fluctuation over polymers between all
endpoint pairs at vertical distance at most t such that the slope of the interpolating line
segment is bounded away from being horizontal; (we suppress the parameter ψ in the
notation). Our second theorem demonstrates that the exponent pair (2/3, 1/3) governs
this maximum traversal fluctuation.

Theorem 1.2. There exist ψ-determined constants 0 < c < C <∞ such that

lim inf
n

P
(
t−2/3

(
log t−1

)−1/3
MTFn(t) ∈ [c, C]

)
→ 1 as t↘ 0 .

1.1.3 Scaled energies are called weights

It is natural to scale the energy of a geodesic when we view the geodesic as a polymer
after scaling. Scaled energy will be called weight and specified so that it is of unit order
for polymers that cross unit-order distances. For t1 < t2, let t1,2 denote t2 − t1; (this is a
notation that we will often use). Let (x, t1), (y, t2) ∈ R2 be such that |x−y| < t1,2n

1/3. (This

condition ensures that (x, t1)
n
� (y, t2), so that polymers exist between this pair of points.)

Since T−1
n ((x, t1)) = (nt1 +xn2/3, nt1−xn2/3) and T−1

n ((y, t2)) = (nt2 +yn2/3, nt2−yn2/3),
it is natural to define the scaled energies, which we call weights, in the following way.
Define

W
(y,t2)
n;(x,t1) = n−1/3

(
X

(nt2+n2/3y,nt2−n2/3y)

(nt1+n2/3x,nt1−n2/3x)
− 2nt1,2

)
. (1.8)

Because of translation invariance of the underlying Poisson point process, t1,2 is a
far more relevant parameter than t1 or t2. The notation on the left-hand side of (1.8) is
characteristic of our presentation in this article: a scaled object is being denoted, with
planar points (·, ·) in the subscript and superscript indicating starting and ending points.

1.1.4 A continuous modification of the weight function

For the statement of our third theorem, we prefer to make an adjustment to the polymer
weight to cope with a minor problem concerning discontinuity of geodesic energy under
endpoint perturbation. For n ∈ N, define Xn : [1, 2] 7→ [0,∞),

Xn(t) := X
(nt,nt)
(0,0) .

Observe that Xn(t) is integer-valued, non-decreasing, right continuous and has almost
surely a finite number of jump discontinuities. Let d0 = 1 and dm = 2. Record in
increasing order the points of discontinuity of Xn as a list

(
d1, d2, · · · , dm−1

)
. We specify

a modified and continuous form of the function Xn by linearly interpolating it between
these points of discontinuity, setting

Xmod

n (t) := Xn(di) + (t− di)(di+1 − di)−1
(
Xn(di+1)−Xn(di)

)
, for t ∈ [di, di+1],

for i = 1, 2, · · · ,m − 1. Because almost surely no two points in a planar Poisson point
process share either their horizontal or vertical coordinate, Xn(di+1)−Xn(di) = 1 for all
i. Thus, for all t ∈ [1, 2],

Xn(t) ≤ Xmod

n (t) ≤ Xn(t) + 1 . (1.9)

Now define the modified weight function Wgtn : [1, 2] 7→ R for polymers from (0, 0) to
(0, ·):

Wgtn(t) := n−1/3 (Xmod

n (t)− 2nt) . (1.10)
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Because of (1.9), ∣∣∣Wgtn(t)−W
(0,t)
n;(0,0)

∣∣∣ ≤ n−1/3 . (1.11)

By construction, Wgtn sending t ∈ [1, 2] to Wgtn(t) is an element of C[1, 2], the space
of continuous functions on [1, 2]; (similarly to before, this space will be equipped with
the topology of uniform convergence).

Our third main result demonstrates that the exponent pair (1/3, 2/3) offers a de-
scription of the modulus of continuity of polymer weight when one endpoint is varied
vertically.

Theorem 1.3. The sequence {Wgtn}n∈N is tight in (C[1, 2], ‖ · ‖∞). There exist constants
0 < c < C <∞ such that, for the weak limit Wgt∗ of any weakly converging subsequence
of {Wgtn}n∈N, almost surely

c ≤ lim inf
t↘0

sup
1≤z≤2−t

t−1/3
(

log t−1
)−2/3

∣∣∣Wgt∗(z + t)−Wgt∗(z)
∣∣∣ (1.12)

≤ lim sup
t↘0

sup
1≤z≤2−t

t−1/3
(

log t−1
)−2/3

∣∣∣Wgt∗(z + t)−Wgt∗(z)
∣∣∣ ≤ C .

Note that, as in Theorem 1.1, the constants c and C do not depend on the choice of
weak limit point or converging subsequence.

Beyond these three theorems, we present a proposition, which is needed for the
proof of Theorem 1.2 and which may have an independent interest. That the maximum
fluctuation of any geodesic joining (0, 0) and (n, n) around the interpolating line is of
the order n2/3 was first shown in [13]. We first state Johansson’s result using scaled
coordinates. Observe from (1.4) that, for any polymer ρ between (0, 0) and (0, 1), TF(ρ) =

supy∈[0,1] |ρ(y)|. Recall that Φ
(0,t2)
n;(0,t1) is the set of all polymers from (0, t1) to (0, t2), and

define
ξ := inf

{
θ > 0 : lim

n
P
(

max
{

TF(ρ) : ρ ∈ Φ
(0,1)
n;(0,0)

}
≥ nθ−2/3

)
= 0
}
.

Johansson [13] proved that ξ = 2/3. This value appears in the scaled coordinates in
(1.2). His result is an upper bound on the maximum fluctuation from the diagonal of
the geodesic joining (0, 0) and (n, n) whose order is n2/3+o(1). That this fluctuation has
probability at most e−ck of exceeding kn2/3 has been obtained in [5, Theorem 11.1 and
Corollary 11.7]; the concerned proof may be straightforwardly varied to obtain an upper
bound of the form e−ck

3

, and later we will state and prove the result in such a form: see
Theorem 2.6. Our next proposition is the matching lower bound, stated using scaled
coordinates. We adopt such coordinates throughout because they offer a coherent
notation for the central aims of this paper, but in the present case it is worth noting the
simple expression of the result in unscaled terms: it is with probability at least e−ck

3

that the maximum fluctuation from the diagonal of the geodesics joining (0, 0) and (n, n)

exceeds kn2/3.

Proposition 1.4. There exist positive constants c∗, n0, s0 and α0 such that, for all t1, t2
with t1,2 = t2 − t1 > 0 and all nt1,2 ≥ n0 and s ∈ [s0, α0(nt1,2)1/3],

P
(

min
{

TF(ρ) : ρ ∈ Φ
(0,t2)
n;(0,t1)

}
≥ st2/31,2

)
≥ exp

{
− c∗s3

}
.

1.2 A few words about the proofs

The main ingredients in the proofs of Theorem 1.1 and Theorem 1.2 are tail estimates
on polymer weight arising from integrable probability (and certain ramifications thereof)
assembled in Section 2, and a polymer ordering property elaborated in Lemma 3.2 that
propagates control on polymer fluctuation among polymers whose endpoints lie in a
discrete mesh to all polymers in the region of this mesh. The basic tools in the proof
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Polymer fluctuations and weight profiles in last passage percolation

of the upper bound in Theorem 1.3 and that of Proposition 1.4 are surgical techniques
and comparisons of the weights of polymers, and are reminiscent of the techniques
developed and extensively used in [5] and [4].

The proofs in this paper depend on the moderate deviation estimates of the point-to-
point energies proved in [15, Theorem 1.3] and [16, Theorem 1.2], which are recalled
here in Theorem 2.2 and Theorem 2.3. As we record shortly in Section 2, further inputs
that we use from [5] and [4], namely [5, Propositions 10.1 and 10.5], [5, Theorem 11.1] and
[4, Theorem 2], are results that are themselves derived from the same integrable input
point-to-point estimates of Theorem 2.2. It is thus plausible that our results concerning
modulus of continuity may be proved for other models in the KPZ universality class that
enjoy the same point-to-point estimates.

1.3 Phase separation and KPZ

Certain random models manifest the scaling exponents of KPZ universality and some
of its qualitative features, without exhibiting the richness of behaviour of models in this
class. For example, the least convex majorant of the stochastic process R 7→ R : x 7→
B(x)− t−1x2 is comprised of planar line segments, or facets, the largest of which in a
compact region has length of order t2/3+o(1) when t > 0 is high; and the typical deviation
of the process from its majorant scales as t1/3+o(1).

Some such models form a testing ground for KPZ conjectures. Phase separation
concerns the form of the boundary of a droplet of one substance suspended in another.
When supercritical bond percolation on Z2 is conditioned on the cluster (or droplet)
containing the origin being finite and large, namely of finite size at least n2, with n

high, the interface at the boundary of this cluster is expected to exhibit KPZ scaling
characteristics, with the scaling parameter n playing a comparable role to t in the
preceding example. Indeed, the papers [9, 10, 8], which develop the study made in
[1, 18], a surrogate of this interface, expressed in terms of the random cluster model,
was investigated. The maximum length of the facets that comprise the boundary of the

interface’s convex hull was proved to typically have the order n2/3
(

log n
)1/3

, while the
maximum local roughness, namely the maximum distance from a point on the interface

to the convex hull boundary, was shown to be of the order of n1/3
(

log n
)2/3

.

Viewed in this light, the present article validates for the KPZ universality class the
implied predictions: that exponent pairs of (1/3, 2/3) and (2/3, 1/3) for power-law and
logarithmic-power govern maximal polymer weight change under vertical endpoint
displacement and maximal transversal polymer fluctuation.

In a natural sense, these two exponent pairs are accompanied by a third, namely
(1/2, 1/2), for interface regularity. In the example of parabolically curved Brownian
motion, x → B(x)− x2t−1, the modulus of continuity of the process on [−1, 1] is easily

seen to have the form s1/2
(

log s−1
)1/2

, up to a random constant, and uniformly in t ≥ 1.
In KPZ, this assertion finds a counterpart when it is made for the Airy2 process, which
offers a limiting description in scaled coordinates of the weight of polymers of given
lifetime with first endpoint fixed. This assertion has been proved in [11, Theorem 1.11(1)].
Recently, for a very broad class of initial data, the polymer weight profile was shown

in [12, Theorem 1.3] to have a modulus of continuity of the order of s1/2
(

log s−1
)2/3

,
uniformly in the scaling parameter and the initial condition. The present article and [12]
derive different modulus of continuity results for polymer weight profiles. In [12], the
weight profiles that are considered may be called ‘spatial’, in the sense that the variation
of the polymer endpoint is horizontal. In contrast, Theorem 1.3 addresses ‘temporal’
weight profiles, where the variation in polymer endpoint is instead vertical. The two
articles share a perspective of employing probabilistic and geometric techniques that
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harness limited integrable inputs, but those techniques are rather different: in [12], the
tools concern resampling associated to the Brownian Gibbs property enjoyed by the Airy
line ensemble, while, for Theorem 1.3, the key tools are surgeries on polymers allied
with prelimiting moderate deviation estimates.

1.4 Organization

We continue with two sections that offer basic general tools. The first, Section 2,
provides useful estimates including the basic integrable input Theorem 2.2 concerning
the tail of polymer weights. Then, in Section 3, we state and prove the polymer ordering
lemmas and some other basic results, which are essential tools in the proofs of the main
theorems.

The next four sections, 4 – 7, contain the main proofs. Consecutively, these sections
are devoted to proving:

• the polymer Hölder continuity upper bound Theorem 1.1;

• the modulus of continuity for maximum transversal fluctuation over short polymers,
Theorem 1.2, subject to assuming Proposition 1.4;

• Hölder continuity for the polymer weight profile, Theorem 1.3;

• and the lower bound on transversal polymer fluctuation, Proposition 1.4.

A partial list of the main pieces of notation used in the paper with a brief summary of their
meanings is provided in Appendix A for the convenience of the reader. Finally, Appendix
B reviews the instances of our use in this paper of the results in [5], and provides
summaries of the corresponding proofs in the notation of the scaled coordinates.

We will stick to scaled coordinates in the results’ statements and, except in Section 2,
in their proofs. A bridge between scaled coordinates and the original ones is offered
in this next section, in whose proofs we use the scaling map Tn from (1.2) and weight
function W from (1.8) to transfer unscaled results to their scaled counterparts.

2 Scalings and estimates: input results and their adaptations

In this section, we assemble the results that we will quote in our arguments. Most of
these results were derived in terms of unscaled coordinates in [5] and [4]. Point-to-point
estimates of last passage percolation energies were used crucially in [5] to resolve the
slow bond conjecture, and in [4] to show the coalescence of nearby geodesics, and those
estimates will be employed in this paper as well. The concerned results will either be
recalled from [5] and [4] or proved in this section: in each case, the underlying integrable
input is the pair of tail estimates concerning point-to-point polymer weights stated here
in Theorem 2.2 and 2.3.

We state results in scaled coordinates – valuable we believe for grasping the putatively
KPZ universal behaviour at stake – and the proofs explain how to obtain these statements
from their unscaled and largely already available counterparts. The transformation from
unscaled to scaled uses the definitions of the scaling map in (1.2) and the weight in (1.8).

First we observe some simple relations enjoyed by polymers and weights.

The scaling principle. Because of translation invariance and the definition (1.2), it

is easy to see that for any x, y, t1, t2 ∈ R with t1,2 = t2 − t1 > 0 and (x, t1)
n
� (y, t2) (see

Subsection 1.1.2),{
ρ
←;(y,t2)
n;(x,t1) (t1 + θt1,2)− `(y,t2)

(x,t1)(t1 + θt1,2) : θ ∈ [0, 1]
}

d
=

{
t
2/3
1,2

(
ρ
←;((y−x)t

−2/3
1,2 ,1)

nt1,2;(0,0) (θ)− `((y−x)t
−2/3
1,2 ,1)

(0,0) (θ)

)
: θ ∈ [0, 1]

}
. (2.1)
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Here, as before, `vu denotes the planar line segment joining u and v. The same statement

holds for the rightmost polymers as well. Here and throughout
d
= denotes that the two

random quantities on either side have the same distribution. We will sometimes call the
displayed assertion the scaling principle. The use of the subscripts and superscripts in
(2.1) is consistent with our notation for denoting starting and ending points in scaled
coordinates. The formula is however perhaps a little difficult to parse and we offer a few
words of interpretation. Take θ ∈ (0, 1) given, though the distributional equality holds
at a process level. Then (2.1) asserts that the fluctuation of the n-polymer from (x, t1)

to (y, t2) relative to the line that interpolates these endpoints, when a fraction θ of this

polymer’s lifetime has passed, is equal in law to the t2/31,2 -th multiple of the analogous

fluctuation for the nt1,2-polymer from (0, 0) to ((y − x)t
−2/3
1,2 , 1), at the same stage of life.

Also by translation invariance and the definition of weight in (1.8), it follows that

t
−1/3
1,2 W

(y,t2)
n;(x,t1)

d
= W

((y−x)t
−2/3
1,2 ,1)

nt1,2;(0,0) . (2.2)

Boldface notation for applying results. In our proofs, we will naturally often be
applying tools such as those stated in this section. Sometimes the notation of the tool
and of the context of the application will be in conflict. To alleviate this conflict, we will
use boldface notation when we specify the values of the parameters of a given tool in
terms of quantities in the context of the application. We will first use this notational
device shortly, in one of the upcoming proofs.

The next theorem, which was proved in [2], indicates a basic aspect of the role of
scaled coordinates, though in fact we will never use the result.

Theorem 2.1. As n→∞,
W

(0,1)
n;(0,0) ⇒ FTW ,

where the convergence is in distribution and FTW denotes the GUE Tracy-Widom distri-
bution.

For a definition of the GUE Tracy-Widom distribution, also called the F2 distribution,
see [2].

The next two results, concerning moderate deviations for the polymer weight, are the
only inputs from integrable probability used in this paper. The first follows immediately
from [15, Theorem 1.3], [16, Theorem 1.2] and (2.2); the second from [15, Theorem 1.3]
and the same identity (2.2).

Theorem 2.2. There exist positive constants c, s0 and n0 such that, for all t1 < t2 with
nt1,2 > n0 and s > s0,

P
(
t
−1/3
1,2 W

(0,t2)
n;(0,t1) ≥ s

)
≤ e−cs

3/2

,

and
P
(
t
−1/3
1,2 W

(0,t2)
n;(0,t1) ≤ −s

)
≤ e−cs

3/2

.

Theorem 2.3. There exist constants c2, s0, n0 > 0 such that, for all t1 < t2 with nt1,2 > n0

and s > s0,

P
(
t
−1/3
1,2 W

(0,t2)
n;(0,t1) ≥ s

)
≥ e−c2s

3/2

.

We shall need not just tail bounds for weights of point-to-point polymers, but uniform
tail bounds on polymer weights whose endpoints vary over fixed unit order intervals. The
unscaled version of this theorem was proved in [5, Propositions 10.1 and 10.5], which has
been reviewed and summarized here in Appendix B and makes essential use of Theorem
2.2.
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Theorem 2.4. There exist C, c ∈ (0,∞), C0 ∈ (1,∞) and n1 ∈ N such that, for all t1 < t2
with nt1,2 ≥ n1, s ∈ [0, 10(nt1,2)2/3], A = C−1

0 s1/4n1/6t
5/6
1,2 , and I and J intervals of length

at most t2/31,2 that are contained in [−A,A],

P

(
sup

x∈I,y∈J

∣∣∣t−1/3
1,2 W

(y,t2)
n;(x,t1) + t

−4/3
1,2 (x− y)2

∣∣∣ > s

)
≤ C exp

{
− cs3/2

}
.

Proof. Observe that |x − y| < 2C−1
0 s1/4n1/6t

5/6
1,2 < 2−1n1/3t1,2 for C0 > 22 · 101/4 since

s ≤ 10(nt1,2)2/3. This ensures that W(y,t2)
n;(x,t1) is well defined.

First we prove the theorem when t1 = 0 and t2 = 1. At the end we prove Theorem 2.4
for general t1 < t2. Thus we first show that for n large enough, and I and J intervals
of at most unit length contained in the interval of length 2C−1

0 s1/4n1/6 centred at the
origin,

P

(
sup

x∈I,y∈J

∣∣∣W(y,1)
n;(x,0) + (x− y)2

∣∣∣ > s

)
≤ C exp

{
− cs3/2

}
. (2.3)

Let u = (xn2/3,−xn2/3) and v = (n+ yn2/3, n− yn2/3). To begin with, observe that due
to the scaling invariance of the underlying Poisson process, we have

Xv
u
d
= X

(n∗,n∗)
(0,0) , (2.4)

where n∗ = n
(
1− n−2/3(y − x)2

)1/2
. Using a simple binomial expansion giving |(1 −

z)1/2 − (1− 2−1z)| ≤ C1z
2 for some constant C1 > 0 and all z ∈ (−1, 1), we get that

n−1/3
∣∣∣2n∗ − (2n− (x− y)2n1/3)

∣∣∣ ≤ C1n
−2/3(x− y)4 .

Since |x− y| ≤ 2C−1
0 s1/4n1/6 by our assumption,

C1n
−2/3(x− y)4 ≤ 24C−4

0 C1s < 2−1s

for C0 > 25/4C
1/4
1 . Since n∗ < n, using the definition of the weight function in (1.8),{∣∣∣W(y,1)

n;(x,0) + (x− y)2
∣∣∣ > s

}
⊆

{
n−1/3 |Xv

u − 2n∗| > 2−1s

}

⊆

{
n
−1/3
∗ |Xv

u − 2n∗| > 2−1s

}
d
=

{∣∣∣W(0,1)
n∗;(0,0)

∣∣∣ > 2−1s

}
,

where the last equality in distribution follows from (2.4). Now set n1 = 2n0. Next, using
Theorem 2.2, it follows that for all n > n1 (a bound which, in turn, ensures that the
condition n∗ > n0 is satisfied, since |x− y| < 2−1n1/3 guarantees that n∗ > 2−1n), s > s0

and x ∈ I, y ∈ J ,

P
(∣∣∣W(y,1)

n;(x,0) + (x− y)2
∣∣∣ > s

)
≤ e−cs

3/2

, (2.5)

where c, s0, n0 are as defined in Theorem 2.2. Then we use Proposition B.1 to get (2.3).
We now make a first use of the boldface notation for applying results specified at the

beginning of Section 2. For general t1 < t2, set n = nt1,2,x = xt
−2/3
1,2 ,y = yt

−2/3
1,2 , I =

t
−2/3
1,2 I,J = t

−2/3
1,2 J and s = s in (2.3). Recall that the boldface variables are those of

Theorem 2.4 and that these are written in terms of non-boldface parameters specified by
the present context. From the hypothesis of Theorem 2.4, I and J are intervals of at
most unit length contained in [−n1/6,n1/6]. Thus, applying (2.3) and using the scaling
principle (2.2), we get Theorem 2.4.
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The unscaled transversal fluctuations for paths between (0, 0) and (n, n) around the
diagonal were shown to be of the order n2/3+o(1) with high probability in [13]. More
precise estimates were established in [5]. However, the unscaled fluctuation of the
geodesic at the point (r, r) for any r ≤ n is only of the order r2/3. This is the content of
the next theorem which in essence is the scaled version of [4, Theorem 2] adapted for
Poissonian LPP. In the proof of [4, Theorem 2], Theorem 2.4 is again essential, applied at
several scales alongside a union bound. Recall that, for u, v ∈ R2, Φvn;u is the set of all
polymers from u to v, and `vu is the straight line joining u and v.

Theorem 2.5. There exist positive constants n0, s1, c such that for all x, y, t1, t2 ∈ R with
t1,2 = t2 − t1 > 0 and |x− y| ≤ 2−1n1/3t1,2 and for all nt1,2 ≥ n0, s ≥ s1 and t ∈ [t1, t2],

P

(
max

{∣∣∣ρ(t)− `(y,t2)
(x,t1)(t)

∣∣∣ : ρ ∈ Φ
(y,t2)
n;(x,t1)

}
≥ s
(

(t− t1) ∧ (t2 − t)
)2/3

)
≤ 2e−cs

3

. (2.6)

Here a ∧ b denotes min{a, b}.

Proof of Theorem 2.5. First we prove the theorem when t1 = 0, t2 = 1, and x = 0.
Observe that in this case it is enough to bound the probabilities of the events{∣∣∣ρ←;(y,1)

n;(0,0) (t)− `(y,1)
(0,0)(t)

∣∣∣ ≥ s(t ∧ (1− t)
)2/3

}
and

{∣∣∣ρ→;(y,1)
n;(0,0) (t)− `(y,1)

(0,0)(t)
∣∣∣ ≥ s(t ∧ (1− t)

)2/3
}
,

and use a union bound to obtain (2.6).
We first prove an upper bound for the probability of the first of these two events.

Also, first assume that t ∈ [0, 2−1]. To prove the bound in this case, we move to unscaled
coordinates, and use [4, Theorem 2].

To this end, let Γ := Γ
←;(n+yn2/3,n−yn2/3)
(0,0) be the leftmost geodesic, and S the straight

line from (0, 0) to (n+ yn2/3, n− yn2/3). For r ∈ [0, n+ yn2/3], let Γ(r) and S(r) be such
that (r,Γ(r)) ∈ Γ and (r,S(r)) ∈ S. Now, for r = nt,{∣∣∣ρ←;(y,1)

n;(0,0) (t)− `(y,1)
(0,0)(t)

∣∣∣ ≥ st2/3} (2.7)

=
{∣∣∣n2/3ρ

←;(y,1)
n;(0,0) (rn−1)− n2/3`

(y,1)
(0,0)(rn

−1)
∣∣∣ ≥ sr2/3

}
⊆

{
|Γ(r′)− S(r′)| ≥ sr2/3

}
=: B ,

where r′ is such that the anti-diagonal line passing through (r, r) intersects S at (r′,S(r′)).
The last inclusion follows from the definition of the scaling map Tn in (1.2). Since
|y| ≤ 2−1n1/3, 2−1r ≤ r′ ≤ 2r. Thus,

B ⊆
{
|Γ(r′)− S(r′)| ≥ 2−1s(r′)2/3

}
=: C . (2.8)

Thus it is enough to bound the probability of the event C. This local fluctuation estimate
for the leftmost geodesic in (2.9) was proved for exponential directed last passage
percolation in [4, Theorem 2 and Corollary 2.4]. The proof goes through verbatim for
the leftmost (and also the rightmost) geodesic in Poissonian last passage percolation.
Moreover, the refined bounds of Theorem 2.4 give corresponding improvements for
Poissonian LPP: see [4, Remark 1.5]. This gives that, for some positive constants n0, r0, s0,
and for n ≥ n0, r

′ ≥ r′0 and s ≥ s0,

P(C) ≤ e−cs
3

. (2.9)
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However, observe that (2.9) holds only when r′ ≥ r′0. Now assume r′ ≤ r′0, so that
r ≤ r0, where r0 = 2r′0. Let the anti-diagonal passing through (r, r) intersect the geodesic
Γ at v and the line S at w. Clearly ‖v − (r, r)‖2 ≤ 21/2r. Also, since |y| ≤ 2−1n1/3,

‖w − (r, r)‖2 = 21/2|y|rn−1/3 ≤ r .

Thus, with r = nt ≤ r0,∣∣∣ρ←;(y,1)
n;(0,0) (t)− `(y,1)

(0,0)(t)
∣∣∣ = 2−1/2n−2/3‖v − w‖2 ≤ 2−1(21/2 + 1)n−2/3r ≤ 2r

1/3
0 t2/3 .

Define s1 = max{s0, 2r
1/3
0 }. Then for n ≥ n0, s ≥ s1 and t ∈ [0, 2−1],

P
(∣∣∣ρ←;(y,1)

n;(0,0) (t)− `(y,1)
(0,0)(t)

∣∣∣ ≥ st2/3) ≤ e−cs3 .
For t ∈ [2−1, 1], we consider the reversed polymer and translate it by −y so that its

starting point is (0, 0), that is, ρ′(v) = ρ
←;(y,1)
n;(0,0) (1− v)− y for v ∈ [0, 1]. Now we follow the

same arguments as above to get the bound for the probability of the event{∣∣∣ρ←;(y,1)
n;(0,0) (t)− `(y,1)

(0,0)(t)
∣∣∣ ≥ s(t ∧ (1− t)

)2/3
}
.

Since the same arguments work for the rightmost polymer ρ→;(y,1)
n;(0,0) , we get for n ≥ n0, s ≥

s1 and all t ∈ [0, 1],

P

(
max

{∣∣∣ρ(t)− `(y,1)
(0,0)(t)

∣∣∣ : ρ ∈ Φ
(y,1)
n;(0,0)

}
≥ s
(
t ∧ (1− t)

)2/3
)
≤ 2e−cs

3

. (2.10)

Now for general t1 < t2, set n = nt1,2,y = (y − x)t
−2/3
1,2 , s = s and t = t−1

1,2(t − t1).

Then from the hypothesis of Theorem 2.5, |y| ≤ 2−1n1/3 since |y − x| ≤ 2−1n1/3t1,2. Thus
applying (2.10) and using the scaling principle (2.1), we obtain the theorem.

The following theorem bounds the transversal fluctuation of polymers; (recall the
definitions in (1.4) and (1.5)).

Theorem 2.6. There exist positive constants c, n0 and k0 such that, for t ∈ (0, 1], k ≥ k0

and n ≥ n0t
−1,

P
(

TF
(0,t)
n;(0,0) ≥ kt

2/3
)
≤ 2e−ck

3

.

Proof. Because of (1.5), it is enough to bound the probabilities of
{

TF
(
ρ
←;(0,t)
n;(0,0)

)
≥ kt2/3

}
and

{
TF
(
ρ
→;(0,t)
n;(0,0)

)
≥ kt2/3

}
and use a union bound. We bound only the first event, the

arguments for the second event being the same. For simplicity of notation, let us denote
ρ
←;(0,t)
n;(0,0) by ρ. From Theorem 2.5, setting n = n, t1 = 0, t2 = t,x = y = 0, t = 2−1t and

s = 22/3k, we see that there exist constants c > 0 and n0, k0 > 0 such that, for all k ≥ k0

and nt ≥ n0,

P
(∣∣ρ(2−1t)

∣∣ > kt2/3
)
≤ e−ck

3

. (2.11)

From here, using Proposition B.3, we get

P
(

TF
(
ρ
←;(0,t)
n;(0,0)

)
≥ kt2/3

)
≤ e−ck

3

. (2.12)

3 Basic tools

Fundamental facts about ordering and concatenation of polymers will be used repeat-
edly in the proofs of the main theorems.
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3.1 Polymer concatenation and superadditivity of weights

Let n ∈ N and (x, t1), (y, t2) ∈ R2 with t1 < t2 and |x − y| < n1/3(t2 − t1). (This

condition ensures that (x, t1)
n
� (y, t2), see Subsection 1.1.2.) Let u = T−1

n (x, t1) and
v = T−1

n (y, t2) and let ζ be an increasing path from u to v. Let γ = Tn(ζ). We call γ an
n-path. We shall often consider γ as a subset of R2, and call (x, t1) its starting point and
(y, t2) its ending point. Moreover, similarly to the definition of the weight of a polymer in
(1.8), we define the weight of an n-path as

n−1/3 (|ζ| − 2nt1,2) , (3.1)

where |ζ| denotes the energy of ζ, that is, the number of points in Π \ {v} that lie on ζ.

Now, let (x, t1), (y, t2), (z, t3) ∈ R2 be such that t1 < t2 < t3, |x− y| < n1/3(t2 − t1) and
|y − z| < n1/3(t3 − t2), so that there exist polymers from (x, t1) to (y, t2); and from (y, t2)

to (z, t3). Let ρ1 be any polymer from (x, t1) to (y, t2), and ρ2 any polymer from (y, t2) to
(z, t3). The union of these two subsets of R2 is an n-path from (x, t1) to (z, t3). We call
this n-path the concatenation of ρ1 and ρ2 and denote it by ρ1 ◦ρ2. The weight of ρ1 ◦ρ2 is
W

(y,t2)
n;(x,t1) + W

(z,t3)
n;(y,t2). This additivity is the reason that the endpoint v was excluded from

the definition of path energy in Section 1.1.

Again, let n ∈ N and (x, t1), (y, t2), (z, t3) ∈ R2 be such that t1 < t2 < t3 and |x− y| <
n1/3(t2 − t1) and |y − z| < n1/3(t3 − t2). Then

W
(z,t3)
n;(x,t1) ≥W

(y,t2)
n;(x,t1) + W

(z,t3)
n;(y,t2) . (3.2)

Indeed, taking a polymer ρ1 from (x, t1) to (y, t2) and a polymer ρ2 from (y, t2) to (z, t3),

the weight of ρ1 ◦ ρ2 is a lower bound on W
(z,t3)
n;(x,t1).

3.2 Polymer ordering lemmas

The first lemma roughly says that if two polymers intersect at two points during their
lifetimes, then they are identical between these points.

Lemma 3.1. Let n ∈ N and (x1, t1), (x2, t2), (y1, s1), (y2, s2) ∈ R2 and t, s ∈ R be such
that t1 < t < s < s1, t2 < t < s < s2, |x1 − y1| < n1/3(s1 − t1) and |x2 − y2| < n1/3(s2 − t2).

Suppose that ρ←;(y1,s1)
n;(x1,t1) and ρ

←,(y2,s2)
n;(x2,t2) intersect at two points z1 = (x, t) and z2 = (y, s).

Then ρ
←;(y1,s1)
n;(x1,t1) and ρ

←,(y2,s2)
n;(x2,t2) are identical between t and s. The same statement holds

for the rightmost polymers.

To simplify notation in the proof, we write ρ1 = ρ
←;(y1,s1)
n;(x1,t1) and ρ2 = ρ

←,(y2,s2)
n;(x2,t2) .

Proof of Lemma 3.1. First, for any polymer ρ, call a point u ∈ ρ a Poisson point of ρ if
T−1
n (u) ∈ Π∩Γ, where Γ is the geodesic T−1

n (ρ) and Π is the underlying unit rate Poisson
point process. Also, for r1, r2 ∈ ρ, let ρ[r1, r2] denote the part of the polymer between the
points r1 and r2, and let #ρ[r1, r2] denote the number of Poisson points that lie in ρ[r1, r2].
We first claim that #ρ1[z1, z2] = #ρ2[z1, z2| where z1 and z2 appear in the lemma’s
statement. For, if not, without loss of generality assume that #ρ1[z1, z2] < #ρ2[z1, z2| and
let u1 and v1 be the Poisson points of ρ1 immediately before z1 and immediately after
z2; and let u2 and v2 be the Poisson points of ρ2 immediately after z1 and immediately
before z2: see Figure 2. Then joining u1 to u2 and v1 to v2 (shown in the figure by dashed
lines), one gets an alternative path ρ′ between (x1, t1) and (y1, s1) that has more Poisson
points than ρ1, thereby contradicting that ρ1 is a polymer between (x1, t1) and (y1, s1).
Thus, #ρ1[z1, z2] = #ρ2[z1, z2|. Since both ρ1 and ρ2 are leftmost polymers between their
respective endpoints, we see that ρ1[z1, z2] = ρ2[z1, z2]. This proves the lemma.
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(x1, t1)

(y1, s1)

(x2, t2)

(y2, s2)

z2

z1

v1

v2

u1

u2

Figure 2: This illustrates Lemma 3.2. The points of the underlying Poisson process lying
on a polymer are marked by dots, and the polymer is obtained by linearly interpolating
between the points. The figure shows that both the paths cannot be leftmost polymers
between their respective endpoints, since by joining the dashed lines, one obtains an
alternative increasing path where the Poisson points between the intersecting points z1

and z2 in the two polymers are interchanged.

The next result roughly says that two polymers that begin and end at the same
heights, with the endpoints of one to the right of the other’s, cannot cross during their
shared lifetime.

Lemma 3.2 (Polymer Ordering). Fix n ∈ N. Consider points (x1, t1), (x2, t1), (y1, t2),

(y2, t2) ∈ R2 such that t1 < t2, x1 ≤ x2, y1 ≤ y2, |x1 − y1| < n1/3(t2 − t1) and |x2 − y2| <
n1/3(t2 − t1). Then ρ

←;(y1,t2)
n;(x1,t1) (t) ≤ ρ

←;(y2,t2)
n;(x2,t1) (t) and ρ

→;(y1,t2)
n;(x1,t1) (t) ≤ ρ

→;(y2,t2)
n;(x2,t1) (t) for all t ∈

[t1, t2].

Let ρ1 = ρ
←;(y1,t2)
n;(x1,t1) and ρ2 = ρ

→;(y1,t2)
n;(x1,t1) .

Proof of Lemma 3.2. Supposing otherwise, there exists z = (x, y) ∈ ρ2 such that
x < ρ1(y). But then there exist z1, z2 ∈ ρ1 ∩ ρ2 straddling the point z. By Lemma 3.1,
ρ1[z1, z2] = ρ2[z1, z2], and hence z ∈ ρ1 ∩ ρ2, a contradiction.

By ordering, a polymer whose endpoints are straddled between those of a pair of
polymers becomes sandwiched between those polymers.

Corollary 3.3. Fix n ∈ N. Consider the points (x1, t1), (x2, t1), (x3, t1), (y1, t2), (y2, t2) and
(y3, t2) ∈ R2 such that t1 < t2, x1 ≤ x2 ≤ x3, y1 ≤ y2 ≤ y3 and |xi − yi| < n1/3(t2 − t1) for

i = 1, 2, 3. Let t ∈ (t1, t2). Let ρi = ρ
←;(yi,t2)
n;(xi,t1) for i = 1, 2, 3. Then

|ρ2(t)− ρ2(t1)| ≤ max
i∈{1,3}

|ρi(t)− ρi(t1)|+ max
i∈{1,3}

|xi − x2| .

The same result holds for rightmost polymers.

Proof. By Lemma 3.2,
ρ1(t) ≤ ρ2(t) ≤ ρ3(t) .

The result now follows immediately.
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0 0

z

z + t

1
0

s−s

2−1st2/3

L

ρ(i)n ρ(i+1)
n

Figure 3: The proof of Proposition 4.1 is illustrated here. We mark the line segment
L with a number of equally spaced points. As the leftmost polymer from (0, 0) to
(0, 1) passes between two such points on the line L, it is, in view of polymer ordering,
sandwiched between the two leftmost polymers, shown as dotted lines, originating from
those points and ending at (0, 1). Hence it is sufficient to bound the fluctuations of the
polymers originating from these equally spaced points on L.

4 Exponent pair (2/3, 1/3) for a single polymer: Proof of Theo-
rem 1.1

In this section, we show that the sequence
{
ρ←n : n ∈ N

}
of leftmost n-polymers from

(0, 0) to (0, 1) is tight, and any weak limit is Hölder 2/3−-continuous with a polyloga-
rithmic correction of order 1/3. The main two ingredients in this proof are the local
regularity estimate Theorem 2.5 and the polymer ordering Lemma 3.2. First, we bound
the fluctuation of the polymer near any given point z ∈ [0, 1].

Proposition 4.1. There exist positive constants n0, s1 and c such that, for all n ≥ n0, s ≥
s1, z ∈ [0, 1] and 0 ≤ t ≤ 1− z,

P
(
|ρ←n (z + t)− ρ←n (z)| ≥ st2/3

)
≤ 10t−2/3e−cs

3

. (4.1)

The same statement holds for ρ→n .

As we now explain, the proposition will be proved by reducing to the case that
z = 0, when the result follows from Theorem 2.5. For any fixed z ∈ (0, 1), Theorem
2.5 again guarantees that the polymer ρ←n is at distance at most s from the point (0, z)

with probability at least 1 − e−cs3 . We break the horizontal line segment of length 2s

centred at (0, z) into a sequence of consecutive intervals of length 2−1st2/3, and consider
the leftmost polymers starting from each of these endpoints and ending at (0, 1), as in
Figure 3. Due to the Corollary 3.3 of the polymer ordering Lemma 3.2, a big fluctuation
of ρ←n between times z and z+ t creates a big fluctuation for one of the polymers starting
from these deterministic endpoints. The probability of the latter fluctuations is controlled
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via Theorem 2.5 and since the number of these polymers is of the order of t−2/3, a union
bound gives (4.1).

Proof of Proposition 4.1. First observe that for s > (nt)1/3, the probability in (4.1) is
zero by the definition of the scaling map Tn in (1.2) and the geodesics being increasing
paths. Hence we assume that s ≤ (nt)1/3.

Fix s ≤ (nt)1/3 and z ∈ [0, 1]. For t ≥ 8−3,{
|ρ←n (z + t)− ρ←n (z)| ≥ st2/3

}
⊆
{
|ρ←n (z + t)− ρ←n (z)| ≥ 8−2s

}
⊆
{

TF
(0,1)
n;(0,0) ≥ 2−18−2s

}
,

where TF
(0,1)
n;(0,0) is defined in (1.5). Hence, applying Theorem 2.6 with the parameter

specifications t = 1 and k = 2−18−2s, we get that (4.1) holds for all n, s large enough.
Hence we assume that t ≤ 8−3. Also, let us assume for now that z ∈ [0, 2−1].

Let L be the line segment [−s, s]× {z}. Let E be the event that ρ←n passes through L.
By Theorem 2.5 with n = n, t = z,x = 0,y = 0, s = s, t1 = 0 and t2 = 1, we have that, for
n ≥ n1 and s ≥ s1,

P(E) ≥ 1− 2e−cs
3

.

Now, we divide L into d4t−2/3e-many adjacent intervals of length at most 2−1st2/3,
and let (xi, z), i = 0, 1, 2, · · · , d4t−2/3e be the endpoints of these intervals, i.e.,

xi = −s+ 2−1ist2/3 for i = 0, 1, 2, · · · , d4t−2/3e.

Let ρ(i)
n := ρ

←;(0,1)
n;(xi,z)

be the leftmost polymer from (xi, z) to (0, 1).
By Corollary 3.3, on E,

|ρ←n (z + t)− ρ←n (z)| ≤ max
i∈J0,d4t−2/3eK

∣∣∣ρ(i)
n (z + t)− ρ(i)

n (z)
∣∣∣+ 2−1st2/3. (4.2)

Also, for any fixed i ∈ J0, d4t−2/3eK, let `(i) = `
(0,1)
(xi,z)

be the straight line segment joining

(xi, z) and (0, 1). Then, since z ∈ [0, 2−1] and t ≤ 8−3, for any i ∈ 0, 1, 2, · · · , d4t−2/3e,∣∣∣`(i)(z)− `(i)(z + t)
∣∣∣ ≤ st

1− z
≤ 2st ≤ 4−1st2/3 .

Since ρ(i)
n (z) = `(i)(z) = xi,∣∣∣ρ(i)
n (z + t)− ρ(i)

n (z)
∣∣∣ ≤ ∣∣∣ρ(i)

n (z + t)− `(i)(z + t)
∣∣∣+ |`(i)(z + t)− `(i)(z)|

≤
∣∣∣ρ(i)
n (z + t)− `(i)(z + t)

∣∣∣+ 4−1st2/3 .

Thus, on the event E, by (4.2),

|ρ←n (z + t)− ρ←n (z)| ≤ max
i∈J0,d4t−2/3eK

∣∣∣ρ(i)
n (z + t)− `(i)(z + t)

∣∣∣+ 3
4st

2/3 .

From here, it follows by taking a union bound that

P
(
|ρ←n (z + t)− ρ←n (z)| ≥ st2/3

)
≤ P(Ec) +

d4t−2/3e∑
i=0

P
(∣∣∣ρ(i)

n (z + t)− `(i)(z + t)
∣∣∣ ≥ 4−1st2/3

)
≤ 10t−2/3e−cs

3

,
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for some absolute positive constant c and all n ≥ 2n0. Here the last inequality fol-
lows by applying Theorem 2.5 to each of the polymers ρ(i). For given i, set the pa-
rameters n = n, t1 = z, t2 = 1, t = t + z,x = −s + 2−1ist2/3,y = 0 and s = 4−1s.
Since z ∈ [0, 2−1] and s ≤ (nt)1/3, we have that |x − y| ≤ s ≤ n1/3t1/3 ≤ 8−1n1/3 ≤
4−1n1/3t1,2. Thus one can apply Theorem 2.5 to get the above inequality for all nt1,2 ≥
2−1n ≥ n0.

For z ∈ [2−1, 1], define the reversed polymer ρ̂←n by ρ̂←n (a) = ρ←n (1 − a) for a ∈ [0, 1],
and follow the above argument.

Next we show the tightness of the members of the sequence {ρ←n }n∈N as elements in
the space (C[0, 1], ‖ · ‖∞). We prove that Proposition 4.1 guarantees that Kolmogorov-
Chentsov’s tightness criterion is satisfied.

Proof of Theorem 1.1(a). Fix n ≥ n0 and any λ > 0. Fix t ∈ (0, 1] small enough that
λt−2/3 ≥ s1, where n0 and s1 are as in Proposition 4.1. Also fix some M ∈ N large enough
that 2M − 2/3 > 1. Then it follows from Proposition 4.1 that for any z, z′ ∈ [0, 1] with
|z − z′| = t,

P (|ρ←n (z′)− ρ←n (z)| ≥ λ)

≤ 10t−2/3e−c(λ
3t−2) ≤ KMλ

−3M t2M−2/3 = KMλ
−3M |z′ − z|2M−2/3, (4.3)

where KM := supx≥0 x
Me−cx < ∞. Since 2M − 2/3 > 1, by Kolmogorov-Chentsov’s

tightness criterion (see for example [7, Theorem 8.1.3]), it follows that the sequence
{ρ←n }n∈N is tight in (C[0, 1], ‖ · ‖∞).

4.1 Modulus of continuity

Here we prove Theorem 1.1(b), thus finding the modulus of continuity for any weak
limit of a weakly converging subsequence of {ρ←n }n∈N. We will follow the arguments
used to derive the Kolmogorov continuity criterion, where one infers Hölder continuity
of a stochastic process from moment bounds on the difference of the process between
pairs of times. Thus we introduce the set of dyadic rationals

D =

∞⋃
i=0

2−iZ .

Next is the first step towards proving the modulus of continuity.

Lemma 4.2. Let ρ←∗ be the weak limit of a weakly converging subsequence of {ρ←n }n∈N.
Then there exists a universal positive constant C (not depending on the particular weak
limit ρ←∗ ) such that, almost surely, for some random m0(ω) ∈ N and for all s, t ∈ D ∩ [0, 1]

with |t− s| ≤ 2−m0(ω),

|ρ←∗ (t)− ρ←∗ (s)| ≤ C(t− s)2/3
(
log(t− s)−1

)1/3
.

Proof. For m ∈ N, let Sm be the set of all intervals of the form [j2−m, (j + 1)2−m],
for j ∈ {0, 1, 2, · · · , 2m − 1}. Fix c0 > ( 5

3c )
1/3, where c is the constant in Proposi-

tion 4.1.
Writing⇒ for convergence in distribution, let {ρ←nk

}k∈N be a subsequence of {ρ←n }n∈N
such that ρ←nk

⇒ ρ←∗ as random variables in (C[0, 1], ‖ · ‖∞). Since for a, b ∈ [0, 1],
the map τa,b defined by (C[0, 1], ‖ · ‖∞) 7→ (R, | · |) : f 7→ |f(a) − f(b)| is continu-
ous,

U :=
⋃{

τ−1
(j+1)2−m,j2−m

(
c02−

2m
3 (log 2m)

1/3
,∞
)

: j = 0, 1, · · · , 2m − 1
}
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is an open set. Thus, by the Portmanteau theorem,

P

(
sup

j∈{0,1,··· ,2m−1}
|ρ←∗ ((j + 1)2−m)− ρ←∗ (j2−m)| > c02−

2m
3 (log 2m)

1/3

)
(4.4)

≤ lim inf
k

P

(
sup

j∈{0,1,··· ,2m−1}
|ρ←nk

((j + 1)2−m)− ρ←nk
(j2−m)| > c02−

2m
3 (log 2m)

1/3

)

≤ lim sup
n

P

(
sup

j∈{0,1,··· ,2m−1}
|ρ←n ((j + 1)2−m)− ρ←n (j2−m)| > c02−

2m
3 (log 2m)

1/3

)
.

Now, for all m large enough that (log 2m)
1/3 ≥ s1, where s1 is as in Proposition 4.1, and

all n ≥ n0, applying Proposition 4.1 and a union bound,

P

(
sup

j∈{0,1,··· ,2m−1}
|ρ←n ((j + 1)2−m)− ρ←n (j2−m)| > c02−

2m
3 (log 2m)

1/3

)

≤ 10 · 2m
(

1

2m

)c30c−2/3

≤ 10

(
1

2m

)c30c−5/3

.

Hence, from (4.4),

P

(
sup

j∈{0,1,··· ,2m−1}
|ρ←∗ ((j+1)2−m)−ρ←∗ (j2−m)| > c02−

2m
3 (log 2m)

1/3

)
≤ 10·2−m(c30c−5/3) .

As the right hand side is summable in m (by the choice of c0 made at the beginning of
the proof), the Borel-Cantelli lemma implies that there exists a null set N0, such that,
for each ω /∈ N0, there is some m0(ω) for which m ≥ m0(ω) entails that

|ρ←∗ (t)− ρ←∗ (s)| ≤ c0(t− s)2/3
(
log(t− s)−1

)1/3
for all [s, t] ∈ Sm . (4.5)

Now, let ω /∈ N0 and s, t ∈ D ∩ [0, 1] be such that |s − t| ≤ 2−m0(ω). Let m = m(s, t) be
the greatest integer such that |s− t| ≤ 2−m; then clearly, m ≥ m0(ω). Also, consider the
binary expansions of s and t:

s = s0 +
∑
j>m

σj2
−j , t = t0 +

∑
j>m

τj2
−j ,

where σj , τj ∈ {0, 1}, and each of the sequences is eventually zero. Either s0 = t0 or
[s0, t0] ∈ Sm. Moreover, for n ≥ 1, let

sn = s0 +
∑

m<j≤m+n

σj2
−j .

Then, for n ≥ 1, either sn = sn−1 or [sn−1, sn] ∈ Sm+n. Since m ≥ m0(ω), by (4.5),

|ρ←∗ (t0)(ω)− ρ←∗ (s0)(ω)| ≤ c02−
2m
3 (log 2m)

1/3
.

Also,

|ρ←∗ (s)(ω)− ρ←∗ (s0)(ω)| ≤
∞∑
n=1

|ρ←∗ (sn)(ω)− ρ←∗ (sn−1)(ω)|

≤
∞∑
n=1

c02−
2(m+n)

3

(
log 2m+n

)1/3
≤ C12−

2(m+1)
3

(
log 2m+1

)1/3
,
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and similarly

|ρ←∗ (t)(ω)− ρ←∗ (t0)(ω)| ≤ C22−
2(m+1)

3

(
log 2m+1

)1/3
,

for some absolute constants C1 and C2. Hence,

|ρ←∗ (t)−ρ←∗ (s)| ≤ |ρ←∗ (t)−ρ←∗ (t0)|+|ρ←∗ (t0)−ρ←∗ (s0)|+|ρ←∗ (s)−ρ←∗ (s0)| ≤C2−
2m
3 (log 2m)

1/3
.

Since by definition 2−m−1 ≤ |s− t| ≤ 2−m, the result follows.

Proof of Theorem 1.1(b). For any s, t ∈ [0, 1] satisfying s < t and |s − t| ≤ 2−m0(ω),
choose sk, tk ∈ D ∩ [s, t] such that sk ↘ s and tk ↗ t. Then, since |sk − tk| ≤ |s − t| ≤
2−m0(ω), by Lemma 4.2,

|ρ←∗ (tk)− ρ←∗ (sk)| ≤ C(tk − sk)2/3
(
log(tk − sk)−1

)1/3
.

Since ρ←∗ (tk)(ω) → ρ←∗ (ω) and ρ←∗ (sk)(ω) → ρ←∗ (s)(ω), the theorem follows by taking
the limit as k →∞. The same argument applies without any change for the rightmost
polymers as well.

5 Exponent pair (2/3, 1/3) for maximum fluctuation over short poly-
mers: Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. It is the upper bound that is the more
subtle. Recall the notation of transversal fluctuations from (1.4) and (1.5), AEPn(t) from
(1.6) and MTFn(t) from (1.7).

Here is the idea behind the proof. Proposition 1.4 offers a lower bound on the
transversal fluctuation of a polymer between two given points. By considering order-t−1

endpoint pairs with disjoint intervening lifetimes of length t, we obtain a collection
of independent opportunities for the fluctuation lower bound to occur. By tuning the
probability of the individual event to have order t, at least one among the constituent
events typically does occur, and the lower bound in Theorem 1.2 follows.

On the other hand, suppose that a big swing in the unit order region happens between
a certain endpoint pair, with an intervening duration, or height difference, of order t.
Members of the endpoint pair may be exceptional locations when viewed as functions
of the underlying Poisson point field, both in horizontal and vertical coordinate. Thus,
the upper bound in Theorem 1.2 does not follow directly from a union bound of a given
endpoint estimate over elements in a discrete mesh, since such a mesh may not capture
the exceptional endpoints. However, polymer ordering forces exceptional behaviour
to become typical and to occur between an endpoint pair in a discrete mesh. To see
this, assume that the original polymer between exceptional endpoints makes a big left
swing. (Figure 4 illustrates the argument.) We take a discrete mesh endpoint pair whose
lifetime includes that of the original polymer but has the same order t, and whose lower
and upper points lie to the left of the original endpoint locations, about halfway between
these and the leftmost coordinate visited by the original polymer. Then we consider the
leftmost mesh polymer at the beginning and ending times of the original polymer. If
the mesh polymer is to the right of the original polymer at any of these endpoints, then
the mesh polymer has already made a big rightward swing at one of these endpoints.
If, on the other hand, the mesh polymer is to the left of the original polymer at both
the endpoints of the original polymer, then by polymer ordering Lemma 3.2, the mesh
polymer cannot cross the original polymer during the latter’s lifetime. Hence the big
left swing of the original polymer forces a significant left swing for the mesh polymer as
well.
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(
jt2/3

(
log t−1

)1/3
, (i+ 1)t

)

L0L1L2

2t2/3
(
log t−1

)1/3

(C − 2)t2/3
(
log t−1

)1/3

e
(1)
i,j

f
(1)
i,j

(u, t1)

(v, t2)

w

z1

z2

Ai,j

Figure 4: The figure illustrates the proof of the upper bound in Theorem 1.2. If the
leftmost polymer between (u, t1) and (v, t2) (shown in red) makes a huge leftward

fluctuation and the leftmost polymer between points e(1)
i,j and f (1)

i,j (shown in blue) is to
the left of u and v at t1 and t2 respectively, then the blue polymer stays to the left of the
red polymer between times t1 and t2 by polymer ordering. Thus the big left fluctuation
transmits from the red to the blue polymer. If, however, the blue polymer reaches to
the right of either u or v, then it creates a big right fluctuation for the blue polymer.
Thus by bounding the fluctuations of a small number of polymers between deterministic
endpoints, one can bound the fluctuation between all admissible endpoint pairs.

Proof of Theorem 1.2. The lower bound follows in a straightforward way from Propo-
sition 1.4. For any t ∈ (0, 1) and i ∈

{
0, 1, 2, · · · ,

[
t−1
]
− 1
}

, define

Fi,t,n =
{

TF
(0,(i+1)t
n;(0,it) ≥ ct

2/3
(

log t−1
)1/3}

.

For given such (t, i), we apply Proposition 1.4 with parameter settings n = n, t1 =

it, t2 = (i + 1)t and s = c(log t−1
)1/3

, to find that, when c(log t−1)1/3 ≥ s0 and n ≥
max{α−3

0 c3t−1 log t−1, n0t
−1},

P(Fi,t,n) ≥ e−c
∗c3 log t−1

= tc
∗c3 ,

where the proposition specifies the quantities α0, n0 and s0.
Thus, for all t ≤ e−(c−1s0)3 and i ∈

{
0, 1, 2, · · · ,

[
t−1
]
− 1
}

,

lim inf
n

t−1P(Fi,t,n) = lim inf
n

t−1P(F0,t,n) ≥ tc
∗c3−1 .

By choosing c > 0 small enough that c∗c3 < 1, one has lim infn t
−1P(F0,t,n) → ∞ as

t ↘ 0. For such c > 0, using the definition (1.7) of MTFn(t) and independence of the
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events Fi,t,n for i ∈
{

0, 1, 2, · · · ,
[
t−1
]
− 1
}

,

P
(

MTFn(t)t−2/3
(

log t−1
)−1/3

< c
)
≤ P

[t−1]−1⋂
i=0

Fci,t,n

 =

[t−1]−1∏
i=0

P
(
Fci,t,n

)
.

Thus,

lim sup
n

P
(

MTFn(t)t−2/3
(

log t−1
)−1/3

< c
)

≤ lim sup
n

(
1− P

(
F0,t,n

))[t−1]

≤ lim sup
n

exp
{
−
[
t−1
]
P(F0,n)

}
→ 0 ,

the latter convergence as t↘ 0.
Now we show the upper bound. Fix t ∈ (0, 1] small enough that ψt ≤ t2/3, where the

parameter ψ appears in the definition (1.6) of AEPn(t).

For any i = 0, 1, 2, . . . , dt−1e and j ∈
r
−
⌈
t−2/3

(
log t−1

)−1/3
⌉
,
⌈
t−2/3

(
log t−1

)−1/3
⌉z

,

define the rectangle Ai,j with lower-left corner
(

(j − 1)t2/3
(

log t−1
)1/3

, it
)

, width

2t2/3
(

log t−1
)1/3

and height 2t. Figure 4 illustrates this rectangle and the arguments
that follow.

Let C > 0 be an even integer whose value will later be specified. For such i, j as
above, define planar points

e
(1)
i,j :=

(
(j − 2−1C)t2/3

(
log t−1

)1/3
, it
)
, f

(1)
i,j :=

(
(j − 2−1C)t2/3

(
log t−1

)1/3
, (i+ 2)t

)
,

e
(2)
i,j :=

(
(j + 2−1C)t2/3

(
log t−1

)1/3
, it
)
, f

(2)
i,j :=

(
(j + 2−1C)t2/3

(
log t−1

)1/3
, (i+ 2)t

)
.

Then we claim that, whatever the value of C > 0,

Bi,j :=
{

sup
{

TF
(x2,y2)
n;(x1,y1) : (x1, y1), (x2, y2) ∈ Ai,j , y2 > y1

}
> Ct2/3

(
log t−1

)1/3}
⊆ D

(1)
i,j ∪ D

(2)
i,j , (5.1)

where

D
(1)
i,j :=

{
TF

f
(1)
i,j

n;e
(1)
i,j

≥ (2−1C − 1)t2/3
(

log t−1
)1/3}

and

D
(2)
i,j :=

{
TF

f
(2)
i,j

n;e
(2)
i,j

≥ (2−1C − 1)t2/3
(

log t−1
)1/3}

.

To see (5.1), define the vertical lines:

L2 =
{
x = (j − C + 1)t2/3

(
log t−1

)1/3}
and L′2 =

{
x = (j + C − 1)t2/3

(
log t−1

)1/3}
.

Then, on the event Bi,j , there exists a pair of points (u, t1), (v, t2) ∈ Ai,j such that

either ρ←;(v,t2)
n;(u,t1) intersects L2 or ρ→;(v,t2)

n;(u,t1) intersects L′2. We now show that, when ρ←;(v,t2)
n;(u,t1)

intersects L2, the event D(1)
i,j occurs. Let

ρ := ρ
←;f

(1)
i,j

n;e
(1)
i,j

.

Let `(1)
i,j be the line segment joining e(1)

i,j and f (1)
i,j . If ρ(t1) > u, then

ρ(t1)− `(1)
i,j (t1) ≥ (j − 1)t2/3

(
log t−1

)1/3 − (j − 2−1C)t2/3
(

log t−1
)1/3

≥ (2−1C − 1)t2/3
(

log t−1
)1/3

,
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and thus D
(1)
i,j holds. Similarly, if ρ(t2) > v, then D

(1)
i,j holds. Now assume that ρ(t1) < u

and ρ(t2) < v. Polymer ordering Lemma 3.2 then implies that ρ(t) ≤ ρ
←;(v,t2)
n;(u,t1) (t) for all

t ∈ [t1, t2]. Thus ρ intersects L2 as well, and hence D
(1)
i,j occurs.

By similar reasoning, we see that, when ρ→;(v,t2)
n;(u,t1) intersects L′2, the event D(2)

i,j occurs.
We have proved (5.1).

For any compatible pair of points (u, v) ∈ AEPn(t), there exists a pair (i, j) for which
u, v ∈ Ai,j; here we use ψt ≤ t2/3. Hence,{

t−2/3
(

log t−1
)−1/3

MTFn(t) > C
}

⊆
⋃{

Bi,j : i ∈ J0, dt−1eK, j ∈
r
−
⌈
t−2/3

(
log t−1

)−1/3
⌉
,
⌈
t−2/3

(
log t−1

)−1/3
⌉z}

⊆
⋃{

D
(1)
i,j ∪ D

(2)
i,j : i ∈ J0, dt−1eK, j ∈

r
−
⌈
t−2/3

(
log t−1

)−1/3
⌉
,
⌈
t−2/3

(
log t−1

)−1/3
⌉z}

,

where (5.1) was used in the latter inclusion.
Thus, with c, k0, n0 as in the statement of Theorem 2.6, for any fixed t small enough

that log t−1 ≥ 22k3
0, and all n ≥ n0(2t)−1, we have by a union bound and the translation

invariance of the environment,

P
(
t−2/3

(
log t−1

)−1/3
MTFn(t) > C

)
≤

(
2t−2/3

(
log t−1

)−1/3
+ 2
)
(t−1 + 2)P

(
TF

(0,2t)
n;(0,0) > (2−1C − 1)t2/3

(
log t−1

)1/3)
≤ 2(t−2/3 + 1)(t−1 + 2) exp

{
−c(2−1C − 1)3 log t−1

}
≤ 8 · tc(C/2−1)3−5/3.

Here the second inequality follows from Theorem 2.6 with t = 2t,k = 2−2/3(2−1C −
1)
(

log t−1
)1/3

and n = n being the parameter settings. The assumptions log t−1 ≥ 22k3
0,

and n ≥ n0(2t)−1 ensure that n ≥ n0t
−1 and k ≥ k0 for any C ≥ 2.

Finally, choosing C large enough that c (C/2− 1)
3
> 5/3, we learn that

P
(
t−2/3

(
log t−1

)−1/3
MTFn(t) > C

)
→ 0 as t↘ 0 ,

whenever n = n(t) verifies n ≥ n0(2t)−1.
This completes the proof of Theorem 1.2.

6 Exponent pair (1/3, 2/3) for polymer weight: Proof of Theorem
1.3

A lemma and two propositions will lead to the proof of Theorem 1.3 on the Hölder
continuity of [1, 2] 7→ R : t 7→Wgtn(t), the polymer weight profile under vertical displace-
ment.

Lemma 6.1. There exist positive constants n0, r0, s0, c0 such that, for all n ≥ n0, z ∈ [1, 2],
t ∈ [r0n

−1, 2− z] and s ∈ [s0, 10(nt)2/3],

P
(
|Wgtn(z + t)−Wgtn(z)| ≥ st1/3

)
≤ 5e−c0s

3/2

.

We postpone the proof to Section 6.1 and first see how the lemma implies the upper
bound in Theorem 1.3. This bound follows from Lemma 6.1 similarly to how Theorem
1.1 is derived from Proposition 4.1.

Proposition 6.2. The sequence {Wgtn}n∈N is tight in (C[1, 2], ‖ · ‖∞). Moreover, if Wgt∗
is the weak limit of a weakly converging subsequence of {Wgtn}n∈N, then there exists a
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positive constant C not depending on the particular weak limit Wgt∗ such that, almost
surely,

lim sup
t↘0

sup
1≤z≤2−t

|Wgt∗(z + t)−Wgt∗(z)| t−1/3
(

log t−1
)−2/3 ≤ C . (6.1)

Lemma 6.1 holds only for t ∈ [max{r0n
−1, 10−3/2s3/2n−1}, 2 − z] for some fixed con-

stant r0 > 0, and not for all t ∈ [0, 1− z], as was the case in Proposition 4.1. Hence, we
directly show tightness in the following proof instead of applying Kolmogorov-Chentsov’s
tightness criterion.

Proof of Proposition 6.2. To show the first statement, concerning tightness, we follow
the proof of the tightness criterion used to derive [6, Theorem 12.3]. To this end, it is
enough to show that, for given ε, η > 0, there exist δ ∈ [0, 1], which we may harmlessly
suppose to verify δ−1 ∈ N, and N0 ∈ N such that, for all n ≥ N0,

∑
j<δ−1

P

(
sup

jδ≤u≤(j+1)δ

|Wgtn(1 + u)−Wgtn(1 + jδ)| ≥ ε

)
< η . (6.2)

Assume then that ε, η > 0 are given small constants. For the time being, fix some δ > 0

small to be chosen later (depending on ε and η).
Now fix any M > 1. For any z1, z2 ∈ [1, 2] such that |z1 − z2| = 10−1εn−2/3, set

t = |z1 − z2|. For all λ ∈ [0, ε], clearly λt−1/3 ≤ 10(nt)2/3. Hence, choosing s = λt−1/3 in
Lemma 6.1, one gets, for all n large enough,

P
(
|Wgtn(z1)−Wgtn(z2)| ≥ λ

)
≤ KMλ

−3M |z1 − z2|M , (6.3)

for some constant KM depending only on M .
To establish tightness, the general strategy is to bound the distribution of the maxi-

mum of certain fluctuations. To achieve this, we crucially use the bound in (6.3) together
with the inequality in [6, Theorem 12.2] that bounds the maximum of partial sums. To
this end, fix j < δ−1, and break the interval [jδ, (j+ 1)δ] into dδβ−1e-many subintervals of
length β := 10−1εn−2/3 each, and follow the proof of the inequality in [6, Theorem 12.2]
to obtain

P

(
max

0≤i≤dδβ−1e
|Wgtn(1 + jδ + iβ)−Wgtn(1 + jδ)| ≥ ε

2

)
≤ K ′Mε−3MδM , (6.4)

for some appropriate constant K ′M depending only on M . Note that by [6, Theorem 12.2]
it directly follows that if (6.3) holds for all λ > 0, then (6.4) holds for all ε > 0. However,
in our case (6.3) holds for all λ ∈ [0, ε], instead of all λ > 0. Hence, we resort to the proof
of [6, Theorem 12.2] which shows that if for some fixed ε > 0, (6.3) holds for all λ ∈ [0, ε],
then (6.4) holds for that particular ε.

Now, fix any i ∈ J0, dδβ−1e − 1K. For any u ∈ [jδ + iβ, jδ + (i+ 1)β], it clearly follows
from the definition (1.8),

W
(0,1+jδ+(i+1)β)
n;(0,1+u) ≥ −2n2/3(1 + jδ + (i+ 1)β − (1 + u)) ≥ −2n2/3β , and

W
(0,1+u)
n;(0,1+jδ+iβ) ≥ −2n2/3(1 + u− (1 + jδ + iβ)) ≥ −2n2/3β .

Thus, for any u ∈ [jδ + iβ, jδ + (i+ 1)β], by superaddivity of polymer weights described
in (3.2),

W
(0,1+jδ+iβ)
n;(0,0) − 2n2/3β ≤W

(0,1+jδ+iβ)
n;(0,0) + W

(0,1+u)
n;(0,1+jδ+iβ) ≤W

(0,1+u)
n;(0,0) and

W
(0,1+u)
n;(0,0) ≤W

(0,1+jδ+(i+1)β)
n;(0,0) −W

(0,1+jδ+(i+1)β)
n;(0,1+u) ≤W

(0,1+jδ+(i+1)β)
n;(0,0) + 2n2/3β .
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This, together with (1.11), imply that for any i ∈ J0, dδβ−1e − 1K and u ∈ [jδ + iβ, jδ +

(i+ 1)β],

n1/3 |Wgtn(1 + u)−Wgtn(1 + jδ)| ≤ 2nβ + 2+

(6.5)

n1/3 max
{
|Wgtn(1 + jδ + iβ)−Wgtn(1 + jδ)| , |Wgtn(1 + jδ + (i+ 1)β)−Wgtn(1 + jδ)|

}
.

Since 2nβ = 5−1εn1/3, for all n large enough that 2n−1/3 ≤ ε/5, (6.4) and (6.5) imply

P

(
sup

jδ≤u≤(j+1)δ

|Wgtn(1 + u)−Wgtn(1 + jδ)| ≥ ε

)

≤ P

(
max

0≤i≤dδβ−1e
|Wgtn(1 + jδ + iβ)−Wgtn(1 + jδ)| ≥ ε

2

)
≤ K ′Mε−3MδM .

Thus, by choosing δ small enough that K ′Mε
−3MδM−1 < η, we obtain (6.2), and hence

tightness.
To show (6.1), we follow the proof of Theorem 1.1(b). Let n0, r0, s0 and c0 be

as in Lemma 6.1. For any fixed m ∈ N such that c1 (log 2m)
2/3 ≥ s0, and any j ∈

{0, 1, 2, · · · , 2m − 1}, and all n ≥ max{r02m, 10−3/2c
3/2
1 2m log 2m}, by applying Lemma 6.1

with the parameters n = n, t = 2−m and s = c1 (log 2m)
2/3, it follows that

P

(∣∣Wgtn(1 + (j + 1)2−m)−Wgtn(1 + j2−m)
∣∣ > c12−

m
3 (log 2m)

2/3

)
≤ 5 · 2−m(c0c

3/2
1 ) .

Now, observe that (4.4) in the proof of Lemma 4.2 carries over verbatim to the present
case. By choosing c1 high enough that c0c

3/2
1 > 1, and exactly imitating the rest of the

proof of Lemma 4.2 followed by the proof of Theorem 1.1(b), we complete the proof of
Proposition 6.2.

Turning to prove the lower bound in (1.12), we restate it now.

Proposition 6.3. There exists a constant c > 0 such that, almost surely,

lim inf
t↘0

sup
1≤z≤2−t

t−1/3
(

log t−1
)−2/3∣∣Wgt∗(z + t)−Wgt∗(z)

∣∣ ≥ c .

This result will follow directly from weight superadditivity, i.e. W(0,1+z+t)
n;(0,0) −W

(0,1+z)
n;(0,0) ≥

W
(0,1+z+t)
n;(0,1+z) for z, t > 0, control on weight with given endpoints via Theorem 2.3, indepen-

dence in disjoint strips, and the weight W(0,1+z+t)
n;(0,1+z) depending on the configuration in the

strip delimited by the lines y = 1 + z and y = 1 + z + t. The proof is reminiscent of an
argument for a similar statement made for Brownian motion: see the proof on page 362

of Exercise 1.7 in the book [17].

Proof of Proposition 6.3. We need to show that, for some constant c > 0, almost surely,
there exists ε > 0 such that, for all 0 < t < ε and some z ∈ [1, 2− t],

|Wgt∗(z + t)−Wgt∗(z)| ≥ ct1/3
(

log t−1
)2/3

.

Let c > 0 satisfy 23/2c2c
3/2 < 1, where c2 arises from Theorem 2.3. For integers

n,m ≥ 1 and k ∈ {0, 1, 2, · · · ,m− 1}, we define the events

Ak,m,n =
{
Wgtn

(
1 + (k + 1)m−1

)
−Wgtn

(
1 + km−1

)
≥ cm−1/3 (logm)

2/3
}
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and

Ak,m =
{
Wgt∗

(
1 + (k + 1)m−1

)
−Wgt∗

(
1 + km−1

)
≥ cm−1/3 (logm)

2/3
}
.

Also let

Bk,m,n =
{
W

(0,1+(k+1)m−1)
n;(0,1+km−1) ≥ cm−1/3 (logm)

2/3
+ 2n−1/3

}
.

Let n0, s0 and c2 be as in Theorem 2.3, and let m0 be large enough that 2c(logm0)2/3 ≥
max{s0, 4n

−1/3
0 }. Then from Theorem 2.3 with parameter settings t1 = 1 + km−1, t2 =

1 + (k + 1)m−1, t1,2 = m−1,n = n and s = 2c(logm)2/3, for all m ≥ m0 and n ≥ n0m,

P(B0,m,n) ≥ P
(
W

(0,1+(k+1)m−1)
n;(0,1+km−1) ≥ 2cm−1/3 (logm)

2/3
)
≥ e−23/2c2c

3/2 logm = m−23/2c2c
3/2

.

(6.6)
Here the first inequality follows because

cm−1/3 (logm)
2/3 ≥ cm−1/3 (logm0)

2/3 ≥ 2n
−1/3
0 m−1/3 ≥ 2n−1/3

for m ≥ m0, 2c(logm0)2/3 ≥ 4n
−1/3
0 and n ≥ n0m.

Now Bk,m,n are i.i.d. random variables for k ∈ {0, 1, 2, · · · ,m− 1} as the weights of

polymers over disjoint regions are independent. Also using W
(0,1+(k+1)m−1)
n;(0,0) −W(0,1+km−1)

n;(0,0)

≥ W
(0,1+(k+1)m−1)
n;(0,1+km−1) by superadditivity of polymer weights, together with (1.11), we get

that Bk,m,m ⊆ Ak,m,n. Thus, using (6.6), for all m ≥ m0 and n ≥ n0m,

P

(
m−1⋂
k=0

Ack,m,n

)
≤ P

(
m−1⋂
k=0

Bck,m,n

)
= (1− P(B0,m,n))m

≤ exp {−mP(B0,m,n)} ≤ exp
{
−m1−23/2c2c

3/2
}
, (6.7)

where we use that 1− x ≤ e−x for all x ≥ 0.
Next, similarly to the first part of the proof of Lemma 4.2, let {Wgtnr

}r be a sub-
sequence of {Wgtn}n such that Wgtnr

⇒ Wgt∗ as random variables in (C[1, 2], ‖ · ‖∞)

(where ⇒ denotes convergence in distribution). Since for a, b ∈ [1, 2], the map Ta,b
defined by (C[1, 2], ‖ · ‖∞) 7→ (R, | · |) : f 7→ f(a)− f(b) is continuous, the set

U :=
⋂{

T−1
1+(k+1)m−1,1+km−1

(
−∞, cm−1/3

(
logm

)2/3)
: k = 0, 1, · · · ,m− 1

}
is open. Thus, by the Portmanteau theorem,

P

(
m−1⋂
k=0

Ack,m

)
≤ lim inf

r
P

(
m−1⋂
k=0

Ack,m,nr

)
≤ lim sup

n
P

(
m−1⋂
k=0

Ack,m,n

)
.

From here, using (6.7) and that our given choice of the constant c ensures 23/2c2c
3/2

< 1, we get

∞∑
m=m0

P

(
m−1⋂
k=0

Ack,m

)
≤

∞∑
m=m0

lim sup
n

P

(
m−1⋂
k=0

Ack,m,n

)
≤

∞∑
m=m0

exp
{
−m1−23/2c2c

3/2
}
<∞.

Hence, using the Borel-Cantelli lemma, almost surely there exists M0 ∈ N such that for
all m ≥M0, one has some km ≤ m− 1 with z = 1 + kmm

−1 satisfying∣∣Wgt∗(z +m−1)−Wgt∗(z)
∣∣ ≥ cm−1/3 (logm)

2/3
.
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Let ε = M−1
0 . Also let M−1

0 be small enough in the sense of Proposition 6.2: namely,

almost surely for all t ∈ [0,M−1
0 ], sup1≤z≤2−t |Wgt∗(z + t)−Wgt∗(z)|t−1/3

(
log t−1

)−2/3 ≤
2C. Then, for any given t ∈ [0, ε], let m be such that (m+ 1)−1 < t ≤ m−1. Then for
z = 1 + kmm

−1,

|Wgt∗(z + t)−Wgt∗(z)|
≥

∣∣Wgt∗
(
z +m−1

)
−Wgt∗(z)

∣∣− ∣∣Wgt∗(z + t)−Wgt∗
(
z +m−1

)∣∣
≥ cm−1/3 (logm)

2/3 − 2C
(
m−1 − (m+ 1)

−1
)1/3 (

log
(
m−1 − (m+ 1)

−1
)−1 )2/3

.

As the second term decays much faster than the first, choosing M0 large enough so that
the second term is smaller that 2−1cm−1/3(logm)2/3 gives the result.

Proof of Theorem 1.3. This result follows from Proposition 6.2 and Proposition 6.3.

6.1 Upper bound on polymer weight fluctuation: Proof of Lemma 6.1

In this subsection, we complete the proof of Theorem 1.3. The remaining element,
Lemma 6.1, will be derived from Lemmas 6.4 and 6.5.

Lemma 6.4. There exist positive constants s0, r0 and c0 such that for s ≥ s0, z ∈ [1, 2]

and t ∈ [r0n
−1, 2− z],

P
(
W

(0,z)
n;(0,0) ≥W

(0,z+t)
n;(0,0) + st1/3

)
≤ e−c0s

3/2

.

Proof. Using W
(0,z+t)
n;(0,0) ≥W

(0,z)
n;(0,0) + W

(0,z+t)
n;(0,z) , we see that, for nt ≥ r0 and s ≥ s0,

P
(
W

(0,z)
n;(0,0) ≥W

(0,z+t)
n;(0,0) + st1/3

)
≤ P

(
W

(0,z+t)
n;(0,z) ≤ −st

1/3
)
≤ e−cs

3/2

,

where the latter inequality follows from the moderate deviation estimate Theorem 2.2,
with t1 = z, t2 = z + t,n = n and s = s, and setting r0 and s0 to equal n0 and s0

respectively from the statement of Theorem 2.2.

Next is the more subtle of the two constituents of Lemma 6.1.

Lemma 6.5. There exist positive constants n0, s2, r1 and c0 such that, for n ≥ n0, t ∈
[r1n

−1, 2− z], s ∈ [s2, 10(nt)2/3] and z ∈ [1, 2],

P
(
W

(0,z+t)
n;(0,0) ≥W

(0,z)
n;(0,0) + st1/3

)
≤ 4 e−c0s

3/2

. (6.8)

This proof is reminiscent of arguments used in [5] and [4]. We first explain the basic
idea, which is illustrated in Figure 5. A path may be formed from (0, 0) to (0, z) by
following the route of a polymer from (0, 0) to (0, z + t) until its location, (U, z − t) say,
at height z − t; and then following a polymer from (U, z − t) to (0, z). The discrepancy
in weight between the original polymer, from (0, 0) to (0, z + t), and the newly formed
path, from (0, 0) to (0, z), is equal to the difference in weights between the polymer
from (U, z − t) to (0, z + t) and that from (U, z − t) to (0, z). The latter two polymers
have duration of order t; Theorem 2.4 may then show that their weights have order t1/3.
Thus, the weight difference W

(0,z+t)
n;(0,0) −W

(0,z)
n;(0,0), which is at most the discrepancy we are

considering, is seen to be unlikely to exceed order t1/3.

Proof of Lemma 6.5. To implement this idea, we will consider, for definiteness, the
leftmost polymer from (0, 0) to (z + t, 0), namely ρ

←;(z+t,0)
n;(0,0) . In accordance with the

notation in the plan, we will set U = ρ
←;(z+t,0)
n;(0,0) (z − t).
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0 0

1

z − t

z

z + t
0

φ−φ

U

Figure 5: When the thick blue polymer ρ←;(z+t,0)
n;(0,0) crosses height z − t without immoder-

ately high fluctuation, it may be diverted via the red polymer to form a path of comparable
weight from (0, 0) to (z, 0).

The height-(z − t) polymer location U typically has order t2/3. The plan will run into
trouble if U is atypically high, because then the two short polymers running to (0, z + t)

and (0, z) from (U, z− t) will have large negative weights dictated by parabolic curvature.
To cope with this difficulty, we introduce a good event G,

G = {|U | ≤ φ} ,

specified in terms of a parameter φ that is set equal to D−1s1/2(2t)2/3. Here, the
constant D is chosen to be 22/3101/2C0, with C0 given by Theorem 2.4. In view of
Theorem 2.5, this choice of φ ensures that the event G fails to occur with probability of
order exp

{
−Θ(1)s3/2

}
. (The appearance of the factor of D−1 in φ is a detail concerning

values of s in Lemma 6.5 close to the maximum value 10(nt)2/3.)
Indeed, applying Theorem 2.5 with n = n, t1 = 0, t2 = z + t, t = z − t,x = 0,y = 0

and s = D−1s1/2, we find that, when n ≥ n0 (a bound which ensures that the hypothesis
that nt1,2 ≥ n0 is met) and s ≥ s1,

P(Gc) ≤ 2 exp
{
− cD−3s3/2

}
, (6.9)

where the positive constants c and s1 are provided by the theorem being applied.
When G occurs,

|U | ≤ D−1s1/2(2t)2/3 ≤ D−122/3101/2tn1/3 < tn1/3 ,

because s ≤ 10(nt)2/3, D = 22/3101/2C0 and C0 > 1. As we saw in Subsection 1.1.2, it is
this bound on |U | that ensures the existence of polymers between (U, z − t) and (0, z). By
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superadditivity of polymer weights, we thus have

W
(0,z)
n;(0,0) ≥W

(U,z−t)
n;(0,0) + W

(0,z)
n;(U,z−t) .

Thus, when G occurs,

W
(0,z+t)
n;(0,0) −W

(0,z)
n;(0,0) ≤ W

(0,z+t)
n;(0,0) −W

(U,z−t)
n;(0,0) −W

(0,z)
n;(U,z−t)

= W
(0,z+t)
n;(U,z−t) −W

(0,z)
n;(U,z−t) ≤ sup

x∈[−φ,φ]

(
W

(0,z+t)
n;(x,z−t) −W

(0,z)
n;(x,z−t)

)
,

where the equality is dependent on the definition of U and the final inequality on the
occurrence of G. We see then that

P
(
G ∩

{
W

(0,z+t)
n;(0,0) ≥W

(0,z)
n;(0,0) + st1/3

})
≤ P

(
sup

x∈[−φ,φ]

(
W

(0,z+t)
n;(x,z−t) −W

(0,z)
n;(x,z−t)

)
≥ st1/3

)

≤ P

(
sup

x∈[−φ,φ]

∣∣∣W(0,z+t)
n;(x,z−t)

∣∣∣ > 2−1st1/3

)
+ P

(
sup

x∈[−φ,φ]

∣∣∣W(0,z)
n;(x,z−t)

∣∣∣ > 2−1st1/3

)
. (6.10)

The latter two probabilities will each be bounded above by a union bound over
several applications of Theorem 2.4. Addressing the first of these probabilities to
begin with, we set parameters for a given application of the theorem, taking I to be a
given interval of length at most t2/3 contained in [−φ, φ] and J = {0}, and also setting
n = n, t1 = z − t, t2 = z and s = 4−1s.

The theorem’s hypothesis concerning inclusion for the interval I (and J) is ensured
because

|x| ≤ D−1s1/2(2t)2/3 ≤ 22/3101/4D−1s1/4n1/6t5/6 < C−1
0 s1/4n1/6t5/6 ,

for x ∈ [−φ, φ], where here we use s ≤ 10(nt)2/3 and D = 22/3101/2C0 > 22/3101/4C0.

In these applications of Theorem 2.4, the parabolic curvature term inside the supre-
mum, t−4/3x2, is at most t−4/3φ2. It is thus also at most s/4, because φ = D−1s1/2(2t)2/3

and D ≥ 25/3.

Thus, dividing [−φ, φ] into d25/3D−1s1/2e-many consecutive intervals of length at most
t2/3, we are indeed able to apply Theorem 2.4 and a union bound, finding that, for n1 ∈ N
and C, c > 0 the constants furnished by the theorem, and for nt ≥ n1,

P

(
sup

x∈[−φ,φ]

∣∣∣W(0,z)
n;(x,z−t)

∣∣∣ > 2−1st1/3

)

≤ P

(
sup

x∈[−φ,φ]

∣∣∣t−1/3W
(0,z)
n;(x,z−t) + t−4/3x2

∣∣∣ > 4−1s

)
≤ d25/3D−1s1/2eCe−cs

3/2

≤ e−c
′s3/2 ,

for c′ = 2−1c and s ≥ s0 where s0 is chosen in such a way that e2−1cs
3/2
0 ≥ Cd25/3D−1s

1/2
0 e.

The second probability in (6.10) is bounded above by similar means. Several applica-
tions of Theorem 2.4 will be made. In a given application, the parameters I,J ,n and
s are chosen as before, but we now set t1 = z − t and t2 = z + t, so that t1,2 equals 2t,
rather than t. The curvature term (2t)−4/3x2 is bounded above by (2t)−4/3φ2, a smaller
bound than before, so that the preceding bound of s/4 remains valid. The condition for
inclusion for the intervals I (and J), namely φ ≤ C−1

0 s1/4n1/6(2t)5/6, is weaker than it
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was previously and is thus satisfied. Hence, using Theorem 2.4 and a union bound, we
find that, for all n ≥ 2−1n1t

−1,

P

(
sup

x∈[−φ,φ]

∣∣∣W(0,z+t)
n;(x,z−t)

∣∣∣ > 2−1st1/3

)
≤ e−c

′s3/2 ,

for s ≥ s0.
Combining (6.9) and (6.10) with the two bounds just derived, we obtain Lemma 6.5

by taking c0 > 0 to be less than min{cD−3, c′}, s2 to be suitably greater than max{s0, s1},
and r1 = 2−1n1.

Proof of Lemma 6.1. This follows immediately using (1.11) and from Lemmas 6.4
and 6.5 and a union bound.

7 Lower bound on transversal fluctuation: Proof of Proposition
1.4

In this last section we shall prove the lower bound on the transversal fluctuation of the
polymer, the corresponding upper bound of which was proved in [5, Theorem 11.1] (and is
stated here, with the optimal exponent in the bound, as Theorem 2.6). In fact, Proposition
1.4 does slightly more than just providing a corresponding lower bound on the quantity
whose upper bound is proved in Theorem 2.6. Indeed, in Proposition 1.4, one takes the
minimum over the transversal fluctuations of all the polymers between two fixed points,
and not just the transversal fluctuation of the leftmost one. The proof of Proposition 1.4
crucially uses the polymer weight lower tail Theorem 2.3. We also fix the constant α0 in
this Proposition 1.4 as α0 = C−2

0 3−5/310−1/2, where C0 is as in Theorem 2.4. This choice
of α0 ensures that the condition in the hypothesis of Theorem 2.4 is met whenever it is
applied.

Proof of Proposition 1.4. We prove the proposition for t1 = 0 and t2 = 1. The case for
general t1 < t2 follows readily using the scaling principle (2.1).

A box is a subset of R2 of the form [a, b]× [r1, r2], where a ≤ b and r1 ≤ r2. Any box
has a lower and an upper side, namely [a, b]× {r1} and [a, b]× {r2}.

The key box for the proof is Strip, now specified to be [−s, s]× [0, 1]. Proposition 1.4
is, after all, a lower bound on the probability that there exists a polymer between (0, 0)

and (0, 1) that escapes Strip.
We divide Strip into three further boxes, writing Mid for the box [−s, s] × [1/3, 2/3],

and South and North for the boxes obtained from Mid by vertical translations of −1/3

and 1/3. We further set West to be the box obtained from Mid by a horizontal translation
of −2s. See Figure 6.

Recall that, when (x, t1) and (y, t2) verify n1/3t1,2 ≥ |y − x|, we denote the polymer

weight with this pair of endpoints by W
(y,t2)
n;(x,t1). We now use a set theoretic notational

convention to refer in similar terms to the set of weights of polymers between two
collections of endpoint locations. Indeed, let I and J be compact real intervals. We will
write

W
(J,t2)
n;(I,t1) =

{
W

(y,t2)
n;(x,t1) : x ∈ I, y ∈ J

}
;

we will ensure that whenever this notation is used, (x, t1)
n
� (y, t2) for all x ∈ I and y ∈ J

in the sense of Subsection 1.1.2. When an interval is a singleton, I = {x} say, we write
(x, t1) instead of ({x}, t1) when using this notation.

To any box B and s ∈ R, we define the event High(B, s) that the weight of some path
that is contained in B with starting point in the lower side of B and ending point in the
upper side of B is at least s.
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1

2=3

1=3

0

s−s

−3s

x

y

0

0

North

South

West
Mid

ρ

Figure 6: In Case High, the high weight path ρ is extended to form a path from (0, 0)

to (0, 1) whose weight exceeds that of any path between these points that remains in
Strip = North ∪Mid ∪ South.

Our approach to proving Proposition 1.4 gives a central role to the event
High(Mid, 300s2). It may be expected that the order of probability of this event is
exp

{
− Θ(1)s3

}
, but we do not attempt to prove this. Rather, we analyse two cases,

called High and Low, according to the value of the event’s probability.
We will quantify the notion of high or low probability for High(Mid, 300s2) in terms of

the decay rate for a very high weight polymer between (0, 0) and (0, 1). Indeed, noting
from Theorem 2.3 that there exists C > 0 such that, for s ≥ s0,

P
(
W

(0,1)
n;(0,0) ≥ 1000s2

)
≥ exp

{
− Cs3

}
, (7.1)

we declare that Case High occurs if

P
(
High(Mid, 300s2)

)
≥ exp

{
− 2Cs3

}
;

Case Low occurs when Case High does not.
In order to analyse Case High, we introduce a favourable event F. The event is

specified as the intersection of the following events:
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• G1 =
{

inf W
([−3s,−s],1/3)
n;(0,0) ≥ −50s2

}
;

• G2 =
{

inf W
(0,1)
n;([−3s,−s],2/3) ≥ −50s2

}
;

• G3 =
{

supW
([−s,s],1/3)
n;(0,0) ≤ 50s2

}
;

• G4 =
{

supW
(0,1)
n;([−s,s],2/3) ≤ 50s2

}
;

• and G5 is the event that High(Mid, 50s2) does not occur.

Thus, the occurrence of F forces the absence of any high weight path inside Mid that
crosses this box from its lower to its upper side, while also ensuring that any polymer
connecting (0, 0) (or (0, 1)) to the lower (or upper) sides of Mid and West is not of
very low weight. We claim that F is a high probability event, proving this by applying
Theorem 2.4. Indeed, for the events G1 and G3 entailed by F, we make several applications
of Theorem 2.4. For a given application, we consider the parameter settings n = n, t1 =

0, t2 = 1/3, s = 10s2, I = {0} and

J =
[
− 3s+ (i− 1)3−2/3,max{−3s+ i3−2/3, s}

]
for some i ∈ {1, 2, · · · , d4 · 32/3se}. The condition on inclusion for the intervals I and J is
satisfied since for y ∈ [−3s, s],

|y| ≤ 3s ≤ s1/2 ≤ 101/4α
1/2
0 n1/6s1/4 ≤ 35/6101/4α

1/2
0 n1/6s1/4t1,2

5/6 = C−1
0 n1/6s1/4t1,2

5/6 ,

where we use that s ≤ α0n
1/3 and our given choice of α0 has been made so that

α0 = C−2
0 3−5/310−1/2. Also the parabolic curvature inside the supremum is

sup
y∈[−3s,s]

34/3y2 ≤ 34/3 · 32s2 < 40s2 .

Thus, dividing [−3s, s] into d4 · 32/3se-many intervals of length at most 3−2/3 and using
Theorem 2.4 and a union bound, it follows that, for s large enough and n ≥ 3n0,

P(Gc1 ∪ Gc3) ≤ P

(
sup

y∈[−3s,s]

∣∣∣31/3W
(y,1/3)
n;(0,0) + 34/3y2

∣∣∣ > 10s2

)
≤ d4 · 32/3seCe−cs

3

≤ 6−1 .

Similarly for the events G2 and G4, in a given application of Theorem 2.4, we set the
parameters n = n, t1 = 2/3, t2 = 1, s = 10s2, I = [−3s+(i−1)3−2/3,max{−3s+i3−2/3, s}]
and J = {0}, for some i ∈ {1, 2, · · · , d4 · 32/3se}. The condition on the inclusion for the
intervals I and J is ensured exactly in the same way as before, and the parabolic
curvature is bounded above by 40s2. Hence, using Theorem 2.4 and a union bound, it
follows that, for s large enough and n ≥ 3n0,

P(Gc2 ∪ Gc4) ≤ d4 · 32/3seCe−cs
3

≤ 6−1 .

Finally, for G5, observe that, since paths between two fixed endpoints constrained to
stay in a box have smaller weight than does the polymer between these endpoints, we
can again use Theorem 2.4. For a given application of Theorem 2.4, take n = n, t1 =

1/3, t2 = 2/3, s = 40s2, I = [−s + (i − 1)3−2/3,max{−s + i3−2/3, s}] and J = [−s + (j −
1)3−2/3,max{−s+ j3−2/3, s}] for i ∈ {1, 2, · · · , d2 ·32/3se} and j ∈ {1, 2, · · · , d2 ·32/3se}. As
before, the condition on inclusion for I and J is satisfied, and the parabolic curvature is
at most 34/3s2, which is less than 10s2. Thus, applying Theorem 2.4 and a union bound,
we find that, for n ≥ 3n0 and s large,

P(Gc5) ≤ P
(

supW
([−s,s],2/3)
n;([−s,s],1/3) > 50s2

)
≤ d2 · 32/3se2Ce−cs

3

≤ 6−1 .
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Thus we have P(F) ≥ 1/2 by a union bound. In Case High, we also have

P
(
High(West, 300s2)

)
≥ exp

{
− 2Cs3

}
,

because West is a translate of Mid. Since the interior of West is disjoint from the regions
that dictate the occurrence of F, we see that

P
(

High(West, 300s2) ∩ F
)
≥ 2−1 exp

{
− 2Cs3

}
. (7.2)

When High(West, 300s2) ∩ F occurs, a high weight path connecting (0, 0) to (0, 1) may
be formed by running it through West. Indeed, and as Figure 6 depicts, let ρ denote
a polymer running across, and contained in, West, whose weight is at least 300s2. If
x, y ∈ [−3s,−s] are such that (x, 1/3) and (y, 2/3) are ρ’s endpoints, then the path

ρ
←;(x,1/3)
n;(0,0) ◦ρ◦ρ←,(0,1)

n;(y,2/3) connects (0, 0) to (0, 1) and has weight at least −50s2 +300s2−50s2,
in view of the first two conditions that specify F.

On the other hand, the final three conditions specifying F ensure that, when this event
occurs, any path from (0, 0) to (0, 1) whose x-coordinate never exceeds s in absolute
value has weight at most 50s2 + 50s2 + 50s2; indeed, the weight of any such path may be
represented as a sum of the weights of the three subpaths formed by cutting the path at
heights one-third and two-thirds.

We thus find that, on High(West, 300s2)∩F, any path from (0, 0) to (0, 1) that remains in
Strip has weight at most 150s2; at the same time, a path of weight at least 200s2 connects
these two points. Thus, we see that any polymer from (0, 0) to (0, 1) has maximum
transversal fluctuation at least s in this event. By (7.2), we find that

P
(

min
{

TF(ρ) : ρ ∈ Φ
(0,1)
n;(0,0)

}
≥ s
)
≥ 2−1 exp

{
− 2Cs3

}
. (7.3)

Suppose now instead that Case Low holds. We will argue that

P
(
W

(0,1)
n;(0,0) ≥ 1000s2 , ¬High

(
[−s, s]× [0, 1], 900s2

))
≥ 2−1 exp

{
− Cs3

}
, (7.4)

where ¬A denotes the complement of the event A. Before we do so, we show that the
event on this left-hand side entails that any polymer from (0, 0) to (0, 1) must leave the
strip [−s, s]× [0, 1]; thus, (7.3) holds in Case Low, even when the factor of 2 is omitted
from the right-hand exponential. When the last left-hand event occurs, any path from
(0, 0) to (0, 1) that remains in the strip has weight at most 900s2. At the same time, the
weight of any polymer from (0, 0) to (0, 1) is at least 1000s2. It is thus impossible for any
polymer to remain in the strip.

To derive (7.4), note that, because North and South are translates of Mid, Case Low
entails that

P
(

High(South, 300s2) ∪High(Mid, 300s2) ∪High(North, 300s2)
)
< 3 exp

{
− 2Cs3

}
.

The bound (7.1) then yields (7.4), since 3 exp
{
− 2Cs3

}
≤ 2−1 exp

{
−Cs3

}
for all s large

enough.
The bound (7.3) has been derived in both of the cases, so that proof of Proposition 1.4

is complete.

A Glossary of notation

Our use of scaled coordinates leads to a certain amount of notation appearing in the
article. Each line in the table below recalls a piece of notation; records a summarizing
phrase; and indicates the page at which the notation is first used.
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energy the value assigned to an unscaled increasing path by Poissonian LPP 3
geodesic a path of maximum energy given its endpoints 3
Xv
u maximum energy among all paths between u and v in unscaled notation 3

Tn the scaling map 4
polymer the image of a geodesic under the scaling map 4
ρ←;v
n;u the leftmost polymer between planar points u and v 4

u
n
� v u and v are such that a polymer starting at u and ending at v exists 4

Φvn;u the set of all polymers between planar points u and v 5
`vu the line segment joining the planar points u and v 5
TF(ρ) transversal fluctuation of polymer ρ from the line segment joining its

endpoints
5

AEPn(t) the set of all admissible endpoint pairs at vertical distance at most t 5
MTFn(t) maximum transversal fluctuation over polymers between endpoints in

AEPn(t)

6

weight the scaled energy 6
t1,2 the difference t2− t1; the lifetime of a given polymer in most applications 6

W
(y,t2)
n;(x,t1) the weight of the polymer ρ←;(y,t2)

n;(x,t1) 6

Wgtn(·) a continuous modification of the weight function for polymers from (0, 0)

to (0, ·)
6

B Proof summaries for a few inputs

Our arguments invoke on some occasions proofs and results from [5]. The latter
article presents intricate arguments in its proof of the slow bond conjecture, and it
remains under peer review. The results from [5] that we use are the uniform deviation
estimates [5, Propositions 10.1 and 10.5], and the transversal fluctuation estimate [5,
Theorem 11.1]. In this appendix, we review the instances of our use of these outside
arguments, and provide summaries of the concerned proofs in the notation of scaled
coordinates.

The first instance is the bound (2.3) on the maximum weight of a polymer crossing
a unit-order region that appears in the proof of Proposition 2.2. Here, we restate the
bound (2.3) as Proposition B.1; and then explain its proof.

Proposition B.1. There exist C, c ∈ (0,∞), C0 ∈ (1,∞) and n1 ∈ N such that, for n ≥ n1,
s ∈ [0, 10n2/3], and I and J intervals of at most unit length that are contained in the
interval of length 2C−1

0 s1/4n1/6 centred at the origin,

P

(
sup

x∈I,y∈J

∣∣∣W(y,1)
n;(x,0) + (x− y)2

∣∣∣ > s

)
≤ C exp

{
− cs3/2

}
.

The argument that we will give for Proposition B.1 mimics that of [5, Propositions 10.1

and 10.5]. It will be logically complete, except for the use of what is little more than
a simplifying notational device. That is, we will take I = J = [−1, 1] in explaining the
argument for the proposition.

Proof of Proposition B.1 with I = J = [−1, 1]. The next presented proposition is suffi-
cient to prove this assertion. Indeed, Proposition B.2(2) and (3) imply it.

Proposition B.2. 1. There exist H,h ∈ (0,∞) and n1 ∈ N such that, for n ≥ n1 and
R > 0, the probability that the condition

inf
x∈[−1,1]

W
(x,1)
n;(0,0) ≤ −R

EJP 25 (2020), paper 29.
Page 34/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP430
http://www.imstat.org/ejp/


Polymer fluctuations and weight profiles in last passage percolation

is satisfied is at most H exp
{
− hR3/2

}
.

2. This assertion holds also for the condition infx,y∈[−1,1] W
(y,1)
n;(x,0) ≤ −R;

3. and likewise for the condition supx,y∈[−1,1] W
(y,1)
n;(x,0) ≥ R.

Proof. (1). Let r0 ∈ N be the largest integer r such that 2r ≤ nn−1
1 , where n1 is as

in (2.5). We define a rooted binary tree embedded in the plane. The tree’s root is
(0, 0) and the tree has graphical height r0. The root’s children are (−1/2, 1, 2) and
(1/2, 1/2). Height advanced by one-half from generation zero to generation one; with
each later generation, height will advance by one-half of the value of the preceding
advance. The children of a given vertex v are located by moving from v in the directions
(−1, 1) and (1, 1). For example, the root’s grandchildren share the height 3/4 and are
located at −3/4, −1/4, 1/4 and 3/4. Indeed, vertices of generation k ∈ N number 2k

and are elements of Λk ×
{

1− 2−k
}

=
{
γk(j) = (λk(j), 1− 2−k) : j ∈ J0, 2k − 1K

}
, where

Λk =
{
− 1 + (1 + 2j)2−k : j ∈ J0, 2k − 1K

}
.

The tree’s edges take the form
(
γk(j), γk+1(j + `)

)
where k ∈ {1, 2, . . . , r0 − 1}, j ∈

J0, 2k − 1K and ` ∈ {0, 1}.
For D > 0, an edge

(
(x, 1− 2−k), (y, 1− 2−k−1)

)
connecting generations k and k + 1

is called D-typical if

2(k+1)/3
∣∣∣Wn;(x,1−2−k)(y, 1− 2−k−1)

∣∣∣ ≤ D(k + 1)2/3 . (B.1)

The left-hand quantity is a normalized weight – it is random but of unit order, satisfying
tail bounds that are uniform over edges in the tree. Indeed, the scaling principle (2.2) and
(2.5), together with n2−(k+1) ≥ n1, imply that the condition (B.1) fails with probability at
most C exp

{
− cD3/2(k + 1)

}
. Observe here that the parabolic curvature term takes the

form t
−4/3
1,2 (x− y)2 = t

−4/3
1,2 · t21,2 = t

2/3
1,2 ≤ 1 for all k; hence we ignore it.

We now specify the event Typical = Typical(D) that every edge in the tree is D-typical.
We see that

P
(
¬Typical

)
≤
∞∑
k=0

2kC exp
{
− cD3/2(k + 1)

}
,

whose right-hand side is at most 2C exp
{
− 2−1cD3/2

}
provided that D ≥ (log 2)2/3c−2/3

is high enough. Henceforth, we fix such a value of D.
Let x ∈ [−1, 1]. Then let j ∈ J0, 2k − 1K be such that x ∈ [λr0(j)− 2−r0 , λr0(j) + 2−r0 ].

The planar point γr0(j) is the vertex in the tree closest to (x, 1). We will consider the
journey between (0, 0) and (x, 1) offered by visiting consecutive vertices in the tree
between the root and γr0(j), along a path to be called P ; and then a final segment
between the latter vertex and (x, 1). The latter segment is a perturbation of a tree-based
route to (x, 1) which is imposed so that the high n condition n2−(k+1) ≥ n1 is consistently
verified. That is, let e0 denote the line segment joining (x, 1) and γr0(j); and write E(P )

for the edge-set of the path P . Note thus that

W
(x,1)
n;(0,0) ≥ ω(e0) +

∑
e∈E(P )

ω(e) , (B.2)

where ω(e) denotes the weight W(v,t)
n;(u,s) of the polymer that travels between the endpoints

(x, s) and (y, t) of the edge e. Indeed, as we have noted, the right-hand side of (B.2) is
the weight of an n-path that interpolates (0, 0) and (x, 1).

Clearly, by (1.8) and from the choice of r0, it follows that

ω(e0) ≥ −2n−1/3n2−r0 ≥ −4n1n
−1/3 ≥ −1 ,
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for all n large enough.
We see then that, when Typical occurs, W(x,1)

n;(0,0) ≥ ω(e0)+
∑
e∈E(P ) ω(e) ≥ −Dκ, where

here we set κ = 1 +
∑∞
k=0(k+ 1)2/32−(k+1)/3. Invoking the derived bound on P

(
¬Typical

)
,

we find that

P
(

inf
x∈[−1,1]

W
(x,1)
n;(0,0) ≤ −κD

)
≤ 2C exp

{
− 2−1cD3/2

}
.

Setting R = D, h = 2−1cκ−3/2 and H ≥ 2C high enough to permit any choice of R > 0,
we obtain Proposition B.2(1).
(2). Let x, y ∈ [−1, 1] and note that W

(y,1)
n;(x,−1) ≥ W

(0,0)
n;(x,−1) + W

(y,1)
n;(0,0). Since W

(0,0)
n;(x,−1)

has the law of W(−x,1)
n;(0,0), two applications of Proposition B.2(1) and a union bound yield

Proposition B.2(2), up to a relabelling of the constants H and h.
(3). Note that the occurrence of the condition

sup
x,y∈[−1,1]

W
(y,1)
n;(x,−1) > R ,

alongside the conditions

min

{
inf

x∈[−1,1]
W

(x,−1)
n;(0,−2) , inf

x∈[−1,1]
W

(0,2)
n;(y,1)

}
≥ −R/4 , (B.3)

entails that

W
(0,2)
n;(0,−2) > R/2 . (B.4)

Bounds on the failure probabilities of the two conditions (B.3) arise by applying Propo-
sition B.2(2) in light of simple scaling properties. The one-point control given by
Theorem 2.2 provides an upper bound on the probability of (B.4). Thus we obtain
Proposition B.2(3).

The final instance of an input from [5] is the bound (2.12) on the transversal fluctua-
tion of the leftmost polymer, which we state here as Proposition B.3. The proof follows
[5, Theorem 11.1], and uses a chaining argument with repeated applications of (2.11) at
the boundaries of dyadic subintervals and the polymer ordering Lemma 3.2.

Proposition B.3. Let ρ←;(0,t)
n;(0,0) be denoted by ρ. Then there exist positive constants c, n0

and k0 such that for t ∈ (0, 1], k ≥ k0 and n ≥ n0t
−1,

P

(
sup
r∈[0,t]

|ρ(r)| > kt2/3

)
≤ e−ck

3

.

Proof. We prove the proposition for t = 1. From here, the argument for general t ∈ (0, 1]

follows easily using the scaling principle (2.1). Moreover, by symmetry, the proposition
(for t = 1) follows if we prove

P

(
sup
r∈[0,1]

ρ(r) > k

)
≤ 2−1e−ck

3

. (B.5)

To this end, fix s > 2n0 to be chosen appropriately later; where n0 ≥ 1 is as in (2.11).
Let j0 be an integer such that n0 ≤ 2−j0n ≤ s. For j = 1, 2, . . . , j0, let Sj = {`2−j : ` =

0, 1, 2, . . . , 2j}. Let Aj denote the event that for all x ∈ Sj ,

ρ(x) ≤ s
j−1∑
i=0

2−i/10 .
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Let sj := s
∑j−1
i=0 2−i/10. First, we show that for all j ≥ 1, P(Acj ∩Aj−1) ≤ 2−je−cs

3

, where
we use the convention that A0 = Ω denotes whole set. For j = 1, this follows directly
from (2.11). To see this for j > 1, fix 1 < j ≤ j0 and h ∈ J0, 2j−1 − 1K. Let ρj,h be the
leftmost n-polymer between (−sj−1, h2−(j−1)) and (−sj−1, (h + 1)2−(j−1)). Then, using
(2.11), the scaling principle (2.1), and the observation that

sj − sj−1 = s2−(j−1)/10 ≥ s2(j−1)/32−2(j−1)/3 ,

we get

P
(
ρj,h

(
(2h+ 1)2−j

)
≥ sj

)
≤ e−c2

−(j−1)s3 .

Summing the above over all h ∈ J0, 2j−1 − 1K, we have by polymer ordering Lemma 3.2
that

P(Acj ∩Aj−1) ≤ 2−(j+1)e−cs
3

,

for s large enough. If A denotes the event that Aj holds for each 1 ≤ j ≤ j0, then

P(Ac) ≤
j0∑
j=1

P(Acj ∩Aj−1) ≤ 2−1e−cs
3

.

Finally, when the event A occurs, for any x ∈ [x1, x2], where x1, x2 are consecutive
elements of Sj0 , by polymer ordering Lemma 3.2 and our choice of j0,

ρ(x) ≤ max{ρ(x1)− x1, ρ(x2)− x2}+ 2−j0n ≤ sj0 + s < µs ,

where we set µ = 1 +
∑∞
i=0 2−i/10. We now set s, choosing it to equal µ−1k, where k is

given by the statement of the proposition. Thus, we obtain (B.5).
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