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Stationary distributions of the multi-type ASEP
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Abstract

We give a recursive construction of the stationary distribution of multi-type asym-
metric simple exclusion processes on a finite ring or on the infinite line Z. The
construction can be interpreted in terms of “multi-line diagrams” or systems of queues
in tandem. Let q be the asymmetry parameter of the system. The queueing construc-
tion generalises the one previously known for the totally asymmetric (q = 0) case, by
introducing queues in which each potential service is unused with probability qk when
the queue-length is k. The analysis is based on the matrix product representation
of Prolhac, Evans and Mallick. Consequences of the construction include: a simple
method for sampling exactly from the stationary distribution for the system on a ring;
results on common denominators of the stationary probabilities, expressed as rational
functions of q with non-negative integer coefficients; and probabilistic descriptions of
“convoy formation” phenomena in large systems.
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1 Introduction and main results

The asymmetric simple exclusion process (ASEP) is one of the simplest examples
of an interacting particle system. In physcial terms it can be seen as a basic model of
non-reversible flow. Despite its simplicity, it displays an extremely rich behaviour, and
attracts intense study in physics, probability, combinatorics, and beyond.

In this article we consider ASEPs with multiple types of particle. We start by defining
the model on the ring ZL = {0, 1, 2, . . . , L − 1} (with cyclic boundary conditions). The
system is a continuous-time Markov chain with state-space {1, 2, . . . , N,∞}ZL , for some
N ≥ 1. For a configuration η = (ηi, i ∈ ZL), we say that ηi is the type of the particle at
site i. (We may sometimes refer to particles of type∞ as holes – we could equally give
them label N + 1 rather than∞, but the different notation is sometimes helpful.)

Fix some q ≥ 0. The dynamics of the process are as follows. If η(i) > η(i+ 1) (where
the addition i + 1 is done mod L), then the values η(i) and η(i + 1) are exchanged at
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Stationary distributions of the multi-type ASEP

rate 1. If instead η(i) < η(i+1), then the values η(i) and η(i+1) are exchanged at rate q.
That is, neighbouring particles rearrange themselves into increasing order at rate 1, and
into decreasing order at rate q. We will assume q ∈ [0, 1) throughout. Such a process was
perhaps first described by Alcaraz and Rittenberg [1] as an example of a more general
class of multi-type particle systems.

The dynamics preserve the number of particles of each type. Restricted to a state
space with a given number of particles kn of each type, for n = 1, . . . , N and k1+k2+ · · ·+
kN ≤ L, the process is irreducible. Our particular focus is on the stationary distribution.

Consider first the case N = 1. This is the standard (one-type) ASEP (for an extensive
introduction, see Part III of the book of Liggett [34]). For the one-type ASEP on the
ring, each site of ZL contains either a particle (type 1) or a hole (type ∞). A particle
exchanges places with a hole to its left at rate 1, and with a hole to its right at rate q. Fix
the number of particles to be k. Then it’s well known (and straightforward to show) that
the stationary distribution of the process is uniform on all

(
L
k

)
configurations.

The ASEP with types {1, . . . , N,∞} can be viewed as a coupling of N one-type ASEPs.
Specifically, for any n = 1, . . . , N , we can consider a projection under which types r ≤ n
are considered “particles” and types r > n are considered “holes”; for each n, the image
of the process under this projection is a one-type ASEP. In particular, projecting the
stationary distribution in this way gives a uniform distribution on the corresponding
state-space.

However, despite the fact that all these projections are uniform, it is far from the case
that the full stationary distribution is uniform. See for example Figure 1.1 for samples
from the stationary distribution of a system with 1000 particles all of different types, on
the ring with 1000 sites, for different values of q. A striking feature of the configurations
observed is the appearance of long strings of particles with similar labels (“convoys”).
This “clustering” is more pronounced for small q, and more pronounced around the
middle of the range of particle types.

Before stating the main results of the paper, we mention certain previous results –
see Section 1.4 for further background. The stationary distribution of the 2-type ASEP
(where the non-uniformity mentioned in the previous paragraph already appears) was
studied by Derrida, Janowksy, Lebowitz and Speer [19] (see also [18]) using the matrix
product ansatz. Further combinatorial descriptions in the case of the TASEP (totally
asymmetric, i.e. q = 0) were given by Ferrari, Fontes and Kohayakawa [23], Angel [3],
and Duchi and Schaeffer [20]. In [26], Ferrari and Martin introduced a new recursive
method which gives a construction of the stationary distribution of the N -type TASEP
for any N .

The construction by Ferrari and Martin is written in terms of a system of queues in
tandem (or so-called “multiline diagrams”), and the proof uses time-reversal arguments.
A different approach, but exploiting a related recursive structure, was then found by
Evans, Ferrari and Mallick [21], to give a representation of the stationary distribution
of the N -type TASEP using the matrix product ansatz (this was elaborated further for
example by Arita, Ayyer, Mallick and Prolhac in [6]).

This matrix-product representation was then extended to q > 0 by Prolhac, Evans and
Mallick in [37]. They raised the question of whether the more probabilistic/combinatorial
construction of [26] could also be generalised to the ASEP. In this paper we show that
indeed it can, giving a multi-line queue construction of the stationary distribution of the
ASEP.

This construction has a number of nice consequences:

• algorithmic: it gives an efficient method for sampling exactly from systems even
with a large number of types (see Algorithm 2 below, which was used to generate
the samples in Figure 1.1 with 1000 types of particle);
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Stationary distributions of the multi-type ASEP

Figure 1.1: Samples of the stationary distribution of an ASEP on a ring of 1000 sites, with
1000 different types of particle. The horizontal axis is labelled by site, and the vertical
axis by particle type. Top: q = 0; middle: q = 0.1; bottom: q = 0.8. The “convoys” are
more pronounced when q is small (and the effect is stronger around the middle of the
range of particle classes). See the results in Section 6.

• algebraic: it leads directly to an expression for a common denominator of the
stationary probabilities of an ASEP system, expressed as rational functions of q
(see Theorem 1.3);

• probabilistic: it can be exploited to give interesting qualitative and quantitative
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information about the properties of the stationary distribution, including the clus-
tering properties described in Theorem 1.5.

A central object in the construction for the TASEP in [26] is a simple model of a
priority queue in discrete time, with a Markovian service process. When a service
occurs in the queue, the customer in the queue with highest priority departs (unlesss
the queue is empty, in which case the service is unused). To generalise to q > 0, we
introduce a queue with “rejected services”. When a service occurs, it is offered to each
customer in turn, in order of priority. Each customer accepts the service with probability
1− q; the first customer to accept it departs (unless they all reject it, in which case the
service is unused). The multi-line process can be seen as a collection of several such
queues in series; such a model is closely related to the so-called q-TASEP (especially the
discrete-time version considered for example in [11]).

It would be possible to give a proof of our main result by an elaboration of the methods
involving dynamic reversibility which were used in [26, 27]. Instead, in this paper we
rely directly on the matrix-product representation of Prolhac, Evans and Mallick, which
we explain in Section 2. We make use of particular instances of matrices which satisfy
the quadratic algebra of [37]; these can be related to Markov transition matrices which
govern the evolution of a queue.

1.1 Algorithms and multi-line diagrams

We now begin to state the main results of the paper. We start with an algorithm for
sampling from the stationary distribution of the N -type ASEP on ZL, with given particle
counts. Later in the paper we will be able to restate it in terms of a function which
assigns weights to “multi-line diagrams”, such that the probability distribution on the
diagrams proportional to these weights projects to the ASEP stationary distribution.

We describe the algorithm using queueing language, although we postpone until later
the introduction of notation which describes queue-length processes more formally (see
Section 3). The sites of ZL are treated as “times” in the queueing process. Hence time
is cyclic (a setting in which time is more straightforwardly indexed by Z is introduced in
Section 3 where we consider ASEPs on Z rather than ZL).

First consider the case N = 2. Fix L, k1, k2 with k1 + k2 ≤ L. The following algorithm
can be used to generate a sample from the stationary distribution of the 2-type ASEP
on ZL with k1 type-1 particles and k2 type-2 particles. The algorithm does the following
thing: (i) it randomly chooses a set of k1 arrival times, and a set of k1 + k2 service times;
(ii) it assigns to each arrival time a different departure time chosen from among the
service times. This gives an output of the queue, in which each time i ∈ ZL is either a
departure time, an unused service time, or a time which had no service. This is used to
define a configuration in {1, 2,∞}ZL .

Algorithm 1.

• Choose a set of “arrival times” uniformly among all subsets of ZL of size k1, and
independently a set of “service times” uniformly among all subsets of ZL of size
k1 + k2.

• Now process the arrivals one by one, in an arbitrary order (for example left to
right), and assign a departure time to each one from among the service times, in
the following way.

Suppose we have already processed r of the k1 arrivals, where 0 ≤ r < k1. This
means we have already assigned r of the k1 + k2 service times. Now look at an
arrival we have not processed yet – say it occurs at time i. We wish to assign a
service time to be the departure time of the arrival at time i, which has not yet
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been assigned to any other arrival. If there is a service at time i which has not yet
been assigned, then assign it to this arrival, and we are done. Otherwise, let the
remaining k1 + k2 − r available potential service times be i1, i2, . . . , ik1+k2−r; we list
these sites in cyclic order around the ring starting from i, so that

0 < [(i1 − i) mod L] < [(i2 − i) mod L] < · · · < [(ik1+k2−r − i) mod L].

Now assign the arrival at i to the service at ij with probability

qj−1/(1 + q + q2 + · · ·+ qk1+k2−r−1). (1.1)

• Having done this for all k1 arrivals, we have chosen k1 departure times, and the
remaining k2− k1 service times will be unused. Now define an output configuration
D ∈ {1, 2,∞}ZL as follows: for each i ∈ ZL,

Di =


1 if a departure occurs at i

2 if an unused service occurs at i

∞ if no service was available at i

. (1.2)

Theorem 1.1. Algorithm 1 generates a configuration Di, i ∈ ZL whose distribution is
the stationary distribution of the ASEP on ZL with k1 type-1 particles and k2 type-2
particles.

Now we generalise this algorithm to allN ≥ 2, in a recursive way. Fix L and k1, . . . , kN .
The following algorithm generates an algorithm from the stationary distribution of the
N -type ASEP on ZL with particle counts k1, . . . , kN (that is, with kn particles of type n
for 1 ≤ n ≤ N ). The input into the algorithm is a collection of k1 + · · ·+ kN service times,
along with an arrival process A = (Ai, i ∈ ZL) ∈ {1, 2, . . . , N,∞}ZL , which is itself drawn
from the stationary distribution of the (N − 1)-type ASEP on ZL with particle counts
k1, . . . , kN−1. If Ai = n where 1 ≤ n ≤ N , there is an arrival of type n at time i. If Ai =∞,
there is no arrival at time i. The algorithm gives an output in which each time in ZL
is a departure type of some customer with a type n ∈ {1, 2, . . . , N − 1}, or an unused
service time, or a time which had no service. This is used to define a configuration in
{1, 2, . . . , N}ZL .

Algorithm 2.

• Choose the arrival process according to the stationary distribution of the (N − 1)-
type ASEP on ZL with particle counts k1, k2, . . . , kN−1, and independently choose
the set of service times uniformly among all subsets of size K = k1 + k2 + · · ·+ kN .

• Now consider the arrival times one by one, as in Algorithm 1, but importantly this
is now done in order of type. We start by considering each of the type-1 arrivals,
then each of the type-2 arrivals, and so on. The order in which arrivals of the same
type are considered is arbitrary (for example, left to right).

We assign a different service time to each considered arrival in turn, as follows.
Suppose we have already processed r of the arrivals, where 0 ≤ r < k1 + k2 + · · ·+
kN−1. This means we have already assigned r of the K service times. Now look at
an arrival we have not processed yet – say it occurs at time i. We wish to assign
it a departure time from among those service times which are not yet assigned.
If there is a service at time i which has not yet been assigned, then assign it to
this arrival, and we are done. Otherwise, let the remaining K − r available service
times be i1, i2, . . . , iK−r; we list these sites in cyclic order around the ring starting
from i, so that

0 < [(i1 − i) mod L] < [(i2 − i) mod L] < · · · < [(iK−r − i) mod L].
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Now we assign the arrival at i to the service at ij with probability

qj−1/(1 + q + q2 + · · ·+ qK−r−1). (1.3)

• Having done this for all arrivals, we have chosen k1+k2+· · ·+kN−1 departure times,
and the remaining kN service times are unused. Now define the configuration
D ∈ {1, 2, . . . , N}ZL as follows:

Di =


n if a departure of type n arrival occurs at i, for 1 ≤ n ≤ N − 1

N if an unused service occurs at i

∞ if no service was available at i

. (1.4)

Theorem 1.2. Algorithm 2 generates a configuration (Di, i ∈ ZL) whose distribution is
the stationary distribution of the N -type ASEP on ZL with particle counts k1, . . . , kN .

To generate a sample from an N -type TASEP, we need to apply Algorithm 2 N − 1

times in all. The nth iteration takes as arrival process a configuration whose distribution
is stationary for an n-type ASEP, along with an independent service process, and outputs
a configuration whose distribution is stationary for an (n + 1)-type ASEP. (The first
iteration, with n = 1, is equivalent to Algorithm 1.)

We can combine the N − 1 iterations into a “multi-line diagram” with N lines, as
was done for the q = 0 case in [26]. The nth line of the diagram is a n-type ASEP
configuration, i.e. a configuration in {1, . . . , n,∞}ZL , with particle counts k1, . . . , kn. It is
the arrival process for the nth iteration of the algorithm (if 1 ≤ n ≤ N −1) and the output
configuration of the (n− 1)st iteration of the algorithm (if 2 ≤ n ≤ N ). Specifically, the
last line of the diagram gives a sample from the N -type stationary distribution.

On the nth line, the number of occupied sites (i.e. the sites where the value of the
configuration is finite rather than infinity) is k1 + · · ·+ kn. Ignoring the types, the set of
occupied sites is uniform among all subsets of ZL of size k1 + · · ·+ kn; furthermore, the
sets of occupied sets on different lines is independent.

Note that for q = 0 (the case of the TASEP), the only randomness in Algorithm 2 is in
the first step when the arrival and service processes are chosen. In that case, whenever
the algorithm looks to assign a departure time to an arrival at time i, it chooses the
first so-far unassigned service time in i, i + 1, i + 2, . . . . In this case, given the sets of
occupied sites on the different lines of the multi-line diagram, the assignment of types to
the occupied sites is deterministic. This gives the original algorithm of [26].

Figure 1.2 shows two multi-line diagrams for the case N = 4, L = 10, and
(k1,k2, k3, k4) = (1, 3, 3, 1). The sets of occupied sites are the same for the two diagrams.
The upper diagram is the one which results (deterministically) from the configuration of
occupied sites in the case q = 0. The lower diagram shows another possible configuration
(one of many) when q > 0.

1.2 Common denominators

By considering the various sources of randomness that go into the construction of
a multi-line diagram using repeated applications of Algorithm 2, we can obtain the
following result giving a common denominator for the ASEP probabilities. We write
[n]q = 1 + q + · · ·+ qn−1, and [n]q! = [1]q[2]q . . . [n]q.

Theorem 1.3. Consider the N -type ASEP on ZL, with particle counts (k1, . . . , kN ). The
stationary probability of every state is a polynomial in q with non-negative integer
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Figure 1.2: Examples of multi-line diagrams, for N = 4, L = 10, and (k1, k2, k3, k4) =

(1, 3, 3, 1). The configuration of occupied sites is the same in both cases. The upper
diagram then shows the deterministic assignment of types to particles in the case q = 0.
The lower diagram shows one of the (many) other possible assignments of types to
particles when q > 0, and “rejected services” are allowed.

coefficients divided by the common denominator(
L

k1

)(
L

k1 + k2

)
. . .

(
L

k1 + k2 + · · ·+ kN

)
× [k1 + k2]q!

[k2]q!

[k1 + k2 + k3]q!

[k3]q!
. . .

[k1 + k2 + · · ·+ kN ]q!

[kN ]q!
. (1.5)

A special case is that of a process on ZL with L different classes of particle, as
depicted in Figure 1.1. All other processes on ZL can be obtained as projections of this
process. We can take N = L− 1 and k1 = k2 = · · · = kL−1 = 1 (it is equivalent to regard
the final particle as a particle of type L or as a hole). This gives the following result:

Corollary 1.4. The stationary probabilities of the ASEP on ZL with one particle of each
of L different classes are given by polynomials in q with non-negative integer coordinates
divided by the common denominator(

L

1

)(
L

2

)
. . .

(
L

L− 1

)
[2]q![3]q! . . . [L− 1]q!. (1.6)

The expression in (1.6) can also be written as(
L

1

)(
L

2

)
. . .

(
L

L− 1

)
(1 + q)L−2(1 + q + q2)L−3 . . . (1 + q + q2 + · · ·+ qL−2)1. (1.7)

We note that a related formula appears in work of Cantini, de Gier and Wheeler [14]
in a more general setting of Macdonald polynomials; specialising their formula in their
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Section 5 to the ASEP, one obtains an expression like (1.7) but with an extra factor of
(1 − q)L(L−1)/2, and without the restriction to non-negative integer coefficients in the
numerator.

The denominators given by (1.5) and (1.7) may well not be the best possible. In
fact, these are common denominators for the probabilities of all multi-line diagrams;
the projection from the multi-line diagrams to the bottom line giving a single ASEP
configuration may introduce further common factors.

3

21

9 + 7q + 7q2 + q3

96(1 + q)(1 + q + q2)

1

3

2

3 + 9q + 9q2 + 3q3

96(1 + q)(1 + q + q2)

1

2

3

3 + 11q + 5q2 + 5q3

96(1 + q)(1 + q + q2)

1

3 2

5 + 5q + 11q2 + 3q3

96(1 + q)(1 + q + q2)

1 3

2

3 + 9q + 9q2 + 3q3

96(1 + q)(1 + q + q2)

1

32

1 + 7q + 7q2 + 9q3

96(1 + q)(1 + q + q2)

Figure 1.3: Stationary probabilities for a system with 4 sites (numbered clockwise around
the ring). The particles are labelled with their type; the single hole may equivalently be
seen as a particle of type 4. There are 6 possible configurations, up to rotation. Note
the symmetry between q and 1/q; the probabilities remain unchanged under replacing q
by 1/q and reversing the order of the particles (since replacing q by 1/q is equivalent
to exchanging left and right and multiplying time by a factor 1/q; the time-change has
no effect on the stationary distribution). Note also that all expressions are equal when
q = 1, since this gives the symmetric exclusion process whose equilibrium is uniform
over all configurations.

As an example, we can consider the case of the 4-type system on a ring of size 4.
Corollary 1.4 gives a common denominator of 96(1 + q)2(1 + q + q2) = 96(1 + 3q + 4q2 +

3q3+ q4). However, in fact we can dispense with one of the factors of 1+ q; the stationary
probabilities as a function of q are shown in Figure 1.3.

The extra symmetries of the multiline diagram may be easier to explore in the context
of the alternative queueing construction mentioned in Section 7, where we do not need
to treat particles differently according to whether a service is available to them at the
time they enter the queue.

1.3 Clustering

Our final result explains the “clustering” phenomenon visible in Figure 1.1, show-
ing samples from the stationary distribution of the ASEP with 1000 distinct labels
1, 2, . . . , 1000 on the ring with 1000 sites, for different values of q. A striking feature of the
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configurations is the appearance of long strings of nearby particles with similar labels
(“convoys”). In this section we explain some aspects of that picture, by considering an
appropriate local limit of stationary distributions as L→∞. The analysis will rely in an
integral way on the queueing construction of the stationary distribution of the 2-type
system on Z which we develop in Section 3 (see Theorem 3.2).

Consider the ASEP on ZL, with sites now written for convenience as −bL2 c, . . . , −1,
0, 1, . . . , dL2 e − 1 in a cyclic way, and with L particles with distinct types 1, 2, . . . , L.
(We could equally write the largest-numbered type as ∞, i.e. a hole.) The process is
irreducible, and its stationary distribution can be constructed via an “(L−1)-line process”
involving repeated applications of Algorithm 2, as described in Section 1.1.

Let Y (L)
i be the type of the particle at site i, in a configuration distributed according

to this stationary distribution. We will rescale linearly, so that all labels lie in [0, 1],
and also pad the configuration with infinite strings of zeros on each side, to define a
configuration W (L) = (W

(L)
i , i ∈ Z) in [0, 1]Z:

W (L) :=
(
. . . , 0, 0, 0, 1

LY
(L)

−bL2 c
, . . . , 1

LY
(L)
−1 ,

1
LY

(L)
0 , 1

LY
(L)
1 , . . . , 1

LY
(L)

dL2 e−1
, 0, 0, 0, . . .

)
, (1.8)

or more precisely, for i ∈ Z,

W
(L)
i =

{
1
LY

(L)
i for − bL2 c ≤ i ≤ d

L
2 e − 1,

0 otherwise
.

The following results describe some aspects of the clustering phenomenon observed
in the configurations in Figure 1.1:

Theorem 1.5.

(a) As L → ∞, W (L) = (W
(L)
i , i ∈ Z) converges in distribution (with respect to the

product topology on [0, 1]Z) to a limit which we denote by W = (Wi, i ∈ Z). The
distribution of W is translation-invariant.

(b) (W0,W1) has joint distribution on [0, 1]2 with density given by

f(x, y)dx dy + f∗(x)1(x = y)dx

where

f(x, y) =

{
1 for x < y,

2(1− q)(x− y) + q for x > y,
(1.9)

f∗(x) = (1− q)x(1− x). (1.10)

[By this we mean that if A is a measurable subset of [0, 1]2, then

P
(
(W0,W1) ∈ A,W0 6=W1

)
=

∫
A

f(x, y)dx dy,

and if B is any measurable subset of [0, 1], then

P(W0 =W1,W0 ∈ B) =

∫
B

f∗(x)dx. ]

It follows that

P(W0 < W1) =
1

2

P(W0 =W1) =
1− q
6

(1.11)

P(W0 > W1) =
2 + q

6
.
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(c) With probability 1, there are infinitely many k such that W0 =Wk.

For each i, Wi must have uniform distribution on [0, 1] (since W0 is the limit in

distribution of Y (L)
0 /L, and Y (L)

0 is uniformly distributed on {1, 2, . . . , L}). However, it is
definitely not the case that the Wi are independent; indeed, two neighbouring values
have positive probability to be equal! Note that the density f of two neighbouring values
(W0,W1) on x > y decays to zero as the diagonal is approached if q = 0, but not if q > 0.

Going beyond part (c), the methods of Section 6 in fact explain how to describe the
distribution of the “convoy” {k ≥ 1 : Wk = W0} conditional on {W0 = x} for x ∈ [0, 1]

somewhat explicitly in terms of a random walk on Z whose transition probabilities
depend on x.

In the TASEP case (q = 0), the process W of Theorem 1.5 was considered in a related
context by Amir, Angel and Valkó [2]. Consider a TASEP on Z started from an initial
state in which site i contains a particle of type −i, for each i ∈ Z; the dynamics of the
process are that each pair of neighbouring particles sort themselves into increasing
order at rate 1. Let Xi(t) be the position at time t of the particle with label i. The limit
Ui = limt→∞

1
tXi(t), i.e. the “asymptotic speed of particle i”, exists with probability

1 for all i (as follows from a result of [36]), and has Uniform[−1, 1] distribution. The
TASEP speed process (Ui, i ∈ Z) was introduced and studied by [2]. Rescaling by
Wi = (1 − Ui)/2, we get the process (Wi, i ∈ Z) with the distribution described in
Theorem 1.5. The properties (1.9)–(1.11) for the case q = 0 are given in Theorem 1.7
of [2], and further results concern for example the joint distribution of more than two
entries.

Still in the case q = 0, particularly sharp results for stationary distributions on finite
rings were then given by Ayyer and Linusson in [9]. Their results include closed-form
expressions for “three-point” probabilities of the form P(Y

(L)
0 = `, Y

(L)
1 = m,Y

(L)
2 = n),

as well as more general “two-point” probabilities of the form P(Y
(L)
0 = m,Y

(L)
i = n). (By

taking appropriate limits, one can regain some of the formulas from [2] for the speed
process.) The proofs involve an intricate combinatorial analysis of the multi-line queue
construction for the TASEP. It would of course be interesting to explore whether an
analogous application of the multi-line constructions presented here could lead to similar
results for multi-point probabilities in the case q > 0.

1.4 Related work

Let us mention some further related work, in addition to that discussed above.
The recursive approach to the construction of multi-type particle systems has been
extended to a variety of different particle systems, including discrete-time TASEPs [35],
inhomogeneous (or “multi-rate”) versions of the multi-type TASEP [7, 8, 13], and a variety
of zero-range processes [32, 33, 31], and also to the description of joint distributions of
Busemann functions for last-passage percolation [22].

Connections between the multi-type ASEP on the ring and families of symmetric
polynomials such as Schubert polynomials and Macdonald polynomials have been studied
by various authors, for example by Cantini in [13] and in recent work by Corteel,
Mandelshtam and Williams in [16]; the latter paper involves a description of Macdonald
polynomials using objects related to the multi-line diagrams described in this paper.

Stationary distributions for the multi-type ASEP on a finite interval with open bound-
ary conditions have also been widely studied. Not all sets of boundary rates are expected
to lead to exactly solvable models; however, a variety of classes of integrable boundary
conditions have recently been established – see for example work of Crampe, Finn,
Ragoucy and Vanicat [17, 28], and also work of Cantini, Garbali, de Gier and Wheeler
[14, 15] where further connections to families of orthogonal polynomials are made.
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Stationary distributions of the multi-type ASEP

Systems with closed boundaries on finite or half-infinite intervals have recently been
considered by Belitsky and Schütz [10] (see also [5]); as well as describing stationary
distributions, they obtain duality properties and use them to study hydrodynamic limits
(including the behaviour of shocks). The stationary distributions of these systems are
closely related to certain stationary distributions for the system on Z which (unlike
those considered in this paper) are not translation-invariant; instead their projections
onto one-type distributions are blocking measures in the sense of [12]. The connections
between distributions of this type and the Mallows measure on permutations were
previously studied by Gnedin and Olshanskii [29, 30], and recent work by Angel, Holroyd,
Hutchcroft and Levy [4] describes a link between such processes and a model of stable
matchings.

Integral formulas for multi-type ASEPs on Z with finitely many particles are given by
Tracy and Widom in [38].

1.5 Plan of the paper

The rest of the paper is organised as follows.

In Section 2 we introduce the recursive matrix product construction of Prolhac, Evans
and Mallick [37]. We give specific realisations of the relevant matrices, which are closely
related to Markov transition matrices for the queueing systems that we use to construct
the multi-type ASEP stationary distribution.

These queueing models are introduced in Section 3. We also give results concerning
stationary distributions of multi-type ASEPs on Z, which may also be considered as main
results of the paper in their own right.

The proofs of Theorems 1.1, 1.2 and 1.3 are then developed in Section 4. We cover
the particular case N = 2 in some detail, with the aim of making the argument in the
more general case as easily comprehensible as possible.

The results concerning stationary distributions on Z are proved in Section 5; these
are deduced from the corresponding results for processes on the ring using a rather
intricate coupling argument, which may be of independent interest.

Those results form a central part of the proof of Theorem 1.5, given in Section 6.
The limit process W of Theorem 1.5 can be identified as a stationary distribution for
an ASEP on Z whose particle-types are continuous, and distributed uniformly on [0, 1].
This process is a generalisation of the “TASEP speed process” studied by Amir, Angel
and Valko in [2] (see also [24] for closely related results). The process W can be studied
via the projection of the continuous-type ASEP onto an N -type process; much useful
information can be extracted already from the case N = 2. The hardest part of the proof
is the argument to establish Theorem 6(c), where a subtle argument involving stochastic
domination between random walks is required.

Finally in Section 7 we briefly discuss an alternative construction involving a modified
queueing discipline; this would result in a more complicated matrix-product structure,
but a rather simpler and more natural formulation in terms of multi-line diagrams and
their weights.

2 Matrix product framework

In this section we describe the matrix product representation for the stationary
distribution of the process on the ring given by Prolhac, Evans and Mallick [37], which
is the starting-point of the proof of the multi-line construction for the ASEP stationary
distribution. Our notation will be slightly different from in that paper; since we consider
the ASEP with jumps left rather than right, the matrices which appear in the matrix
product solution are the transposes of those used in [37]. This change is convenient
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Stationary distributions of the multi-type ASEP

since now time in the associated queueing systems flows from left to right, and the
matrices which appear are closely related to Markov transition matrices.

Suppose the matrices δ, ε and α satisfy the following relations:

εδ − qδε = (1− q)I
αδ = qδα (2.1)

εα = qαε

At (2.5) below, we’ll give specific examples of appropriate matrices (which will be
infinite-dimensional) α, δ, ε.

Now we define matrices X(N)
n for n = 1, 2, . . . , N,∞. Recursively, the matrices X(N)

n

are defined as sums of tensor products of matrices X(N−1)
j . First let X(1)

1 and X
(1)
∞ be

scalars and equal to 1.

Now for N ≥ 2, define

X
(N)
j =

∑
m=1,...,N−1,∞

a
(N)
j,m ⊗X

(N−1)
m (2.2)

where the matrices a(N)
m,j are given by

a(N)
∞,∞ = I⊗(N−1)

a(N)
m,∞ = I⊗(m−1) ⊗ ε⊗ I⊗(N−m−1) for m ≤ N − 1

a(N)
∞,n = α⊗(n−1) ⊗ δ ⊗ I⊗(N−n−1) for n ≤ N − 1

a(N)
m,n = α⊗(n−1) ⊗ δ ⊗ I⊗(m−n−1) ⊗ ε⊗ I⊗(N−m−1) for n < m ≤ N − 1 (2.3)

a(N)
n,n = α⊗(n−1)I⊗(N−n) for n ≤ N − 1

a
(N)
∞,N = α⊗(N−1)

a(N)
m,n = 0 for m < n <∞

The dynamics of the ASEP on the ring ZL preserve the number of particles of each
type. Consider the process with kn particles of type n, for n = 1, 2, . . . , N , where kn > 0

for all n and also k1 + k2 + · · ·+ kN < L.

Theorem 2.1 (Prolhac, Evans and Mallick [37]). The stationary distribution of the N -type
TASEP on ZL, with kn particles of type n for n = 1, 2, . . . , N , is given by

ν
(N,L)
k1,...,kN

(η1, η2, . . . , ηL) =
1

Z
(N,L)
k1,...,kN

trace
(
X(N)
η1 X(N)

η2 . . . X(N)
ηL

)
, (2.4)

where Z(N,L)
k1,...,kN

is a normalizing constant chosen such that the sum of the right-hand
side over all configurations with the particle counts k1, . . . , kN is 1.

Matrices satisfying the relations (2.1) can be realised in many ways. We give a
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particular version with direct links to the queueing interpretations that we will develop:

α =


1 0 0 0 . . .

0 q 0 0 . . .

0 0 q2 0 . . .

0 0 0 q3 . . .
...

...
...

...
. . .

 , ε =


0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

0 0 0 0 . . .
...

...
...

...
. . .

 ,

δ =


0 0 0 0 . . .

1− q 0 0 0 . . .

0 1− q2 0 0 . . .

0 0 1− q3 0 . . .
...

...
...

...
. . .

 . (2.5)

Note immediately that ε is a stochastic matrix (that is, a matrix whose entries are
non-negative and whose row-sums are all equal to 1), and also δ + α is also a stochastic
matrix. Of course, so is the identity matrix I. The rows and columns of all these matrices
are considered to be indexed by Z+ = {0, 1, 2, . . . }. The indices can be seen as queue
lengths, and the matrices are interpreted as transition matrices in a queueing process
evolving over time.

Each matrix a(N)
m,j is a tensor product of N − 1 of the fundamental matrices α, δ, ε, I,

and can be seen as indexed by vectors in ZN−1+ , representing queue-lengths of customers

of types 1, 2, . . . , N − 1 in an (N − 1)-type queueing process. The quantity a
(N)
m,n will

represent the weight of a transition associated with the arrival of a customer of type m
and departure of a customer of type n (with∞ representing no customer).

Since the tensor products a(N)
m,n have order N−1, it follows from (2.2) that each matrix

X
(N)
n is a sum of tensor products of order 1 + 2 + · · · + (N − 1) = N(N − 1)/2. In fact,

the non-zero contributions to X(N)
n are all terms of the form

a(1)m1,m2
⊗ a(2)m2,m3

⊗ · · · ⊗ a(N−1)mN−2,mN−1
⊗ a(N)

mN−1,n,

where mr ∈ {1, . . . , r,∞} for r = 1, . . . , N − 1. This quantity represents the weight of a
transition in a system of N queues in series, associated to the arrival of a customer of
type m1 in the first queue, a transfer of a customer of type mr from queue r− 1 to queue
r for 2 ≤ r ≤ N − 1, and a departure of a customer of type n from queue N − 1 (and the
value∞ indicates the absence of a customer).

3 Queueing construction

3.1 The multi-type ASEP on Z

The multi-type ASEP on the whole line Z is defined analogously to the process on
the ring ZL. The N -type system is a continuous-time Markov process with state-space
{1, 2, . . . , N,∞}Z. For a configuration η = (ηi, i ∈ Z), say that ηi is the type of the particle
at site i. The dynamics are as follows: if η(i) > η(i+ 1), then the values η(i) and η(i+ 1)

are exchanged at rate 1. If instead η(i) < η(i+ 1), then the values η(i) and η(i+ 1) are
exchanged at rate q.

In the case N = 1, the ergodic translation-invariant stationary distributions are
all Bernoulli product measures, in which each site contains a particle (type 1) with
probability λ, and otherwise a hole (where λ ∈ [0, 1]). (There are also non-translation-
invariant stationary distributions, the blocking measures considered for example by [12];
these are concentrated on configurations with only finitely many holes to the left of the
origin and only finitely many particles to the right of the origin.)
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As shown in [25], for given λ1, . . . , λN with λ1 + · · · + λN < 1, there is a unique
ergodic translation-invariant stationary distribution for the N -type ASEP on Z in which
the intensity of type-n particles is λn for 1 ≤ n ≤ N . We denote it by ν(N)

λ1,...,λN
.

For each n = 1, . . . , N , we can consider a projection under which types r ≤ n are
considered “particles” and types r > n are considered “holes”. Under this projection,
the N -type ASEP becomes a one-type ASEP, and so in particular the image of ν(N)

λ1,...,λN

is Bernoulli product measure with intensity λ1 + · · ·+ λr. However, although all these
projections are product measures, ν(N)

λ1,...,λN
is not itself a product measure! In the case

q = 0, this stationary measure on Z was constructed in [26].

3.2 Single-type queue

We now define the basic model of a discrete-time queue including rejected services,
which will be used to describe the stationary distribution of the two-type ASEP on
Z. In later sections we consider systems consisting of several such queues in series,
with multiple types of customer – these will be used to describe multi-type stationary
distributions. We then describe analogous systems where the “time” index is cyclic, in
order to describe the stationary distributions of systems on the ring ZL.

The queue is Markovian. Write Ai = 1 if there is an arrival at time-step i, and Ai =∞
otherwise. Write Si = 1 if there is a service available at time-step i, and Si =∞ otherwise.
The processes of arrivals and of services are independent Bernoulli processes, with rates
λ and µ respectively. That is, at each time-step, an arrival occurs with probability λ, and
then independently a service is available with probability µ (with independence between
different time-steps).

Suppose the queue-length at the start of the time-step is k. There are four possibili-
ties:

• No arrival occurs, no service available, with probability (1− λ)(1− µ). The queue-
length remains k.

• Arrival occurs and service available, with probability λµ. A departure occurs, and
the queue-length remains k.

• Arrival occurs, no service available, with probability λ(1− µ). The queue-length
increases to k + 1.

• No arrival occurs, service is available, with probability (1− λ)µ. With probability
1−qk, a departure occurs, and the queue-length goes down to k−1. With probability
qk, an unused service occurs, and the queue-length remains k.

Note that an unused service is allowed to occur only if no arrival has occurred at that
time-slot. We can imagine the service mechanics as follows. When a service is available,
it is offered to each customer in turn. Each one in turn accepts it with probability 1− q
and rejects it with probability q, except that a customer who has just arrived must always
accept. As soon as a customer accepts the service, that customer departs and we stop.
If all k of the customers reject the service (with probability qk if no arrival has occurred)
then it remains unused.

The transition matrix of the queue-length process is given by

(1− λ)(1− µ)I + λµI + λ(1− µ)ε+ (1− λ)µ
(
δ + α) (3.1)

where α, δ, ε are given in (2.5). The four terms in (3.1) correspond to the four possibilities
for the evolution of a time-step listed above. The term in δ corresponds to transitions in
which a departure but no arrival occurs. α corresponds to transitions in which no arrival
occurs and a service is offered but unused. ε corresponds to transitions in which arrival
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occurs but no service is offered. Finally, the terms with I correspond to transitions
where either there is arrival and service, or there is no arrival and no service is offered.

For stability we assume λ < µ. In that case, the queue-length process is positive
recurrent, and there is a unique equilibrium version.

Note that at each time i ∈ Z, one of three possibilities occurs: a departure, an unused
service, or no available service. As at (1.2), we define a departure process D = (Di, i ∈ Z)
by

Di =


1 if a departure occurs at time i

2 if an unused service occurs at time i

∞ if no service is available at time i

. (3.2)

(Note that Di = ∞ if and only if Si = ∞.) Let Qi be the number of customers in the
queue at the beginning of time-step i. Then we have the following recursive formula:

Qi+1 = Qi + 1(Ai = 1)− 1(Di = 1). (3.3)

Theorem 3.1. Consider the queue run in equilibrium, with departure process D defined
by (3.2). The configuration Di, i ∈ Z is distributed according to ν

(2)
λ,µ−λ (the unique

ergodic stationary distribution of the two-type ASEP on Z with parameter q and with
density λ of first-class particles and µ− λ of second-class particles).

Our proof of this result will be based on the matrix product representation in Theorem
2.1.

3.3 Multi-type queues

Next, we consider the extension of the queue described above to a multi-class queue
with priorities. The queue will contain N − 1 classes (or types) of customer, labelled
1, 2, . . . , N − 1. The lower the number of the class, the higher the priority.

The state of the queue at a given time i is now a vector (Q
(n)
i , 1 ≤ n ≤ N − 1) with

N − 1 entries; the nth entry Q(n)
i denotes the number of customers of class n present in

the queue at the beginning of time-step i.
At each time-step i, at most one customer arrives (with some given class). Write

Ai = n if a customer of type n arrives, and Ai =∞ if there is no arrival. Initially we don’t
specify the arrival process, but concentrate on describing the action of the queueing
server.

As before, the process of available services is a Bernoulli process of rate µ; write
Si = 1 if a service occurs (which happens with probability µ) and Si =∞ otherwise. As
above, the service will be offered in turn to each customer in the queue. This is now
done in order of priority; the service is offered to each of the first-class customers, then
to each of the second-class customers, and so on until some accepts it or all customers
have rejected it. Each customer accepts the service with probability 1− q and rejects it
with probability q, with the exception that if a customer has just arrived at the queue,
then that customer will always accept.

We give two brief examples. Suppose that at the beginning of a time-slot, the queue
contains 3 first-class customers, 1 second-class customer and 4 third-class customers.
Suppose that there is no arrival, and a service is available. Then a departure of a
first-class customer occurs with probability 1− q3, a second-class departure occurs with
probability q3 − q4, a third-class departure occurs with probability q4 − q8 and an unused
service occurs with probability q8.

Suppose instead that an arrival of a second-class customer occurs, increasing the
number of second-class customers to 2. Now a first-class customer departs with proba-
bility 1− q3, and a second-class customer departs with probability q3. It is impossible for
a third-class departure or an unused service to occur.
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Note the particular case q = 0. Here it is always a customer of the highest priority-
type present who departs, and a service is unused if and only if the queue is empty.

As at (1.4), generalising (3.2), define the departure process D = (Di, i ∈ Z) by

Di =


n if a departure of type n occurs at time i, for n ∈ {1, 2, . . . , N − 1}
N if an unused service occurs at time i

∞ if no service is available at time i

. (3.4)

As at (3.3), we have a recursion for the queue-length process. For each i and for each
r = 1, 2, . . . , N − 1,

Q
(n)
i+1 = Q

(n)
i + 1(Ai = n)− 1(Di = n).

3.4 Multi-type stationary distribution

We now explain how to construct stationary distributions for the multitype ASEP on
Z recursively. The departure process of a queue with N − 1 types, whose arrival process
corresponds to the stationary distribution for the (N − 1)-type ASEP, is used to give a
stationary distribution for the N -type ASEP.

Fix λ1, λ2, . . . , λN with λ1 + λ2 + · · ·+ λN < 1.
Consider a priority queue as above with N−1 types, whose arrival process Ai, i ∈ Z is

distributed according to ν(N−1)λ1,...,λN−1
, the ergodic stationary distribution of the (N−1)-type

ASEP with density λr of customers of type r, for r = 1, 2, . . . , N − 1, and whose service
process is a Bernoulli process with rate λ1 + λ2 + · · · + λn (independent of the arrival
process).

Theorem 3.2. Let D be the departure process of the priority queue with N − 1 classes,
defined at (3.4). The N -type configuration Di, i ∈ Z is distributed according to ν(N)

λ1,...,λN
,

the unique ergodic stationary distribution of the N -type ASEP on Z with parameter q
and with density λr of particles of class r, for r = 1, 2, . . . , N .

Hence the stationary distribution with N types can be seen as the output of a series
of N − 1 queues in tandem. The rth of the N − 1 queues contains r types of customer
in its arrival process. Its departure process also contains r types, to which we add an
(r + 1)st type corresponding to unused services.

3.5 “Queues” on the ring: two-type

To construct the stationary distribution of the ASEP on ZL = {0, 1, . . . , L − 1} (the
ring with L sites) we consider “queues” in which the time is cyclic; i.e. we replace the
time index Z by ZL. All addition and subtraction is to be understood modulo L

In this section we cover the two-type ASEP. The numbers of first-class and of second-
class particles are conserved by the dynamics. For each k1 and k2 with k1 + k2 < L,
the set of configurations with k1 first-class and k2 second-class particles (and hence
L − k1 − k2 holes) forms a single communicating class; there is a unique stationary
distribution concentrated on such a set of configurations.

The construction of the two-type stationary distribution uses a queue with one type
of customer. We will have k1 arrivals and k1 + k2 services.

The set of times at which arrivals occur is chosen uniformly from all subsets of ZL
of size k1, and the set of times at which services are available is chosen uniformly from
all subsets of ZL of size k1 + k2, independently of arrivals. Write Ai = 1 if there is an
arrival at time i and Ai =∞ if not. Write Si = 1 if there is a service available at time i
and Si =∞ if not.

Analogously to the queue described in Section 3.2, we want the following rules. If no
service is available, then no departure occurs. If an arrival and an available service both
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occur, then a departure must occur. Finally, if a service is available but an arrival does
not occur, there may be either a departure or an unused service.

Formally, suppose we are given arrival and service processes A and S in {1,∞}ZL ,
Then we say that a queue-length process Q = (Qi, i ∈ ZL) ∈ ZZL

+ is valid, and write
(A,S,Q) ∈ R(2), if there exists a departure process D = (Di, i ∈ ZL) ∈ {1, 2,∞}ZL

satisfying the following properties:

Qi+1 −Qi = 1(Ai = 1)− 1(Di = 1)

Si =∞ =⇒ Di =∞ (3.5)

Si = 1 =⇒ Di <∞ and Di ≤ Ai.

If such a D exists it is unique. (The first line determines when Di = 1 and the next two
lines together determine when Di = ∞.) For (A,S,Q) ∈ R(2), we write D(A,S,Q) for
the unique D satsifying the properties in (3.5).

Now, given A and S, define a weight function on valid queue-length processes as
follows. For valid Q, define the weight wi(Q|A,S) associated to site i ∈ ZL by

wi(Q|A,S) =


1 if Si =∞, Di =∞, Qi+1 = Qi + 1(Ai = 1)

1 if Si = 1, Di = 1, Ai = 1, Qi+1 = Qi

1− qQi if Si = 1, Di = 1, Ai =∞, Qi+1 = Qi − 1

qQi if Si = 1, Di = 2, Ai =∞, Qi+1 = Qi

, (3.6)

where D = D(A,S,Q). (It’s straightforward to check that if the properties in (3.5) are
satisfied, then exactly one of the cases in (3.6) occurs.) Now define the weight of the
whole process Q by w(Q|A,S) =

∏
i∈ZL

wi(Q|A,S). Given A and S, we now take the
probability of the queue-length process Q to be proportional to w(Q|A,S), by

P (Q|A,S) = w(Q|A,S)∑
Q′ w(Q

′|A,S)
. (3.7)

It’s easily seen that the denominator is finite as long as q < 1. In fact, we will show
later (Lemma 4.2) that this normalizing constant depends only on k1 and k2, and not on
particular A and S.

The weight has the following interpretation. At each time slot where a service occurs,
this service is offered to the customers in turn. Each customer accepts an offer with
probability 1− q and rejects it with probability q, with the exception that any customer
who has just arrived at the queue must accept it. The values of wi in the second,
third, and fourth lines of (3.6) above are the corresponding probabilities for observing
a departure or an unused service, taking into account the current composition of the
queue and the information about whether an arrival has occurred.

Now we use the weight w to give a distribution on departure configurations D;
namely, choose A and S uniformly, as described above; choose Q in proportion to
P (Q|A,S) (equivalently, in proportion to w(Q|A,S)); finally, take D = D(A,S,Q).

Theorem 3.3. The distribution of the configuration D = Di, i ∈ ZL induced by the
weight (3.6) on queue-length processes is the stationary distribution of the two-type
ASEP on ZL with k1 first-class and k2 second-class particles.

3.6 “Queues” on the ring: multi-type

In this section we construct the stationary distribution for the ASEP on ZL with
several types of particle, generalising the result of the previous section for 2-type
systems.
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The construction is done recursively. To describe the N -type equilibrium, we use
the (N − 1)-type equilibrium and a priority “queue” (with cyclic time as in the previous
section).

The arrival process contains N − 1 types of particle, and holes. Let kn be the number
of particles of type n. Write Ai = n if there is an arrival of type n at time i, and Ai =∞ if
there is no arrival. Write Si = 1 if there is a service available at time i and otherwise
Si =∞.

We choose the process A according to the stationary distribution of an (N − 1)-type
system with kn particles of type n for 1 ≤ n ≤ N − 1. Independently of the arrivals,
the times of potential services are chosen uniformly from all subsets of ZL of size
k1 + k2 + · · ·+ kN .

We now consider queue-length processes Q(n)
i , 1 ≤ n ≤ N − 1, i ∈ ZL which are

consistent with a given configuration of arrivals and services. The value Q(n)
i represents

the number of customers of type n in the queue at the beginning of time-slot i.
We want the queue to obey the following rules. If no service occurs, then no departure

can occur. If an arrival and a service both occur, then a departure must also occur, and
the departing customer must have type no larger than that of the arrival. If a service
occurs but an arrival does not occur, there may be either a departure or an unused
service.

Formally, suppose we are given arrival and service processes A ∈ {1, 2, . . . , N −
1,∞}ZL and S in {1,∞}ZL , Then we say that a queue-length process Q = (Q

(n)
i , i ∈

ZL, 1 ≤ n ≤ N − 1) is valid, and write (A,S,Q) ∈ R(N), if there exists a departure
process D = (Di, i ∈ ZL) ∈ {1, 2, . . . , N,∞}ZL satisfying the following properties:

Q
(n)
i+1 −Q

(n)
i = 1(Ai = n)− 1(Di = n) for all n ∈ {1, 2, . . . , N − 1}

Si =∞ =⇒ Di =∞ (3.8)

Si = 1 =⇒ Di <∞ and Di ≤ Ai.

If such a D exists it is unique. (The first line determines when Di = n for each n =

1, 2, . . . , N − 1 and the next two lines together determine when Di =∞.) For (A,S,Q) ∈
R(N), we write D(A,S,Q) for the unique D satsifying the properties in (3.8).

Now, given A and S, define a weight function on valid queue-length processes as
follows.

For 0 ≤ n ≤ N − 1, we write Q(≤n)(i) =
∑n
r=1Q

(r)(i), for the number of customers of
type n or below in the queue at the beginning of time-step i. (Vacuously Q(≤0)(i) = 0 for

all i). Write also er = (e
(1)
r , . . . , e

(N−1)
r ) for the rth basis vector, with e(n)r = 1(n = r).

Then for valid Q, define the weight wi(Q|A,S) associated to site i ∈ ZL by

wi(Q|A,S) =



1 if Si =∞, Di =∞, Ai =∞, Qi+1 = Qi

1 if Si =∞, Di =∞,
Ai <∞, Qi+1 = Qi + eAi

qQ
(≤n−1)(i)(1− qQ(n)(i)) if Si = 1, Di = n,Ai =∞, Qi+1 = Qi − en

qQ
(≤n−1)(i)(1− qQ(n)(i)) if Si = 1, Di = n,

n < Ai <∞, Qi+1 = Qi − en + eAi

qQ
(≤n−1)(i) if Si = 1, Di = n,Ai = n,Qi+1 = Qi

qQ
(≤N−1)(i) if Si = 1, Di = N,Ai =∞, Qi+1 = Qi

,

(3.9)
where D = D(A,S,Q). (Again, one can verify that if the properties in (3.8) are satisfied,
then exactly one of the cases in (3.9) occurs.) Now define the weight of the whole process
Q by w(Q|A,S) =

∏
i∈ZL

wi(Q|A,S).
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Given A and S, the probability P (Q|A,S) of the queue-length process Q is now taken
to be proportional to w(Q|A,S), just as at (3.7). (We will show in Lemma 4.4 that the
denominator

∑
w(Q|A,S) is again finite, and indeed depends on A and S only through

the particle counts k1, . . . , kN .)

The weight has the following interpretation. At each time slot where a service occurs,
this service is offered to each of the customers, in order of priority (starting with those of
type 1, then those of type 2, and so on). Each customer accepts an offer with probability
1 − q and rejects it with probability q, with the exception that any customer who has
just arrived at the queue must accept it. The values of wi above are the corresponding
probabilities for observing a particular type of departure or unused service, taking into
account the current composition of the queue and the type of arrival (if any).

Then the weight w yields a distribution on departure configurations D; namely, choose
A from the (N − 1)-type stationary distribution, and independently choose S uniformly,
as described above; choose Q in proportion to P (Q|A,S) (equivalently, in proportion to
w(Q|A,S); finally, take D = D(A,S,Q).

Theorem 3.4. The distribution of the configuration D = Di, i ∈ ZL induced by the
weight (3.9) on queue-length processes is the stationary distribution of the N -type ASEP
on ZL with particle counts k1, . . . , kN .

4 Proofs of main results for systems on ZL

In this section, we prove Theorem 3.3 and Theorem 3.4 concerning the construction
of the ASEP on ZL (in the 2-type and general N -type cases respectively), and then
Theorem 1.1 and Theorem 1.2 justifying Algorithms 1 and 2.

4.1 Proofs of Theorem 3.3 and Theorem 3.4

We start with the 2-type case of Theorem 3.3. We explain this case somewhat
thoroughly, so as to indicate as clearly as possible the extension of the argument to N
types, where the notation is more complicated and fewer details will be included. The
form of the matrix product solution in the case N = 2 is particularly simple. From (2.2)
and (2.3), we obtain

X
(2)
1 = I + δ,

X
(2)
2 = α, (4.1)

X(2)
∞ = I + ε.

We work specifically with the forms of α, ε and δ given at (2.5).

Lemma 4.1.

(i) Suppose (A,S,Q) ∈ R(2), and let D = D(A,S,Q). Then for all i,

wi(Q|A,S) =
(
X

(2)
Di

)
Qi,Qi+1

.

(ii) Given Q and D, if
∏
i

(
X

(2)
Di

)
Qi,Qi+1

> 0, then there exists a unique pair A, S such

that (A,S,Q) ∈ R(2) and D = D(A,S,Q).

Proof. Note that the non-zero entries of the matrices X(2)
r , r = 1, 2,∞, are precisely

the diagonal and super-diagonal entries of X(2)
∞ = I + ε, the diagonal and sub-diagonal

entries of X(2)
1 = I + δ, and the diagonal entries of X(2)

2 = α. Then there is an exact
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correspondence between the four cases

Di =∞, Qi+1 −Qi ∈ {0, 1}
Di = 1, Qi+1 −Qi = 0 (4.2)

Di = 1, Qi+1 −Qi = −1
Di = 2, Qi+1 −Qi = 0

and the four lines of (3.6). For part (i), we can verify that when any one of these four
cases hold, the relevant matrix entry, namely the (Qi, Qi+1) entry in X

(2)
Di

, equals the
weight defined in (3.6).

For part (ii), if we are given D, Q such that for each i one of the lines in (4.2) is
satisfied, then defining Ai and Si for each i according to the corresponding line of (3.6)
satisfies (3.5), so that (A,S,Q) ∈ R(2) and D = D(A,S,Q) as required.

Finally, from (3.5) it’s also easy to see that for a given D,Q there could not be more
than one pair A,S such that (A,S,D,Q) ∈ R(2) (since the first line of (3.5) determines A,
and the second and third lines determine S).

We will need one further property, that the denominator in (3.7) does not depend on
A and S.

Lemma 4.2. Take any A, S with
∑
i 1(Si = 1)−

∑
i 1(Ai = 1) = k2. Then∑

Q

w(Q|A,S) =
(
1− qk2

)−1
,

so for any Q, P (Q|A,S) = (1− qk2)w(Q|A,S).
This property is a central (and perhaps non-obvious) part of the argument. Its proof

will do much of the work needed for the justification of Algorithm 1 in Theorem 1.1, and
is given below. Meanwhile we complete the proof of Theorem 3.3:

Proof of Theorem 3.3. Write P (2,L)
k1,k2

for the distribution described by (3.6) and (3.7).
Take any configuration D with k1 first-class and k2 second-class particles. We restrict

to A and S with
∑
i 1(Ai = 1) = k1 and

∑
i 1(Si = 1) = k1 + k2. Then

P
(2,L)
k1,k2

(D) =
∑

A,S,Q∈R(2):
D=D(A,S,Q)

P (Q|A,S)
(
L
k1

)−1 ( L
k1+k2

)−1

(since (A,S) is chosen uniformly from the
(
L
k1

) (
L

k1+k2

)
possibilities)

∝
∑

A,S,Q∈R(2):
D=D(A,S,Q)

w(Q|A,S) (by Lemma 4.2)

=
∑

A,S,Q∈R(2):
D=D(A,S,Q)

∏
i

wi(Q|A,S)

=
∑
Q

∏
i

(
X

(2)
Di

)
Qi,Qi+1

(using Lemma 4.1)

= trace
∏
i

X
(2)
Di

∝ ν(2,L)k1,k2
(D),

by Theorem 2.1. So the two distributions P (2,L)
k1,k2

and ν(2,L)k1,k2
are the same as required.
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Now we describe how to generalise the argument to the case N > 2, to prove
Theorem 3.4.

A queue-length process now has N − 1 entries, so that Qi = (Q(1)(i), . . . , Q(N−1)(i)),
where Q(n)(i) gives the number of type-n customers in the queue. The arrival and
departure proceses are elements of {1, 2, . . . , N − 1,∞}ZL and of {1, 2, . . . , N,∞}ZL

respectively.

Lemma 4.3.

(i) Suppose (A,S,Q) ∈ R(N), and let D = D(A,S,Q). Then for all i,(
a
(N)
Ai,Di

)
Qi,Qi+1

= wi(Q|A,S).

(ii) Given A, D, Q, suppose ∏
i

(
a
(N)
Ai,Di

)
Qi,Qi+1

> 0.

Then there exists a unique S such that (A,S,Q) ∈ R(N) and D = D(A,S,Q).

Proof. Similarly to the proof of Lemma 4.1, we need to show that the lines of (3.9)
correspond to the cases where the entries in the tensor products defined in (2.3) are
non-zero. This correspondence will be line-by-line between the first six lines of (2.3) and
the six lines of (3.9). We will not go through every case, but will give an example.

First consider the four matrices I, α, δ and ε involved in the tensor products in (2.3),
using as before the explicit forms at (2.5). The non-negative entries of I and α are
precisely the diagonal entries; those of δ are the entries on the subdiagonal, and those
of ε are those on the superdiagonal.

Then consider for example the fourth line of (2.3), which is the case of a(N)
m,n for

n < m ≤ N − 1. Inspecting the tensor product, we see that the subdiagonal matrix
δ appears in the nth component, and the superdiagonal matrix ε appears in the mth
component; all the other matrices involved are diagonal. So the only non-zero terms(
a
(N)
m,n

)
Qi,Qi+1

are those where Qi+1 = Qi − en + em. This corresponds to the fourth line

of (3.9). We then need to check that the weight defined in the fourth line of (3.9) is the
same as the entry in the tensor product. The components r = 1, 2, . . . , n− 1 of the tensor

product contribute values α
Q

(r)
i ,Q

(r)
i

= qQ
(r)
i , giving qQ

(≤n−1)
i between them. The nth

component contributes the value δ
Q

(n)
i ,Q

(n)
i −1

= 1− q(Q
(n)
i . The remaining components all

contribute the value 1 from the relevant entries in the matrix ε or I. Multiplying together,
we indeed obtain the weight defined in the fourth line of (3.9) as required.

In a similar way each of the first six lines of (2.3) accords with the corresponding line
of (3.9).

So for part (i), we have that if (3.8) is satisfied, then one of the lines of (3.9) holds, and
then the weight defined by that line is the same as the tensor entry in the corresponding
line of (2.3).

For part (ii), suppose we have A, D, Q such that the tensor entry
(
a
(N)
Ai,Di

)
Qi,Qi+1

is

positive for each i. That is, for each i, one of the lines of (2.3) is positive; then one can
verify as above that if we take Si = 1 if Di <∞ and Si =∞ if Di =∞, the corresponding
line of (3.9) also holds, and that this is the only such choice of Si. This choice of S then
satisfies (3.8) (and is the only such choice).

The corresponding result to Lemma 4.2 is:
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Lemma 4.4. Fix any A, S with |An| = kn for 1 ≤ n ≤ N − 1 and |S| = k1 + k2 + · · ·+ kN .
Then ∑

Q

w(Q|A,S) =
(
1− qk2

)−1
. . .
(
1− qkN

)−1
,

so for any Q, P (Q|A,S) = (1− qk2) . . . (1− qkN )w(Q|A,S).
Again this result is a central part of the subsequent argument, and we prove it below.

Proof of Theorem 3.4. Write PN,Lk1,...,kN
for the distribution resulting from the weight de-

fined at 3.9. Let D be any configuration with particle counts k1, . . . , kN . Note that if
D = D(A,S,Q) then A has particle counts k1, . . . , kN−1 and

∑
i 1(Si = 1) = k1 + · · ·+ kN .

We have

P
(N,L)
k1,...,kN

(D) =
∑

(A,S,Q)∈R(N):
D=D(A,S,Q)

P (Q|A,S)ν(N−1,L)k1,...,kN−1
(A)

(
L

k1 + · · ·+ kN

)−1

∝
∑

(A,S,Q)∈R(N):
D=D(A,S,Q)

w(Q|A,S)ν(N−1,L)k1,...,kN−1
(A) (by Lemma 4.4)

=
∑

(A,S,Q)∈R(N):
D=D(A,S,Q)

∏
i

(
a
(N)
Ai,Di

)
Qi,Qi+1

ν
(N−1)
k1,...,kN−1

(A) (by Lemma 4.3)

=
∑
A,Q

∏
i

(
a
(N)
Ai,Di

)
Qi,Qi+1

ν
(N−1)
k1,...,kN−1

(A) (by Lemma 4.3 again)

=
∑
A

ν
(N−1)
k1,...,kN−1

(A)
∑
Q

∏
i

(
a
(N)
Ai,Di

)
Qi,Qi+1

=
∑
A

trace
(
X

(N−1)
A1

. . . X
(N−1)
AL

)
trace

(
a
(N)
A0,D0

. . . a
(N)
AL−1DL−1

)

= trace

(∑
A0

a
(N)
A0D0

⊗X(N−1)
A0

)
. . .

∑
AL−1

a
(N)
AL−1DL−1

⊗X(N−1)
AL−1


= trace

(
X

(N)
D0

. . . X
(N−1)
DL−1

)
∝ ν(N,L)k1,...,kN

(D),

so that the distributions P (N,L)
k1,...,kN

and ν(N,L)k1,...,kN
are the same as required.

4.2 Algorithmic results: Proofs of Theorem 1.1 and Theorem 1.2

In this section we complete the proofs of Lemmas 4.2 and 4.4 left over from the last
section (hence completing the proofs of Theorems 3.3 and 3.4 from that section), and
proceed to justify the results of Theorems 1.1 and 1.2 that Algorithms 1 and 2 produce
samples from the multi-type stationary distributions.

We start with the 2-type case. Throughout, we fix some arrival process A with k1
arrivals, and some service process S with k1 + k2 potential services. Let S be the set of
times where service is offered; that is, S = {i ∈ ZL : Si = 1}.

We first define a system of random marks attached to the service times, which will be
used to determine which services are used and which remain unused. Let Bi, i ∈ S be
i.i.d. geometric with parameter q; that is, Bi takes value bi ∈ {0, 1, 2, . . . } with probability
qbi(1− q). We write PB for the joint law of the Bi, so for a given vector (bi)i∈S , we have
PB(Bi = bi for all i) =

∏
i∈S q

bi(1− q) = (1− q)|S|q
∑
bi .
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Recall that under our queueing model, if there is no arrival at i and the current queue-
length Qi is k, the service at i is unused with probability qk and used with probability
1 − qk. We will arrange that the service at i is used if Bi < Qi, and unused if Bi ≥ Qi.
Hence Bi may be interpreted as the number of times that the service at i is refused by
a customer. Suppose Q is a valid queue-length process (i.e. (A,S,Q) ∈ R(2)). We will
say that Q is compatible with a mark bi at i, where Si = 1, if one of the following three
conditions holds:

• Ai = 1;

• Ai =∞, Di = 2 and Qi ≤ bi; (4.3)

• Ai =∞, Di = 1 and Qi > bi.

If Q is compatible with bi for each i ∈ S, we simply say that Q is compatible with the
collection b = {bi, i ∈ S}, and we write Q ∼ b.

Now we may rewrite the definition of w around (3.6) as follows. Given A, S and a
valid queue-length process Q,

w(Q|A,S) = PB(Q ∼ B). (4.4)

Lemma 4.5. Fix A and S. Suppose that two valid queue-length processes Q and Q′ are
both compatible with the same set of marks b. Then Q and Q′ differ by a constant, and
also D(A,S,Q) = D(A,S,Q′).

Proof. Let D = D(A,S,Q) and D′ = D(A,S,Q′) be the departure processes associated
to Q and Q′ respectively. Without loss of generality, suppose that for some i, Q′i ≥ Qi.
We wish to show that also Q′i+1 ≥ Qi+1. Consider two cases. Suppose Q′i > Qi. Since
both processes have the same arrivals, and there is at most one departure at any time,
certainly also Q′i+1 ≥ Qi+1. If instead Q′i = Qi then from the fact that Q and Q′ are
compatible with the same marks b, we have D′i = Di and hence also Q′i+1 = Qi+1.

Hence we obtain Q′i ≥ Qi for all i. Again since Q and Q′ are compatible with the
same marks, we then obtain that D′ has a departure whenever D has a departure. But
the total number of departures is k1 in each process, so the set of departure times is the
same for both. Since the set of arrival times is also the same, the queue-length processes
differ by some constant.

Before stating the next result, we formulate two further equivalent versions of
Algorithm 1. Recall that Algorithm 1 considers the k1 arrivals in turn; when considering
the (r+1)st arrival, it chooses between the k1+k2− r services still available. If a service
coincides with the arrival, that one is chosen. Otherwise, we number the available
services i1, i2, . . . , ik1+k2−r in cyclic order, and service ij is chosen with probability
qj−1/(1 + q + q2 + · · ·+ qk1+k2−r−1).

Equivalently, we can do the following. Now, when an arrival does not find an available
service coinciding with it, we extend the list of available services i1, . . . , ik1+k2−r cyclically
to an infinite sequence ij , j ≥ 1, by setting ij = ij′ whenever j ≡ j′ mod k1 + k2 − r.
Now we choose service ij with probability qj−1/(1 + q + q2 + . . . ) = qj−1(1− q). That is,
we choose service iJ where J is a geometric random variable with parameter q. We have
the following interpretation: we “offer” the arrival to each service ij in turn, proceding
in cyclic order around the ring. Each service accepts the arrival with probability 1− q.
If a service accepts the arrival, then the arrival is assigned to that service; otherwise
we continue to the next service in the list. If we have toured all the way around the
ring without any offer being accepted, we continue in cyclic order, starting again at the
beginning. It’s easy to check that this procedure gives the same distribution as the one
in the previous paragraph.
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Secondly, we can allow a set of marks b = (bi, i ∈ S) to control the procedure. As
the algorithm proceeds, a service at i will “reject” the first bi times it receives an offer,
and “accept” the next time (if it is ever offered that many). If the marks bi are randomly
chosen, with distribution i.i.d. geometric with parameter q, then this is again equivalent
to accepting each offer independently with probability 1− q.

Lemma 4.6. Fix A and S. For each set of marks b, there exists a minimal process Qmin(b)

among those queueing processes compatible with the marks b.

Proof. The second reformulation above can also be used to give a process Q which is
compatible with a given set of marks b. We generate this Q by considering separately the
contribution of each customer in the system. Suppose that a given customer arrives at
time i and departs at time j. This customer contributes 1 to the queue lengths at times
Qi+1, Qi+2, . . . , Qj−1, Qj . In addition, suppose that the match between this customer and
the service at j was rejected of r times before being accepted. (In that case, the algorithm
has done j “complete tours” of the ring in the process of assigning the departure time of
this customer). Then this gives a further contribution of r to the queue-length Qi′ at all
times i′.

We claim that summing up these contributions from each customer gives the desired
queue-length process. Each arrival gives an increase of 1 in the queue-length, and
each departure gives a decrease of 1. Further, each time that a service at i is unused
by a customer, that customer gives a contribution of 1 to the queue-length at i; as a
result, if the service remains unused at the end of the procedure, we know that Qi ≤ bi.
In addition, any departing customer still contributes at the moment of departure; if a
service at i is used for a departure after being rejected bi times, we know that Qi ≥ bi+1.
From these properties it follows Q is a valid queue-length process for (A,S), and also
the Q is compatible with the marks b.

Hence there is at least one compatible queueing process. Also Lemma 4.5 states that
any two such processes differ by a constant. Finally, all processes are non-negative. So
indeed a minimal such process exists.

Lemma 4.7. Let k2 = |S| −
∑

1(Ai = 1) be the number of second-class particles. Let Q
and Q′ be valid queue-length processes.

P(Q′ ∼ B|Q = Qmin(B)) =

{
qmk2 if m ∈ {0, 1, 2, . . . } and Q′i = Qi +m for all i;

0 otherwise.
(4.5)

Proof. Suppose Q = Qmin(B). From Lemma 4.5, if also Q′ ∼ B then Q′ and Q must differ
by a constant, say Q′i = Qi +m for all i, and since Q is minimal, we must have m ≥ 0. So
it’s enough to show that in that case P(Q′ ∼ B|Q = Qmin(B)) = qmk2 .

From (4.3), we have that if Q = Qmin(B), then Bi ≥ Qi for all i ∈ S such that Ai =∞
and Di = 2, and further that B ∼ Q′ also holds iff Bi ≥ Qi +m for all such i. For each
such i, we have P(Bi ≥ Qi +m|Bi ≥ Qi) = qm, since Bi is geometric with parameter
q. Since the variables Bi are independent, and since there are k2 such i, the overall
conditional probability equals qmk2 as required.

At this point we can deduce the fact that the total weight of all processes Q depends
on A and S only through the total number k1 of arrivals and k2 of services, which was an
important element of the argument in Section 4.1:

EJP 25 (2020), paper 43.
Page 24/41

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP421
http://www.imstat.org/ejp/


Stationary distributions of the multi-type ASEP

Proof of Lemma 4.2.∑
Q′

W (Q′|A,S) =
∑
Q′

P(Q′ ∼ B)

=
∑
Q′,Q

P(Q = Qmin(B))P(Q′ ∼ B|Q = Qmin(B))

=
∑
Q

P(Q = Qmin(B))

∞∑
m=0

qmk2 (by (4.5)) (4.6)

= (1− qk2)−1
∑
Q

P(Q = Qmin(B))

= (1− qk2)−1.

Proof of Theorem 1.1. We wish to show that the distribution on configurations obtained
from Algorithm 1 (or either of the variants described before Lemma 4.6) is the same as
that given by (3.6) and (1.2). Fix A and S and for convenience write w(Q) = w(Q|A,S)
and D(Q) = D(A,S,Q).

The distribution at (3.6) and (1.2) amounts to the following: choose Q in proportion
to the weight w(Q), and then take D(Q).

As observed at (4.4), w(Q) = PB(Q ∼ B). We now decompose this weight by
writing w(Q) =

∑
Q′ w(Q,Q

′), where we define w(Q,Q′) = P(Q ∼ B,Q′ = Qmin(B)).
For all Q and Q′ such that this weight is positive, Lemma 4.5 gives that Q and Q′

differ by a constant and that D(Q) = D(Q′). Hence equivalent to (3.6) and (1.2) is the
following: choose the pair Q and Q′ in proportion to the weight w(Q,Q′), and then take
D(Q′).

Next we write w̃(Q′) =
∑
Q w(Q,Q

′). Then we have another equivalent version:
choose Q′ in proportion to the weight w̃(Q′), and take D(Q′).

Now

w̃(Q′) =
∑
Q

PB(Q ∼ B,Q′ = Qmin(B))

= PB(Q
′ = Qmin(B))

∑
Q

PB(Q ∼ B|Q′ = Qmin(B))

= PB(Q
′ = Qmin(B))(1 + qk2 + q2k2 + . . . ) (using Lemma 4.5)

=
1

1− qk2
PB(Q

′ = Qmin(B)). (4.7)

Since 1/(1− qk2) is a constant, we have another equivalent version: choose Q′ with
probability proportional to the quantity PB(Q′ = Qmin(B)) and take D(Q′). But of
course this is the same as the following; generate a sample of the weights B, and take
D(Qmin(B)).

Finally, using Lemma 4.5 again, we may do the following: generate B, choose any Q
such that Q ∼ B, and take the departure process D(Q). But, by the argument preceding
Lemma 4.6 above, this is equivalent to what Algorithm 1 does.

Hence indeed Algorithm 1 leads to the same distribution as (3.6) and (1.2), as
desired.

This completes the proof of the two-type result in Theorem 1.1. The structure of
the proof of the multi-type result in Theorem 1.2 is entirely analogous. We outline the
generalisation of the argument.
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As before, we consider marks Bi at each of the service times i, which are i.i.d.
geometric with parameter q. The mark Bi represents the number of times that the
service at time i may be rejected. A multi-type process Q is compatible with a set
of marks b (for which we write Q ∼ B) if each of its embedded one-type queues is
compatible with b. That is, for each n and for each i such that Si = 1, one of the following
conditions holds, just as at (4.3):

• A(≤n)(i) = 1;

• A(≤n)(i) = 0, D(≤n)(i) = 0 and Bi ≥ Q(≤n)(i); (4.8)

• A(≤n)(i) = 0, D(≤n)(i) = 1 and Bi < Q(≤n)(i).

Just as at (4.4), we again have

W (Q|A,S) = PB(Q ∼ B). (4.9)

and analogously to Lemma 4.5, we have

Lemma 4.8. Suppose that two queue-length processes Q and Q′ are both compatible
with the same set of marks b. Then Q and Q′ differ by a constant vector, in the sense that
for some m1,m2, . . .mN−1, one has Q′(≤n)(i) = Q(≤n)(i)+mn for all n and i. In particular,
all the departure processes D(≤n) are identical in Q and in Q′.

The equivalent of Lemma 4.6 also holds, so that for any set of marks b there exist
queueing processes compatible with b and among them a minimal process Qmin(b) among
those queueing processes compatible with the marks b. Here the process Qmin is minimal
in the sense that for any other compatible Q and any n and i, Q(≤n)

min (i) ≤ Q(≤n)(i). (It

may not necessarily be the case that Q(n)
min(i) ≤ Q(n)(i)).

Indeed, the multi-type Qmin can be obtained by taking each Q(≤n)
min to be the minimal

process for the embdedded one-type queue, as given by Lemma 4.6.

The following generalisation of Lemma 4.7 then holds:

Lemma 4.9. Let A be an arrival process with particle counts k1, . . . , kN−1. Let S be a
service process with k1 + · · · + kN services. Let Q and Q′ be two valid queue-length
processes. If there exist mn ≥ 0, 1 ≤ n ≤ N − 1 such that for all n and i,

Q′(≤n)(i) = Q(≤n)(i) +mn

then

PB(Q
′ ∼ B|Q = Qmin(B)) = qm1k2+m2k3+···+mN−1kN .

Otherwise PB(Q′ ∼ B|Q = Qmin(B)) = 0.

At this point we have a proof of Lemma 4.4:

Proof of Lemma 4.4. Lemma 4.4 follows from Lemma 4.9 in just the same way that
Lemma 4.2 followed from Lemma 4.7. In place of the sum over m in (4.6), we will have a
sum over m1,m2, . . . ,mN−1.

To complete the proof of Theorem 1.2, start from w(Q|A,S) = PB(Q ∼ B). Define
again w(Q,Q′) = PB(Q ∼ B,Q′ = Qmin(B)) and then W̃ (Q′) =

∑
Q w(Q,Q

′). The
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equivalent step to (4.7) is that

w̃(Q′) =
∑
Q

PB(Q ∼ B,Q′ = Qmin(B))

= PB(Q
′ = Qmin(B))

∑
Q

PB(Q ∼ B|Q′ = Qmin(B))

= PB(Q
′ = Qmin(B))

∑
m1,m2,...,mN−1≥0

qm1k2+m2k3+···+mN−1kN

=
1

(1− qk2)(1− qk3) . . . (1− qkN )
PB(Q

′ = Qmin(B)).

The denominator in the final expression is constant, and the end of the proof goes
through just as before.

4.3 Proof of the results on common denominators

As noted in Section 1, we can generate a sample from the N -type ASEP on ZL by
applying Algorithm 2 N − 1 times in all. The nth iteration takes as arrival process
a configuration whose distribution is stationary for an n-type ASEP, along with an
independent service process, and outputs a configuration whose distribution is stationary
for an (n+1)-type ASEP. The N−1 iterations can be combined into a “multi-line” diagram
with N lines. In particular, the bottom line of the diagram gives a sample from an N -type
system.

We can identify two sources of randomness within this procedure; the choice of the
configuration of occupied and unoccupied sites on the lines of the multi-line diagram,
and the assignment of types to the occupied sites. The set of occupied sites on line n is
chosen uniformly from all subsets of ZL of size k1 + · · ·+ kn, independently for different
lines; hence overall the configuration is uniformly chosen from(

L

k1

)(
L

k1 + k2

)
. . .

(
L

k1 + k2 + · · ·+ kN

)
. (4.10)

possibilities.
To assign types to particles in line r, given the types in line r − 1, we use Algorithm

2. We treat the arrivals in order of their type (within a single type, the order in which
we treat the arrivals is irrelevant – for example, we can work from left to right). If m of
the arrivals (from line r − 1) have been assigned to service-times (on line r), then there
remain k1 + · · ·+ kr −m services. When we come to assign the (m+ 1)st arrival, there
are two cases. Either there is an unassigned service immediately below it, in which it is
assigned there. Otherwise, the choice between the remaining services is done according
to a distribution with weights

1

1 + q + · · ·+ qk1+···+kr−m−1
(
1, q, . . . , qk1+···+kr−m−1

)
. (4.11)

Once the set of occupied sites is fixed, the probability of obtaining any particular
multiline diagram is given by a product of terms of the form (4.11), where r,m vary
over 1 ≤ m ≤ k1 + k2 + · · · + kr−1. To obtain the polynomial (1.5) we take the product
over such r,m of the denominator [k1 + · · ·+ kr −m− 1]q from (4.11), and multiply by
(4.10). Every numerator term in (4.11) is a power of q, so indeed the probability of any
multiline diagram is a polynomial in q with non-negative integer coefficients divided by
the polynomial (1.5). But the bottom line of the multiline diagram gives a sample from
the stationary distribution of the N -type ASEP. So the stationary probabilities are sums
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of probabilities of multiline diagrams, and so themselves have the same form, giving
Theorem 1.3.

For Corollary 1.4, we consider an (L−1)-type system with kr = 1 for r = 1, 2, . . . , L−1.
(The single hole plays the role of the particle of type L.) In this case (1.5) reduces to
(1.7).

5 Systems on the line

Now we want to consider systems in which the set of sites is given by the whole
integer line Z rather than the ring ZL.

Given λ1, . . . , λN with
∑
λi < 1, there is a unique ergodic translation-invariant

stationary distribution where the density of particles of type i is λi, as shown by Ferrari,
Kipnis and Saada [25].

We want to prove Theorem 3.1 for the 2-type case and Theorem 3.2 for the multi-type
case. In each case we will prove stationarity for the measure on the whole line by
showing that it is the limit of the stationary distribution of systems on finite rings.

A probability distribution ν on {1, 2, . . . , N,∞}Z is characterised by its values on
cylinder events, i.e. those which depend on some finite window {−m, . . . ,m} ⊂ Z.

For T ∈ N, consider systems on the ring of size L = 2T , with the sites labelled as
−T, . . . , T − 1. Let ν2T be any sequence of stationary distributions for these systems. If
C is a cylinder event which depends on a set of sites −m, . . . ,m, then we can consider
the probability of C under ν2T for any T > m.

Proposition 5.1. If the distribution ν satisfies ν2T (C) → ν(C) as T → ∞ for every
cylinder event C, then ν is a stationary distribution for the system on Z.

Proof. Let C depend on the sites −m, . . . ,m and fix any t > 0. Consider a system on the
ring of size 2T started from some state η(T )

0 ∼ ν2T at time 0, and a system on Z started
from some state η0 ∼ ν at time 0.

Since ν2T → ν on cylinder events, for any given M , whenever T is large enough,
we can couple η(T )

0 and η0 so that the probability that they are identical on the window
{−M,−M + 1, . . . ,M} is as close to 1 as desired.

Meanwhile, if we choose M large enough, we can couple the evolutions on the
finite time interval [0, t] in such a way that if the time-0 states are identical on the
window {−M, . . . ,M} then (uniformly in the time-0 state) the time-t states are identical
on the smaller window {−m, . . . ,m} with probability as close to 1 as desired. (This
can be achieved by a simple local coupling of the dynamics. We omit the details but
a straightforward approach is as follows: the process of jumps between sites i and
i + 1 can be dominated by independent Poisson processes Px of rate 1 + q. For any
given i, the probability that Pi has no point in the time interval [0, t] is e−t(1+q); hence
with high probability as M → ∞, we can find such sites i0 ∈ {−M, . . . ,−m − 1} and
i1 ∈ {m, . . . ,M − 1}. Then one can couple such that in both systems, no particle enters
or leaves the interval {i0 + 1, . . . , i1} during [0, t], and such that inside that interval, the
evolutions of the two systems are identical. In particular, the two evolutions coincide on
the window {−m, . . . ,m}.)

Hence, restricted to −m, . . . ,m, the distribution of the time-t state in the infinite
system is arbitrarily close to that of the time-t of the system on the ring. But on the ring,
the distribution of the time-t state is ν2T , since ν2T is stationary. Also by choosing large
enough T , ν2T can be made to agree arbitrarily closely with ν on the window −m, . . . ,m.
Hence the probability of the event C occurring at time t in the system on Z must be
ν(C). This holds for all cylinder events C, so indeed the distribution at time t is ν; hence
ν is a stationary distribution as required.
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Now we turn to the queueing Markov chain. We will give it a rather explicit construc-
tion, involving data like the “marks” that we used in the previous section when justifying
Algorithms 1 and 2.

We will start by giving complete details in the case N = 2, where the chain consists
of a single queue. Then we will indicate the extension to larger N (where the chain
consists of several queues in tandem, and so the details are somewhat more complicated
to write down in full, although entirely analogous).

5.1 N = 2 (single-type queue)

First we introduce a rather concrete representation of the Markov chain used in
Theorem 3.1. We consider random vectors Ri = (Ai, Si, Bi), i ∈ Z, which control the
evolution of the queue. All entries are independent, with

P(Ai = 1) = 1− P(Ai =∞) = λ,

P(Si = 1) = 1− P(Si =∞) = µ,

Bi geometric with parameter q.

Here Ai = 1 means that there is an arrival at i. Si = ∞ means there is no service
available at i. If on the other hand Si = 1, then there is a potential service available at
i, which is used if there are at least Bi customers in the queue, or if an arrival has just
occurred; otherwise it is unused.

Writing Qi for the queue-length at the beginning of time-step i, we can write a
recursion of the form

Qi+1 = f(Qi, Ri) (5.1)

for some appropriate function f (which would be easy to write down, but the precise
form is not important). This formal representation is useful because it allows us to couple
versions of the system evolving from different initial conditions but using the “same
randomness” (Ri, i ∈ Z), and, particularly, to couple versions of the system evolving on
the whole real line Z or on a finite box [−T, T ].

Similarly, we can write the departure process defined at (3.2) in the form

Di = g(Qi, Ri), (5.2)

again for some suitably chosen function g.

5.1.1 Cyclic evolution

Let GT be the event that there are more services than arrivals in the finite box; specif-
ically, that

∑T−1
i=−T 1(A(i = 1)) <

∑T−1
i=−T 1(Si = 1). We have

∑T−1
i=−T 1(A(i = 1)) ∼

Bin(2T, λ) and
∑T−1
i=−T 1(Si = 1) ∼ Bin(2T, µ), with λ < µ, so

P(GT )→ 1 as T →∞. (5.3)

When GT holds, we saw in the proof of 4.6 how to construct a cyclic evolution
compatible with the randomness; that is, an evolution Qcyc

−T , . . . , Q
cyc
T with the property

that Qcyc
−T = Qcyc

T , and such that for all i = −T, . . . , T − 1, Qcyc
i+1 = f(Qcyc

i , Ri) as in (5.1)
holds. In Lemma 4.5 we saw that any two such cyclic evolutions differ by a constant,
and that furthermore any two such evolutions give the same output configuration
Dcyc = (Dcyc

i , i ∈ [−T, T − 1]) (where Dcyc
i = g(Qcyc

i , Ri) as at (5.2)).
Conditional on the number of arrivals and services, the distribution of this configura-

tion is stationary for the ASEP on Z2T . Let ν2Tλ,µ−λ be the distribution of Dcyc, conditioned

on the event GT . Then ν2Tλ,µ−λ is a mixture of stationary distributions for the ASEP (by
Theorem 3.3), and so is itself stationary.
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5.1.2 Coupling of cyclic evolution to an evolution on Z

The queue-length Markov chain described in Section 3.2 has a stationary distribution π.
(This distribution is easy to obtain using the detailed balance equations, but we don’t
need its particular form here.) Suppose Qeq

−T is drawn from the stationary distribution
π of the queue-length Markov chain, independently of the randomness (Bi, Ai, Si), i =

−T, . . . , T − 1. Then define Qeq
i , i = −T + 1, . . . , T by Qeq

i+1 = f(Qeq
i , Ri) as at (5.1). We

call this the equilibrium evolution. Similarly define Deq
i , i = −T + 1, . . . , T as at (5.2).

Then (Deq
i , i ∈ [−T, T − 1]) is distributed according to the restriction of ν(2)λ,µ−λ to the

interval [−T, T − 1].
Next, define Q̃(−T ) = Qeq(T ), and then Q̃i+1 = f(Q̃i, Ri) for i = −T, . . . , T − 1. So Q̃

also evolves as a copy of the queue-length chain on [−T, T ], using the same randomness as
Qeq, but started from the particular initial state Qeq

T . We claim that with high probability,

Qeq and Q̃ couple together on the interval; that is, they reach the same state at some
point, and then since they use the same randomness, they stay together for the rest of
the interval also. Then Q̃T = Qeq

T = Q̃−T , and so in particular Q̃ is a cyclic evolution. In
fact, we aim to show that with high probability, the coupling point occurs before −m, so
that also Q̃i = Qeq

i for all i ∈ [−m,m]. See Figure 5.1 for an illustration of the idea.

T−T −m m

Figure 5.1: Illustration of the coupling idea in Section 5.1.2. The red curve (which starts
lower) illustrates the Markov chain evolving in equilibrium starting from the state Qeq

−T ,

and ending at the state QT . The green curve starts at the state Q̃−T := QT , and evolves
using the same randomness Ri,−T ≤ i < T as the red curve. If the two evolutions
meet, they stay together. In this case the evolution starting from Q̃−T is cyclic. If the
coupling point is before time −m, then the cyclic evolution and the equilibrium evolution
are identical on the window [−m,m]. We show that (for fixed m) this happens with
high probability as T becomes large, so that the distribution on [−m,m] for the cyclic
evolution on [−T, T ] converges to that for the equilibrium evolution.

Proposition 5.2. As T →∞,

P(Qeq
t = Q̃t for some t with − T < t < −m)→ 1.

If this event holds then Qeq
i = Q̃i for all t ≤ i ≤ T , and in particular:

(i) Q̃T = Qeq
T = Q̃−T , so that Q̃ is a cyclic evolution;

(ii) Q̃i = Qeq
i for i ∈ [−m,m].

If both GT and the event in (ii) occur, then the equilibrium departure process Deq

and the cyclic departure process Dcyc agree on the window [−m,m]. Since m is arbitrary,
we obtain from Proposition 5.2 together with (5.3):

Corollary 5.3. For any cylinder event C, ν2Tλ,µ−λ(C) → ν
(2)
λ,µ−λ(C) as T → ∞. Hence by

Proposition 5.1, ν is a stationary distribution for the system on Z as required.

In the rest of this section we prove Proposition 5.2. We want to consider a “pair
chain”, which consists of two copies of the chain evolving with the same randomness.
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Lemma 5.4. Fix any x0 and x0′. Define Q0 = x0, Q′0 = x′0, and

(Qt+1, Q
′
t+1) = (f(Qt, Rt), f(Q

′
t, Rt)) (5.4)

for t ≥ 0.
If ε > 0, then there exists t0 such that

P(Qt = Q′t for all t ≥ t0) > 1− ε.

Proof. The underlying Markov chain, with updates given by (5.1), is irreducible, aperi-
odic, and positive recurrent, with a unique stationary distribution π. Fix some k such
that

∑k
x=0 π(x) > 3/4. Starting from any initial state, we can apply the Markov chain

ergodic theorem to deduce that with probability 1, the long-run proportion of time which
the chain spends in [0, k] is more than 3/4.

Now consider the pair chain with updates given by (5.4). Starting from (x0, x
′
0), with

probability one, eventually each coordinate of the chain spends at least 75% of its time
in [0, k]. Hence the pair-chain spends at least half its time in the set Hk := [0, k]× [0, k].
In particular, it visits that set infinitely often.

Consider the pair chain evolving from any state in Hk. With some uniformly positive
probability, after k more steps the chain is in the state [0, 0]. For example, it suffices that
at each of the next k steps, there is no arrival, and a service which is accepted by the
first customer in the queue (if any is present). This happens with probability at least
[(1− λ)µ(1− q)]k.

Since the chain visits Hk infinitely often with probability 1, and from any state in Hk
there is uniformly positive probability to reach the state (0, 0) within k steps, it follows
that with probability 1 the chain will eventually visit state (0, 0). So certainly there is
some time t0 such that with probability 1− ε, the chain visits (0, 0) before time t0. But
once it visits (0, 0), the two coordinates of the chain stay the same for ever.

Proof of Proposition 5.2. In the setting of Proposition 5.2, we start the pair-chain from a
particular state (Qeq

−T , Q̃−T ). We wish to show that for fixed m, the probability that the
two coordinates of the chain couple before time −m, i.e. within T −m steps, tends to 1

as T →∞.
Note that Lemma 5.4 tells us that started from any fixed state, there is a t0 sufficiently

large that with probability at least 1− ε, the two coordinates of the chain couple within
t0 steps. It remains to deal with the fact that the initial condition (Qeq

−T , Q̃−T ) is random
rather than fixed.

Note that (Qeq
t , t ∈ Z) is an equilibrium version of the chain. In particular, both Qeq

−T
and Q̃−T = Qeq

T have distribution π. For any given δ, choose k sufficiently large that∑∞
x=k+1 πx ≤ δ/3. Then

P((Qeq
−T , Q̃−T ) /∈ [0, k]× [0, k]) ≤ P(Qeq

−T /∈ [0, k]) + P(Qeq
T /∈ [0, k])

= 2

∞∑
x=k+1

πx

≤ 2δ/3.

Now using Lemma 5.4, there is some t0 such that, started from any given state in
[0, k] × [0, k], the probability of failing to couple within t0 steps is at most δ/3(k + 1)2.
Then since there are (k + 1)2 possible initial states in [0, k]× [0, k], the probability that
there exists at least one initial state in [0, k] × [0, k] such that failure to couple occurs
(using the updates (5.4)) is at most δ/3.
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Then for all T large enough that T −m > t0, indeed with probability at least 1− δ, the
pair-chain started from state (Qeq

−T , Q̃−T ) at time −T , and updated using (5.4), couples
before time −m. Since δ is arbitrary, this gives Proposition 5.2 as required.

Hence we have Corollary 5.3, and via Proposition 5.1 we have justified the construc-
tion of the 2-type stationary distribution on Z in Theorem 3.1.

5.2 N > 2 (multi-type queue)

Everything in the previous section generalises straightforwardly to the case N > 2,
to prove Theorem 3.2 constructing the stationary measure of the N -type system on Z.
Let us outline the changes.

The queueing Markov chain is now a system of queues in tandem. There are N − 1

queues, and the departure process of queue r is the arrival process for queue r + 1, for
1 ≤ r ≤ N − 2. (Note that a customer leaving queue r at time i arrives at queue r + 1 in
the same time-slot i, so may pass through queue r + 1, and further queues, in the same
time-slot.)

The state of the system at time-step i may be written as

Qi =
(
Q

(n,r)
i , 1 ≤ n ≤ r ≤ N − 1

)
,

where Q(n,r)
i is the number of customers of type n in queue r at the beginning of time-step

i. The evolution of the queues can again be controlled by a vector of random variables
corresponding to each time-step. Now we would have

Ri =
(
Ai, (S

(r)
i , 1 ≤ r ≤ N − 1), (B

(r)
i , 1 ≤ r ≤ N − 1)

)
,

where again all entries are independent, with

P(Ai = 1) = 1− P(Ai =∞) = λ1,

P
(
S
(r)
i = 1

)
= 1− P

(
S
(r)
i =∞

)
= µr :=

r+1∑
n=1

λn,

B
(r)
i geometric with parameter q.

The (S
(r)
i ) provide the service process of queue r, and the (B

(r)
i ) govern the random

choices of acceptance and rejection of service at queue r. The dynamics of the queues
are then just as we developed in Section 3. Just as at (5.1), we can construct the evolution
of the Markov chain in the form

Qi+1 = f (Qi, Ri)

for some appropriate function f , and this again allows us to couple versions of the system
starting from different initial conditions.

The equivalent of the event GT defined at (5.3) is now that, on the time interval
[−T, T − 1], queue 1 has more services than arrivals than services, and queue r + 1 has
more services than queue r does for each r = 1, 2, . . . , N − 2. Again the probability of
this event tends to 1 as T →∞.

The Markov chain is now multi-dimensional, and its stationary distribution is no longer
easy to obtain. However, it is still positive recurrent (as can be seen by considering
the marginal evolution of each queue individually; for any given r, the process of the
total number of customers in the rth queue, namely

∑r
n=1Q

(n,r)
i , i ∈ Z, behaves like a

single-type queue with arrivals at rate
∑r
n=1 λn and potential services at rate

∑r+1
n=1 λn).
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Then exactly the same ideas for coupling the cyclic evolution and the equilibrium
evolution apply, as illustrated in Figure 5.1.

For later reference, we summarise the key points in the following result:

Proposition 5.5. Fix λ1, . . . , λN ∈ (0, 1) with λ1 + · · ·+ λN < 1.

Let Mn ∼ Bin(2T, λn) independently for n = 1, 2, . . . , N . Let GT be the event M1 <

M2 < · · · < MN . Then P(GT )→ 1 as T →∞.

Define K1 =M1 and Kn =Mn −Mn−1 for n = 2, . . . , N .

Let ν2Tλ1,...,λN
be the distribution of a configuration drawn from the stationary distribu-

tion of the ASEP on [−T, T − 1] with Kn particles of type n for n = 1, . . . , N , conditional
on GT .

Then ν2Tλ1,...,λN
is a mixture of stationary distributions for the N -type ASEP on [−T, T −

1] and so is itself stationary.

As T → ∞, ν2Tλ1,...,λN
(C) → ν

(N)
λ1,...,λN

(C) for all cylinder events C, where ν(N)
λ1,...,λN

is
the distribution defined in Theorem 3.2.

From this cylinder convergence, using Proposition 5.1, we get the result of Theorem
3.2 as required.

6 Clustering

In this section we prove Theorem 1.5. Recall that Y (L) denotes a configuration
drawn from the stationary distribution of an ASEP with L types on the ring with L sites
−bL2 c, . . . , −1, 0, 1, . . . , d

L
2 e − 1, and as at (1.8), we put

W (L) =
(
. . . , 0, 0, 0, 1

LY
(L)

−bL2 c
, . . . , 1

LY
(L)
−1 ,

1
LY

(L)
0 , 1

LY
(L)
1 , . . . , 1

LY
(L)

dL2 e−1
, 0, 0, 0, . . .

)
.

We want to show that W (L) converges in distribution as L→∞. Some of the arguments
we need involving convergence of stationary distributions on the ring to those on the
line have already been developed in the previous section during the proof of Theorems
3.1 and 3.2. We begin with a variation of Proposition 5.5.

Proposition 6.1. Fix λ1, . . . , λN ∈ (0, 1) with λ1 + · · ·+ λN < 1.

Suppose the sequences k
(L)
1 , . . . , k

(L)
N of positive integers satisfy k

(L)
n /L → λn as

L→∞, for n = 1, . . . , N .

Let νL
k
(L)
1 ,...,k

(L)
N

be the stationary distribution of the ASEP on a ring of L sites, labelled

−bL2 c, . . . , −1, 0, 1, . . . , d
L
2 e − 1 in a cyclic way, with k

(L)
n particles of type n for n =

1, . . . , N .

Let νλ1,...,λN
be the ergodic translation-invariant stationary distribution of the N -type

ASEP on Z with density λn of particles of type n for n = 1, . . . , N , given by Theorem 3.2.

Then νL
k
(L)
1 ,...,k

(L)
N

(C)→ νλ1,...,λN
(C) as L→∞ for all cylinder events C.

Proof. We indicate the differences between this result and Proposition 5.5 above.

A first and rather trivial difference is that we no longer assume L is even. In
the previous section we took L = 2T throughout, but this was purely for notational
convenience and makes no difference to the method of proof.

The more substantial difference is that now we take the number of particles of each
type to be deterministic, rather than given in terms of binomial random variables as in
Proposition 5.5.

We may couple configurations distributed according to νλ1−ε,λ2,...,λN
and νλ1,λ2,...,λN

so that on any given set of m sites, they disagree with probability at most Nmε. (This
can be done for example by constructing both measures as different projections of the
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2N -type measure with densities λ1 − ε, ε, λ2 − ε, ε, . . . , λN − ε, ε.) The same holds for the
measures νλ1,λ2,...,λN

and νλ1+ε,λ2,...,λN
.

Via similar couplings, and using the law of large numbers for binomial random vari-
ables as sums of independent Bernoulli random variables, we can couple configurations
ηL− ∼ νLλ1−ε,λ2,...,λN

, ηL ∼ νLλ1,λ2,...,λN
, and ηL+ ∼ νLλ1+ε,λ2,...,λN

so that with probability

tending to 1 as L→∞, ηL+ ≤ ηL ≤ ηL− componentwise.
Combining these two facts with the convergence (in terms of probabilities of cylinder

events) of νLλ1−ε,λ2,...,λN
and νLk1,k2,...,kN to νλ1−ε,λ2,...,λN

and νλ1+ε,λ2,...,λN
respectively, as

given by Proposition 5.5, and taking ε to 0, we then also get the convergence of the
probability of any cylinder event C under νLk1,k2,...,kN to that under νλ1,λ2,...,λN

as L→∞,
as required for Proposition 6.1.

Now consider the probabilities of cylinder events written in terms of W (L). In
particular, appropriate projections of W (L) give us systems with a finite number of types,
to which we can apply Proposition 6.1.

Proposition 6.2. Let i ∈ Z and let x, y ∈ (0, 1). As L→∞,

P
(
W

(L)
i ≤ x,W (L)

i+1 ≤ y
)
→

{
νx,y−x (η0 = 1, η1 ∈ {1, 2}) if x < y

νy,x−y (η0 ∈ {1, 2}, η1 = 1) if y < x
, (6.1)

where νλ1,λ2
is the ergodic translation-invariant stationary distribution (of a configuration

η ∈ {1, 2,∞}Z) for the 2-type ASEP on Z with densities λ1 and λ2 of type-1 and type-2
particles respectively, given by Theorem 3.1.

Similarly, for any x0, x1, . . . , xr−1 ∈ (0, 1), the probability of any event of the form

{W (L)
i ≤ x1,W (L)

i+1 ≤ x2, . . . ,W
(L)
i+r−1 ≤ xr} (6.2)

converges as L→∞ to a limit that does not depend on i (which may be written in terms
of a suitable r-type stationary distribution for the ASEP on Z).

Proof. Suppose 0 = u0 < u1 < · · · < uN < 1, and a function h : (0, 1) → {1, 2, . . . , N,∞}
is defined by

h(x) =

{
n if un−1 < x ≤ un, for n = 1, 2, . . . , N ;

∞ if x > uN .
(6.3)

Then
(
h(W

(L)
i ),−bL2 c ≤ i ≤ d

L
2 e − 1

)
has the stationary distribution of the N -type ASEP

on the ring of size L, with kn particles of type n for n = 1, . . . , N , where kn = bunLc −
bun−1Lc.

Putting N = 2 and u1 = min{x, y}, u2 = max{x, y}, we have h(W (L)
i ) = 1 iff W (L)

i ≤ u1,

and h(W (L)
i ) ∈ {1, 2} iff W (L)

i ≤ u2. Then (6.1) follows directly from Proposition 6.1 with
λ1 = u1, λ2 = u2 − u1.

More generally for (6.2), let (u1, . . . , uN ) be the increasing reordering of (x1, . . . , xN ).
Then we can apply Proposition 6.1 with λn = un − un−1, n = 1, . . . , N , to obtain the limit
in (6.2) in terms of the N -type stationary distribution νλ1,...,λN

. Since that distribution is
translation invariant on Z, the limit is the same for all i.

Convergence of all events of the form of (6.2) is enough to show that the sequence
W (L) has a single distributional limit point, and this gives the distribution of W required
for part (a) of Theorem 1.5. Since W (L)

i has uniform distribution on {1/L, 2/L, . . . , 1},
we have that Wi ∼ Uniform[0, 1]. In fact, with little more work we could obtain that the
distribution of W is the unique ergodic translation-invariant distribution for the ASEP on
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Z whose marginals have Uniform[0, 1] distribution (but we won’t need to use this fact
directly).

For parts (b) and (c), we will analyse the distribution of W via its projections onto
2-type systems as in (6.1), using the queueing construction of the stationary distribution
νλ1,λ2

of the 2-type ASEP on Z. Let us recall that construction. We have an stationary
queueing system in discrete time. At each time i ∈ Z, we have an arrival with probability
λ1, and independently a potential service with probability µ := λ1 + λ2. When a potential
service occurs, if an arrival has occurred at the same time-step, then a departure occurs
with probability 1; if no arrival occurred, then a departure occurs with probability 1− qk
where k is the number of customers present in the queue, and otherwise (with probability
qk) an unused service occurs. Then set ηi = 1 if a departure occurs at i, ηi = 2 if an
unused service occurs at i, and ηi =∞ if no service was available at i. At a given time i,
the marginal probability that ηi = 1 is λ, that ηi = 2 is µ− λ, and that η =∞ is 1− µ.

First, for part (c), we use arguments similar to those used for related calculations
concerning the TASEP speed process in the q = 0 case in [2], although the analysis is
more complicated now that q > 0, since unused services can occur even when the queue
is not empty.

For convenience we write νλ,µ−λ(a, b) for the probability that η0 = a, η1 = b under
νλ,µ−λ, where a, b ∈ {1, 2,∞}.

Recall that we write f for the density of (W0,W1) on {(x, y) ∈ [0, 1]2 : x 6= y}, and f∗

for the density along the diagonal x = y.

Lemma 6.3.

(i) νλ,µ−λ(2,∞) = (µ− λ)(1− µ);

(ii) νλ,µ−λ(2, 2) = (µ− λ)
[
(1− λ)µ− qλ(1− µ)

]
;

(iii) νλ,µ−λ(2, 1) = (µ− λ)
[
λµ+ qλ(1− µ)

]
;

(iv)

f(x, y) =

{
d2

dxdyνx,y−x(2,∞) for x < y,
d2

dxdyνy,x−y(2, 1) for x > y,
f∗(x) = lim

ε↓0

1

ε
νx,x+ε.

Note in particular that as µ− λ→ 0, the density of second-class particles goes to 0,
but conditional on seeing a second-class particle at a given site, the probability that the
next site also contains a second-class particle stays bounded away from 0.

Part (i) is straightforward. The second or third part are then easily seen to follow
from each other, but are more complicated to establish. Note that when q = 0, an
unused service can only occur when the queue is empty, and the conditional probability
of the output of the next time-slot is then easy to deduce. For q > 0 on the other hand,
an unused service occurs with probability qn when the queue-length is n. As a result,
conditioning on an unused service constitutes an exponential tilting of the stationary
distribution of the system.

Proof of Lemma 6.3. For part (i), we need the probability of observing an unused service
at time 0, followed by no service at time 1. The probability of an unused service at time
0 is µ− λ, and a service occurs at time 1 with probability µ independently of everything
that has occurred earlier, giving (µ− λ)(1− µ) overall as required.

We turn to part (ii). Since the probability of an unused service at time 1 is µ− λ, we
need to show that conditional on an unused service at time 1, the probability of another
unused service at time 2 is

(1− λ)µ− qλ(1− µ). (6.4)
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First let’s consider the process of the length of the queue after each service, which is
a Markov chain. It’s a birth-and-death chain on Z+, and for all k > 0,

pk−1,k = λ(1− µ),
pk,k−1 = (1− λ)µ(1− qk).

Hence its stationary distribution (πk, k ≥ 0) satisfies

πk =
λ

1− λ
1− µ
µ

1

1− qk
πk−1 (6.5)

=

(
λ

1− λ
1− µ
µ

)k
1

1− q
1

1− q2
. . .

1

1− qk
π0.

The probability of seeing a second-class particle at a given site is
∑
k πk(1 − λ)µqk,

while the probability of seeing two such particles at a given pair of successive sites is∑
k πk(1− λ)2µ2q2k.
So we wish to show that (6.4) is equal to∑

k πk(1− λ)2µ2q2k∑
k πk(1− λ)µqk

.

We claim that for any α < 1 and q < 1, the following identity holds:

∞∑
k=0

αkq2k

(1− q) . . . (1− qk)
= (1− αq)

∞∑
k=0

αkqk

(1− q) . . . (1− qk)
. (6.6)

The desired equality then follows from (6.6) with α = λ
1−λ

1−µ
µ .

To obtain (6.6), we may write the difference between the RHS and the LHS as

∞∑
k=0

αkqk − αk+1qk+1 − αkq2k

(1− q) . . . (1− qk)

=

∞∑
k=0

αkqk(1− qk)
(1− q) . . . (1− qk)

−
∞∑
k=0

αk+1qk+1

(1− q) . . . (1− qk)

=

∞∑
k=1

αkqk(1− qk)
(1− q) . . . (1− qk)

−
∞∑
k=0

αk+1qk+1

(1− q) . . . (1− qk)

=

∞∑
k=1

αkqk

(1− q) . . . (1− qk−1)
−
∞∑
m=1

αmqm

(1− q) . . . (1− qm−1)

= 0,

as required.
This establishes part (ii). Now part (iii) follows because the expressions in (i), (ii) and

(iii) must sum to the probability of observing a second-class particle at site 1, which is
µ− λ.

Finally, for part (iv), the claimed expressions for the density f(x, y) are continuous
away from x = y and the expression for f∗(x) is continuous in x. Then for f(x, y), it
suffices to check that for y < x,

d2

dxdyP(W0 ≤ x,W1 ≤ y) = d2

dxdyP(y < W0 ≤ x,W1 ≤ y)

= d2

dxdyνy,x−y(2, 1),
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and similarly for x < y,

d2

dxdyP(W0 ≤ x,W1 ≤ y) = d2

dxdyP(x < W0 ≤ y,W1 > y)

= d2

dxdyνx,y−x(2,∞).

Finally on the diagonal, for f∗(x) we have

lim
ε→0

1

ε
P(W0 ∈ [x, x+ ε),W1 ∈ [x, x+ ε)) = lim

ε→0

1

ε
νx,ε(2, 2)

as required.

For part (b) of Theorem 1.5, we obtain (1.9) and (1.10) by substituting the expressions
in parts (i)-(iii) of Lemma 6.3 into part (iv). Then (1.11) follows by integrating over x and
y in (1.9), and over x in (1.10).

Finally we turn to part (c) of Theorem 1.5, which is the most involved. It follows from
the following result:

Proposition 6.4. Define a random set U ⊂ {1, 2, . . . } in the following way.

Let X ∼ Uniform[0, 1].

Define a random walk Qi, i ≥ 1 as follows. Choose Q1 ≥ 0 from the distribution
(π̃k, k ≥ 0) satisfying

π̃k =
q

1− qk
π̃k−1. (6.7)

Now for each i = 1, 2, . . . , given X = x and Qi = k,

with probability x(1− x) : let Qi+1 = Qi + 1, and i /∈ U .
with probability x2 + (1− x)2 : let Qi+1 = Qi, and i /∈ U .
with probability x(1− x)qk : let Qi+1 = Qi, and i ∈ U . (6.8)

with probability x(1− x)(1− qk) : let Qi+1 = Qi − 1, and i /∈ U .

Then the set U is infinite with probability 1, and is stochastically dominated by the set
{i ≥ 1 :Wi =W0}.

Here Q plays the role of a queue-length process, and U plays the role of the set of
unused service times, in a queue whose arrival rate and service rate are both equal to x.
(Such a queue is null recurrent.)

Although here we only claim that U is a stochastic lower bound for the set {i ≥ 1 :

Wi =W0}, it actually holds that the two have the same distribution. In fact, we can be
more precise: there is a system of regular conditional probabilities such that conditional
on W0 = x, the distribution of {i ≥ 1 :Wi =W0} is the distribution of U obtained by the
construction of Proposition 6.4 given X = x. The argument to establish these stronger
statements may be apparent from the proof below, but we won’t fill in the details.

The rest of this section is devoted to the proof of Proposition 6.4. First we compare the
construction in Proposition 6.4 to the queue-length construction of the 2-type stationary
distribution on Z:

Lemma 6.5. Fix any λ, µ with 0 ≤ λ < µ ≤ 1.

Define a random walk Qλ,µ and a random set Uλ,µ ⊂ {1, 2, . . . } as follows.

Choose Qλ,µ1 from the distribution (π̃λ,µr , r ≥ 0) satisfying

π̃λ,µr =
λ

1− λ
1− µ
µ

q

1− qr
π̃r−1. (6.9)
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Now for each i = 1, 2, . . . , given Qλ,µi = r,

with probability λ(1− µ) : let Qλ,µi+1 = Qλ,µi + 1, and i /∈ Uλ,µ.

with probability λµ+ (1− λ)(1− µ) : let Qλ,µi+1 = Qλ,µi , and i /∈ Uλ,µ.

with probability (1− λ)µqr : let Qλ,µi+1 = Qλ,µi , and i ∈ Uλ,µ. (6.10)

with probability (1− λ)µ(1− qr) : let Qλ,µi+1 = Qλ,µi − 1, and i /∈ Uλ,µ.

Write Ux,x for a set whose distribution is that of the set U in Proposition 6.4 con-
ditioned on X = x. For λ ≤ x ≤ µ, the set Uλ,µ stochastically dominates the set
Ux,x.

Proof. We compare the initial distributions and transition probabilities for the “(λ, µ)-
walk” at (6.9)–(6.10) and the “(x, x)-walk” at (6.7)–(6.8).

Since λ < µ, the distribution defined by (6.9) is dominated by the distribution defined
by (6.7). Furthermore, the “up-step” probability λ(1 − µ) in (6.10) is smaller than the
corresponding probability x(1−x) in (6.8), and the down-step probability (1−λ)µ(1− qr)
is larger than the corresponding probability x(1 − x)(1 − qk) when r = k. It follows
that there is a coupling of the walks (Qi, Q

λ,µ
i , i ≥ 1) which always stays in the set

{(k, r) : k ≥ r}.
Further, the probability of including the next time-step i in the set Ux,x (or Uλ,µ respec-

tively) is smaller at (6.8) than at (6.10) whenever k ≥ r, since then x(1−x)qk < (1−λ)µqr.
From this it’s straightforward to extend the coupling in the previous paragraph to
a coupling of (Q,Qλ,µ,Ux,x,Uλ,µ) such that with probability 1, Ux,x ⊆ Uλ,µ, as re-
quired.

Lemma 6.6. The distribution of the set Uλ,µ defined in Lemma 6.5 is the same as the
distribution of the set {i > 0 : λ ≤Wi < µ} conditional on the event {λ ≤W0 ≤ µ}.

Proof. Consider the projection f from (6.3), with u1 = λ and u2 = µ. The configuration
h(W ) = (h(Wi), i ∈ Z) has the 2-type stationary distribution νλ,µ−λ In particular, the
sites of type-2 particles in f(W ) are precisely those i such that λ ≤Wi < µ.

The walk (6.10) is exactly the queue-length process with arrival rate λ and service
rate µ used to generate the stationary distribution νλ,µ−λ of the 2-type ASEP on Z, and
the adding of a point to Uλ,µ corresponds to an unused service in the queue.

Finally, the initial distribution π̃λ,µ of Qλ,µ1 is the distribution of the queue-length in
equilibrium conditioned on an unused service having occurred at the previous time-step.
To verify this, note that such a distribution should be proportional to qkπk where πk,
the unconditioned equilibrium queue-length distribution, satisfies (6.5). This gives the
recursion (6.9) as required.

Combining the last two lemmas, we have that the distribution of the set {i > 0 : λ ≤
Wi < µ} conditional on the event {λ ≤W0 ≤ µ} dominates the distribution of the set U
conditional on λ ≤ X < µ.

Fix any N , and let m ∈ {0, 1, . . . , N − 1}. As just observed, conditional on {m/N ≤
W0 ≤ (m+ 1)/N}, the set {i > 0 : m/N ≤ Wi < (m+ 1)/N} dominates the distribution
of U given {m/N ≤ X < (m+ 1)/N .

But if m/N ≤ W0 ≤ (m + 1)/N , then the set {i > 0 : m/N ≤ Wi < (m + 1)/N}
is contained in the set {i > 0 : |Wi − W0| < 1/N}. So we get that conditional on
m/N ≤W0 ≤ (m+ 1)/N , the set {i > 0 : |Wi −W0| < 1/N} dominates the distribution of
U given {m/N ≤ X < (m+ 1)/N .
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But both W0 and X have Uniform[0, 1] distribution, and so each lies in any interval
[m/n, (m+ 1)/N ] with probability 1/N . So we may multiply by 1/N and sum over m, to
obtain that the set {i > 0 : |Wi −W0| < 1/N} dominates the set U .

But also the sets {i > 0 : |Wi −W0| < 1/N} form a decreasing family as N increases.
If they dominate U for every N , then also their intersection must dominate U . But the
intersection is exactly the set {i > 0 :Wi =W0}.

Finally note that U is infinite with probability 1, since conditional on any value of
X = x ∈ (0, 1), the walk given by (6.8) is null recurrent, and each time the walk hits 0 the
next site is added to the set U with probability x(1− x) independently of all past choices.

This completes the proof of Proposition 6.4, and hence of Theorem 1.5.

7 Alternative queueing construction

The queueing discipline used in the constructions in this paper has a somewhat
unnatural feature, in that a customer who has just arrived at the queue is treated
differently from one who was already present since the previous time-step. A customer
who has just arrived will always accept any offered service, while a customer who was
previously present rejects any offer with probability q.

One can also apply equivalent constructions with this distinction removed. Now
each customer rejects each service with probability q, irrespective of time of arrival.
We conjecture that this alternative model gives exactly the same distribution, and in
particular realises the multi-type ASEP stationary distribution (both on Z and on ZL).

This has been computationally verified for values of L up to 6. In the simplest case
N = 2, it is not hard to verify more generally using a slightly different matrix product
realisation. Rather than taking X

(2)
1 = I + ε, X(2)

2 = α, X(2)
∞ = I + δ where ε, α and δ

have the form written at (2.5), one can take instead

X
(2)
2 = A :=


1 q 0 0 . . .

0 q q2 0 . . .

0 0 q2 q3 . . .

0 0 0 q3 . . .
...

...
...

...
. . .

 , X(2)
∞ = E :=


1 1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

0 0 0 1 . . .
...

...
...

...
. . .

 ,

X
(2)
1 = D :=


1− q 0 0 0 . . .

1− q 1− q2 0 0 . . .

0 1− q2 1− q3 0 . . .

0 0 1− q3 1− q4 . . .
...

...
...

...
. . .

 .

One can then verify that these satisfy the following quadratic algebra of [19]:

AD = qDA+ (1− q)A
EA = qAE + (1− q)A (7.1)

ED − qDE = (1− q)(E +D).

(The relation between these identities and (2.1) is that if δ, ε, α satisfy (2.1), then
D = I + δ, E = I + ε and A = α satisfy (7.1).)

To extend this from N = 2 to higher N along the lines of the proof above, we would
need a variant of the result of Theorem 2.1 covering a different recursive system from the
one presented at (2.3). The new system would have more non-zero terms (in particular,
since we can now have a departure of lower priority than arrival, we would also have
non-zero terms a(N)

m,n for all m < n ≤ N as in the first line of (2.3)).
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An alternative approach comes from arguments based on dynamic reversibility,
involving dynamics defined on the set of multi-line diagrams, as done originally for
the TASEP in [26]. Such arguments may also make it possible to extend to q > 0 the
“generalised” multi-line construction described for the TASEP in [6], which extend the
construction of [26], restoring the symmetry between particles and holes and establishing
a richer “Hasse diagram” structure connecting systems with different numbers of particle
types.
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