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On the construction of measure-valued dual processes

Laurent Miclo*

Abstract

Markov intertwining is an important tool in stochastic processes: it enables to prove
equalities in law, to assess convergence to equilibrium in a probabilistic way, to relate
apparently distinct random models or to make links with wave equations, see Carmona,
Petit and Yor [8], Aldous and Diaconis [2], Borodin and Olshanski [7] and Pal and
Shkolnikov [23] for examples of applications in these domains. Unfortunately the
basic construction of Diaconis and Fill [10] is not easy to manipulate. An alternative
approach, where the underlying coupling is first constructed, is proposed here as an
attempt to remedy to this drawback, via random mappings for measure-valued dual
processes, first in a discrete time and finite state space setting. This construction is
related to the evolving sets of Morris and Peres [22] and to the coupling-from-the-past
algorithm of Propp and Wilson [27]. Extensions to continuous frameworks enable to
recover, via a coalescing stochastic flow due to Le Jan and Raimond [16], the explicit
coupling underlying the intertwining relation between the Brownian motion and the
Bessel-3 process due to Pitman [25]. To generalize such a coupling to more general
one-dimensional diffusions, new coalescing stochastic flows would be needed and the
paper ends with challenging conjectures in this direction.
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1 Introduction

Consider two Markov processes X and X on respective state spaces V and V, whose
generators are denoted L and L. The Markov process X is said to be a dual (by intertwin-
ing) of X when L and L are linked via a weak conjugation relation LΛ “ ΛL, where Λ is
a Markov kernel going from V to V (so that at least formally, the previous commutation
makes sense). In such circumstances, the processes X and X can usually be nicely
coupled, so that useful informations on the behavior of X can be deduced from X. The
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Measure-valued dual processes

construction of the coupling was given by Diaconis and Fill [10] in the case of finite
state spaces and it is sometimes possible to extend it to more general situations, up
to cumbersome technicalities (see e.g. [21], for one-dimensional diffusions). Here we
propose a direct construction in the context of measure-valued duals X, namely those for
which V is a set of (non-negative and different from 0) measures on V and Λ corresponds
to the canonical Markov kernel from V to V :

@ η P V, Λpη, ¨q B ηp¨q{ηpV q (1.1)

When X admits an invariant probability measure π, we can also consider set-valued duals:
then V is a set of measurable subsets of V and Λ corresponds to the conditioning of π
with respect to the elements of V. Since any measurable subset S of V can be seen as
1Sπ, the measure admitting the indicator function 1S of S as density with respect to π (i.e.
the restriction of π on S), set-valued duals are in fact a particular case of measure-valued
duals. When V is finite and X is irreducible, Chapter 17 of Levin, Peres and Wilmer [18]
presents a particular set-valued dual as a Doob transform of the evolving sets of Morris
and Peres [22]. We go further in this direction, by constructing measure-valued dual
X directly from X via an approach sharing similarities with the coupling-from-the-past
algorithm of Propp and Wilson [27]. Some reverse random mappings play the main
role, since after having been conditioned to be compatible with a given trajectory of X,
they are used to make the measure-valued dual evolve (or the set-valued dual spread
through the state space). We will reinterpret the classical examples of the discrete
Pitman theorem [25] and of the top-to-random shuffle due to Aldous and Diaconis [1]
as particular instances of this general construction. To facilitate the exposition, we will
mainly consider finite state spaces and discrete time in this introduction, leaving the
extensions to continuous time and spaces to the last part of the paper, that will enable us
to recover the classical Pitman’s theorem [25] (see also Rogers and Pitman [29]). To deal
with more general one-dimensional diffusions and even multi-dimensional diffusions (see
the preprint [9] for the corresponding definition of L), we would need some coalescing
flows of a new type, whose theory has not yet been developed, despite the works of
Le Jan and Raimond, in particular [15, 16]. Their investigation should lead to direct
constructions of stochastic perturbations of mean curvature flows, in the spirit of [9],
which is the remote motivation for the present study. An alternative approach has
recently been proposed by Machida [19] for set-valued duals of diffusions and another
one is under construction in [3].

Let V be a finite space, endowed with a Markov kernel P B pP px, yqqx,yPV . A
traditionally associated generator L is P ´ I, where I is the V ˆ V identity matrix, to
make a connexion with the above paragraph. Instead, we first consider discrete time and
keep working with P instead of L. When we are given a distribution m0 on V , there exists
a Markov chain X B pXnqnPZ` on V whose initial position X0 is distributed according to
m0 and whose transition are dictated by P . The law LpXq of X is uniquely determined by
m0 and P . From now on, we assume that P is irreducible (i.e. exppP q has only positive
entries), so that it admits a unique invariant probability π B pπpxqqxPV . The entries of π
are positive. As usual, measures (respectively functions) are seen as row (resp. column)
vectors and the invariance of π writes πP “ π. This terminology comes from the fact
that when the initial distribution is chosen to be π, then for any time n P Z`, the law of
Xn is equal to π. In this situation, it is possible to consider a stationary Markov chain
X B pXnqnPZ defined for all times n P Z. The time-reversed process pX´nqnPZ is also a
stationary Markov chain, whose transition matrix P˚ B pP˚px, yqq is given by

@ x, y P V, P˚px, yq B
πpyq

πpxq
P py, xq (1.2)
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Measure-valued dual processes

Let us recall the evolving set process of Morris and Peres [22] (see also Chapter 17
of Levin, Peres and Wilmer [18]). It is a Markov chain X B pXnqnPZ` taking values in
S̄, where S̄ is the set of all subsets of V . To define its transition matrix J , fix S P S̄ and
consider a random variable U uniformly distributed on r0, 1s. Denote

ΦpSq B ty P V : P˚py, Sq ě Uu (1.3)

and

@ S, S1 P S̄, JpS, S1q B PrΦpSq “ S1s (1.4)

Note that X is absorbed at H and at V P S̄. The mapping π : S̄ Q S ÞÑ πpSq is harmonic
for J , in the sense that Jπ “ π. This harmonicity of π is equivalent to the fact that
pπpXnqqnPZ` is a martingale. It leads to consider the Doob transform of J by π, which
is the SˆS transition matrix PJ given by

@ S, S1 P S, PJpS, S
1q B

πpS1q

πpSq
JpS, S1q (1.5)

where S B S̄ztHu is the set of all nonempty subsets of V . The matrix PJ is the transition
kernel of X conditioned not to be absorbed at H, cf. Chapter 17 of Levin, Peres and
Wilmer [18]. Let X B pXnqnPZ` be a Markov chain whose transitions are dictated by PJ .
It is a set-valued dual to X. Indeed, let Λ be the Markov matrix from S to V given by

@ S P S, @ x P V, ΛpS, xq B
πpxq

πpSq
(1.6)

It is not difficult to check the intertwining relation PJΛ “ ΛP .
More generally, let P be a transition kernel on a finite set V and Λ be a Markov

kernel from V to V such that

PΛ “ ΛP (1.7)

and let X B pXnqnPZ` be a corresponding Markov chain. Assuming furthermore

LpX0qΛ “ LpX0q (1.8)

Diaconis and Fill [10] constructed a coupling of X and X such that the two following
properties hold:

@ n P Z`, LpXJ0,nK|Xq “ LpXJ0,nK|XJ0,nKq (1.9)

@ n P Z`, LpXn|XJ0,nKq “ ΛpXn, ¨q (1.10)

In these identities, LpY|Zq stands for the conditional law of Y knowing Z, for any (here
finite valued) random variables Y, Z defined on a same probability space, J0, nK B
t0, 1, ..., nu and YJ0,nK is the stopped trajectory pYmqmPJ0,nK for any process Y B pYnqnPZ` .

The first relation (1.9) requires that X can be deduced from X in an adapted way:
for any n P Z`, only the knowledge of XJ0,nK is needed to construct XJ0,nK, maybe with
the help of independent randomness. The second relation can be seen as a stochastic
prolongation of both LpX0qΛ “ LpX0q and PΛ “ ΛP .

Unfortunately, the construction of Diaconis and Fill [10] is not easy to manipulate,
that is why we propose an alternative approach, valid for a extension of the evolving set
point of view (for the generality of this method, see Remark 2.1).

Our main ingredient is the following object. A random mapping ψ : V Ñ V (defined
on some underlying probability space) is said to be associated to P˚ when

@ x, x1 P V, Prψpxq “ x1s “ P˚px, x1q
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Consider V̄ the set of non-negative measures on V . It is convenient to have at our
disposal a random mapping ψη for any given η P V̄. Such a family pψηqηPV̄ is said to be
locally associated to P˚ if

@ η P V̄, @ x P V, @ x1 P supppηq, Prψηpxq “ x1s “
P˚px, x1q

ζpηq
(1.11)

where supppηq is the support of η and where ζ : V̄Ñ p0,`8q is a given positive mapping
on V̄ (note that necessarily, ζpηq “ 1 as soon as supppηq “ V ). From now on, all the
families pψηqηPV̄ we will consider will be implicitly assumed to be locally associated to
P˚.

A family pψηqηPV̄ enables to define a random mapping Ψ from V̄ to V̄ in the following
way. For any η P V̄, consider f the density of η with respect to π:

@ x P V, fpxq B
ηpxq

πpxq

We define

@ η P V̄, Ψpηq B pf ˝ ψηqπ (1.12)

namely the measure admitting the density f ˝ ψη with respect to π.
Denote FpV q the set of real functions defined on V and recall the following notation

for the duality measures-functions:

@ η P V̄, @ f P FpV q, ηrf s B
ÿ

xPV

fpxqηpxq

We compute that

@ η P V̄, @ f P FpV q, ErΨpηqrf ss “
ÿ

xPV

fpxqErfpψηpxqqsπpxq

“
ÿ

x,yPV

fpxqfpyqPrψηpxq “ ysπpxq

“
ÿ

x,yPV

fpxqfpyq
P˚px, yq

ζpηq
πpxq

“
πrfP˚rfss

ζpηq

“
πrfP rf ss

ζpηq

“
ηrP rf ss

ζpηq
(1.13)

where in the third equality, we used that the sum can be restricted to y belonging to the
support of η, i.e. satisfying fpyq ą 0.

The above relation will be crucial for our purposes, but before developing them, let
us make a link with the evolving sets of Morris and Peres [22].

Consider a family of random mappings pψSqSPS̄, namely which is rather indexed by
the subsets of V . We will refer to this situation as the subset case to distinguish it
from the previous measure case. These two settings are related, as alluded to in the
introductive paragraph: consider the mapping T : S̄Ñ V̄ defined by

@ S P S̄, TpSq B 1Sπ (1.14)
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This embedding enables us to see S̄ as a subset of V̄. In particular, by restriction,
any measure-indexed family of random mappings leads to a subset-indexed family of
random mappings. Conversely subset-indexed family of random mappings pψSqSPS̄ can
be extended into a measure-indexed family of random mappings pψηqηPV̄, by example via

@ η P V̄, ψη B

"

ψS , when η “ TpSq

ψH, otherwise

Remark 1.1. Measure (respectively subset)-indexed family of random mappings will
lead to measure (resp. subset)-valued dual processes. Measure-valued dual processes
are more general than subset-valued processes, while the latter can be interesting in
their own right, as they are related to natural objects such as the evolving sets of Morris
and Peres [22] or mean curvature flows, see for instance [9]. Nevertheless in hypoelliptic
continuous settings, subset-valued dual processes may lack a natural continuity property
of their trajectories, cf. [20], and to recover this regularity, it is better to reinterpret
them as measure-valued dual processes, as the topologies put on sets of measures are
traditionally weaker than topologies put on sets of subsets.

Remark 1.2. A family pψηqηPV̄ is said to be globally associated to P˚ when all its
random mappings ψη are associated to P˚. All the examples of Section 3 are set-valued
and globally associated to P˚. The interest of the notion of local association only
appeared while writing Section 5, when dealing with Polish spaces. A posteriori it
seemed a natural point of view that can be useful for some applications, even in the finite
setting. Indeed, looking for set-valued intertwining relations with a link Λ as in (1.6)
where π is replaced by a probability measure µ which is not invariant for the transition
kernel P of the (primal) Markov chain, it is tempting modify P “far away” from the initial
point so that µ becomes invariant. Until these “far away” points are attained, the Markov
chain “does not know” its transition kernel has been modified, so we can intertwine it
using the modified Λ. Here we will not investigate the consequences of this possibility of
working locally.

The family pψSqSPS̄ enables to define a random mapping Ψ from S̄ to S̄ via

@ S P S̄, ΨpSq B ty P V : ψSpyq P Su (1.15)

It is easy to check that the definitions (1.12) and (1.15) are compatible with the
identification map T, in the sense that T˝Ψ “ Ψ˝T. Similarly to (1.13), we compute that

@ S P S̄, @ y P V, Pry P ΨpSqs “ PrψSpyq P Ss

“
ÿ

y1PS

PrψSpyq “ y1s

“
ÿ

y1PS

P˚py, y1q{ζpSq

“ P˚py, Sq{ζpSq

Thus when ζ ” 1, in particular for globally associated to P˚ random mappings, it appears
that for any y P V and S P S̄, Pry P ΨpSqs “ Pry P ΦpSqs, but in general the law of ΦpSq

and ΨpSq are not equal, as it can be seen on the examples of Section 3.

Remark 1.3. The subset case is absorbing for the measure case in the following sense.
Let pψηqηPV̄ be a family of random mappings indexed by measures and Ψ be the associated
mapping defined in (1.12). Then we have

ΨpS̄q Ă S̄
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where S̄ is seen as a subset of V̄, via the identification (1.14). This is due to the fact
that S̄ corresponds to the measures whose density with respect to π only takes values
in t0, 1u. Note from (1.12) that the set of values taken by Ψpηq is a subset of the set of
values taken by η P V̄.

As a consequence, if the algorithm we present below produces at some time a measure
belonging to S̄, then all subsequent measures will also belong to S̄. In particular,
when we start with a Dirac mass (which is identified with the singleton of S̄ where is
concentrated the Dirac mass), only pψηqηPS̄ is needed for the constructions presented
below, namely it is sufficient to consider the subset case.

We now come back to the measure situation. Generalize (1.4), by considering the
transition matrix K from V̄ to V̄ given by

@ η, η1 P V̄, Kpη, η1q B PrΨpηq “ η1s (1.16)

In order to extend the Doob transform of (1.5), let us define

@ η P V̄, πpηq B ηpV q (1.17)

This definition may seem strange at first view, but note that in the subset case, it is quite
natural, as it just asserts that

@ S P S̄, πp1Sπq “ πpSq

We can now generalize (1.5) via

@ η, η1 P V, Ppη, η1q B
πpη1qζpηq

πpηq
Kpη, η1q (1.18)

where V B V̄zt0u is the set of measures on V which do not vanish identically. Even in
the subset case, in general P does not coincide with PJ . It will be shown in Corollary 1.6
below that P is a Markov transition kernel. It will also be useful to introduce the
following conditioned transition: fix x, x1 P V such that P px, x1q ą 0 (i.e. P˚px1, xq ą 0)
and denote for any η P V whose support contains x,

@ η1 P V, Kx,x1pη, η
1q B PrΨpηq “ η1|ψηpx

1q “ xs (1.19)

Note that the conditioning is non-degenerate, since Prψηpx1q “ xs “ P˚px1, xq{ζpSq ą 0,
due to the fact that x P supppηq.

Consider

W B tpx, ηq P V ˆV : x P supppηqu (1.20)

and let A be the set of probability measures m on W which can be written under the
form

@ px, ηq PW, mpx, ηq “ µpηqΛpη, xq (1.21)

where µ is the marginal of m on V (i.e. the image of m by the mapping W Q px, ηq ÞÑ η P

V). Define a Markov kernel Q on W via

@ px, ηq, px1, η1q PW, Qppx, ηq, px1, η1qq B P px, x1qKx,x1pη, η
1q (1.22)

Remark 1.4. This expression should be compared with the one given by Levin, Peres
and Wilmer in Section 17.7 of [18], where they introduce a Markov kernel rQ on ĂW via

@ px, Sq, px1, S1q PW, rQppx, Sq, px1, S1qq B P px, x1qJx1pS, S
1q
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where, with the notation of (1.3),

@ S P V, @ px1, S1q P ĂW, Jx1pS, S
1q B PrΦpSq “ S1|x1 P S1s

and where ĂW corresponds to W in the subset case:

ĂW B tpx, Sq P V ˆS : x P Su (1.23)

In Subsection 2.3, we will check that rQ is a particular case of Q, for an appropriate
choice of the family of random mappings pψSqSPS in the subset case. The generality
of the random mapping point of view leads to easy constructions in practice, even
if they are not optimal, with a coupling-from-the-past flavor (see Subsection 2.4). In
particular, it facilitates the reinterpretation of classical set-valued dual processes (see
Subsections 3.1 and 3.2). Another advantage of the random mappings is that they can
be transformed into coalescing stochastic flows in the diffusion setting (see Section 6 for
the general approach, Subsection 7.1 for an application to the real Brownian motion and
Subsection 7.2 for corresponding conjectures about general one-dimensional diffusions).

We can now state the first main result of this paper (continuous space and time
extensions will be presented in Theorems 5.2, 5.4 and 6.7 of Sections 5 and 6).

Theorem 1.5. Let pXn,XnqnPZ` be a Markov chain on W whose initial distribution
LpX0,X0q belongs to A and whose transitions are given by Q. Then X B pXnqnPN and
X B pXnqnPN are Markov chains whose respective transitions are given by P and P.
Furthermore the conditions (1.9) and (1.10) are fulfilled.

It follows that the kernel P is Markovian. As another consequence, we get an
extension of properties recalled for the evolving sets:

Corollary 1.6. The intertwining relation (1.7) is satisfied. Furthermore when ζ ” 1, in
particular in the case of globally associated to P˚ random mappings, π, as defined in
(1.17), is harmonic for K.

Proof. The last assertion is obtained by summing in (1.18) with respect to η1 P V. The
intertwining relation can be checked directly, but it also comes from the computation of
PrXn`1 “ x|Xn “ ηs, for n P Z`, x P V and η P V, in two different ways:

On one hand, we have

PrXn`1 “ x|Xn “ ηs “
ÿ

η1PV

PrXn`1 “ x|Xn`1 “ η1,Xn “ ηsPrXn`1 “ η1|Xn “ ηs

“
ÿ

η1PV

Λpη1, xqPpη, η1q

“ PΛpη, xq

and on the other hand,

PrXn`1 “ x|Xn “ ηs “
ÿ

x1PV

PrXn`1 “ x|Xn “ x1,Xn “ ηsPrXn “ x1|Xn “ ηs

“
ÿ

x1PV

Λpη, x1qPrXn`1 “ x|Xn “ x1,Xn “ ηs

“
ÿ

x1PV

Λpη, x1qP px1, xq

“ ΛP pη, xq

where the last-but-one equality comes by summing over η1 in (1.22).
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Theorem 1.5 leads to an algorithm for the construction of X, given X, when µ0Λ “

m0, where µ0 B LpX0q and m0 B LpX0q (in practice, one is often only interested in
the situation where m0 is a Dirac mass at some x0 P V and µ0 is the Dirac mass
at tx0u, trivially satisfying Λptx0u, x0q “ 1). Assume that a trajectory pxnqnPZ` of X
is given. We begin by sampling X0 according to the probability measure V Q η ÞÑ

µ0pηqΛpη, x0q{m0px0q. Next, for n P Z`, assume that Xn has been constructed. We
consider a random mapping ψXn locally associated to P˚, whose law may depend on
Xn (but not directly on pxmqmPJ0,nK, see Subsection 2.2 for a generalization with a
dependence on XJ0,nK) and whose underlying randomness is independent from all that
has been done before (except for the index parameter Xn). We condition by the fact
that ψXnpxn`1q “ xn and we sample a corresponding mapping ϕ (which is no longer
associated to P˚, since in general this property is not preserved by conditioning), to
construct Xn`1 via

@ y P V, Xn`1pyq B Xnpϕpyqq
πpyq

πpϕpyqq
(1.24)

In particular, since ϕpxn`1q “ xn, we get that Xn`1pxn`1q “ Xnpxnqπpxn`1q{πpxnq,
and by iteration it appears that xn P supppXnq for all n P Z`.

In the subset case, pXnqnPZ` is subset-valued and the evolution step (1.24) is replaced
by

Xn`1 B ty P V : ϕpyq P Xnu

By iteration, we check that xn P Xn for all n P Z`.

This procedure is maybe better illustrated by the explicit constructions of Sub-
sections 2.3, 2.4, 3.1 and 3.2 in the subset case. There, only classical examples are
considered, as this paper is primarily concerned with the theoretical aspects of the
random mapping point of view. Theorem 1.5 describes a general method of construction
of measure-valued dual processes as well as their couplings with the primal processes.
The obtained dual processes will be good or bad (with respect to their fast spreading
over the primal state space in the set-valued case) depending on the underlying random
mappings. In practice, a relevant choice of the latters is thus crucial (the principle
alluded to at the end of Subsection 2.3 could serve as a general guide). This is another
task, so that more examples will be presented in future works. While in the finite state
space setting random mappings are easy to describe, this is no longer true in continuous
frameworks, as the underlying coalescing stochastic flows should be investigated further,
beginning with dimension one. Nevertheless we also expect applications for elliptic
diffusions on manifolds, then even the construction of dual processes is difficult (see the
recent preprint [9]) and the coupling apparently out-of-reach by traditional approaches.
We believe that the coalescing stochastic flows will provide a constructive existence of
the dual processes and of their couplings with the primal processes. As illustrated by
Theorem 1.5 and Corollary 1.6, the coupling should be constructed first and the dual
process deduced in a second step. Thus our method is in reverse order in comparison to
the original work of Diaconis and Fill [10].

Remark 1.7. In the first version of this paper, only the subset case was considered.
The referee pointed out that there are natural measure-valued dual processes, as illus-
trated e.g. by the papers of Avena, Castell, Gaudillière and Mélot [4, 5] and he/she was
wondering if random mappings could be used in this situation. It led to the present
theoretical extension. The question of finding the random mappings indexed by mea-
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sures inducing the measure-valued dual processes of Avena et al. [4, 5] is very inter-
esting and should be investigated further, as it would provide an algorithm for the
coupling of the primal and dual processes. Again, this is out of the scope of the present
paper, whose main goal is to establish the principles behind such coupling construc-
tions.

From Section 3 on, we will only work in the subset case, since in Sections 3
and 4, we consider Dirac masses (i.e. singletons) as starting points for the dual pro-
cesses, and Sections 5, 6 and 7 should be seen as the first steps toward the cou-
pling of stochastically modified mean curvature flows with their primal diffusion pro-
cesses.

Remark 1.8. The finite state space framework is sufficiently important (as illustrated by
the book of Levin, Peres and Wilmer [18]) to prevent us from presenting a more general
version of Theorem 1.5 in this introduction. Nevertheless, it can be extended to infinite
transition matrices P B pP px, yqqx,yPV , where V is a denumerable state space, under the
following conditions:

Finite degree: for any x P V , there is only a finite number of y P V such that
P px, yq ą 0.

Reversibility: there exists a measure π giving a positive weight to any x P V , such
that

@ x, y P V, πpxqP px, yq “ πpyqP py, xq

Indeed, in this situation, take V̄ to be the set of measures with a finite support in
V , so that the kernel Λ given in (1.6) is still well-defined on V B V̄zt0u. We look for
dual processes taking values in V. By reversibility, we have P˚ “ P . Consider pψηqηPV̄
a family of random mappings locally associated to P . Note that V̄ is left stable by the
mapping Ψ defined in (1.12), due to the finite degree assumption. Theorem 1.5 is still
valid, because it is sufficient to work up to some arbitrarily fixed time-horizon n ě 0 and
the Markov chains we are interested in have an initial distribution with finite support
(i.e. belongs to V, up to a normalisation). Thus up to time n, the Markov chain stays
in a fixed finite state space S Ă V (depending on n). We can then apply the previous
constructions on the finite state space S. Let PS be the restriction of P to S, obtained by
transferring the probabilities to exit S to self-loops. The reversibility assumption implies
that the renormalization of the restriction of π to S is invariant for PS . This property
insures us of the compatibility of these constructions for different times n.

The latter property is not true for general denumerable Markov chains (even under
the finite degree assumption). Furthermore the invariant measure may not be unique
(even up to a factor), even when there is one invariant measure which is reversible.
Thus, at least locally in time and for finite degree Markov kernels, it should be possible
to construct different measure-valued duals, associated to various invariant measures
through the corresponding Λ. We did not try to investigate further the opportunities
suggested by this observation.

When there is an invariant probability measure π for P , the extension of Theorem 1.5
is simpler, since it can be easily verified that all the computations are still valid. In this
situation, we take V̄ to be the set of measures on V whose total weight is finite. Again
the kernel Λ given in (1.6) is still well-defined on V B V̄zt0u. Let pψηqηPV̄ be a family
of random mappings locally associated to P˚. The only point which has to be checked
is that the mapping Ψ defined in (1.12) a.s. leaves V̄ invariant. Consider η P V̄, it is
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sufficient to show that ErΨpηqpV qs ă `8. We compute:

ErΨpηqpV qs “
ÿ

x,yPV

ηpyq
πpxq

πpyq
Prψηpxq “ ys

“
ÿ

x,yPV

ηpyq
πpxq

πpyq

P˚px, yq

ζpηq

“
ÿ

x,yPV

ηpyq
P py, xq

ζpηq

“
ÿ

yPV

ηpyq

ζpηq

“
ηpV q

ζpηq
ă `8

The plan of the paper is as follows. Theorem 1.5 is proven in the next section and
we will see how random mappings can also be used to deduce non-Markov measure-
valued dual processes. The classical set-valued dual processes of the discrete Pitman
theorem and of the top-to-random shuffle are treated in Section 3. In Section 4, we
generalize the discrete Pitman theorem to restless birth and death chains, i.e. necessarily
moving at each time step. In Sections 5 and 6, we provide extensions of the random
mapping analysis, respectively to Polish state spaces and to continuous time. From these
abstract considerations, Section 7 recovers Pitman’s theorem [25] about the explicit and
deterministic coupling associated to the intertwining of the Brownian motion with the
Bessel-3 process and proposes some conjectures about general one-dimensional diffusion
processes. Our hope is that the underlying challenge of the existence of some needed
singular coalescing stochastic flows will motivate a more thorough investigation in their
direction. An appendix ends the paper, showing why in dimension 1 it is sufficient to
study diffusions whose variance coefficient is 1, via some traditional transformations of
the state space R.

2 Random mappings

The proof of Theorem 1.5 generalizes that of Theorem 17.23 of Levin, Peres and
Wilmer [18], itself in the spirit of Diaconis and Fill [10]. The argument will be extended
to non-Markov measure-valued dual processes in Subsection 2.2, obtained by slightly
relaxing the notion of random mappings, it leads to more general dual processes. In
Subsection 2.3, we justify the assertions of Remark 1.4 and in Subsection 2.4 we discuss
the link with the coupling-from-the-past algorithm.

2.1 Proof of Theorem 1.5

By definition, we have for any n P Z` and px0, η0q, px1, η1q, ..., pxn, ηnq PW ,

PrpX0,X0q “ px0, η0q, pX1,X1q “ px1, η1q, ..., pXn,Xnq “ pxn, ηnqs

“ µ0pη0qΛpη0, x0q
ź

mPJ0,n´1K

P pxm, xm`1qKxm,xm`1
pηm, ηm`1q (2.1)

where µ0 B LpX0q. Summing over all η0, η1, ..., ηn P V (so that x0 P supppη0q, x1 P

supppη1q, ..., xn P supppηnq), we get that for any x0, x1, ..., xn P V ,

PrX0 “ x0, X1,“ x1, ..., Xn “ xns “ m0px0q
ź

mPJ0,n´1K

P pxm, xm`1q (2.2)
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where

m0px0q B
ÿ

η0PV

µ0pη0qΛpη0, x0q

(the r.h.s. sum can be restricted to η0 whose support contains x0, since otherwise
Λpη0, x0q “ 0). It follows that pXmqmPJ0,nK is Markovian with transitions given by P and
initial distribution m0. Since this is true for all n P Z`, we get that X is Markovian with
transitions given by P and initial distribution m0.

For any m P J0, nK, dividing (2.1) by (2.2) and summing over ηm`1, ..., ηn, we get

PrX0 “ η0,X1 “ η1, ...,Xm “ ηm|X0 “ x0, X1 “ x1, ..., Xn “ xns

“
µ0pη0qΛpη0, x0q

m0px0q

ź

lPJ0,m´1K

Kxl,xl`1
pηl, ηl`1q

“ PrX0 “ η0,X1 “ η1, ...,Xm “ ηm|X0 “ x0, X1 “ x1, ..., Xm “ xms

Fixing m P Z` and ηJ0,mK, note that the process pPrXJ0,mK “ ηJ0,mK|X0, X1, ..., XnsqnPZ` is
a non-negative martingale which is well-known to converge toward PrXJ0,mK “ ηJ0,mK|Xsq

for n large. It follows that

PrXJ0,mK “ ηJ0,mK|Xs “ PrXJ0,mK “ ηJ0,mK|XJ0,mKs

namely (1.9).
The Markov property of X and (1.10) are less immediate and the argument is based

on an iteration with respect to the following statements, for n P Z`:

The finite stochastic chain pXmqmPJ0,nK is Markovian with transitions given by P (An)

LpXn|XJ0,nKq “ ΛpXn, ¨q (Bn)

For n “ 0, the assertion (A0) is void and (B0) is a rewriting of the assumption
LpX0,X0q P A.

Next assume that (An) and (Bn) are true for some n P Z` and let us prove (An`1) and
(Bn`1).

Let px, ηq PW be given, we compute that

PrXn`1 “ x,Xn`1 “ η|XJ0,nKs

“
ÿ

y P supppXnq

PrXn`1 “ x,Xn`1 “ η|Xn “ y,XJ0,nKsPrXn “ y|XJ0,nKs

Due to the Markov property of the couple pX,Xq, we deduce that for any y P supppXnq,

PrXn`1 “ x,Xn`1 “ η|Xn “ y,XJ0,nKs “ PrXn`1 “ x,Xn`1 “ η|Xn “ y,Xns

“ P py, xqKy,xpXn, ηq

“ P py, xq
PrΨpXnq “ η, ψXnpxq “ ys

PrψXnpxq “ ys

“ P py, xqζpXnq
PrΨpXnq “ η, ψXnpxq “ ys

P˚px, yq

“
πpxq

πpyq
ζpXnqPrΨpXnq “ η, ψXnpxq “ ys (2.3)

where the local association with P˚ was used in the fourth equality. On the other hand,
(Bn) asserts that for y P supppXnq,

PrXn “ y|XJ0,nKs “ ΛpXn, yq

“
Xnpyq

πpXnq
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and we get that

PrXn`1 “ x,Xn`1 “ η|XJ0,nKs “
ÿ

y P supppXnq

πpxq

πpXnq
ζpXnqPrΨpXnq “ η, ψXnpxq “ ys

“
πpxq

πpXnq
ζpXnqPrΨpXnq “ η, ψXnpxq P Xns

“
πpxq

πpXnq
ζpXnqPrΨpXnq “ η, x P ηs

“
πpxq

πpXnq
ζpXnqPrΨpXnq “ ηs

“
πpxq

πpηq
PpXn, ηq

where we used Definitions (1.16) and (1.18).
Summing over x P supppηq, we get

PrXn`1 “ η|XJ0,nKs “ PpXn, ηq

whose validity for all η P V is (An`1). Using that for all px, ηq PW ,

PrXn`1 “ x|Xn`1 “ η,XJ0,nKs “
PrXn`1 “ x,Xn`1 “ η|XJ0,nKs

PrXn`1 “ η|XJ0,nKs

“
πpxq

πpηq

“ Λpη, xq

we conclude to (Bn`1).

2.2 Auxiliary measure-valued processes

In the definition of random mappings locally associated to P˚ given in the introduction,
we assumed that we had at our disposal a family pψηqηPV̄. Suppose now that we rather
have a family pψηJ0,nKqηJ0,nKPW̄

, where

W̄ B \nPNV̄
n

and whose elements are written under the form ηJ0,nK B pη0, η1, ..., ηnq, for some n P Z`
and η0, η1, ..., ηn P V̄. The local association with P˚ of the family pψηJ0,nKqηJ0,nKPW̄

now
means that

@ ηJ0,nK P W̄, @ x P V, @ x1 P supppηnq, PrψηJ0,nKpxq “ x1s “
P˚px, x1q

ζpηJ0,nKq

where ζ : W̄Ñ p0,`8q is a positive mapping on W̄ (note that necessarily ζpηJ0,nKq “ 1

as soon as supppηnq “ V ). Following (1.12), we get a random measure depending on
ηJ0,nK P W̄ and given by:

@ ηJ0,nK P W̄, ΨpηJ0,nKq B pfn ˝ ψηJ0,nKqπ

where fn is the density of ηn with respect to π.
The analogue of (1.16) is a transition kernel from W̄ to V̄

@ ηJ0,nK P W̄,@ η1 P V̄, KpηJ0,nK, η
1q B PrΨpηJ0,nKq “ η1s
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and (1.18) must be transformed into a kernel from W to V:

@ ηJ0,nK PW,@ η1 P V, PpηJ0,nK, η
1q B

πpη1qζpηJ0,nKq

πpηnq
KpηJ0,nK, η

1q (2.4)

where W is the space

W B \nPNV
n

By working as in the introduction, define conditioned transition kernels as in (1.19)
via

@ ηJ0,nK PW,@ η1 P V, Kx,x1pηJ0,nK, η
1q B PrΨpηJ0,nKq “ η1|ψηJ0,nKpx

1q “ xs

for any x, x1 P V with x P supppηnq and P px, x1q ą 0. As a consequence of the dependence
on ηJ0,nK PW in (2.4), we cannot expect in Theorem 1.5 that X will still be Markovian.

Nevertheless, the other parts of Theorem 1.5 are satisfied. Indeed, it is sufficient to
replace everywhere in the previous subsection ψXn by ψXJ0,nK , ΨpXnq by ΨpXJ0,nKq and
PpXn, ηq by PpXJ0,nK, ηq.

The algorithm explained after the proof of Corollary 1.6 is straightforwardly adapted
to this extended situation. The finite sequence XJ0,nK constructed in this way from a
given trajectory xJ0,nK is called an auxiliary measure-valued process. It can be used
to construct strong stationary times for X (see Fill and Diaconis [10]): consider

τ B inftn P Z` : Xn “ πu P Z` \ t`8u (2.5)

When τ is (a.s.) finite, we have that τ and Xτ are independent and the distribution of Xτ

is the invariant measure π. In the subset case, (2.5) has to be replaced by

τ B inftn P Z` : Xn “ V u P Z` \ t`8u (2.6)

and this is under this form that that strong stationary times are often met in the literature
(see the top-to-random shuffle of Aldous and Diaconis [1], recalled in Subsection 3.2
below).

An auxiliary measure-valued process can also be seen as a Markovian non-measure-
valued dual process. Indeed, use the traditional trick transforming any process into a
Markov process by adding all its history in its present state. More precisely, consider the
W-valued process Y B pXJ0,nKqnPZ` . The process Y is clearly Markovian, its transition
kernel Q being given, for any ηJ0,nK, η

1
J0,n1K PW, by

QpηJ0,nK, η
1
J0,n1Kq B

"

PpηJ0,nK, η
1
n`1q, if n1 “ n` 1 and ηJ0,nK “ η1J0,nK

0, otherwise

Extend Λ into a Markov kernel from W to V via

@ ηJ0,nK PW, @ x P V, ΛpηJ0,nK, xq “
πpxq

πpηnq

As in Corollary 1.6, we deduce the intertwining relation

QΛ “ ΛP

showing that Y is a dual process to X. Thus from the general theory of Fill and Diaconis
[10], we know that a Markov chain with transition kernel Q can be used to construct a
strong stationary time, as soon as a.s. it ends up reaching the set tY PW : ΛpY, ¨q “ πu,
which corresponds in the above situation to the fact that τ defined in (2.6) is a.s. finite.
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Remark 2.1.

(a) Measure-valued processes (not necessarily Markovian) are essentially the more
general intertwining dual processes that can be associated toX, up to a deterministic
factorization. Indeed, let X̄ B pX̄nqnPZ` be an intertwining dual process associated
to X through a Markov kernel Λ̄ going from the state space of X̄ to the state space
of X, namely such that

@ n P Z`,

#

LpX̄J0,nK|Xq “ LpX̄J0,nK|XJ0,nKq

LpXn|X̄J0,nKq “ Λ̄pX̄n, ¨q
(2.7)

Consider the (probability) measure-valued process X B pXnqnPZ` defined as a deter-
ministic function of X̄ via

@ n P Z`, Xn B Λ̄pX̄n, ¨q

We deduce from (2.7) that (1.9) and (1.10) are satisfied, with Λ given by (1.1). In
general X will not be Markovian, even when X̄ is Markovian.

(b) Consider X B pXnqnPZ` a measure-valued process, not necessarily Markovian. We
say it is algebraically intertwined with X if the following is true: for any n P Z`,
given X0,X1, ...,Xn, on one hand sample rXn according to Xn{XnpV q, then sample
rXn`1 according to P p rXn, ¨q. On the other hand, sample Xn`1 according to its condi-
tional law knowing X0,X1, ...,Xn and next sample pXn`1 according to Xn`1{Xn`1pV q.
Then rXn`1 and pXn`1 should have the same law, still conditioned on X0,X1, ...,Xn.
This condition writes down

@ n P Z`, E
” Xn`1

Xn`1pV q

ˇ

ˇ

ˇ
Xn,Xn´1, ...,X0

ı

“
Xn

XnpV q
P (2.8)

(of course the equality ErXn`1{Xn`1pV q|Xn,Xn´1, ...,X0s “ ErXn`1{Xn`1pV q|Xns

does not imply that X is Markovian).

Given a family pψηJ0,nKqηJ0,nKPW̄
as in this Subsection, such a measure-valued process

X can be constructed by using the transition kernel defined in (2.4). But it should
be observed that not all measure-valued processes algebraically intertwined with X
can be constructed in this way. Indeed, since the set V V of mappings from V to V is
finite, for any given n P Z` and ηJ0,nK PW, the distribution PpηJ0,nK, ¨q is necessarily
a finite sum of Dirac masses, so the same is true for LpXn`1|Xn,Xn´1, ...,X0q when
X is constructed using a family pψηJ0,n1K

qηJ0,n1KPW̄
. But in general, one can find

measure-valued processes satisfying (2.8) such that LpXn`1|Xn,Xn´1, ...,X0q is a
diffuse distribution. Maybe the most general case can be obtained by replacing
random mappings by random transition kernels locally associated to P˚.

(c) The previous argument cannot be applied to set-valued dual processes, since the set
t0, 1uV of subsets from V is finite, contrary to the set of measures on V .

2.3 The Levin, Peres and Wilmer construction

Let us come back to the construction of Chapter 17 of Levin, Peres and Wilmer [18]
and interpret it in the random mapping setting, in the subset case.

In practice, a random mapping ψ is often given in the following way: let I B pIx,yqx,yPV
be a family of measurable subsets of r0, 1q such that

@ x P V, r0, 1q “
ğ

yPV

Ix,y (2.9)

@ x, y P V, λpIx,yq “ P˚px, yq (2.10)
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where λ is the Lebesgue measure. Let U be a random variable uniformly distributed
on r0, 1q. A random mapping ψ associated to P˚ can be defined in terms of I and U by
deciding that

@ x, y P V, tψpxq “ yu “ tU P Ix,yu

Remark 2.2. Conversely, any random mapping associated to P˚ has the same law as a
random mapping constructed as above. This is a consequence of the fact that the set of
functions from V to V is finite and that any probability distribution on a finite number of
points can be seen as an image of the restriction of the Lebesgue measure on r0, 1q. Thus
there is no loss of generality in only considering random mappings of the previous form.

Let S P S be fixed and label the elements of V as 1, 2, ..., |V |, where |V | is the cardinal
of V , in order to insure that S “ J1, |S|K. Next define a family I B pIx,yqx,yPV via

@ x, y P V “ J1, |V |K, Ix,y B rP˚px, J1, y ´ 1Kq, P˚px, J1, yKqq

it is immediate to check both (2.9) and (2.10). Let φS be the globally associated to P˚

random mapping constructed in this way. With the notations of the introduction, we have

ΨpSq “ tx P V : φSpxq P Su

“ tx P V : U P r0, P˚px, Sqqu

“ tx P V : U ď P˚px, Squ

“ ΦpSq

It follows that the evolving sets of Morris and Peres [22] are a particular case of the
construction via the random mappings. The special random mapping φS has the tendency
to put a maximal number of points inside ΨpSq, when U is small, and a minimal number
of points inside ΨpSq, when U is close to 1. So it seems that among all random mappings,
φS induces the maximal possible oscillation for πpΨpSqq (e.g. measured through its
variance). By analogy with the result stating that the best way to couple two Brownian
motions is the mirror symmetry coupling (see for instance Jacka, Mijatović, and Siraj
[13]), a tempting conjecture is that the evolving set construction is the best possible
choice for X to grow as fast as possible (property which is important in the construction
of strong stationary times). We believe it is true when the underlying geometry is simple
(as for birth and death processes, see Section 4, this phenomenon was encountered for
one-dimensional diffusions in [21])), but maybe not in the general setting.

Remark 2.3. The task of finding a “good” random mapping should be illuminated by
characterizations of measure-valued dual processes which are sharp in the sense of
Diaconis and Fill [10]. In a diffusion context, here is a conjecture on how to recognize
sharp set-valued duals (inspired by results from [21] and [9]): the volume (with respect
to the invariant measure) of the dual process conveniently time-changed by the square
of the volume of its boundary should be a Bessel-3 process, namely in some sense, the
Pitman intertwining relation is a prototype for sharpness. It would be instructive to state
and to prove a similar result in a discrete context.

2.4 Independent random iterative mappings

A particularly simple instance of globally associated to P˚ random mappings is when
they are not allowed to depend on a measure η P V, corresponding to the current state
of X. The algorithm of the introduction then takes the following form. Let be given
n P Z` and a trajectory xJ0,nK of X. In this subsection, we assume for simplicity that
X0 “ tx0u, in particular we are in the subset case, as seen in Remark 1.3. Consider n
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independent mappings ψ1, ψ2, ..., ψn globally associated to P˚, which may not have the
same law. For any m P J1, nK, condition ψm by ψmpxmq “ xm´1, and to avoid confusion,
let us call the new random mapping ϕm (it is no longer associated to P˚, except when
P˚pxm, xm´1q “ 1). The construction of Xn is now:

Xn “ ty P V : ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpyq “ x0u (2.11)

In particular, the strong stationary time defined by (2.6) is given by the collapsing time

τ “ inftn P Z` : @ y P V, ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpyq “ x0u (2.12)

Formulas (2.11) and (2.12) are valid more generally, up to the forward simultaneous
definition of the pϕ1,X1q, pϕ2,X2q, ..., pϕn,Xnq presented in the introduction. But when
ψ1, ψ2, ..., ψn are independent, a backward construction can also be envisaged. This
possibility will also be satisfied by the non-independent random mappings associated to
restless birth and death chains in Section 4. Let us describe an algorithm constructing
Xn, for any fixed n P Z`, in this spirit. Label V as ty0, y1, ..., y|V |´1u, with y0 “ xn

and define X
p0q
n B txnu. We look iteratively for the first m P J1, nK such that ϕn´m`1 ˝

ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpy1q “ xn´m. If there is no such m, we know that y1 R Xn and we

let X
p1q
n B txnu. Otherwise we define X

p1q
n B txn, y1u. Assume that X

plq
n has been

constructed for some l P J1, |V | ´ 2K. We look iteratively for the first m P J1, nK such that

ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpyl`1q P X
plq
n . If there is no such m, we infer that yl`1 R Xn

and let Xpl`1q
n “ X

plq
n . Otherwise we define X

pl`1q
n “ X

plq
n \ tyl`1u. At the end, we consider

Xn B X
p|V |´1q
n . This procedure can also be used to test if τ ď n, where τ is defined in

(2.12): this is equivalent to the fact that for all the above steps for l P J0, |V | ´ 2K, there

is a m P J1, nK such that ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpyl`1q P X
plq
n .

This test can be strongly simplified when V is endowed with a partial order admitting a
unique minimal element y^ and a unique maximal element y_ and when the independent
random mappings ψ1, ψ2, ..., ψn preserve the partial order (of course this is only possible
if P˚ is equally preserving the partial order). Then the random mappings ϕ1, ϕ2, ..., ϕn
equally preserve the partial order and the validity of τ ď n is equivalent to the existence
of m P J1, nK such that

ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpy^q “ ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpy_q

These observations are strongly reminiscent of the coupling-from-the-past algorithm
of Propp and Wilson [27] (see also their review in Chapter 22 of Levin, Peres and Wilmer
[18]). Recall they consider a family pψnqnP´N of independent identically distributed
random mappings associated to P . For any N P N, they test if ψ´1 ˝ ¨ ¨ ¨ ˝ ψ´N`1 ˝ ψ´N
sends the whole state space V into a single point. When this is true, the single point is
distributed according to π. Otherwise they consider another integer number N 1 ą N

(usually N 1 “ 2N ) and start again the above procedure. Their algorithm is equally greatly
simplified under the assumptions that V is endowed with a partial order admitting a
unique minimal element y^ and a unique maximal element y_ and that the independent
random mappings ψ´1, ψ´2, ..., ψ´N preserve the partial order (this is only possible if P
is equally preserving the partial order).

Of course there are big differences between the two procedures: our initial point is
fixed, the final point of coupling-from-the-past is distributed accordingly to the invariant
measure, the preservation of the partial order by P˚ and P are not equivalent, we
fix a trajectory and allow (except in this subsection) dependence between the random
mappings through the already constructed set-valued dual etc. Nevertheless, it would
be interesting to investigate further the links between the two algorithms, e.g.:
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• Could the convergence of the coupling-from-the-past algorithm be improved by
allowing, for N P N fixed, choices of ψ´n depending on ψ´n´1˝¨ ¨ ¨˝ψ´N`1˝ψ´N pV q,
for n P J1, NK?

• What happens to the examples treated by the coupling-from-the-past algorithm if
we look at them from the intertwining/strong stationary times point of view?

3 Classical examples

Up to now, the considerations were both abstract and simple. It is time to give some
examples showing how Theorem 1.5 works in practice. As it can be guessed, all the
difficulty is to find nice random mappings. The families of random mappings considered
here will be globally associated to P˚, as mentioned in Remark 1.2. We will work in the
subset case, since the dual processes are to start from Dirac masses, identified with
singletons (recall Remark 1.3).

3.1 The discrete Pitman theorem

For this example due to Pitman [25], the state space is the denumerable set Z, but
we are in the situation described in the beginning of Remark 1.8. The kernel P is the
transition “matrix” of the simple random walk on Z, namely,

@ x, y P Z, P px, yq B

"

1{2, if |y ´ x| “ 1

0, otherwise

which has finite degree 2 at every point. The counting measure π is invariant for P and is
even reversible for P . It follows that P˚ “ P , where P˚ is defined as in (1.2). Following
Remark 1.8, we take S to be the set of finite non-empty subsets of Z, so that the kernel
Λ given in (1.6) is still well-defined.

Let X B pXnqnPZ` be a random walk with transition kernel P and starting from 0.
Introduce the process X_ B pX_n qnPZ` defined by

@ n P Z`, X_n B 2Mn ´Xn

where Mn B maxtXm : m P J0, nKu. Finally consider X B pXnqnPZ` given by

@ n P Z`, Xn B tX_n ´ 2m : m P J0, X_n Ku (3.1)

Pitman [25] has shown that (1.9) and (1.10) hold with the above processes X and X, it is
in fact the first historical instance of such a coupling.

Let us prove that this result is a consequence of Theorem 1.5. Since (1.9) is obvious,
we concentrate our attention on (1.10).

Consider the function ψ given by

@ S P S, @ x P Z, @ b P t´1, 1u, ψpS, x, bq B

"

x` b, if x ą maxpSq

x´ b, if x ď maxpSq
(3.2)

Consider a Rademacher variable B, i.e. such that PrB “ ´1s “ PrB “ 1s “ 1{2 and for
fixed S P S, let ψS be the random mapping given by

@ x P Z, ψSpxq B ψpS, x,Bq (3.3)

It is clear that ψS is a random mapping associated to P˚ “ P . So let be given a
trajectory xJ0,nK of X stopped at time n P Z` and starting with x0 “ 0. Construct
the finite sequence XJ0,nK as in the introduction, starting with X0 B t0u. Denote by
pϕmqmPJ1,nK the corresponding random mappings used in this construction, conditioned
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by the compatibility relations ϕmpxmq “ xm´1 for m P J1, nK. Given the stopped trajectory
xJ0,nK, these random mappings are here deterministic:

@ m P J1, nK, ϕm “ ψpXm´1, ¨, bmq

with

bm B

"

´1, if xm´1 “ maxpXm´1q and xm ´ xm´1 “ 1

xm ´ xm´1, otherwise

Since under these mappings the parity of the positions are alternating, we remark that

@ m P J0, nK, Xm Ă

"

2Z, if m is even
2Z` 1, if m is odd

Consider for any m P J0, nK, Ym B minpXmq and Zm B maxpXmq. By a forward iteration
on m P J0, nK, we show that Zm “ X_n , Ym “ ´Zm and that Xm contains all the elements
in JYm, ZmK with the same parity as Zm. It proves the validity of (3.1). This is well-
illustrated by Figure 1, where for m P J0, n´ 1K, the elements of Xm are represented by
full disks, the elements of Xm`1 by circles, the transition from Xm to Xm`1 by a double
line, the dashed lines are the actions of the random mappings (from the right to the left),
the green (respectively red) line is the transition from Zm to Zm`1 (resp. from Ym to
Ym`1).

m m` 1 m m` 1 m m` 1 m m` 1

Figure 1: Schematic proof of the discrete Pitman theorem via random mappings

The symmetry with respect 0 leads to another Pitman transformation: rather intro-
duce the process X^ B pX^n qnPZ` defined by

@ n P Z`, X^n B Xn ´ 2M^
n

where M^
n B mintXm : m P J0, nKu and consider rX B prXnqnPZ` given by

@ n P Z`, rXn B tX^n ´ 2m : m P J0, X^n Ku (3.4)

By symmetry in law of X, it is clear that (1.9) and (1.10) equally hold for processes X
and rX. This can also be obtained by replacing the mapping ψ of (3.2) by

@ S P S, @ x P Z, @ b P t´1, 1u, rψpS, x, bq B

"

x` b, if x ě minpSq

x´ b, if x ă minpSq
(3.5)
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More generally, at each time n P Z`, either ψ or rψ can be chosen to construct random
mappings and this choice itself may depend on the current state Xn and on independent
noise. Of course the description of the deduced set-valued dual X will then be more
tricky than (3.1) or (3.4).

One may wonder how to guess that the random mappings described by (3.3) or (3.5)
are interesting. It is not mere inverse engineering: the underlying idea is that they
strictly satisfy the principle put forward in Subsection 2.3: these random mappings
(as well as their above variants) are such that the two points just outside the current
discrete segment S (forgetting the points with the “bad” parity) either both enter S or
both go away from S. In the spirit and the notations of Subsection 2.3, the above random
mappings can be described via labelings of Z depending on S. For instance for (3.3),
maxpSq ` 1 is named 1, maxpSq is named 2, maxpSq ´ 1 is named 3, ..., until minpSq ´ 1 is
named maxpSq ´minpSq ` 3, then maxpSq ` 2 is named maxpSq ´minpSq ` 4, minpSq ´ 2

is named maxpSq ´ minpSq ` 5, maxpSq ` 3 is named maxpSq ´ minpSq ` 6, etc. ((3.5)
corresponds to a “mirror” labeling). One can imagine other labelings (where the first
labels are given to the elements of JminpSq ´ 1,maxpSq ` 1K, or only to those of S as in
Subsection 2.3, according to any fancy rule), it will not change the law of X (starting
from t0u), only the law of the coupling pX,Xq will be modified, as in the above cases
deduced from (3.2) and (3.5).

Let us present two other examples of dual processes for the usual random walk based
on other random couplings following strictly the principle of Subsection 2.3. They are
discrete analogues of intertwining couplings of subset-valued processes for diffusions
on manifolds, on which we are currently working with Marc Arnaudon and Koléhè
Coulibaly-Pasquier [3]. There we use a different approach relying on directly coupling
a stochastic variant of mean curvature flow with the primal diffusion process. At least
in the discrete context and for the two examples below, this can be easily translated in
terms of random mappings.

Example 3.1. Looking for dual processes that will stay symmetric with respect to 0, we
can consider random mappings not depending on a finite subset S of Z (as mentioned in
Subsection 2.4), by breaking their direction exactly at 0 (and not at maxpSq or minpSq as
above). More precisely, in analogy with (3.2), define

@ x P Z, @ b P t´1, 1u, ψpx, bq B

"

x` b, if x ą 0

x´ b, if x ď 0
(3.6)

and the random mappings associated to P˚ “ P via

@ x P Z, ψSpxq B ψpS, x,Bq

where B is a Rademacher variable B.
Denote pLnqnPZ` the local time associated to X at the transition from 1 to 0:

@ n P Z`, Ln B
n
ÿ

l“1

1pXl´1,Xlq“p1,0q

We let as an exercise of manipulations of graphics similar to Figure 1, to check that
the dual process constructed by Theorem 1.5 in this situation is given by

@ n P Z`, Xn “ t|Xn| ` Ln ´ 2m : m P J0, |Xn| ` LnKu

A continuous equivalent of this dual process will appear in Subsection 7.1.
In (3.6), instead of 0, the break of direction could be chosen at any other point k P Z.

The resulting dual process is given, for any n P Z`, by

Xn “

#

tXnu, if n ă Tk

tk ` |Xn ´ k| ` L
pkq
n ´ 2m : m P J0, k ` |Xn ´ k| ` L

pkq
n Ku, otherwise
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where

Tk B inftn P Z` : Xn “ ku

@ n P Z`, Lpkqn B
n
ÿ

l“1

1pXl´1,Xlq“pk`1,kq

The volume of these subset-valued dual processes for k ‰ 0 has an initial slower
growth than in the case k “ 0, in the sense of the stochastic domination for the stopping
times defined, for any A P N, by

τA B inftn P Z` : πpXnq ě Au

It can be seen as a consequence of the fact that the principle of Subsection 2.3 is not
satisfied, until X reaches k. Note that the worst case corresponds to letting k goes to
`8 or ´8: with probability 1{2 one of the two mappings

@ x P Z, ψ´pxq B x´ 1

@ x P Z, ψ`pxq B x` 1

is chosen. Starting with X0 “ tX0u, we get that for all n P Z`, Xn “ tXnu (more
generally, for any initial law of X0 on S satisfying (1.8), we end up with πpXnq “ πpX0q

for all n P Z`).

Example 3.2. Random mappings are clearly stable by mixture. Thus we can con-
sider the random mapping which, given S P S, chooses with probability 1/2 the ran-
dom mapping (3.3) and with the remaining probability 1/2, the random mapping de-
duced from (3.5). Write X B pXnqnPZ` the corresponding set-valued dual process. It
remains symmetric with respect to 0, so let us write for any n P Z`, XN C tx P

J´Rn, RnK with the same parity as Rnu. Using graphics similar to Figure 1 and taking
into account the independent Bernoulli variables choosing between (3.3) and (3.5), it is
not difficult to check that for any n P N, Rn ´Rn´1 is independent from Xn ´Xn´1 and
uniformly distributed on t´1, 1u, except in two cases:

• when Xn´1 “ Rn´1 and Xn “ Xn´1 ` 1, then Rn “ Rn´1 ` 1

• when Xn´1 “ ´Rn´1 and Xn “ Xn´1 ´ 1, then Rn “ Rn´1 ` 1

Namely, pRnqnPZ` evolves as a random walk independent from X, except when X hits
the boundary of X and tends to push it away from 0, in which case pRnqnPZ` do the only
possible move keeping X inside X: it also go away from 0 by adding 1 to its previous
value.

3.2 The top-to-random shuffle

The top-to-random shuffle is a simple model of shuffling cards: at each time, take the
top card and put it at a uniform random location in the deck. This stochastic evolution
is described mathematically by a Markov chain X B pXnqnPZ` on the symmetric group
V B SN , with N P Nzt1u, whose transition matrix P is given, for any σ, σ1 P SN , by

P pσ, σ1q B

"

1{N, if there exists l P J1, NK with σ1 “ p1 Ñ lÑ l ´ 1 Ñ ¨ ¨ ¨ Ñ 2q ˝ σ

0, otherwise

where p1 Ñ l Ñ l ´ 1 Ñ ¨ ¨ ¨ Ñ 2q is the cyclic permutation, seen as the function from
J1, NK to J1, NK, transferring the card at position 1 to position l, the card at position l to
position l ´ 1, ... and the card at position 2 to position 1.
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The transition matrix P is irreducible and the corresponding invariant measure π is
the uniform probability distribution on SN . The Markov chain X admits a famous dual
process defined by Aldous and Diaconis [1] in terms of the position of the last card ofX0 in
the deck Xn at time n P Z`. More precisely, represent a permutation σ by the sequence
of its values pσp1q, σp2q, ..., σpNqq. Start X from the identity: X0 “ p1, 2, ..., Nq C id

and at any time n P Z`, let Yn P J1, NK be the position of the last card defined by
XnpYnq “ N . It is not difficult to check that Y B pYnqnPZ` is a Markov chain. Define
rτ B inftn P Z` : Yn “ 1u, the first time the last card arrives at the top of the deck. It is
well-known that rτ ` 1 is a strong stationary time, it is even the first historical instance of
a strong stationary time in a finite context. We modify Y by imposing that Yn “ 0 for any
n ą τ .

For any σ P SN and y P J0, NK, define

Aσ,y B tσ1 P SN : σ1p1q “ σp1q, ..., σ1pyq “ σpyqu

with the usual convention that Aσ,0 “ SN . Aldous and Diaconis [1] considered the

set-valued dual rX B prXnqnPZ` deduced from pX,Y q by defining

@ n P Z`, rXn B AXn,Yn (3.7)

Let us construct a better set-valued dual X B pXnqnPZ` via random mappings. Note
that P˚ is the transition matrix of the random-to-top shuffle and corresponds to taking a
card of the deck at a uniform random location and putting it at the top. Consider for any
x P J1, NK, the mapping ψpxq : SN Ñ SN which acts on any permutation σ by removing
the card x from the deck and putting it at the top. Formally, we have

@ σ P SN , ψpxqpσq “ p1 Ñ 2 Ñ ¨ ¨ ¨ Ñ σ´1pxqq ˝ σ (3.8)

(note that σ´1pxq is the position of the card x). Let pUnqnPN be a family of independent
random variables uniformly distributed on J1, NK and for any n P N, denote by ψn the
random mapping ψpUnq, which is clearly associated to P˚. There is no dependence on a
subset S P S and we are in the context of independent random mappings of Subsection
2.4. Let be given a trajectory xJ0,nK, for some fixed n P Z`, starting from the identity,
x0 “ id. For any m P J1, nK, let ϕm be the conditioning of ψm by ψmpxmq “ xm´1. Remark
that as in the previous subsection, ϕm is deterministic, as we have ϕn “ ψpxn´1p1qq.
Starting from X0 “ tidu, we get from (2.11) that

Xn “ tσ P SN : ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpσq “ idu

Let us check that X is better than the set-valued dual rX of Aldous and Diaconis [1], in
the sense that

@ n P Z`, rXn Ă Xn (3.9)

It is furthermore strictly better, because rX
rτ “ AX

rτ ,1 is strictly included into X
rτ “ SN , as

we will see below. It implies that τ ď rτ ă rτ ` 1, where τ is the strong stationary time
associated to X as in (2.12) (recall that rτ ` 1 is the strong stationary time associated to
rX).

Indeed, to show (3.9), consider σ P rXn. By definition, we have

σ “ pσp1q, σp2q, ..., σpYn ´ 1q, N, σpYn ` 1q, ..., σpNqq

Observe that for l P J1, Yn´1K, σplq “ Xnplq and for l P JYn`1, NK, the values σplq belongs
to txmp1q : m P J0, nKu, since they have had to be at the top of the deck before time n
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to be sent below the last card N . By iteration on m P J1, nK, it follows that the Yn´m`1

first coordinates of ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpσq and ϕn´m`1 ˝ ϕn´m`2 ˝ ¨ ¨ ¨ ˝ ϕnpXnq

coincide. In particular for m “ 1, since ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpXnq “ id, we get that σ P Xn, so
that (3.9) is proven.

To prove that X is strictly better than rX, note that rX
rτ is the set of permutations

σ P SN such that σp1q “ N , in particular rX
rτ ­“ SN . Applying a reasoning similar to the

proof of (3.9), we get that for any σ P SN , ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕrτ pσq “ ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕrτ pXrτ q,
except maybe for the last coordinate σpNq. This is a consequence of the fact that all the
values of J1, N ´ 1K will have been placed at a same time m P J1, rτK at the top of the deck
by ϕm ˝ ϕm`1 ˝ ¨ ¨ ¨ ˝ ϕrτ . But if all the coordinates except the last one coincide for two
permutations, it means that the permutations are the same. It follows that X

rτ “ SN as
announced.

Corollary 3.3. The first time pτ that the card N ´ 1 comes to the top and is inserted
is a strong stationary time. It is a strict improvement over the strong stationary time
constructed by Aldous and Diaconis [1], which is the first time rτ`1 that the card N comes
to the top and is inserted. But this improvement is negligible: we have Errτ s “ Erτ s `N ,
while as N goes to infinity, Errτ s „ N lnpNq.

This result is the content of Exercise 6.2 of the book of Levin, Peres, and Wilmer [18].

Proof. Let us show that pτ coincides with the strong stationary time τ defined in (2.12).
Indeed, as a consequence of the above proof that X

rτ “ SN , we see that τ is smaller than
1 plus the first time when all the cards except N have been at the top, namely τ ď pτ .
Conversely, let σ be a permutation where the card N is above the card N ´ 1. For n ă pτ ,
the same is true for the permutation ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕnpσq, since neither N nor N ´ 1

have been put at the top. So we get that σ R Xn, i.e. τ ą n and it follows that pτ “ τ .
Note that pτ is a sum of independent geometric random variables of parameters 2{N ,
3{N , ..., 1, which correspond respectively to the first time a card goes under N ´ 1, the
inter-time until a second card goes behind N´1, etc. Similarly, rτ is a sum of independent
geometric random variables of parameters 1{N , 2{N , ..., 1. Thus Errτ s ´ Erτ s is equal to
the expectation of a geometric random variable of parameter 1{N , namely N . The last
assertion of the corollary is a consequence of the equality

Errτ s “ 1`
1

2
`

1

3
` ¨ ¨ ¨

1

N

One can wonder if the set-valued dual given in (3.7) has a random mapping repre-
sentation. It is indeed the case, the subsequent simple construction resorts to random
mappings depending on a fix set S P S (we don’t know if it is possible to devise a
construction via independent random mappings as in Subsection 2.4). The underlying
random mappings rψS are described as follows.

• Assume S is of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N . Let

pU, rUq be a random variable taking values in t0, 1u ˆ J1, NK such that PrU “ 0s “

pk ´ 1q{N and knowing that U “ 0 (respectively U “ 1), rU is uniformly distributed
on J1, k ´ 1K (resp. on J1, N ´ k ` 1K). Let be given a permutation σ1 P SN . When

U “ 0, we take rψSpσ
1q “ pψp

rUqpσ1q, where for any x P J1, NK,

@ σ1 P SN , pψpxqpσ1q “ p1 Ñ 2 Ñ ¨ ¨ ¨ Ñ xq ˝ σ1

In words, a position is chosen among the first k ´ 1 ones and the corresponding
card is sent to the top. On the contrary, when U “ 1, we choose a label of card
among those whose position are in Jk,NK according to the following procedure. Let
pσp1q ă pσp2q ă ¨ ¨ ¨ ă pσpN ´ k ` 1q be the ordering of the set tσ1plq : l P Jk,NKu. We
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then take rψSpσ
1q B ψppσpUqqpσ1q, with the notation introduced in (3.8). The mappings

ψpxq and pψpxq may look similar at first view, but it is the difference between the
choice of a position and a label of card that will result in the distinction between
the dual processes X and rX. Note that rψS depends on subsets S as above only
through k.

• Assume S is not of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N .
This situation is not important, since the algorithm will only construct subsets of
the previous form (starting with X0 “ tidu), and it would be possible to restrict S to
contain only such sets. Nevertheless, for definiteness, take for instance rψS B ψpUq

where U is uniformly distributed on J1, NK.

It is immediate to check that rψS is associated to P˚ and its interest is encapsulated
in the following result.

Lemma 3.4. Let S be of the form Aσ,k for some σ P SN and k P J1, NK with σpkq “ N .
Fix x P J1, NK and denote by rσ the deck of cards obtained from σ by putting the top card
σp1q at position x. Condition rψS by the fact that rψSprσq “ σ, to obtain a random mapping
rϕS . The mapping rϕS is in fact deterministic and defining

B B tσ1 P SN : rϕSpσ
1q P Su

we have

B “ A
rσ,rk

with rk B prσq´1pNq.

Proof. Let pU, rUq be the random variable appearing in the definition of rψS . The value
of U can be deduced by comparing x and k: if x P J1, k ´ 1K then U “ 0 and otherwise
U “ 1. When U “ 0, rU is determined by the relation rσprUq “ σp1q and when U “ 1, rU is
determined as the rank of σp1q in trσpkq, rσpk ` 1q, ..., rσpNqu (which is also the rank of σp1q
in tσp1q, σpk`1q, σpk`2q, ..., σpNqu. It follows that rϕS is determined, since it randomness
only comes from pU, rUq.

For the assertion concerning B, let be given σ2 P S and σ1 P SN such that rϕSpσ
1q “ σ2

and consider separately two alternatives.

• The case U “ 0, which is equivalent to the identity rk “ k. Necessarily we have
σ1plq “ σ2plq for l P JrU ` 1, NK and

pσ1prUq, σ1p1q, ..., σ1prU ´ 1qq “ pσ2p1q, σ2p2q, ..., σ2prUqq

Furthermore, note that

pσ2p1q, σ2p2q, ..., σ2prUqq “ pσp1q, σp2q, ..., σprUqq

“ prσprUq, rσp1q, ..., rσprU ´ 1qq

It follows that the set of σ1 obtained when σ2 runs through S is just A
rσ,rk, as

announced.
• The case U “ 1, which is equivalent to the identity rk “ k ´ 1. We get that

pσ1p1q, σ1p2q, ..., σ1pk ´ 1qq “ pσ2p2q, σ2p3q, ..., σ2pkqq

pσ1pkq, σ1pk ` 1q, ..., σ1pNqqσ2p1q “ pσ2pk ` 1q, σ2pk ` 2q, ..., σ2pNqq

where pσ1pkq, σ1pk ` 1q, ..., σ1pNqqσ2p1q stands for the finite sequence pσ1pkq, σ1pk `
1q, ..., σ1pNqq where σ2p1q has been deleted. It appears that contrary to the case
U “ 0, the permutation σ1 is not determined by σ2, as we have N´k`1 possibilities
for the insertion of σ2p1q in pσ1pkq, σ1pk ` 1q, ..., σ1pNqqσ2p1q. Nevertheless, the set of
σ1 obtained when σ2 run through S is again A

rσ,rk.
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Construct, as described in the introduction, a set-valued dual rX B prXnqnPZ` starting

from rX0 B tidu and using the random mappings modeled after the family p rψSqsPS. By
applying iteratively Lemma 3.4, we get that rX is given by (3.7), showing in particular
that it is taking values in subsets of the form Aσ,k for some σ P SN and k P J1, NK with
σpkq “ N , as forecasted.

4 Birth and death chains

The construction of the random mappings used to recover the discrete Pitman
theorem is extended here to “restless” birth and death chains. It is a discrete analogue of
the results we are looking for in the context of one-dimensional diffusions (see Subsection
7.2). As in the previous section, we restrict our attention to the subset case (the dual
processes will start from singletons) and only globally associated to P˚ random mappings
will be considered here: associated will mean globally associated.

Let be given pppxqqxPZ a family of elements of p0, 1q. We are interested in the irre-
ducible transition kernel P given by

@ x, y P Z, P px, yq B

$

&

%

ppxq, if y “ x` 1

1´ ppxq, if y “ x´ 1

0, otherwise
(4.1)

An associated Markov chain X B pXnqnPZ` is said to be a restless birth and death chain,
since at each time n P Z` it chooses to go up or down of one unity and cannot stay at
the same position. Up to a factor, a corresponding invariant measure π is given by

@ x P Z, πpxq B

$

’

&

’

%

P p0,1qP p1,2q¨¨¨P px´1,xq
P px,x´1qP px´1,x´2q¨¨¨P p1,0q , if x ě 1

1, if x “ 0
P p0,´1qP p´1,´2q¨¨¨P px`1,xq
P px,x`1qP px`1,x`2q¨¨¨P p´1,0q , if x ď ´1

Depending on the family of coefficients pppxqqxPZ, the measure measure π may be finite
or not. Whatever the case, as in Subsection 3.1, the measure π is reversible for P , in the
sense that P˚ “ P , where P˚ is defined as in (1.2). The kernel Λ given in (1.6) is also
well-defined, as soon as we restrict S to be the set of finite non-empty subsets of Z.

A random mapping associated to P˚ “ P can be constructed by mimicking the
definition given in Subsection 3.1. Define for x P Z and u P r0, 1q,

ψ`px, uq “

"

x´ 1, if u P r0, 1´ ppxqq
x` 1, if u P r1´ ppxq, 1q

ψ´px, uq “ ψ`px, 1´ uq

and introduce the mapping

@ S P S, @ x P Z, @ u P r0, 1q, ψpS, x, uq B

"

ψ`px, uq, if x ą maxpSq

ψ´px, uq, if x ď maxpSq
(4.2)

A random mapping ψS is obtained by considering ψpS, ¨, Uq, where U is uniformly dis-
tributed on r0, 1q. It leads to the construction of a (conditioned) set-valued dual X (starting
from a singleton) as prescribed after the proof of Corollary 1.6. More precisely, fix a finite
trajectory xJ0,nK of X with n P Z` and let U1, U2, ..., Un be independent random variables
uniformly distributed on r0, 1q, so that Xm is constructed recursively on m P J1, nK as
follows. Condition the random mappings ψpX0, ¨, U1q, ψpX1, ¨, U2q, ..., ψpXm´1, ¨, Umq by
ψpX0, x1, U1q “ x0, ψpX1, x2, U2q “ x1, ..., ψpXm´1, xm, Umq “ xm´1 and call ϕ1, ϕ2, ...,
ϕm the induced random mappings. We define X0 B tx0u and iteratively

@ m P J1, nK, Xm B ty P Z : ϕmpyq P Xm´1u (4.3)
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Our goal in this section is to simplify the description of XJ0,nK via a backward con-
struction that will be useful for one-dimensional diffusion processes.

For any m P J0, nK, consider

Rm B maxpXmq

R^m B minpXmq

These numbers determine Xm:

Lemma 4.1. For any m P J0, nK, Rm and R^m have the same parity and Xm is the set of
integers between Rm and R^m with the same parity as Rm.

Proof. All the mappings ϕ1, ϕ2, ..., ϕm change the parity of their argument. Since
X0 “ tx0u, we deduce that for all m P J0, nK, the parity of all the elements of Xm is the
same as that of x0 when m is even and is the other one when m is odd.

The second assertion of the lemma is proven by iteration on m P J1, nK, based on the
fact that if x and x` 2 belong to Xm´1, then necessarily x` 1 P Xm, by restlessness.

Before proceeding toward a simplified presentation, let us be more specific about our
conditioning operations. For any m P J1, nK and any r P Z, consider

apxm´1, xm, rq B

"

ppxmq, if xm´1 ă xm ď r

0, otherwise
(4.4)

Define another number bpxm´1, xmq via

bpxm´1, xmq B

"

1´ ppxmq, if xm´1 ă xm
ppxmq, if xm´1 ą xm

(4.5)

The interest of these numbers is:

Lemma 4.2. The conditioning ψpXm´1, xm, Umq “ xm´1 a.s. amounts to the conditioning
Um P rapxm´1, xm, Rm´1q, apxm´1, xm, Rm´1q ` bpxm´1, xmqq.

Proof. We consider several cases:

• When xm ą xm´1 and xm ą Rm´1: then ψpXm´1, xm, Umq “ ψ`pxm, Umq, so for
this term to be equal to xm´1 “ xm ´ 1, we must have Um P r0, 1 ´ ppxmqq “

rapxm´1, xm, Rm´1q, apxm´1, xm, Rm´1q` bpxm´1, xmqq, with apxm´1, xm, Rm´1q “ 0

and bpxm´1, xmq “ 1´ ppxmq.

• When xm ą xm´1 and xm ď Rm´1: then ψpXm´1, xm, Umq “ ψ´pxm, Umq “

ψ`pxm, 1 ´ Umq so for this term to be equal to xm´1 “ xm ´ 1, we must have
1 ´ Um P r0, 1 ´ ppxmqq, namely Um P pppxmq, 1s, which a.s. corresponds to Um P

rapxm´1, xm, Rm´1q, apxm´1, xm, Rm´1q ` bpxm´1, xmqq, with apxm´1, xm, Rm´1q “

ppxmq and bpxm´1, xmq “ 1´ ppxmq.

• When xm ă xm´1: since xm ă xm´1 ď Rm´1, we have ψpXm´1, xm, Umq “

ψ´pxm, Umq “ ψ`pxm, 1 ´ Umq, so for this term to be equal to xm´1 “ xm ` 1,
we must have 1 ´ Um P r1 ´ ppxmq, 1q, namely Um P p0, ppxmqs, which a.s. cor-
responds to Um P rapxm´1, xm, Rm´1q, apxm´1, xm, , Rm´1q ` bpxm´1, xmqq, with
apxm´1, xm, Rm´1q “ 0 and bpxm´1, xmq “ ppxmq.

It follows from Lemma 4.2 there exist rU1, rU2, ..., rUn independent random variables
uniformly distributed on r0, 1q so that

@ m P J1, nK, ϕmp¨q “ ψpXm´1, ¨, apxm´1, xm, Rm´1q ` bpxm´1, xmqrUmq (4.6)

where we recall that ψ is defined in (4.2).
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Let us now show how pRmqmPJ0,nK can be constructed backwardly in the spirit of
Subsection 2.4. Similarly to ϕ1, ϕ2, ..., ϕm, we would like to consider the random
mappings φ1, φ2, ..., φm obtained by conditioning the random mappings ψptx0, x1u, ¨, U1q,

ψptx1, x2u, ¨, U2q, ..., ψptxm´1, xmu, ¨, Umq by ψptx0, x1u, x1, U1q “ x0, ψptx1, x2u, x2, U2q “

x1, ..., ψptxm´1, xmu, xm, Umq “ xm´1. Since we want the construction of φ1, φ2, ..., φm to
be coupled with ϕ1, ϕ2, ..., ϕm, we define

@ m P J1, nK, φmp¨q B ψptxm´1, xmu, ¨, apxm´1, xm, xm´1 _ xmq ` bpxm´1, xmqrUmq

“ ψptxm´1, xmu, ¨,rapxm´1, xmq ` bpxm´1, xmqrUmq (4.7)

where

rapxm´1, xmq B

"

ppxmq, if xm´1 ă xm
0, otherwise

Remark that the above definition of the φm, for m P J1, nK, is using the finite trajec-
tory XJ0,m´1K, only through xm and xm´1, and is not recursive (φn does not need the
knowledge of φn´1, ..., φ1). More precisely, this definition coincides with (4.6) if we had
Xm´1 “ txm´1, xmu. Denote

@ m P J1, nK, φm,n B φm`1 ˝ φm`2 ˝ ¨ ¨ ¨ ˝ φn

with the usual convention that φn,n is the identity mapping.

Proposition 4.3. With the above notations, we have

Rn “ maxtx ě xn : D m P J0, nK with φm,npxq “ xmu

Proof. Let us prove by iteration on m P J1, nK that

Rm “ rRm B maxtx ě xm : D l P J0,mK with φl,mpxq “ xlu

For m “ 1, by definition

rR1 “ maxtx ě x1 : D l P J0, 1K with φl,1pxq “ xlu

“ maxtx ě x1 : x “ x1 or φ1pxq “ x0u

“ maxtx P Z : φ1pxq “ x0u

“ maxtx P Z : ϕ1pxq “ x0u

“ maxpX1q

“ R1

where in the third equality we used that φ1px1q “ x0 and in the fourth, that ϕ1 “ φ1, when
x1 ă x0, and that ϕ1px1q “ φ1px1q “ x0 (as well as ϕ1px1 ` 2q ą x0 and φ1px1 ` 2q ą x0),
when x1 ą x0.

Assume that Rm “ rRm for some m P J1, n´ 1K and let us show that Rm`1 “ rRm`1.
We have

rRm`1 “ maxtx ě xm`1 : D l P J0,m` 1K with φl,m`1pxq “ xlu

“ maxtx ě xm`1 : x “ xm`1 or D l P J0,mK with φl,mpφm`1pxqq “ xlu

“ maxpxm`1,maxtx ě xm`1 : φm`1pxq P Amuq

where

Am B ty P Z : D l P J0,mK with φl,mpyq “ xlu
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In particular xm P Am, so that xm`1 P tx ě xm`1 : φm`1pxq P Amu, since φm`1pxm`1q “

xm. We deduce that

rRm`1 “ maxtx ě xm`1 : φm`1pxq P Amu (4.8)

Due to restlessness, the parity of the elements of Am is the parity of xm and the parity
of the elements of tx ě xm`1 : φm`1pxq P Amu is the same as the parity of xm`1.
Furthermore, on the set of odd (respectively even) integers, the mapping φm`1 is non-
decreasing, thus

tx ě xm`1 : φm`1pxq P Amu “ tx ě xm`1 : φm`1pxq P Bmu

where

Bm B ty ě xm : D l P J0,mK with φl,mpyq “ xlu

It follows by our iteration assumption that maxpBmq “ rRm “ Rm.
Note also that Bm is exactly equal to the subset of elements from Jxm, RmK which

have the same parity as xm. This comes from restlessness, which implies that two
trajectories pφl,mpyqqlPJ0,mK and pφl,mpy1qqlPJ0,mK, where y and y1 are integers with the
same parity, either stay one above the other or end up coalescing. So for any y P

Jxm, RmK which has the same parity as xm, the trajectory pφl,mpyqqlPJ0,mK is sandwiched
between pφl,mpxmqqlPJ0,mK “ pxlqlPJ0,mK and pφl,mpRmqqlPJ0,mK, thus ends up coalescing
with pxlqlPJ0,mK.

It follows from this description of Bm and (4.8) that rRm`1 “ Rm ´ 1, except if
φm`1pRm ` 1q “ Rm, in which case rRm`1 “ Rm ` 1. Let us show that

φm`1pRm ` 1q “ ϕm`1pRm ` 1q (4.9)

We consider two cases:

• When Rm ` 1 ą xm _ xm`1: we have

φm`1pRm ` 1q “ ψ`pRm ` 1,rapxm, xm`1q ` bpxm, xm`1qrUm`1q

Since Rm ` 1 ą Rm, we also get

ϕm`1pRm ` 1q “ ψ`pRm ` 1, apxm, xm`1, Rmq ` bpxm, xm`1qrUm`1q

Thus to deduce (4.9), it is sufficient to see that rapxm, xm`1q “ apxm, xm`1, Rmq. This
is always true when xm`1 ą xm and when xm`1 ă xm, it requires that xm`1 ď Rm,
which is implied by Rm ` 1 ą xm`1 here.

• When Rm ` 1 ď xm _ xm`1: since xm ď Rm, we get Rm “ xm ă xm`1 “ Rm ` 1. It
follows that φm`1pRm ` 1q “ φmpxm`1q “ xm “ ϕm`1pRm ` 1q.

It follows that

rRm`1 “

"

Rm ` 1, if ϕm`1pRm ` 1q “ Rm
Rm ´ 1, otherwise

It is easy to check by similar arguments that the r.h.s. is the iteration defining Rm`1,
showing that rRm`1 “ Rm`1.

A first guess would be that a similar formula holds for the minima of Xn, namely that

R^n “ rR^n B mintx ď xn : D m P J0, nK with φm,npxq “ xmu
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but this is wrong! Indeed, in the discrete Pitman example of Subsection 3.1, we get that
rR^n “ xn for all n P Z`, see Picture 2 showing that xn`1 ´ rR^n`1 “ xn ´ rR^n for all n P Z`
(the dotted lines correspond to the action of the mapping φn`1, to be read from the right
to the left, remember it is constructed by pretending that Xn “ txn, xn`1u): whatever
the motion from xn to xn`1, rR^n follows a parallel motion to go to rR^n`1. Since rR^0 “ x0,

we deduce that rR^n “ xn for all n P Z`.

n n` 1

xn
xn`1

rR^n
rR^n`1

n n` 1

xn

xn`1

rR^n

rR^n`1

Figure 2: Action of φn`1

To get a correct backward formula, we must replace φm, for m P J1, nK, by the random
mapping ϕm, using the acquired knowledge of RJ1,nK. Indeed, from (4.6), the mapping

ϕm is completely determined by xm´1, xm, Rm´1 and the random variable rUm. Denote

@ m P J1, nK, ϕm,n B ϕm`1 ˝ ϕm`2 ˝ ¨ ¨ ¨ ˝ ϕn

Proposition 4.4. With the above notations, we have

R^n “ mintx ď xn : D m P J0, nK with ϕm,npxq “ xmu

Proof. The arguments are similar to those of the proof of Proposition 4.3, but simpler
since we just play with the family of random mappings pϕmqmPJ1,nK. So let us prove by
iteration on m P J0, nK that

R^m “ rR^m B mintx ď xm : D l P J0,mK with ϕl,mpxq “ xlu

For m “ 0, by definition

rR^0 “ mintx ď x0 : ϕ0,0pxq “ x0u

“ mintx ď x0 : x “ x0u

“ x0

“ R^0

Assume that R^m “ rR^m for some m P J0, n´ 1K and let us show that R^m`1 “
rR^m`1.

We have

rR^m`1 “ mintx ď xm`1 : D l P J0,m` 1K with ϕl,m`1pxq “ xlu

“ mintx ď xm`1 : x “ xm`1 or D l P J0,mK with ϕl,mpϕm`1pxqq “ xlu

“ minpxm`1,mintx ď xm`1 : ϕm`1pxq P A
^
muq

where

A^m B ty P Z : D l P J0,mK with ϕl,mpyq “ xlu
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In particular xm P A^m, so that xm`1 P tx ď xm`1 : ϕmpxq P A
^
mu, since ϕmpxm`1q “ xm.

We deduce that

rR^m`1 “ mintx ď xm`1 : ϕmpxq P A
^
mu (4.10)

Due to restlessness, the parity of the elements of A^m is the parity of xm and the parity of
the elements of tx ď xm`1 : ϕmpxq P A

^
mu is the same as the parity of xm`1. Furthermore,

on the set of odd (respectively even) integers, the mapping ϕm is non-decreasing, thus

tx ď xm`1 : ϕmpxq P A
^
mu “ tx ď xm`1 : ϕmpxq P B

^
mu

where

B^m B ty ď xm : D l P J0,mK with ϕl,mpyq “ xlu

It follows by our iteration assumption that minpB^mq “
rR^m “ R^m.

As in proof of Proposition 4.3, remark that B^m is equal to the subset of elements from
JR^m, xmK which have the same parity as xm. It follows from (4.10) that rR^m`1 “ R^m ` 1,

except if ϕmpR^m ´ 1q “ R^m, in which case rR^m`1 “ R^m ´ 1. Thus we have

rR^m`1 “

"

R^m ´ 1, if ϕmpR^m ´ 1q “ R^m
R^m ` 1, otherwise

It is easy to check by similar arguments that the r.h.s. is the iteration defining R^m`1,

showing that rR^m`1 “ R^m`1.

To facilitate the analogy with the last section, let us summarize the procedure followed
here to construct Xn for any fixed n P Z`, given xJ0,nK. First we sample rU1, rU2, ..., rUn
independent random variables uniformly distributed on r0, 1q. Next we construct the
family pφmqmPJ1,nK via (4.7). Proposition 4.3 enables to deduce the family RJ0,nK. From
the latter, we construct the family pϕmqmPJ1,nK via (4.6). Then Proposition 4.4 enables to
deduce the family R^J0,nK. Finally, Lemma 4.1 leads to the construction of Xn.

Remark 4.5. In the discrete Pitman example of Subsection 3.1, the random variables
rU1, rU2, ..., rUn are not needed. Here this extra randomness is necessary to construct
the family RJ0,nK. But the two families rUJ0,nK and RJ0,nK are sufficient to deduce R^J0,nK,
namely no additional randomness is required.

5 Markov chains on Polish spaces

The construction of set-valued intertwining dual processes presented in the introduc-
tion for finite state spaces can be extended in several directions. Here, while keeping
the time discrete, we let the state space be a general Polish space.

Let V be a Polish space endowed with a Markov kernel P . We assume that P
admits an invariant probability π, so that P can be extended as a bounded operator on
L2pπq. Let P˚ be its adjoint operator. It is an abstract Markov operator: P˚ preserves
non-negativity as well as 1V . The probability measure π is invariant for P˚ in the
sense that πrP˚rf ss “ πrf s, for any f P BpV q, the space of bounded and measurable
functions defined on V . We used a traditional notation for integration: πrf s B

ş

f dπ.
The motivation for the Polish assumption on V is that P˚ can also be seen as a Markov
kernel. More precisely, consider on V ˆ V the coordinate mappings X0 and X1 and the
probability measure πpdx0qP px0, dx1q. Note that by the invariance of π, the law of X1 is
π. Using that V ˆ V and V are Polish spaces we get that the conditional law of X0 given
X1 can be described by a Markov kernel M from V to V (see for instance Section V.8 of
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Parthasarathy [24]). It follows that πpdx0qP px0, dx1q “ πpdx1qMpx1, dx0q. It is now easy
to see that P˚ is the extension of M as an operator on L2pπq. From now on, M will be
denoted P˚. Let us extend the definitions of the introduction to the present setting.

A random mapping ψ from V to V is a measurable mapping

ψ : Ωˆ V Ñ V

where pΩ,F ,Pq is an auxiliary probability space. Since we want to insure the existence
of conditional distributions, let us furthermore impose that pΩ,Fq is the Borel σ-field
associated to a Polish space. The random mapping ψ is said to be associated with
P˚, when for any x P V , the law of ψpxq is P˚px, ¨q. As in the finite state space case,
we want to allow for the dependence of ψ on some subsets S Ă V . Let S be a set of
measurable subsets S Ă V such that πpV q ą 0. We assume that S is endowed with a
Polish space topology and that the mapping V ˆS Q px, Sq ÞÑ 1Spxq is measurable with
respect to the corresponding product Borelian σ-field. This hypothesis will be called
(H1). Define Λ the mapping associating to any S P S the probability measure ΛpS, ¨q

which is the conditioning of π on S. This is an elementary conditioning, since πpV q ą 0.
It is straightforward to deduce from the measurability part of Fubini’s theorem and
from the above assumption on S that for any f P BpV q, the mapping S Q S ÞÑ ΛpS, fq is
measurable. It follows that Λ can be seen as a Markov kernel from S to V .

A measurable mapping

ψ : ΩˆSˆ V Q pω, S, xq ÞÑ ψSpω, xq

is called a S-random mapping and is said to be locally associated to P˚ when for
any fixed S P S, any measurable A Ă S and any x P V , we have

PrψSpxq P As “
P˚px,Aq

ζpSq
(5.1)

where ζ : SÑ p0,`8q is a measurable and positive mapping on S (as in the finite case,
we must have ζpV q “ 1). As it is customary, the dependence on ω P Ω will often not be
written explicitly. When for any fixed S P S, ψSp¨q is a random mapping associated to P˚,
ψ is said to be globally associated to P˚.

As in (1.12), to a S-random mapping ψ, we associate

@ ω P Ω, @ S P S, Ψpω, Sq B ty P V : ψSpω, yq P Su

A priori ΨpSq is a measurable subset of V for any S P S. We furthermore make the
assumption, subsequently called (H2), that S, its topology and ψ have been chosen so
that Ψ is a random mapping from S to S. We would like to extend the definition given in
(1.19), but the conditioning by ψSpx1q “ x is no longer an elementary one. Nevertheless,
our topological hypotheses make it possible, for any given x1 P V and S P S, to find a
Markov kernel Kx1,S from V to S such that for any px, x1, Sq P V ˆ V ˆS, Kx1,Spx, ¨q is
a regular version of the conditional law PrΨpSq P ¨|ψSpx

1q “ xs. Introduce Assumption
(H3), asserting that Kpx, x1, S, ¨q B Kx1,Spx, ¨q is a Markov kernel from V ˆ V ˆ S to
S, i.e. we are furthermore requiring that for any measurable A Ă S, the mapping
V 2 ˆS Q px, x1, Sq ÞÑ Kx1,Spx,Aq is measurable. This technical assumption is needed to
be able to use Kpx, x1, S, ¨q to construct associated Markov chains, via Ionescu-Tulcea’s
theorem. It is automatically satisfied when V is denumerable. When the measurability
assumptions (H1) (H2) and (H3) are satisfied, we say that the S-random mapping ψ

locally associated to P˚ is standard.
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Remark 5.1.

(i) Let MbpV q be the set of signed measures on V with finite total absolute weight.
From (H1) and the measurability part of Fubini’s theorem, we have that for any
µ PMbpV q, the mapping

@ S P S, FµpSq B
ş

S
dµ

is measurable.

If we have that the Borel σ-field on S is generated by these mappings, then (H2)
follows from (H1). Indeed, it is then sufficient to check that for any µ PMbpV q, the
mapping ΩˆS Q pω, Sq ÞÑ FµpΨpω, Sqq is measurable. This is again a consequence
of (H1) and of the measurability part of Fubini’s theorem, since the mapping
ΩˆSˆ V Q pω, S, xq ÞÑ 1Spψpω, S, xqq is measurable.

We believe (H3) should equally follow from (H1), under the same assumption on the
Borel σ-field on S, but we prefer not entering such measurability questions here.

(ii) A priori (H2) and (H3) depend on S and ψ, but we rather see these conditions
as relative to the the topology of S, in the sense they should be satisfied for
all S-random mappings ψ. In this situation, S is said to be a standard subset
topological space.

Similarly, (1.22) is replaced by

@ px, Sq P V ˆS, Qppx, Sq, dpx1, S1qq B P px, dx1qKpx, x1, S, dS1q (5.2)

As in (1.21), we are interested in the set A of probability measures m on V ˆS which
can be decomposed under the form

mpdx, dSq “ µpdSqΛpS, dxq (5.3)

where µ is the marginal law of m on S. When considering Markov chains starting from
initial distributions in A and evolving according to Q, it is possible to reduce the state
space V ˆS to

W B tpx, Sq P V ˆS : x P Su (5.4)

as in (1.20), since for x P S, Kpx, x1, S, ¨q should be supported by tS1 P S : x1 P S1u. But
in the definition of the regular version of a conditional expectation, one has to be careful
with negligible subsets, that is why the justification of this restriction will only be given
below, in the proof of Theorem 5.2. Note that W is a Borelian subset, according to (H1).

Finally, extend (1.16) and (1.18) by defining the kernels K and P on S via:

@ S P S,

#

KpS, dS1q B PrΨpSq P dS1s

PpS, dS1q B πpS1qζpSq
πpSq KpS, dS1q

(5.5)

Both K and P are Markovian: it is obvious for K and it is a consequence of the following
generalization of Theorem 1.5 to the present framework:

Theorem 5.2. Assume that we are given a standard S-random mapping ψ locally asso-
ciated to P˚. Let pXn,XnqnPZ` be a Markov chain on V ˆS whose initial distribution
LpX0,X0q belongs to A and whose transitions are given by Q, constructed as in (5.2).
Then X B pXnqnPN and X B pXnqnPN are Markov chains whose respective transitions
are given by P and P. Furthermore the conditions (1.9) and (1.10) are fulfilled and a.s.
for all n P Z`, pXn,Xnq PW .
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Proof. The arguments are essentially the same as those of the proof of Theorem 1.5, to
make them rigorous we just have to resort to conditional expectations.

The first part of the proof, namely that X B pXnqnPN is a Markov chain whose
transitions are given by P and the validity of (1.9), is very simple, as well as checking
pA0q and pB0q, with the notation from the proof of Theorem 1.5. Thus we concentrate
our attention to the deduction of pAn`1q and pBn`1q from pAnq and pBnq, for some given
n P Z`.

Let G : V ˆSÑ R be a bounded and measurable test function. We have

ErGpXn`1,Xn`1q|XJ0,nKs “

ż

V

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKsPrXn P dy|XJ0,nKs

“

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKsPrXn P dy|XJ0,nKs

since due to pBnq, PrXn P ¨|XJ0,nKs is supported by Xn. The reformulation of (2.3) in the
present context is that for any bounded measurable test function h : V Ñ R, we have

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKshpyqπpdyq

“ ζpXnq

ż

V

E
ψXn

Xn
rGpx,ΨpXnqqhpψXnpxqqsπpdxq (5.6)

where the exponent of the expectation of the r.h.s. indicates that the integration is only
with respect to the randomness of the random mapping ψXn , while Xn is fixed, as told by
its presence as an index. In this equality, h can depend on Xn (even on XJ0,nK), it will be
written hXn in the following computations. Let us prove (5.6). By the Markov property,
we have that the l.h.s. is equal to

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XnshXnpyqπpdyq

“

ż

XnˆVˆS

πpdyqP py, dxqKpy, x,Xn, dS
1qGpx, S1qhXnpyq

“

ż

XnˆV

πpdyqP py, dxqE
ψXn

Xn
rGpx,ΨpXnqq|ψXnpxq “ yshXnpyq

“

ż

VˆXn

πpdxqP˚px, dyqE
ψXn

Xn
rGpx,ΨpXnqq|ψXnpxq “ yshXnpyq (5.7)

Recall that by local association, P˚px, ¨q{ζpXnq and the law of ψXnpxq coincide when they
are restricted on Xn, so that

1

ζpXnq

ż

Xn

P˚px, dyqE
ψXn

Xn
rGpx,ΨpXnqq|ψXnpxq “ yshXnpyq

“ E
ψXn

Xn
rE

ψXn

Xn
rGpx,ΨpXnqq|ψXnpxqshXnpψXnpxqqs

“ E
ψXn

Xn
rGpx,ΨpXnqqhXnpψXnpxqqs (5.8)

The announced equality (5.6) follows. Taking into account pBnq, asserting that

PrXn P dy|XJ0,nKs “ ΛpXn, dyq

“ 1Xnpyq
πpdyq

πpXnq
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we deduce from (5.6), with h “ hXn B 1Xn{πpXnq,

ErGpXn`1,Xn`1q|XJ0,nKs “

ż

Xn

ErGpXn`1,Xn`1q|Xn “ y,XJ0,nKs
πpdyq

πpXnq

“

ż

Xn

E
“

GpXn`1,Xn`1q|Xn “ y,XJ0,nK
‰ 1Xnpyq

πpXnq
πpdyq

“ ζpXnq

ż

V

E
ψXn

Xn
rGpx,ΨpXnqq1XnpψXnpxqqs{πpXnqπpdxq

“ ζpXnq

ż

V

E
ψXn

Xn
rGpx,ΨpXnqq1ΨpXnqpxqs{πpXnqπpdxq

“ ζpXnq

ż

VˆS

πpdxqKpXn, dSqGpx, Sq1Spxq{πpXnq

“

ż

VˆS

πpdxqPpXn, dSqGpx, Sq1Spxq{πpSq (5.9)

where we used the definitions from (5.5). When G does not depend on the first variable,
i.e. is of the form

@ px, Sq P V ˆS, Gpx, Sq B gpSq

for a bounded and measurable test function g : V Ñ R, we get

ErgpXn`1q|XJ0,nKs “

ż

S

PpXn, dSq gpSq

which amounts to (An`1).

Next consider G of product form:

@ px, Sq P V ˆS, Gpx, Sq B hpxqgpSq

where g : V Ñ R and h : S Ñ R are bounded and measurable test functions. We
compute that

ż

VˆS

πpdxqPpXn, dSqGpx, Sq1Spxq{πpSq “

ż

S

PpXn, dSqgpSqΛrhspSq

Let F : SJ0,nK Ñ R be another bounded and measurable test function. From the above
consideration, we get

ErF pXJ0,nKqgpXn`1qhpXn`1qs “ ErF pXJ0,nKqErgpXn`1qhpXn`1q|XJ0,nKss

“ ErF pXJ0,nKqPrgΛrhsspXnqs

“ ErF pXJ0,nKqgpXn`1qΛrhspXn`1qs

Since F and g are arbitrary bounded and measurable functions, it follows that

ErhpXn`1q|XJ0,n`1Ks “ ΛrhspXn`1q

namely (Bn`1), due to the fact that h is equally an arbitrary bounded and measurable
function.

It remains to show that a.s. for all n P Z`, pXn,Xnq P W . For n “ 0, this is an
immediate consequence of the belonging of the initial distribution to A. For n P Z`,
successively apply (5.9) with the mappings G : V ˆS Q px, Sq ÞÑ 1Spxq and G B 1VˆS
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to get

PrXn`1 P Xn`1|XJ0,nKs “

ż

VˆS

πpdxqPpXn, dSq1Spxq1Spxq{πpSq

“

ż

VˆS

πpdxqPpXn, dSq1Spxq{πpSq

“ Er1VˆSpXn`1,Xn`1q|XJ0,nKs

“ 1

It is straightforward to generalize Corollary 1.6 to the present framework. In the
statement of this result, π is seen as the measurable mapping S Q S ÞÑ πpSq P p0, 1s.

In the applications we have in mind, the state space S is too small since we would like
that it contains the singletons, which in practice are often negligible with respect to π
when V is not denumerable. Consider for instance rX B p rXtqtě0 an elliptic diffusion on a
compact Riemannian manifold V . For fixed ε ą 0, we are interested in the time-skeleton
Markov chain X B p rXεnqnPZ` . Its invariant probability measure π is also the invariant

probability measure of rX, which gives zero mass to every singleton, since it admits a
density with respect to the Riemannian measure. Nevertheless, we are looking for a
set-valued dual X B pXnqnPZ` starting from X0 B tX0u, constructed via some random
mappings (e.g. to escape the difficulties encountered in [21] and [9] to get singletons
as starting points). In discrete time, the problem is only in the initial step, since for
n P N, Xn should be a “nice” compact subset of V with πpXnq ą 0. So to end this section,
we show a way to enlarge S to include the singletons. Again, random mappings are
very helpful in this respect, but they will no longer be locally associated to P˚ and we
need a slight generalization of this notion, see Remark 5.3(a) below. Unfortunately, this
approach will not receive here the full treatment it deserves and this lack of development
will prevent it from being useful in the next section.

We come back to the general setting of this section and begin by presenting some
straightforward modifications of the definitions. Consider

S̄ B SY ttxu : x P V u (5.10)

(here the notation differs substantially from that of the introduction, where S̄ was the set
of all subsets of V and S B S̄ztHu). Assume that S̄ is endowed with a Polish topology
such that S is a measurable subset of S̄ and such that the mapping VˆS̄ Q px, Sq ÞÑ 1Spxq

is measurable.
Extend Λ into a Markov kernel Λ̄ from S̄ to V , via the convention that when S is the

singleton txu, then Λptxu, ¨q B δx, the Dirac mass at x (this definition is coherent with
the conditioning when πptxuq ą 0). The state space W has to be enlarged into

W̄ B tpx, Sq P V ˆ S̄ : x P Su

“ W Y tpx, txuq : x P Su

The set of initial distribution we are interested in is Ā, the set of probability measure on
W̄ which can be decomposed as in (5.3).

Consider a measurable mapping

ψ̄ : Ωˆ S̄ˆ V Q pω, S, xq ÞÑ ψ̄Spω, xq

Assume that the restriction ψ of ψ̄ to ΩˆSˆ V is a standard S-random mapping locally
associated with P˚. Replacing S by S̄, we could define similarly a notion of a S̄-random
mapping ψ̄ locally associated with P˚, nevertheless the condition (5.1) on singletons
tx0u P S̄ would just mean

Prψ̄tx0upxq “ x0s “ P˚px, tx0uq{ζptx0uq (5.11)
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where ζ has been extended on S̄ as a measurable and positive function. In our present
context, the r.h.s. often vanishes and the requirement that Prψ̄tx0upxq “ x0s “ 0 is not
appropriate for our purposes. In some sense, we need a density equivalent of (5.11),
which leads us to strengthen our assumption on the Markov kernel P . So introduce
Hypothesis (H4) asking for the existence of a measurable function p : V ˆV Ñ R` such
that

@ x, y P V, P px, dyq “ ppx, yqπpdyq

This density assumption implies immediately that P˚ is given by

@ x, y P V, P˚px, dyq “ ppy, xqπpdyq

Condition (5.1) has to be amended with

@ x0, x P V, Prψ̄tx0upxq “ x0s “ ppx0, xq{ζptx0uq (5.12)

where ζ : S̄ Ñ p0,`8q is a measurable function. When (5.12) is satisfied (in addition
to ψ being a standard S-random mapping locally associated with P˚), we say that ψ̄ is
S̄-random mapping locally associated with P˚.

Remark 5.3.

(a) As observed above and strictly speaking, ψ̄tx0u is not locally associated to P˚, since
it does not satisfy (5.11) in general. Nevertheless, Equation (5.12) can be seen as
a limit of (5.1), when S converges to tx0u and ζpSq{πpSq converges to ζptx0uq. This
point of view inspired the notion of local association to P˚. It also explains the
expression obtained in (5.14) below.

(b) The measurability of ζ in (5.12) plays no role when we start with X0 “ x0 and
X0 “ tx0u, for some fixed x0 P V . Anyway, it seems quite natural to assume that
V Q x ÞÑ txu P S̄ is a measurable bijection, as well as its inverse (i.e. V can be
identified as a measurable space to ttxu : x P V u), so that one can go from the
measurability of S Q S ÞÑ ζpSq to the measurability of S̄ Q S ÞÑ ζpSq via the additional
condition that V Q x ÞÑ ζptxuq is measurable.

The mapping ψ̄ will be said to be standard, when the following extensions (H̄2) and
(H̄3) of Assumptions (H2) and (H3) hold:

• (H̄2) requires that the mapping

@ S P S̄, Ψ̄pSq B ty P V : ψ̄Spyq P Su

is measurable from S̄ to S. In particular, Ψ̄ptx0uq must have positive mass for any
x0 P V .

• (H̄3) provides us with a Markov kernel K̄ from V ˆ V ˆ S̄ to S, which, as in (5.2),
enables us to define a Markov kernel Q̄ from V ˆ S̄ to V ˆS via

@ px, Sq P V ˆ S̄, Q̄ppx, Sq, dpx1, S1qq B P px, dx1qK̄px, x1, S, dS1q (5.13)

Next let us come to the analogue of (5.5). The kernel K̄ is defined similarly to K:

@ S P S̄, K̄pS, dS1q B PrΨ̄pSq P dS1s

Due to (H̄2), K̄ is a Markov kernel from S̄ to S. One has to be more careful with the
definition of P̄:

@ S P S̄, P̄pS, dS1q B

#

πpS1qζpSq
πpSq K̄pS, dS1q, if πpSq ą 0

πpS1qζptx0uqK̄pS, dS
1q, if S “ tx0u is a singleton

(5.14)

Now we have all the ingredients necessary for stating the extension of Theorem 5.2:
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Theorem 5.4. Assume that we are given a standard S̄-random mapping ψ̄ locally asso-
ciated to P˚. Let pX̄n, X̄nqnPZ` be a Markov chain on V ˆ S̄ whose initial distribution
LpX̄0, X̄0q belongs to Ā and whose transitions are given by Q̄, constructed in (5.13).
Then X̄ B pX̄nqnPN and X̄ B pX̄nqnPN are Markov chains whose respective transitions
are given by P and P̄. Furthermore the conditions (1.9) and (1.10) are fulfilled and a.s.
for all n P Z`, pX̄n, X̄nq P W̄ .

As in Corollary 1.6, we deduce the following consequences.

Corollary 5.5. The kernel P̄ is Markovian and the intertwining relation (1.7) is satisfied.
When ζ ” 1 (in particular for globally associated to P˚ random mappings), π is harmonic
for K̄. Furthermore, S̄zS is an entrance boundary for X̄, in the sense that for any n ě 1,
X̄n P S, namely after time 1, pX̄n, X̄nqnPN is a Markov chain on V ˆS of the same type
as those considered in Theorem 5.2.

Proof of Theorem 5.4. Let us come back to the proof of Theorem 5.2 and review the
changes to be made. They correspond to the situation where X̄n is a singleton and it
is sufficient to consider the time n “ 0. Fix some x0 P V and assume that X̄0 “ tx0u.
Equation (5.6) is to be replaced by

ErGpX̄1, X̄1q|X̄0 “ x0, X̄0 “ tx0us “

ż

V

Eψ̄tx0urGpx, Ψ̄ptx0uqq1ψ̄tx0upxq“x0u
sπpdxq

where G : V ˆ S̄Ñ R is a bounded and measurable test function. Its proof, justifying
Condition (H4), is the following modification of (5.7):

ErGpX1, X̄1q|X̄0 “ x0, X̄0 “ tx0us

“ P px0, dxqK̄px0, x, tx0u, dS
1qGpx, S1q

“

ż

V

P px0, dxqE
ψ̄tx0urGpx, Ψ̄ptx0uqq|ψ̄tx0upxq “ x0s

“

ż

V

ppx0, xqE
ψ̄tx0urGpx, Ψ̄ptx0uqq|ψ̄tx0upxq “ x0sπpdxq

“ ζptx0uq

ż

V

Eψ̄tx0urGpx, Ψ̄ptx0uqq1tψ̄tx0upxq“x0u
sπpdxq

“ ζptx0uq

ż

V

Eψ̄tx0urGpx, Ψ̄ptx0uqq1Ψ̄tx0u
pxqsπpdxq

The definition of P̄ is dictated by the analogue of (5.9), which now writes:

ErGpX̄1, X̄1q|X̄0s “ ErGpX̄1, X̄1q|X̄0 “ x0, X̄0 “ tx0us

“ ζptx0uq

ż

V

Eψ̄tx0urGpx, Ψ̄ptx0uqq1Ψ̄tx0u
px0qsπpdxq

“ ζptx0uq

ż

VˆS

πpdxqK̄ptx0u, dSqGpx, Sq1Spxq

“

ż

VˆS

πpdxqP̄ptx0u, dSqGpx, Sq1Spxq{πpSq

The end of the proof readily follows the arguments given in the proof of Theorem 5.2.

Remark 5.6. As in the finite situation, the law of the random mapping enabling to
construct X̄n`1 (or Xn`1 in Theorem 5.2) from pXn, X̄n, Xn`1q may depend on the time
n P Z`. Indeed the proofs of Theorems 5.2 and 5.4 are only concerned with a transition
from n to n ` 1. One can even go further, by considering different state spaces Vn
at each time n P Z`. The invariant probability π has then to be replaced by a family
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pπnqnPZ` of probability measures which are related by the underlying Markov kernels:
πnPn “ πn`1, for any n P Z`, where Pn is the transition kernel between times n and
n` 1. Corresponding Markov kernels pΛnqnPN have to be considered.

6 Markov processes

Here we leave the discrete-time setting for a continuous-time framework, with the
purpose of extending the construction of set-valued intertwining duals given by Theorem
5.2 to diffusion processes. The full development of this theory is out of the scope of the
present paper and we hope to provide more details in future works. Nevertheless, below
we outline the principles underlying such extensions. An illustration will be given in the
next section, where we will also discuss further applications, up to the availability of
convenient stochastic flows.

Let V be a Polish space endowed with a probability distribution π. Let S be a set of
certain measurable subsets of V which are given a positive weight by π. For any S P S,
let ΛpS, ¨q be the elementary conditioning of π on S. Assume that S is endowed with a
Polish topology such that the mapping V ˆS Q px, Sq ÞÑ 1Spxq is measurable. It follows
that Λ, the mapping associating to any S P S the probability ΛpS, ¨q, is a Markov kernel
from S to V .

Let X B pXtqtě0 be a time-homogeneous V -valued diffusion (i.e. a Markov process
with continuous paths), whose semigroup P B pPtqtě0 admits π as an invariant probability
measure. Denote P˚ B pP˚t qtě0 the adjoint Markov semi-group in L2pπq. As in Section 5,
our topological assumptions insure that the semi-group is given by Markov kernels. By
our hypotheses below, the Markov processes associated to P˚, X˚ B pX˚t qtě0, will admit
versions that are diffusions. For any x P V , X˚pxq will stand for such a process starting
from x.

We want to consider stochastic flows on V extending the random mappings of the
previous sections. We will need a notion of stochastic flow more general than that
considered in a series of papers by Le Jan and Raimond [14, 15, 16, 17] (see also
Tsirelson [30]), since typically, due to the possible dependence on subsets of S, we
would like the increments of the flow to be non-stationary. It is even worse, since once
the time has been returned, the subset on which the construction depends is in the
future of the flow, fortunately there is an important independence property helping
us, see Lemma 6.3 below. In some sense, there is the same difference between the
stochastic flows of Le Jan and Raimond and those we would like to construct as the
coupling-from-the-past technique of Propp and Wilson [27] and the random mappings
considered in the introduction. So a lot remains to be investigated in this direction.

It is convenient to be quite explicit about the underlying probability space, so we are
led to the following definitions.

We assume that we are given RpV q a vector space of measurable functions from V to
V endowed with a Polish topology such that the mapping V ˆRpV q Q px, ψq ÞÑ ψpxq is
measurable (all product spaces are endowed with the product measurable structure).
Let 4 stand for tps, tq P R2

` : s ď tu and more generally for any I Ă R`, we define
4I B tpu, vq P I

2 : u ď vu. Define the space Ωp5q as the set of all measurable mappings

ψ : 4ˆ V Q ps, t, xq ÞÑ ψs,tpxq P V (6.1)

such that for any fixed ps, tq P 4, the restricted mapping ψs,t belongs to RpV q. The
notation ψ “ pψs,tpxqq0ďsďt,xPV will designate the canonical coordinates on Ωp5q. The
space Ωp5q is endowed with the sigma-field generated by the canonical coordinates.

Remark 6.1. The space Ωp5q is too large to be endowed with a Polish structure. It would
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be nicer to define Ωp5q as the space of mappings of the form (6.1) such that

4 Q ps, tq ÞÑ ψs,t P RpV q

is continuous. Unfortunately this assumption is for the moment too strong and would
not enable us to rely on the results of Le Jan and Raimond [17] in Subsection 7.1 below,
where V “ R and RpRq will be the space of non-decreasing càdlàg mappings from R to
R, endowed with the Skorohod topology.

The above presentation differs from that of Le Jan and Raimond [15] by the intro-
duction of the space RpV q (in the same spirit as that of S) to avoid the handling of
measurable representations.

A stochastic flow on the state space V is a probability distribution Pp5q on Ωp5q

such that for all 0 ď s ď t ď u, a.s. ψs,s is the identity operator and ψs,t ˝ ψt,u “ ψs,u.
Given such a probability Pp5q, the sigma-field of Ωp5q is completed with all its negligible
subsets. By a slight abuse of terminology, we will also say that the canonical ψ on Ωp5q is
a stochastic flow (implicitly under Pp5q). The stochastic flow is said to be associated
to P˚ if for any fixed t ě 0 and x P V , pψt´s,tpxqqsPr0,ts has the same finite-dimensional
marginal laws, over the time domain r0, ts, as a diffusion associated to P˚ and starting
from x. Namely ψ (or Pp5q) provides a coupling of the X˚

r0,tspxq, for any x P V and t ě 0.
Let us ask more, since we are rather interested in the notion of global association with
P˚, where there is an underlying dependence on subsets of S. To proceed toward its
definition, let us extend (H2) into (H5): for any 0 ď s ď t, the mapping

Ωp5q ˆS Q pψ, Sq ÞÑ ψ´1
s,t pSq

takes values in S\tHu and is measurable (where S\tHu is endowed with the sigma-field
generated by that of S and tHu).

Enlarge Ωp5q into Ωp4q B S ˆ Ωp5q, the canonical coordinate on S will be denoted
X0. A probability distribution Pp4q on Ωp4q will be said to be a stochastic flow when the
coordinates X0 and ψ are independent and the distribution of ψ is a stochastic flow. On
pΩp4q,Pp4qq, we define

@ t ě 0, Xt B ψ´1
0,t pX0q (6.2)

It follows from (H5) that X B pXtqtě0 is a S-valued stochastic process whose initial
variable X0 is independent from the stochastic flow ψ. Note that no regularity is assumed
with respect to the time (to go into this direction, one should improve the time regularity
of the flow, for instance by considering the condition mentioned in Remark 6.1), X is only
a collection of random variables indexed by the time.

For any A Ă 4 ˆ V , denote ψA B pψu,vpxqqpu,v,xqPA and for any t ě 0, let Gt be
the sigma-field generated by ψ4r0,tsˆV and X0. The stochastic flow ψ is said to be a
S-stochastic flow when

@ t ě 0, @ x P V, Lrψ4rt,`8qˆV |Gts “ Lrψ4rt,`8qˆV |Xts (6.3)

Since Ωp5q is not endowed with a Polish topology, we have to be more careful about the
meaning of the above identity: the signification is that any corresponding conditional
expectations are a.s. equal. With the same convention, a S-stochastic flow is said to be
globally associated to P˚, when

@ 0 ď s ď t, @ x P V, Pp4qrψs,tpxq P dy|Gss “ P˚t´spx, dyq (6.4)

In particular such a flow ψ is associated to P˚.
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Remark 6.2. By analogy with the definitions of the previous sections, a S-stochastic
flow ψ is said to be locally associated to P˚, when for any 0 ď s ď t, any x P V and any
measurable A Ă Xs, we have

Pp4qrψs,tpxq P A|Gss “ P˚t´spx,Aq{ζps, t,Xsq

where ζ : 4ˆpS\tHuq Ñ p0,`8q is a measurable mapping. But to avoid technicalities
and since we will not need it in the next section, we will not investigate this promising
notion in the time-continuous setting.

Enlarge the probability space pΩp4q,Pp4qq into pΩp3q,Pp3qq, with

Ωp3q B Ωp4q ˆ V

Pp3q B Pp4q b π (6.5)

and denote Z for the canonical coordinate on V .
An important consequence of global association to P˚ is:

Lemma 6.3. For any ps, tq P 4, Xs and ψs,tpZq are independent under Pp3q as soon as
Pp4q is a S-stochastic flow globally associated to P˚. It follows that ψ4r0,ssˆV and ψs,tpZq
are independent.

Proof. Let F and G be bounded and measurable functions defined respectively on S and
V . By definition, we compute that

Ep3qrF pXsqGpψs,tpZqqs “

ż

V

πpdzqEp4qrF pXsqGpψs,tpzqqs

“

ż

V

πpdzqEp4qrF pXsqE
p4qrGpψs,tpzqq|Xsss

“

ż

V

πpdzqEp4qrF pXsqP
˚
t´srGspzqs

“ Ep4qrF pXsqs

ż

V

πpdzqP˚t´srGspzq

“ Ep3qrF pXsqsπrGs

where we used (6.4) in the third equality and the invariance of π for the semi-group
P˚ in the last equality. Considering F ” 1 in the above computation, we also get that
πrGs “ Ep3qrGpψs,tpZqqs, so that finally

Ep3qrF pXsqGpψs,tpZqqs “ Ep3qrF pXsqsE
p3qrGpψs,tpZqqs

and the wanted independence of Xs and ψs,tpZq.
Note that the construction of ψs,tpZq depends only on Z and ψ4rs,`8qˆV , so it follows

from (6.3) that ψs,tpZq is in fact also independent from Gs.

A more interesting enlargement of Ωp4q is

Ω2 B Ωp4q ˆ V r0,`8q

The canonical coordinates on Cpr0,`8q, V q are denoted by the process Y B pYtqtě0.
For fixed t ě 0, let Ht be the sigma-field generated by Gt and Yr0,ts. We consider the
probability P2t on pΩ2,Htq which is the image of Pp3q by the mapping

Ωp3q Q pX0, ψ, Zq ÞÑ pX0, ψ, pψs,tpZqqsPr0,tsq

Lemma 6.3 insures that the probability spaces pΩ2,Ht,P
2
t q, for t ě 0, satisfy the Kol-

mogorov compatibility criterion. We get there exists a probability P2 on Ω2 endowed
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with its natural sigma-field, so that P2 coincides with P2t on Ht, for any t ě 0. Note
furthermore that under P2, the process Y is a stationary diffusion associated to the
semi-group P starting with Y0 distributed according to π and that we have

@ ps, tq P 4, P2rYs “ ψs,tpYtqs “ 1 (6.6)

For any measurable functional F defined on Ω2, which is either bounded or non-
negative, we are interested in the conditional expectation, E2rF |Xs, Yrs,tss, of F knowing
the sigma-field generated by Xs and the Yu, for u P rs, ts. We denote E2S,xrs,tsrF s B

E2rF |Xs “ S, Yrs,ts “ xrs,tss, keeping in mind that it is only defined a.s. with respect to a
set S P S and a trajectory xrs,ts P V

rs,ts, distributed according to the law of pXs, Yrs,tsq.
Recall from Lemma 6.3 that Xs and Yrs,ts are independent and that the law of the latter
is that of a stationary diffusion. Since neither Ω2 nor V rs,ts are Polish spaces, we cannot
represent the above conditional expectation via integration w.r.t. a Markov kernel from
Sˆ V rs,ts to Ω2.

Here is another compatibility consequence of global association that will be important
in the sequel.

Lemma 6.4. Assume the S-stochastic flow ψ is globally associated to P˚. Then for any
0 ď s ă t, any u ě 0 and any bounded and Gt-measurable functional F , we have

E2S,xrs,t`usrF s “ E2S,xrs,tsrF s

where the equality holds a.s. with respect to S P S and xrs,t`us P V
rs,t`us independently

distributed according to the law of Xs and to a stationary Xrs,t`us.

Proof. To get the above a.s. identity, it is sufficient to show that for any bounded and
Gt-measurable functional F , for any bounded and measurable functions G1 : S Ñ R,
G2 : V rs,ts Ñ R and G3 : V rt,t`us Ñ R, we have

E2rFG1pXsqG2pYrs,tsqG3pYrt,t`usqs

“ E2rE2Xs,Yrs,tsrF sG1pXsqG2pYrs,tsqG3pYrt,t`usqs (6.7)

So let us start with the l.h.s. and condition it by Gt:

E2rFG1pXsqG2pYrs,tsqG3pYrt,t`usqs

“ E2rFG1pXsqE
2rG2pYrs,tsqG3pYrt,t`usq|Gtss

“ E2rFG1pXsqE
2rG2ppψv,tpYtqqvPrs,tsqG3pYrt,t`usq|Gtss

Note that under the conditioning by Gt, the mappings pψv,tp¨qqvPrs,ts are fixed and that
pYt`vqvPr0,us is a stationary diffusion associated to P . It follows that

E2rG2ppψv,tpYtqqvPrs,tsqG3pYrt,t`usq|Gts

“

ż

G2ppψv,tpxqqvPrs,tsqErG3ppXv´tpxqqvPrt,t`usqsπpdxq

where Xpxq is a diffusion associated to P starting from x.

It leads us to introduce the measurable mapping

H : V rs,ts Ñ R

yrs,ts ÞÑ G2pyrs,tsqErG3ppXv´tpytqqvPrt,t`usqs
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since we can write, once again taking into account the independence property of Lemma
6.3,

E2rFG1pXsqG2pYrs,tsqG3pYrt,t`usqs “

ż

E2rFG1pXsqHppψv,tpxqqvPrs,tsqsπpdxq

“ E2rFG1pXsqHppψv,tpYtqqvPrs,tsqs

“ E2rFG1pXsqHpYrs,tsqs

“ E2rE2Xs,Yrs,tsrF sG1pXsqHpYrs,tsqs

To get (6.7), it remains to reverse the above computations, or more precisely, to apply
them with F ” 1 and the mapping Sˆ V rs,ts Q pS, yrs,tsq ÞÑ G1pSqG2pyrs,tsq replaced by

Sˆ V rs,ts Q pS, yrs,tsq ÞÑ G1pSqG2pyrs,tsqE
2
S,yrs,ts

rF s

Given a full trajectory xr0,`8q P V
r0,`8q and a set S P S, we can consider conditional

expectations ES,xr0,`8qr¨s as before Lemma 6.4, corresponding to the conditioning by
X0 “ S and Y “ xr0,`8q. The conditional expectations ES,xr0,`8qr¨s are only defined a.s.
with respect to pS, xr0,`8qq distributed according to the tensor product of the law of X0

and the stationary law of X. These conditionings are the time-continuous version of the
conditioning of the random mappings by the Markov chain pXnqnPZ` encountered in the
previous sections. As we have done before, when working under ES,xr0,`8qr¨s or under
its integrated version P defined in the next paragraph, the flow ψ B pψs,tq0ďsďt will be
denoted ϕ B pϕs,tq0ďsďt (to avoid the error of thinking that ϕ is globally associated to
P˚).

Assume that X0 is deterministic and let X B pXtqtě0 be a diffusion process associated
to P starting from ΛpX0, ¨q, say defined on a probability space pΩ1,P1q. We endow
Ω B Ω1 ˆ Ω2 with the probability measure P whose marginal distribution on Ω1 is P1 and
whose conditional distribution on Ω2 knowing the coordinate X on Ω1 is PX0,X r¨s. This
is well-defined through expectations, since the law of X is then absolutely continuous
with respect to the stationary law of a diffusion associated to P (the Radon-Nikodym
density being 1X0pX0q{πpX0q). More generally, this construction has to be integrated
with respect to the law of X0. This is possible when the initial law of X has the form
ş

S
ΛpS, ¨qµpdSq, where µ is a probability measure on S. In this case the law of pX0,X0q

belongs to A, namely is of the form described in (5.3), or equivalently, we have

LpX0|X0q “ ΛpX0, ¨q (6.8)

When P is constructed as above starting with Pp5q, a stochastic flow globally associ-
ated to P˚, we say that P is a pP˚,Sq-conditioned stochastic flow. We deduce from
Lemma 6.4 that under such a probability, the analogue of (1.9) is satisfied:

Lemma 6.5. Under a pP˚,Sq-conditioned stochastic flow P, we have

@ t ě 0, LpXr0,ts|Xq “ LpXr0,ts|Xr0,tsq

Proof. Let us first compute the conditional expectation under P knowing X. Consider a
bounded and G8-measurable functional F (i.e. F is measurable with respect to X0 and
ϕ), as well as a bounded and measurable mapping G : V r0,`8q Ñ R. Denote µ the law of
X0. By definition, we have

ErFGpXqs “

ż

SˆV

µpdSqΛpS, dxqE1xrGpXqE
2
S,X rF ss

where under P1x, X starts from x P V and is associated to the semi-group P . The previous
r.h.s. can be written under the following form, with Sx B tS P S : x P Su

ż

V

πpdxq

ż

Sx

µpdSq
E1xrGpXqE

2
S,X rF ss

πpSq
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Since the distribution of X0 admits

V Q x ÞÑ

ż

Sx

µpdSq
1

πpSq

as density with respect to π, we get that the conditional expectation of F knowing
X “ xr0,`8q P V

r0,`8q is given by

ErF |X “ xr0,`8qs “

ş

Sx0
µpdSqE2S,xr0,`8qrF s
ş

Sx0
µpdSq 1

πpSq

(6.9)

Note that by the martingale convergence theorem, we have

lim
sÑ`8

E2S,Xr0,ssrF s “ E2S,Xr0,`8qrF s

(a priori a.s. with respect to a stationary X, but equally under P, by absolute continuity).
Fix t ě 0 and assume now that F is furthermore Gt-measurable. We deduce from Lemma
6.4 that

E2S,Xr0,`8qrF s “ E2S,Xr0,tsrF s

so that

ErF |X “ xr0,`8qs “

ş

Sx0
µpdSqE2S,xr0,tsrF s

ş

Sx0
µpdSq 1

πpSq

In particular, the l.h.s. only depends on xr0,ts. By the tower property of conditional
expectation, we get that

ErF |Xr0,8qs “ ErF |Xr0,tss

Since this is true for any Gt-measurable F , we deduce the wanted equality.

To go further in the description of P, especially to show that the analogue of (1.10)
equally holds, we try to come back to the setting of the previous section by considering
discrete-time skeletons.

More precisely, for ε ą 0, consider the Markov kernel Pε from V to V . Associated
Markov chains are the ε-skeleton Xpεq B pXεnqnPZ` . For n P Z`, let ψpεqn,Xn be ψεn,εpn`1q

conditioned by Gεn. The family pψpεqn,SqSPS has to be understood in the following sense: let
F be a bounded or positive measurable function on R, by definition, the expectation of
F pψ

pεq
n,Sq is equal to E2rF pψεn,εpn`1qq|Xεn “ Ss, a.s. in S distributed according to the law

of Xεn. Here our notations may be slightly confusing, so let us review the construction
considered in Section 5, taking into account Remark 5.6, since the family pψpεqn,SqnPZ`, SPS

is inhomogeneous with respect to the time n P Z`. Starting from X
pεq
0 B X0, we define

X
pεq
1 B pψ

pεq
0,X0

q´1pX0q

“ pψ0,εq
´1pX0q

“ Xε

What is important is that the law of Xpεq1 knowing X
pεq
0 is exactly the law of Xε knowing X0,

so that the law of pXpεq0 ,X
pεq
1 q is equal to the law of pX0,Xεq. Construct Xpεq B pXpεqn qnPZ`

via the induction

@ n P Z`, X
pεq
n`1 B pψ

pεq
n,Xn

q´1pXpεqn q
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By iteration of the above argument and taking into account (6.3), we end up with Xpεq

having the same law as pXεnqnPZ` . We will identify Xpεq with pXεnqnPZ` , since above all we
are interested in their law, to be conditioned below. Besides, our previous assumptions on
ψ insure that for any n P Z`, the random mapping ψpεqn,S is, a.s. in S with respect to the law
of Xεn, a S-random mapping globally associated to P˚ε . Assumption (H1) was assumed
at the beginning of this section and (H5) implies (H2) for the discrete-time random
mappings ψpεqn,S , for n P Z` and S P S. To go in the direction of (H3), let us define, for any
0 ď s ă t, x, x1 P V and S P S, E2S;s,x;t,x1r¨s the conditional expectation under P2 knowing
that Xs “ S, Ys “ x and Yt “ x1. Next, let KppS; s, x; t, x1q, ¨q be the image of P2S;s,x;t,x1r¨s

by the mapping ψ ÞÑ ψ´1
s,t pSq. For fixed 0 ď s ă t, we can see it as a Markov kernel from

S ˆ V ˆ V to S, since it corresponds to the conditioning of Xt by pXs, Xs, Xtq and we
can work on the Polish space S ˆ V ˆ V ˆS endowed with the law of pXs, Xs, Xt,Xtq.
When s “ εn and t “ εpn ` 1q, KppS; εn, x; εpn ` 1q, x1q, ¨q can almost play the role of

Kpx, x1, S, ¨q in Condition (H3) for the discrete-time random mapping ψpεqn,S , except that
KppS; εn, x; εpn` 1q, x1q, ¨q is maybe not a Markov kernel corresponding to the conditional

distribution of pψpεqn,Sq
´1pSq knowing ψ

pεq
n,Spx

1q “ x, for all fixed S P S and x1 P S (and

a.s. in x with respect to the law of ψpεqn,Spx
1q), but only a.s. for S distributed as Xεn and

for px, x1q distributed (independently) according to πpdxqPεpx, dx
1q “ πpdx1qP˚ε px

1, dxq.
Nevertheless, this extension of Condition (H3) is sufficient for the validity of Theorem
5.2, as it is checked by a direct examination of its proof. Indeed, (5.7) and (5.8) have
now to be understood a.s., respectively w.r.t. the law of Xεn and in x w.r.t. π.

Remark 6.6. The above construction of the process pYtqtě0 could also be performed in
the discrete-time setting of Section 5 for globally associated to P˚ random mappings
to get a stationary chain pYnqnPZ` associated to the transition kernel P and satisfying
the analogue of Property (6.6). In the restricted setting of global association, it leads
to a variant of Theorem 5.2 where Condition (H3) has been removed and replaced by
the hypothesis that the random mappings belongs to some Polish functional space R. It
would be interesting to get similar constructions in the context of local association.

These considerations lead to the following continuous-time extension of (1.10):

Theorem 6.7. Under a pP˚,Sq-conditioned stochastic flow P, we have

@ t ě 0, LpXt|Xr0,tsq “ ΛpXt, ¨q (6.10)

Proof. According to the above observations, we are in position to apply Theorem 5.2 to
the time-inhomogeneous random mappings induced by the family pψpεqn,SqnPZ`, SPS. More
precisely, let us come back to the kernel described by KppS; εn, x; εpn ` 1q, x1q, ¨q, for
S P S, n P Z` and x, x1 P V . The tower property of conditional expectation implies that

E2S;εn,x;εpn`1q,x1r¨s

“

ż

Cprεn,εpn`1qs,V q

E2S,xrεn,εpn`1qs
r¨sPεn,x;εpn`1q,x1pdxrεn,εpn`1qsq (6.11)

where Pεn,x;εpn`1q,x1 is the law of the bridge Xrεn,εpn`1qs associated to P and conditioned
by Xεn “ x and Xεpn`1q “ x. Here we don’t need the results of Fitzsimmons, Pitman
and Yor [12] for the existence for such bridge laws, since we just require their existence
πpdxqPεpx, dx

1q-a.s. and not for every x, x1 P V .

Let rXpεq B p rX
pεq
n qnPZ` be a Markov chain with transition kernel Pε and starting from

ΛpX0, ¨q, first assuming that X0 is deterministic. As in Section 5, let rXpεq B prXpεqn qnPZ` be

obtained from pψ
pεq
n,SqnPZ`, SPS through its iterative conditionings:

@ n P Z`, ψ
pεq

n,rX
pεq
n

p rX
pεq
n`1q “ rXpεqn
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The law of p rXpεq, rXpεqq coincides with the law of pXpεq,Xpεqq. Indeed, by iteration, it

is sufficient to see that for any n P Z`, the conditional law of p rXpεqn`1,
rX
pεq
n`1q knowing

p rX
pεq
m , rX

pεq
m qmPJ0,nK is equal to the law of pXεpn`1q,Xεpn`1qq knowing pXεm,XεmqmPJ0,nK. On

one hand, by definition, by taking into account (6.11) and with the kernel K defined
above Remark 6.6, we have

Prp rX
pεq
n`1,

rX
pεq
n`1q P pdx, dSq|p

rXpεqm , rXpεqm qmPJ0,nKs

“ Pεp rX
pεq
n , dxqKprXpεqn ; εn, rXpεqn ; εpn` 1q, xq, dSq

“ Pεp rX
pεq
n , dxq

ż

Cprεn,εpn`1qs,V q

Kpp rXpεqn , xrεn,εpn`1qsq, dSqPεn,ĂXpεqn ;εpn`1q,x
pdxrεn,εpn`1qsq

“

ż

Cprεn,εpn`1qs,V q

Kpp rXpεqn , xrεn,εpn`1qsq, dSqδxεpn`1q
pdxqP

εn,ĂX
pεq
n
pdxrεn,εpn`1qsq

where

• KppS;xrεn,εpn`1qsq, ¨q is the image ofP2S;xrεn,εpn`1qs
r¨s by the mapping ψ ÞÑ ψ´1

εn,εpn`1qpSq,

• Pεn,x1p¨q is the law of Xrεn,εpn`1qs associated to P , starting at time εn from x1 P V .

On the other hand, with arguments similar to those of Lemmas 6.4 and 6.5, we check
that

PrpXεpn`1q,Xεpn`1qq P pdx, dSq|Xr0,εns,Xr0,εnss (6.12)

“

ż

Cprεn,εpn`1qs,V q

KppXr0,εns, xrεn,εpn`1qsq, dSqδxεpn`1q
pdxqPεn,Xεnpdxrεn,εpn`1qsq

It follows that

PrpXεpn`1q,Xεpn`1qq P pdx, dSq|pXεm,XεmqmPJ0,nKs

“

ż

Cprεn,εpn`1qs,V q

KppXr0,εns, xrεn,εpn`1qsq, dSqδxεpn`1q
pdxqPεn,Xεnpdxrεn,εpn`1qsq

and this ends the proof of the equality in law of p rXpεq, rXpεqq and pXpεq,Xpεqq. At least when
X0 is deterministic, but this identity in law is next extended by integration with respect
to LpX0q.

Taking into account Remark 5.6, Theorem 5.2 now implies that

@ n P Z`, LpXεn|X0,Xε, ...,Xεnq “ ΛpXεn, ¨q (6.13)

If we had some time regularity for the process X, the announced result would follow
by usual approximations. To go further, let us remark that in the above arguments, the
time mesh 0, ε, 2ε, ..., nε can be replaced by any finite sequence t0 ď t1 ď t2 ď ¨ ¨ ¨ ď tn.
The Markov chain pXt0 , Xt1 , Xt2 , ..., Xtnq is no longer time homogeneous, but as pointed
out in Remark 5.6, this is not crucial in the deduction that

LpXtn |Xt0 ,Xt1 ,Xt2 ...,Xtnq “ ΛpXtn , ¨q (6.14)

Now fix t ě 0 and consider two bounded and measurable functions F : V Ñ R and
G : Sr0,ts Ñ R. We want to show that

ErF pXtqGpXr0,tsqs “ ErΛrF spXtqGpXr0,tsqs (6.15)

Due to the product measurable structure of Sr0,ts, there exists a sequence psnqnPZ` of
distinct elements from r0, ts such that GpXr0,tsq only depends on the values pXsnqnPZ` .
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For N P N, consider

GN ppXsnqnPJ0,NKq B ErGpXr0,tsq|pXsnqnPJ0,NKs

The martingale convergence theorem implies that GN ppXsnqnPJ0,NKq converges for large
N toward GpXr0,tsq in L2pPq, so to prove (6.15), it is sufficient to see that

ErF pXtqGN ppXsnqnPJ0,NKqs “ ErΛrF spXtqGN ppXsnqnPJ0,NKqs (6.16)

Let t0 ď t1 ď t2 ď t3 ď ¨ ¨ ¨ tN`1 be the ordering of the elements s0, s1, s2, ..., sN , t, (6.14)
implies (6.16) via the conditioning by the sigma-field generated by pXsnqnPJ0,NK.

Other parts of Theorem 5.2 can be extended to the continuous-time framework: of
course under P, X remains a diffusion process associated to the semi-group P . The
process X B pXtqtě0 is Markovian, but in general it will no longer be time-homogenous.
The associated semi-group P B pPs,tq0ďsďt is given by

@ 0 ď s ď t, @ S P S,

#

Ps,tpS, dS
1q B πpS1q

πpSqKs,tpS, dS
1q

Ks,tpS, dS
1q B Pp4qrXt P dS

1|Xs “ Ss

Furthermore, the process pXt,Xtqtě0 is Markovian, indeed, a version of this property
was used in (6.12). Concerning the set W defined in (5.4), we get that for any sequence
ptnqnPZ` of non-negative times, we have

Pr@ n P Z`, pXtn ,Xtnq PW s “ 1 (6.17)

To go further and deduce that W can be taken as state space of pX,Xq under P, we would
need further regularity conditions, e.g. that there is version of X which is continuous
and W is closed.

As in Theorem 5.2, the initial X0 in Theorem 6.7 have positive weights with respect to
π. We cannot go around this drawback by following the approach leading to Theorem 5.4,
since we did not investigate the local association in the continuous time setting. Instead
of trying to develop an alternative general approach to get a set-valued dual process
starting from a singleton, we refer to the particular case presented in Subsection 7.1.

7 One-dimensional diffusion processes

As already alluded to, we would like to apply the analysis of the previous section
to diffusion processes. Unfortunately and despite the works of Le Jan and Raimond
[14, 15, 16, 17], the theory of stochastic flows has not been developed in the direction
needed by our purposes. The next subsection presents a treatment of the Brownian
case starting from 0 based on a stochastic flow due to Le Jan and Raimond [16], it leads
to a segment-valued dual process directly coupled with the primal Brownian motion
through its local time at 0. It turns out to be equivalent to the classical Pitman’s theorem
[25], which is thus recovered in this way. In the second subsection, we show how to
extend this analysis to simple one-dimensional diffusions, if we had at our disposal nice
stochastic flows. Subsection 7.2 ends by a conjecture about the existence of the strange
stochastic flows we would like to use, as a first step for one-dimensional processes. In
Appendix A, we will take advantage of classical transformations of the state space to
transfer the considerations of Subsection 7.2 to more general elliptic one-dimensional
diffusions.
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7.1 The Brownian motion case

Here we give a first illustration of how to put in practice the abstract considerations
of the previous section.

Let X B pXsqsě0 be a Brownian motion and let P B pPsqsě0 be the associated semi-
group, whose generator is half the Laplacian B2{2. Note that the Lebesgue measure λ
is reversible for P , we also interpret P as a self-adjoint semi-group on L2pλq, so that
P˚ “ P .

A priori we are not in the framework of Section 6, since λ cannot be renormalized into
a probability measure. Nevertheless Theorem 6.7 can be extended to this situation when
the elements of S are furthermore assumed to have a finite weight under λ. Indeed,
in (6.5), Pp3q must be replaced by the sigma-finite measure Pp4q b λ and the following
expectations have to be changed into integrations with respect to the corresponding
measures (the test functions have to be assumed to be integrable or non-negative). We
end up with a probability measure P, since in its construction, P2 is conditioned by the
event tX0 P X0u, which has the finite weight λpX0q P p0,`8q.

Let B B pBsqsě0 be another Brownian motion, it is not important to specify its initial
condition, since only the associated white noise will be needed. For fixed t ě 0, we
consider the following system of equations, for all y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyqqdB

ptq
s , @ s P r0, ts

Y
ptq
0 pyq “ y

(7.1)

where sgn is the sign function on R taking the value ´1 on p´8, 0s and 1 on p0,`8q and

where Bptq B pBptqs qsPr0,ts B pBt´sqsPr0,ts is the time-reversed process associated to B at
time t ě 0.

Le Jan and Raimond [16] provide a coalescing stochastic flow solution to (7.1), but it
is non-Wiener, meaning that extra-randomness, in addition to the Brownian motion B, is
necessary to its construction. For the general meaning of a (Wiener) coalescing stochastic
flow solution, we refer to Le Jan and Raimond [15]. Define ψ B pψs,tpyqqps,t,yqP4ˆR via

@ x P R, @ 0 ď s ď t, ψs,tpyq B Y
ptq
t´spyq (7.2)

(be careful that our convention for the direction of the time is reversed with respect
to that of Le Jan and Raimond [15]: ψs,t should be seen as acting on the state space at
time t toward the state space at time s). The stochastic flow ψ is associated to P , as an
immediate consequence of (7.1) and of Lévy’s characterization of the Brownian motion.
Since the state space is the real line, the regularity of ψ can be made more precise,
bringing us back to the assumptions of Section 6. Let RpRq stands for the set of mapping
from R to R which are non-decreasing and càdlàg.

Lemma 7.1. There exists a version of ψ which is such that a.s., for any ps, tq P 4,
ψs,t P RpRq.

Proof. Due to the temporal continuity and coalescing property of the solution Y B

pY
ptq
s pxqqps,tqP4,xPR of (7.1), we get that for any given x ď y P R, we have Y ptqs pxq ď Y

ptq
s pyq

a.s. for any ps, tq P 4. So we can extend pY ptqs pxqqps,tqP4, xPQ into rY B prY
ptq
s pxqqps,tqP4, xPR

by

@ ps, tq P 4, @ x P R, rY ptqs pxq B lim
yÑx, yąx, yPQ

Y ptqs pyq

Let rψ be obtained from rY as in (7.2). By construction, rY is such that a.s. for all ps, tq P 4,
rψs,t P RpRq. Furthermore, according to the point (e) in the Definition 1.6 of Le Jan and

Raimond [15], we have that for any ps, tq P 4 and any x P R, a.s. rY
ptq
s pxq “ Y

ptq
s pxq. It

follows that rY is also a solution of (7.1) and thus rψ provides the wanted version of ψ.
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Remark 7.2. The validity of Lemma 7.1 is not related to the choice of sgnp0q. With a
similar proof, one could deduce a version of ψ which is a.s. càglàd. In fact the definition
of sgnp0q is irrelevant, as Er

şt

0
1t0upY

ptq
s pyqq dss “ 0, for all y P R.

From now on, we will only consider a version of ψ as in Lemma 7.1. As announced in
Remark 6.1, RpRq is endowed with the Skorohod topology, which insures the measurabil-
ity of the mapping RˆRpRq Q px, ψq ÞÑ ψpxq. To apply the results of the previous section,
we must equally specify the space of nice subdomains S. As it will become apparent
later, it is convenient to consider:

S B tra, bq : a ă b P Ru (7.3)

This set S is endowed with the topology inherited from R2 and satisfies the properties
required in Section 6. Indeed, let us check the following property, relating Lemma 7.1 to
our choice of S.

Lemma 7.3. For any ps, tq P 4 the mapping

S Q S ÞÑ ψ´1
s,t pSq P S\ tHu (7.4)

is measurable.

Proof. First, for given ps, tq P 4, we verify that for ra, bq P S, the set ψ´1
s,t pra, bqq belongs

to S \ tHu. This is a consequence of ψs,t P RpRq: to see that ψ´1
s,t pra, bqq is a segment,

let x ď y belong to ra, bq. For z P rx, ys, we have a ď ψs,tpxq ď ψs,tpzq ď ψs,tpyq ă b, so
that z P ψ´1

s,t pra, bqq. Next let pxnqnPZ` be a decreasing family of elements from ψ´1
s,t pra, bqq

converging toward some x P R. Then we have limnÑ8 ψs,tpxnq “ ψs,tpxq and since the
l.h.s. belongs to ra, bq, we deduce that x P ψ´1

s,t pra, bqq and that the segment ψ´1
s,t pra, bqq is

closed on the left side. To see that it is open on the right side, consider x P ψ´1
s,t pra, bqq.

As y ą x decreases toward x, we have that ψs,tpyq converges toward ψs,tpxq, so that for y
sufficiently close to x, we have ψs,tpxq ď ψs,tpyq ă a, i.e. y P ψ´1

s,t pra, bqq.
It follows from these observations that for any x ă y P R, we have ψ´1

s,t prx, yqq “ ra, bq,
with

a B inftu P R : ψs,tpuq ě xu

b B inftu P R : ψs,tpuq ě yu

Fix u ă v P R and consider A B tra, bq : a ď u, b ą vu Ă S. We compute that

tS P S : ψ´1
s,t pSq P Au “ trx, yq P S : x ď ψs,tpuq and y ą ψs,tpvqu

It follows without difficulty that the mapping defined in (7.4) is measurable.

Note that the Lebesgue measure λ, invariant for the Brownian semi-group P , takes
positive and finite values on S. As in Subsection 3.1, we get that the corresponding
conditioning kernel Λ can be seen as a Markov kernel from S to R.

Fix t ě 0 and a Brownian trajectory Xr0,ts. Conditioning ψ by the event

@ s P r0, ts, ψs,tpXtq “ Xs (7.5)

implies in particular that

@ s P r0, ts, dXptqs “ ´sgnpXptqs qdB
ptq
s (7.6)

but it is not clear what happens to the extra-randomness, since this Tanaka’s stochastic
differential equation does not admit a strong solution either (see for instance Exercise
1.19 of Chapter 9 from Revuz and Yor [28]). Nevertheless we deduce that

@ s P r0, ts, dBptqs “ ´sgnpXptqs qdX
ptq
s (7.7)
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and it follows that the conditioned flow, denoted ϕ B pϕs,tpyqqps,t,yqP4ˆR in Section 6, is
given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
t´spzq (7.8)

where
#

dZ
ptq
s pzq “ sgnpZ

ptq
s pzqqsgnpX

ptq
s qdX

ptq
s

Z
ptq
0 pzq “ z

(7.9)

This system is the same as (7.1), once we have replacedBptq by p´
şs

0
sgnpX

ptq
v q dX

ptq
v qsPr0,ts

which is a standard Brownian motion. In particular the resolution of (7.9) also requires
some extra-randomness, but this is not a shortcoming for our present purpose since we
just need a solution. Indeed, for any given r ą 0, assume that the initial law of X is υr,
the uniform distribution on r´r, rq. Define for any t ě 0,

$

’

’

’

&

’

’

’

%

R_,rt B inf
!

z P R : Z
ptq
0 pzq ď r

)

“ sup
!

z P R : Z
ptq
0 pzq ă r

)

R^,rt B inf
!

z P R : Z
ptq
0 pzq ě ´r

)

X
prq
t B rR^,r, R_,rq “ ϕ´1

0,t pr´r, rqq

(7.10)

where for the last equality we took into account the proof of Lemma 7.3. Remark that
Xprq B pX

prq
t qtě0 remains non-trivial, namely that it never collapses to a singleton or to

the empty set: this is a consequence of the fact that Xt P Xt and of the structure of the
elements of S. We are now in position to apply Theorem 6.7 to deduce:

Theorem 7.4. For any r ą 0, the process Xprq is a set-valued dual for the Brownian
motion X starting from υr.

We would like to let r go to zero to be able to get X starting from 0. It will also provide
a more explicit set-valued dual. Indeed, assume that X starts from 0 and consider the
coalescing flow ϕ defined by (7.8) and (7.9). By analogy with (7.10), define the process
X B pXptqqtě0 via

@ t ě 0, Xptq B ϕ´1
0,t pt0uq (7.11)

We still have that for any t ě 0, Xptq is a segment closed on the left. We will see in the
proof of Proposition 7.5 that for any t ą 0, the right boundary of Xptq is open (but it is
closed at time 0, since Xp0q “ t0u). Anyway, the closure of Xptq is rR^, R_s with

R_t B suptz P R : Z
ptq
0 pzq “ 0u

R^t B inftz P R : Z
ptq
0 pzq “ 0u

and these quantities can be described explicitly:

Proposition 7.5. We have for any t ě 0,

R_t “ L0
t pXq ` |Xt|

R^t “ ´pL0
t pXq ` |Xt|q

where L0pXq B pL0
t pXqqtě0 is the local time of X at 0.

Proof. Due to the fact that ϕ is a coalescing flow and that X0 “ 0 we have

R_t B suptz P R : D s P r0, ts with Zptqs pzq “ Xptqs u

R^t B inftz P R : D s P r0, ts with Zptqs pzq “ Xptqs u
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From (7.9), we have for any z P R,

@ s P r0, ts, sgnpZptqs pzqqdZ
ptq
s pzq “ sgnpXptqs qdX

ptq
s (7.12)

and Tanaka’s formula (see e.g. Chapter 6 of Revuz and Yor [28]) implies that

@ s P r0, ts, d|Zptqs pzq| ´ dL
0
spZ

ptqpzqq “ d|Xptqs | ´ dL
0
spX

ptqq (7.13)

where L0pZptqpzqq B pL0
spZ

ptqpzqqqsPr0,ts and L0pXptqq B pL0
spX

ptqqqsPr0,ts are respectively
the local times of Zptqpzq and Xptq at 0.

Fix z ą x B X
ptq
0 “ Xt, assume that x ě 0 and define

τz B infts P r0, ts : Zptqs pzq “ 0u

(with the convention that infpHq “ `8). Consider the case τz ă `8 and let us show that

X
ptq
τz “ 0. The argument is by contradiction, assuming that Xptqτz ­“ 0. Define

γ B supts P r0, τzs : Xptqs “ 0u

with the convention that γ “ ´8 if the set in the r.h.s. is empty. For s P r0_ γ, τzq, we

have Zptqs pzq ą 0, L0
spZ

ptqpzqq “ 0 and L0
spX

ptqq “ L0
0_γpX

ptqq. It follows from (7.13) that

Z
ptq
0_γpzq ´ |X

ptq
0_γ | “ Zptqτz pzq ´ |X

ptq
τz |

“ ´|Xptqτz |

ă 0

i.e. Zptq0_γpzq ă |X
ptq
0_γ |. Note that depending on γ P r0, ts or γ “ ´8, we have Xptq0_γ “ 0 or

X
ptq
0_γ ą 0 (since when γ “ ´8, Xptq keeps the same sign on r0, τzs, which is the sign of

x). In any case, we end up with Zptq0_γpzq ă X
ptq
0_γ , which is in contradiction with the fact

that Zptqpxq remains above Xptq by the coalescing property.
Define

σz B infts P r0, ts : Zptqs “ Xptqs u

Due to the fact that Xptqτz “ 0 when τz ă `8, we deduce that σz ď τz. Integrating (7.13)
between the times 0 and σz, we thus get

σz ă `8 ñ |Zptqσz | ´ z “ |Xptqσz | ´ x´ L
0
σz pX

ptqq

ñ z “ x` L0
σz pX

ptqq (7.14)

Since

R_t “ maxtz ě x : σz ă `8u

we get that

R_t “ x` L0
σR_t

pXptqq (7.15)

Let us show that σ B σR_t is equal to t. Again the argument is by contradiction:
assume that σ ă t. Define

τ B infts P rσ, ts : Xptqs “ 0u

Since 0 is an accumulation point of ts P r0, ts : Xs “ 0u, we get that τ ă t. Let us show
that Xt´τ contains a right neighborhood of 0, namely that for z sufficiently close to 0`,
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we have that Zpt´τqpzq coalesces with Xpt´τq. Indeed, if this was not true, according to
the first part of the proof above, we would have that Zpt´τqpzq does not touch 0 for any
z ą 0. From (7.9), we deduce that

@ z P p0,`8q, @ s P r0, τ s, Zpt´τqs pzq “ z ` βs

where β B pβsqsPr0,τs is the Brownian motion defined by

@ s P r0, τ s, βs B

ż s

0

signpXpt´τqu q dXpt´τqu

This shows that Zpt´τqpzq touches 0 for any z P p0,´ infsPr0,τs βss, a contradiction.
Using the right continuity of our stochastic flows, we get

lim
zÑR_t

Zptqτ pzq “ Zptqτ pR
_
t q

“ Xptqτ

“ 0

Thus for z in a right neighborhood of R_t , we get that Zptqτ pzq belongs to Xt´τ and by
consequence that z P Xt. This is in contradiction with the definition of R_t and we finally
conclude that σ “ t.

Coming back to (7.15), we get that

R_t “ x` L0
t pX

ptqq

“ Xt ` L
0
t pXq (7.16)

under the previous assumption that Xt “ x ě 0.
When Xt ă 0, consider

ς B infts P r0, ts : Xptqs “ 0u

We deduce from (7.12) that

@ s P r0, ςs, Zptqs p´xq “ ´Xptqs pxq

In particular, we get

R_t “ suptz ě ´x : Zptqς P Xt´ςu

Note that for all z ě ´x, we have

@ s P r0, ςs, Zptqs pzq ´ z “ Zptqs p´xq ´ p´xq

so that

R_t “ ´x`R_t´ς

“ |Xt| `R
_
t´ς (7.17)

Using (7.16) with t replaced by t´ ς, we get

R_t´ς “ Xt´ς ` L
0
t´ςpXq

“ 0` L0
t pXq

Recalling (7.17), we conclude to the validity, in all cases, of

R_t “ |Xt| ` L
0
t pXq
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By symmetry, the expression for R^t is easily deduced:

R^t B ´ supt´z P R : D s P r0, ts with Zptqs pzq “ Xptqs u

“ ´ suptz P R : D s P r0, ts with Zptqs p´zq “ Xptqs u

“ ´ suptz P R : D s P r0, ts with Zptqs pzq “ ´X
ptq
s u

“ ´p| ´Xt| ` L
0
t p´Xqq

“ ´p|Xt| ` L
0
t pXqq

In particular, we get that for any t ą 0, Xt P S and is not reduced to a singleton. This
property is in fact sufficient to deduce the following variant of Pitman’s theorem.

Theorem 7.6. The process X “ pr´pL0
t pXq ` |Xt|q, L

0
t pXq ` |Xt|qqtě0 is a set-valued dual

for the Brownian motion X starting from 0.

Proof. The property

@ t ě 0, LpXr0,ts|Xq “ LpXr0,ts|Xr0,tsq

is obvious from the explicit expression for X.
The important point is to prove that

@ t ě 0, LpXt|Xr0,tsq “ ΛpXt, ¨q (7.18)

To take advantage from Theorem 7.4, enlarge the underlying probability space for X so
that it contains a random variable U independent from X and uniformly distributed on
r0, 1s. For any n P Z`, let tn B 1{pn` 1q and define the random variable Un P p|Xtn |,`8q

by

ż Un

|Xtn |

u exp

ˆ

X2
tn ´ u

2

2tn

˙

du

tn
“ U (7.19)

The interest of Un is that, denoting X
pnq
tn B r´Un, Unq P S, the law of pXtn ,X

pnq
tn q on RˆS

is given by

PrXtn P dx, X
pnq
tn P dSs “ νpnqpdSqΛpS, dxq (7.20)

where νpnq is the probability distribution on Ssym B tr´u, uq : u ě 0u Ă S described by

νpnqpdr´u, uqq B 2u2 expp´u2{p2tnqqdu{
a

2πt3n

Indeed, we compute that
ż

Ssym

νpnqpdSqΛpS, dxq “ expp´x2{p2tnqqdx{
?

2πtn

“ PrXtn P dxs

and (7.20) is a consequence of Bayes’ formula.
Shifting the origin of time to tn, we apply the considerations preceding Theorem 7.4

to the trajectory Xrtn,`8q and to the initial set-valued variable X
pnq
tn to construct

@ t ě tn, X
pnq
t B ϕ´1

tn,tpX
pnq
tn q

“ tz P R : ϕtn,tpzq P r´Un, Unqu

According to Theorem 7.4, we have

@ t ě tn, LpXt|X
pnq
rtn,ts

q “ ΛpX
pnq
tn , ¨q (7.21)

EJP 25 (2020), paper 6.
Page 51/64

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP419
http://www.imstat.org/ejp/


Measure-valued dual processes

For any t ą 0 and n P Z`, denote

r´U
pnq
´ ptq, U

pnq
` ptqq B X

pnq
t

According to Lemma 7.7 below, we have a.s.
#

limnÑ8 U
pnq
´ ptq “ R_t

limnÑ8 U
pnq
` ptq “ R_t

(7.22)

Consider p P N, 0 ă s1 ă s2 ă ¨ ¨ ¨ ă sp “ t and g1, g2, ..., gp some continuous and bounded
functions from R2 to R. We associate to these ingredients the mapping

G : Sp0,ts Q pras, bsqqsPp0,ts ÞÑ g1pas1 , bs1qg2pas2 , bs2q ¨ ¨ ¨ gppasp , bspq

Let h : RÑ R be a measurable and bounded function. From (7.22), considered with t
replaced by the s1, s2, ..., sp, we get the a.s. convergence of GpXpnq

rtn,ts
q toward GpXr0,tsq

for n large. We deduce that

lim
nÑ8

ErhpXtqGpX
pnq
rtn,ts

qs “ ErhpXtqGpXr0,tsqs

Next, taking into account that Xt P S, we also deduce from (7.22) the a.s. convergence
of ΛrhspX

pnq
t q toward ΛrhspXtq and consequently

lim
nÑ8

ErΛrhspX
pnq
t qGpX

pnq
rtn,ts

qs “ ErΛrhspXtqGpXr0,tsqs

It follows from (7.21) that

ErhpXtqGpXr0,tsqs “ ErΛrhspXtqGpXr0,tsqs

Since this is true for all h and G as above and that X0 “ t0u is deterministic, we get
(7.18).

Lemma 7.7. For any t ą 0, the convergences (7.22) are satisfied a.s.

Proof. Since X
pnq
t “ r´U

pnq
´ ptq, U

pnq
` ptqq and X “ r´R_t , R

_
t q, it is sufficient to see that for

any z P R

z R Xt ñ lim
nÑ8

1
X
pnq
t
pzq “ 0 (7.23)

z P p´R_t , R
_
t q ñ lim

nÑ8
1
X
pnq
t
pzq “ 1 (7.24)

Let us come back to (7.19), which is equivalent to

expp´U2
n{p2tnqq “ p1´ Uq expp´pXtnq

2{p2tnqq

namely

U2
n “ pXtnq

2 ´ 2tn lnp1´ Uq

where we see that limnÑ8 Un “ 0.
We begin by showing (7.23): when z R Xt, we have ϕ0,tpzq ­“ 0. So since

limnÑ8 ϕtn,tpzq “ ϕ0,tpzq, it appears that for n P Z` large enough, we cannot have

ϕtn,tpzq P r´Un, Unq, i.e. z ends up not belonging to X
pnq
t .

We now come to (7.24). From (7.14) we deduce that for z in the open set p´R_t , R
_
t q,

we have σz ă t, meaning that the trajectory r0, ts Q s ÞÑ ϕs,tpzq is equal to Xs for s small
enough. Thus for n large enough, we have

|ϕtn,tpzq| “ |Xtn |

ă
a

pXtnq
2 ´ 2tn lnp1´ Uq

“ Un

so that z belongs to X
pnq
t .
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Remark 7.8. Define

@ t ě 0, Mt B maxtXs : s P r0, tsu

The classical Pitman’s theorem [25] states that the process rX “ pr´p2Mt ´ Xt, 2Mt ´

Xtqqtě0 is a set-valued dual for the Brownian motion X starting from 0 and that p2Mt ´

Xtqtě0 is a Bessel-3 process. The process pL0
t pXq ` |Xt|qqtě0 is also a Bessel-3 process,

as a consequence of Lévy’s theorem (see e.g. Theorem 2.3 of Chapter 6 of Revuz and Yor
[28]).

A segment-valued process pYtqtě0 is said to be more λ-expansive than another
segment-valued process ppYtqtě0, when for any fixed t ě 0, the volume λppYtq is stochas-
tically dominated by λpYtq. Thus the processes X and rX are iso-λ-expansive. It can be
proven, by extending the arguments of the Remark 2.39 of Diaconis and Fill [10] (see
also Fill and Lyzinski [11] or [21]), that if pYtqtě0 is a set-valued dual for the Brownian
motion X starting from 0, then it is less expansive than rX, i.e. X and rX are two examples
of the most expansive set-valued duals for X.

Let us deduce more precisely the classical Pitman’s theorem [25] from Theorem 7.6.
With the notations of the above remark, Lévy’s theorem asserts the identity in law

pMt ´Xt,Mtqtě0
L
“ p|Xt|, L

0
t pXqqtě0

We infer for any t ě 0 the identity in law

ppL0pXq ` |X|qr0,ts, |Xt|q
L
“ pp2M ´Xqr0,ts,Mt ´Xtq

“ pp2M ´Xqr0,ts, p2Mt ´Xtq{2´Xt{2q

From Theorem 7.6, the distribution of |Xt| knowing pL0pXq ` |X|qr0,ts is the uniform
distribution over r0, L0

t pXq ` |Xt|s. It follows that the distribution of p2Mt ´Xtq{2´Xt{2

knowing p2M ´ Xqr0,ts is the uniform distribution over r0, 2Mt ´ Xts. To get Pitman’s
theorem, it remains to note that for any constant r ě 0, when U is a random variable
such that r{2´ U{2 is uniformly distributed on r0, rs, then U is uniformly distributed on
r´r, rs.

These arguments can be reversed to conversely deduce Theorem 7.6 from Pitman’s
theorem. This implication is succinctly mentioned by Yor [32] (at the end of page 4).

Remark 7.9. Despite the set-valued dual processes X B pr´pL0
t pXq ` |Xt|q, L

0
t pXq `

|Xt|sqtě0 and rX B pr´p2Mt´Xtq, 2Mt´Xtsqtě0 are iso-λ-expansive, some of their features
are quite different: the Brownian motion X never hits the boundary of X except at time 0
(since for t ą 0, we have L0

t pXq ą 0), while X recurrently hits the upper boundary of rX.

An potential advantage of the stochastic flow approach to set-valued dual processes
is its expected flexibility in the choice of the stochastic flow. In the next section, we will
present a conjectural but promising stochastic flow associated to the Brownian motion,
which should enable to directly recover the classical Pitman theorem by mimicking the
random mapping proof considered in the finite setting. But one can imagine a lot of
other examples, here is another one, which is a Wiener solution to a system of coalescing
stochastic flow equations.

Let B B pBsqsě0 and W B pWsqsě0 be two independent Brownian motions. For fixed
t ě 0, we consider the following system of equations, for any y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyq `W

ptq
s qdB

ptq
s , @ s P r0, ts

Y
ptq
0 pyq “ y

(7.25)
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where W ptq B pW
ptq
s qsPr0,ts B pWt´sqsPr0,ts and Bptq B pB

ptq
s qsPr0,ts B pBt´sqsPr0,ts are

time-reversed processes. Again define ψ B pψs,tpyqqps,t,yqP4ˆR via

@ x P R, @ 0 ď s ď t, ψs,tpyq B Y
ptq
t´spyq (7.26)

With the help of Le Jan and Raimond [17], we get

Proposition 7.10. There exists a Wiener solution of (7.25) such that ψ is coalescing
stochastic flow associated to P and such that a.s., for any ps, tq P 4, ψs,t P RpRq.

To be a Wiener solution of (7.25) means that the filtration generated by the stochastic
flow is included into the filtration generated by the white noises associated to B and W .

Proof. Consider Z´ B pZ´psqqsě0 and Z` B pZ`psqqsě0 two independent Brownian
motions (not assumed to be standard). Le Jan and Raimond [17] show there is coalescing
stochastic flow ξ B pξu,vpxqqpu,v,xqP4ˆR solution to the following system of equations, for
any x P R and 0 ď u ď v,

"

dvξu,vpxq “ 1ξu,vă0dZ´pvq ` 1ξu,vě0dZ`pvq

ξu,upxq “ x
(7.27)

Furthermore the coalescing stochastic flow ξ is a.s. unique and a Wiener solution:
it is constructed without resorting to extra-randomness outside Z´ and Z`. Fix t ě 0

and consider the two independent Brownian motions Zptq´ and Zptq` over the time interval
r0, ts given by

@ s P r0, ts,

$

&

%

Z
ptq
` psq “

W ptq
s ´Bptqs?

2

Z
ptq
´ psq “

W ptq
s `Bptqs?

2

(7.28)

Let pξptqu,vpxqqpu,v,xqP4r0,tsˆR be the corresponding solution of (7.27) and define

@ y P R, @ s P r0, ts, Y ptqs pyq B
?

2ξ
ptq
0,s

ˆ

y `Wt
?

2

˙

´W ptq
s

Via immediate substitution, we check that pY ptqs pyqqsPr0,ts, yPR is a solution of (7.25).
Let t ě 0 be a free variable again. From (7.26), we deduce a family of random

variables ψ B pψs,tpyqqps,t,yqP4ˆR. To check that it is a stochastic flow, let us first remark
that

@ x P R, @ t ě 0, @ s P r0, ts, @ v P r0, ss, ξ
psq
0,s´vpξ

ptq
0,t´spxqq “ ξ

ptq
0,t´vpxq (7.29)

Indeed, consider for any fixed x P R, t ě 0 and s P r0, ts,

@ u P r0, ss,

#

χu B ξ
psq
0,upξ

ptq
0,t´spxqq

ζu B ξ
ptq
0,t´s`upxq

By definition, we have

dχu “ 1χuă0dZ
psq
´ puq ` 1χuě0dZ

psq
` puq

“ 1χuă0dZ´ps´ uq ` 1χuě0dZ`ps´ uq

“ 1χuă0dZ
ptq
´ pt´ s` uq ` 1χuě0dZ

ptq
` pt´ s` uq

where Z˘ are defined as in (7.28), with the exponents ptq removed. Thus pχuquPr0,ss and

pζuquPr0,ss satisfy the same evolution equation. Since we also have χ0 “ ξ
ptq
0,t´spxq “ ζ0, we

get (7.29) from the uniqueness result of Le Jan and Raimond [17] (see also Prokaj [26]).
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Let us deduce from (7.29) the flow property of ψ. Indeed, we have for y P R, t ě 0,
s P r0, ts and v P r0, ss,

ψv,spψs,tpyqq “ Y
psq
s´vpY

ptq
t´spyqq

“
?

2ξ
psq
0,s´v

˜

Y
ptq
t´spyq `Ws

?
2

¸

´W
psq
s´v

“
?

2ξ
psq
0,s´v

˜?
2ξ
ptq
0,t´sppy `Wtq{

?
2q ´W

ptq
t´s `Ws

?
2

¸

´Wv

“
?

2ξ
psq
0,s´v

ˆ

ξ
ptq
0,t´s

ˆ

y `Wt
?

2

˙˙

´Wv

“
?

2ξ
ptq
0,t´v

ˆ

y `Wt
?

2

˙

´W
ptq
t´v

“ Y
ptq
t´vpyq

“ ψv,tpyq

Finally, the association of ψ to P is an immediate consequence of (7.25) and of Lévy’s
characterization of the Brownian motion and the last assertion of the lemma is proven as
in Lemma 7.1.

Most of the previous arguments for the stochastic flow defined in (7.2) can now be
extended to the stochastic flow considered in (7.26). E.g. fix t ě 0 and a Brownian
trajectory Xr0,ts. Conditioning ψ by the event described in (7.5) amounts to asking that
Br0,ts satisfies

@ s P r0, ts, dXptqs “ ´sgnpXptqs `W ptq
s qdBptqs

Indeed, Prokaj [26] has shown (taking into account a transformation similar to that
used in the proof of Proposition 7.10) that this equation in Xptq admits a unique strong
solution. We get that

@ s P r0, ts, dBptqs “ ´sgnpXptqs `W ptq
s qdXptqs

and it follows that the conditioned flow ϕ B pϕs,tpyqqps,t,yqP4ˆR is given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
t´spzq

where
#

dZ
ptq
s pzq “ sgnpZ

ptq
s pzq `W

ptq
s qsgnpX

ptq
s `W

ptq
s qdX

ptq
s

Z
ptq
0 pzq “ z

Then Theorem 7.4 is still valid, with Xprq defined as in (7.10), for any r ą 0. The
troubles begin with the process uX defined as in (7.11), for which we did not find an
explicit expression. Nevertheless we believe that this process uX is still a set-valued dual
for the Brownian motion X starting from 0 and not reduced to a singleton, for all positive
times. Furthermore, we think that this uX is strictly less λ-expansive (in the sense of
Remark 7.8) than the process X described in Theorem 7.6.

More generally, for any η ą 0 it should be possible to solve the coalescing stochastic
flow equation

@ y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyq ` ηW

ptq
s qdB

ptq
s

Y
ptq
0 pyq “ y

(7.30)
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and to show that the corresponding segment-valued are less and less λ-expansive as
η increases (see [21] for certain families of segment-valued dual processes satisfying
this monotonicity property, with λ replaced by the underlying invariant probability).
Unfortunately and despite the work of Prokaj [26] giving us a strong solution Y ptqpyq

for any fixed y P R, we did not find a reference insuring the existence of a coalescing
stochastic flow solution for (7.30), for η P p0,`8qzt1u.

7.2 Conjectures about one-dimensional diffusions processes

Here we propose an extension of Pitman’s theorem [25] (see also Rogers and Pitman
[29]) to simple one-dimensional diffusion processes. The considerations of this subsection
remain hypothetical since they assume the existence of convenient coalescing stochastic
flows, see in particular Conjecture 7.14.

Let be given a smooth and bounded mapping b : RÑ R. We consider the stochastic
differential equation

dXt “ dWt ` bpXtqdt (7.31)

where W B pWtqtě0 is a standard Brownian motion.
The process X is reversible with respect to the measure π, whose density, still

denoted π, with respect to the Lebesgue measure on R is given by

@ x P R, πpxq B exp

ˆ

2

ż x

0

bpyq dy

˙

(7.32)

Again the measure π gives an infinite weight to R and we must take the same
precautions as in the previous subsection.

Let P B pPtqtě0 be the semi-group associated to X, it is self-adjoint in L2pπq, so that
P˚ “ P . We renew Definition (7.3) for the set of nice subsets. The kernel Λ is still
Markovian from S to R, corresponding to the elementary conditioning operation under
π.

Let B B pBsqsě0 be another Brownian motion. For fixed x0 P R and t ě 0, we consider
the following system of equations, for all y P R,

#

dY
ptq
s pyq “ ´sgnpY

ptq
s pyq ´ x0qdB

ptq
s ` bpY

ptq
s pyqqds, @ s P r0, ts

Y
ptq
0 pyq “ y

(7.33)

with the same conventions as in Subsection 7.1, in particular for the sign. Let us assume
we have at our disposal a coalescing flow solution to (7.33). Lemma 7.1 enables us
to get a version which is such that for any s P r0, ts, the mapping R Q y ÞÑ Y

ptq
s pyq is

non-decreasing and càdlàg. Again to such a version we associate ψ B pψs,tpyqqps,t,yqP4ˆR
via

@ 0 ď s ď t, @ y P R, ψs,tpyq B Y
ptq
t´spyq (7.34)

Subsequently, we can partially adapt the strategy of the previous subsection. Fix
t ě 0 and a trajectory Xr0,ts associated to P and whose initial distribution is ΛpX0, ¨q.
Conditioning ψ by the event (7.5) implies that we have

@ s P r0, ts, dXptqs “ ´sgnpXptqs ´ x0qdB
ptq
s ` bpXptqs qds

We deduce that

@ s P r0, ts, dBptqs “ ´sgnpXptqs ´ x0qpdX
ptq
s ´ bpXptqs qdsq (7.35)
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and it follows that the conditioned flow, denoted ϕ B pϕs,tpyqqps,t,yqP4ˆR in Section 6, is
given by

@ 0 ď s ď t, @ z P R, ϕs,tpzq B Z
ptq
t´spzq (7.36)

where
#

dZ
ptq
s pzq “ sgnpZ

ptq
s pzq ´ x0qsgnpX

ptq
s ´ x0qpdX

ptq
s ´ bpX

ptq
s qdsq ` bpZ

ptq
s pzqqds

Z
ptq
0 pzq “ z

(7.37)

The observations mentioned after (7.9) are still valid. For given r^, r_ ą 0, assume that
the initial law of X is Λprr^, r_q, ¨q. Define for any t ě 0,

$

’

’

’

&

’

’

’

%

R_t B inf
!

z P R : Z
ptq
0 pzq ď r_

)

“ sup
!

z P R : Z
ptq
0 pzq ă r_

)

R^t B inf
!

z P R : Z
ptq
0 pzq ě r^

)

Xt B rR^, R_q “ ϕ´1
0,t prr

^, r_qq

where for the last equality we took into account the proof of Lemma 7.3, which can also
be applied here. Thus the process X B pXtqtě0 remains non-trivial and as in the previous
subsection, Theorem 6.7 would lead to the following result, if we had at our disposal a
solution to (7.33):

Conjecture 7.11. The process X is a set-valued dual for the diffusion process X starting
from the distribution Λprr^, r_q, ¨q.

The above conjecture should hold for any x0 P R, but we would like the dual process
X to be quite large and this requires a good choice of x0. In Subsection 7, we could have
replaced sgnp¨q by sgnp¨ ´ x0q, but the corresponding dual process X would have stayed
trivial until the first time τ that X, the Brownian motion starting from 0, hits x0:

@ t P r0, τ s, Xt “ tXtu

When, as in Theorem 7.4, the Brownian motion starts from the uniform distribution on
r´r, rq for some r ą 0, the set valued dual is a translation of X0 “ r´r, rq until the closure
of Xt contain x0, in particular the volume of Xt remains constant until the occurrence of
this event.

In the setting of this subsection, we expect similar behaviors. In particular if we want
Xt to be quite large for small times t ě 0, it seems preferable to take x0 P X0. Conjecture
7.14 below can be seen as an attempt to keep x0 in the closure of X, by letting x0 evolve
and be the supremum of X.

We are equally wondering about letting X start from a deterministic point. From
the above observation, it seems wise to take x0 equal to this initial point. So let us
assume that (7.33) admits a solution when X0 “ tx0u. As in Subsection 7.1, we are led
to introduce

R_t B suptz P R : Z
ptq
0 pzq “ x0u

R^t B inftz P R : Z
ptq
0 pzq “ x0u

Xt B rR_t , R
^
t q

Unfortunately, we did not found a nice explicit expression of X in terms of X, as
in Proposition 7.5, this prevents us from to conclude, as in Proposition 7.6 that X is a
non-trivial set-dual associated to X starting from x0. Nevertheless, here is an indication
going in this direction.
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Lemma 7.12. For any t ą 0, Xt is a right neighborhood of Xt.

Proof. Fix t ą 0 as well as ε P pmintXs : s P r0, tsu, x0q. Define

τ B infts ą 0 : Xs “ εu P p0, tq

γ B supts P r0, τ s : Xs “ x0u

Consider the flow pF
ptq
s pzqqzPR, sPr0,ts solution of the system

#

dF
ptq
s pzq “ ´pdX

ptq
s ´ bpX

ptq
s qdsq ` bpF

ptq
s pzqqds

F
ptq
0 pzq “ z

(7.38)

It is a regular flow: for any s P r0, ts, the mapping R Q x ÞÑ F
ptq
s pxq is a diffeomorphism

of R. This is also true for the random times τ and γ: the mapping R Q x ÞÑ F
pτq
τ´γpxq is a

diffeomorphism. Consider the unique ξ P R such that F pτqτ´γpξq “ x0.

Let us show that for s ą 0 sufficiently small, F pτqτ´γ´spξq ą x0. Indeed, we have

F
pτq
τ´γ´spξq ´ x0 “ ´pF

pτq
τ´γpξq ´ F

pτq
τ´γ´spξqq

“

ż τ´γ

τ´γ´s

dXptqu ´

ż τ´γ

τ´γ´s

bpXptqu q ` bpF
ptq
u pzqq du

“ x0 ´X
pτq
τ´γ´s ´

ż τ´γ

τ´γ´s

bpXptqu q ` bpF
ptq
u pzqq du (7.39)

If Xr0,ts was a Brownian motion, the process x0 ´ Xrγ,τs would be a Bessel-3 process
starting from 0 and stopped when it reaches ´ε, according to Williams’ Brownian path
decomposition (see e.g. Theorem 4.9 of Chapter 7 of Revuz and Yor [28]). From Wichura
[31], we would then be able to get that a.s.

lim inf
sÑ0`

x0 ´Xγ`s
a

s{ lnplnp1{sqq
ą 0

This behavior is shared by the diffusion process Xr0,ts, since Girsanov theorem insures
that its law is equivalent to that of the Brownian motion on the time interval r0, ts, see
also Bass and Erickson [6]. Furthermore, we have that

ˇ

ˇ

ˇ

ˇ

ż τ´γ

τ´γ´s

bpXptqu q ` bpF
ptq
u pzqq du

ˇ

ˇ

ˇ

ˇ

ď 2 }b}8 s

thus (7.39) implies that for s ą 0 small,

F
pτq
τ´γ´spξq ´ x0 „ x0 ´Xγ`s

ą 0

As a consequence, consider σ P p0, τ ´ γq such that

@ s P p0, σs,

#

X
pτq
τ´γ´spξq ă x0

F
pτq
τ´γ´spξq ą x0

From (7.37), we deduce that

@ s P p0, σq, F
pτq
τ´γ´spξq “ Z

pτq
τ´γ´spξq

Define

ζ B F
pτq
τ´γ´σpξq
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so that

Zpγ`σqσ pζq “ F pγ`σqσ pζq

“ x0

“ Xpγ`σqσ

We deduce that ζ P Xγ`σ. Note that ζ ą x0 ą Xγ`σ, it follows that Xγ`σ is a right
neighborhood of Xγ`σ. Finally, taking into account the right continuity of R Q z ÞÑ

Z
ptq
t´γ´σpzq, we obtain that Xt is a right neighborhood of Xt.

Remark 7.13.

(a) The above proof can be adapted to show that for any t ą 0, there exists s P p0, tq
such that Xs is a neighborhood of Xs. But this is not sufficient to get that Xt is
a neighborhood of Xt. Nevertheless, we believe it is true. This is specific to the
set-valued duals to be constructed with flows of the form (7.33), it is not true for the
classical Pitman’s dual, recall Remark 7.9, and cannot be expected for set-valued
duals to be constructed with flows of the form (7.40) below.

(b) Proposition 7.5 is still valid in the particular case where b is given by the non-regular
drift

@ x P R, bpxq B c signpxq

where c P R is a fixed constant. Indeed, in general (7.12) should be replaced by

@ s P r0, ts, sgnpZptqs pzqqpdZ
ptq
s pzq ´ bpZ

ptq
s pzqqdsq “ sgnpXptqs qpdX

ptq
s ´ bpXptqs qdsq

and one exactly recovers (7.12) with b of the above form.

The existence of a convenient coalescent flow solution to the system (7.33) seems a
reasonable conjecture and hopefully could be worked out using the techniques of Le Jan
and Raimond [15, 16, 17], but is out of the scope of this paper. What we really would like
to do is to solve the following more challenging one. It will probably require a fixed point
approach and thus a global topological structure on an adequate set of flows, in the spirit
of Remark 6.1. The conjecture below is a direct transposition of the approach presented
in Section 4 for birth and death chains and it would enable to construct set-valued dual
processes for one-dimensional diffusions in a similar way.

Conjecture 7.14. As at the beginning of this subsection, let B B pBsqsě0 be a Brownian
motion and fix some X0 P S. We are interested in the following system of equations, for
all t ě 0 and y P R,

$

’

&

’

%

dY
ptq
s pyq “ sgnpR_t´s ´ Y

ptq
s pyqqdB

ptq
s ` bpY

ptq
s pyqqds, @ s P r0, ts

Y
ptq
0 pyq “ y

R_t´s B supty P R : Y
pt´sq
t´s pyq ď maxpX0qu

(7.40)

Obviously there is a measurability problem in (7.40), since R_t´s belongs to the future
at time s of the filtration generated by Bptq. Nevertheless, we believe that for any
s ě 0, Rs will be independent from the white noise of B after time s, namely from the
sigma-field generated by the Bv ´ Bu, for v ě u ě s. In particular, the solution will
be such that the process p

şs

0
sgnpY

ptq
u pyq ´R_t´uqdB

ptq
u qsPr0,ts is a Brownian motion in the

filtration generated by Bptq, so that for any y P R, Y ptqpyq B pY ptqs pyqqsPr0,ts is a diffusion
associated to P . This solution should be sufficiently regular and in particular the process
R_ B pR_t qtě0 should be a continuous semi-martingale.
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A Reduction of one-dimensional diffusion processes

The purpose of this appendix is to show that it is not very restrictive to only consider
diffusions of the form (7.31).

Consider the second order operator L B aB2 ` bB on C8pIq, where a ą 0 and b are
smooth functions on the open interval I B pι´, ι`q Ă R. Up to performing a shift, assume
that 0 P I. The corresponding scale and speed functions ν and µ are defined by

@ x P I,

"

νpxq B exp
`

´
şx

0
b
a pyq dy

˘

µpxq B 1
2apxqνpxq

(A.1)

By a usual abuse of notation, ν and µ will also stand for the the scale and speed
measures which admit respectively the scale and speed functions as densities with
respect to the Lebesgue measure restricted to I.

Let pXtqtPr0,τq be a diffusion whose generator is L (in the sense of martingale prob-
lems), where τ ą 0 is its (random) explosion time, which is such that

lim
tÑτ´

Xt “ ι´ or lim
tÑτ´

Xt “ ι`

To simplify the notation, we extend the above diffusion to all times via

@ t P rτ,`8q, Xt B lim
sÑτ´

Xs

so that X B pXtqtě0 is V -valued with V B rι´, ι`s Ă R. The process X is absorbed at ι´

and ι` (if it reaches them). It is sometimes called a minimal Markov process associated
to L and its law is determined by its initial law LpX0q.

Denote

S B trz´, z`q : z´, z` P V and z´ ă z`u

S̄ B S\ ttzu : z P V XRu

and as usual, define the Markov kernel Λ from S̄ to V via

@ z B rz´, z`q P S̄, Λprz´, z`q, ¨q B

$

&

%

δx, if z` “ z´

µprz´,z`qX¨q
µpzq , otherwise

We are looking for a Λ-spreading for X, namely a set-valued dual process X B

pXtqtě0 such that for any t ą 0, we have Xt P S. We show below how to come back to the
setting of Subsection 7.2.

First, let us check that the problem of finding a Λ-spreading is invariant by diffeo-
morphisms. More precisely, let φ be a smooth function from I to R, whose derivative is
positive (in particular it never vanishes). There will be no loss of generality in assuming
that φp0q “ 0. Let rI B prι´,rι`q B φpIq and also interpret φ as an operator Φ from C8prIq
to C8pIq via

@ f P C8prIq, Φrf s B f ˝ φ (A.2)

Consider the operator rL B Φ´1 ˝ L ˝ Φ on C8prIq. It is not difficult to check that if X is a
diffusion associated to L, then rX B pφpXtqqtě0 is a diffusion associated to rL (where φ
has been extended to rV by φpι´q B rι´ and φpι`q B rι`).

Lemma A.1. Assume that X is a Λ-spreading forX. Then rX B pφpXtqqtě0 is a rΛ-spreading
for rX.
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Proof. Since φ is an homeomorphism between I and rI, all the defining properties of a
Λ-spreading are immediate to obtain, except (6.10), which requires the knowledge of rΛ.
So let us compute rL. Recall that we have

@ f P C8pIq, @ F P C8pfpIqq, LrF ˝ f s “ F 1rf sLrf s ` F 2rf sΓrf s

(this property is equivalent to the fact that L generates processes with continuous
trajectories), where the carré du champ operator Γ is defined by

@ f P C8pIq, Γrf s B
1

2
pLrf2s ´ 2fLrf sq

“ apBfq2

It follows that for any F P C8prIq, we have the change of coordinate formula:

LrF ˝ φs “ ΓrφsF 2rφs ` LrφsF 1rφs

so that

rLrF s “ pΓrφs ˝ φ´1qF 2 ` pLrφs ˝ φ´1qF 1

namely

ra “ Γrφs ˝ φ´1 “ papφ1q2q ˝ φ´1 (A.3)
rb “ Lrφs ˝ φ´1 “ paφ2q ˝ φ´1 ` pbφ1q ˝ φ´1 (A.4)

We deduce that

@ x P rI, rνpxq “ exp

˜

´

ż x

0

rbpyq

rapyq
dy

¸

“ exp

˜

´

ż φ´1
pxq

0

rbpφpyqq

rapφpyqq
φ1pyqdy

¸

“ exp

˜

´

ż φ´1
pxq

0

ˆ

φ2

pφ1q2
pyq `

b

aφ1
pyq

˙

φ1pyqdy

¸

“ exp

˜

´

ż φ´1
pxq

0

φ2

φ1
pyq `

bpyq

apyq
dy

¸

“
φ1p0q

φ1pφ´1pxqq
νpφ´1pxqq

“ φ1p0qνpφ´1pxqqpφ´1q1pxq

Similarly, we get

@ x P rI, rµpxq “
1

2rapxqrνpxq

“
1

2papφ1q2q ˝ φ´1φ1p0qνpφ´1pxqqpφ´1q1pxq

“ µpφ´1pxqqpφ´1q1pxq{φ1p0q

It just means that rν and rµ are the images of ν and µ by φ, up to the factors φ1p0q and
1{φ1p0q. It follows that

@ z B rz´, z`q P r̄S, rΛprz´, z`q, ¨q “ Λppφ´1pz´q, φ´1pz`qq, φ´1p¨qq (A.5)
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Denote also by φ the mapping S̄ Q rz´, z`q ÞÑ pφpz´q, φpz`qq P r̄S and by Φ the corre-

sponding functional operator, as in (A.2), transforming measurable mappings on r̄S into
measurable mappings on S̄. At the operator level, the relation (A.5) translates into the
intertwining relation

ΦrΛ “ ΛΦ (A.6)

From these invariance relations and from the fact that the σ-field generated by rXr0,ts
contains the same events as the one generated by Xr0,ts, we deduce that for any t ě 0,

Lp rXt|rXr0,tsq “ LpφpXtq|Xr0,tsq

“ ΦpLpXtq|Xr0,tsq

“ ΦpΛpXt, ¨qq

“ rΛpφpXtq, ¨q

“ rΛp rXt, ¨q

where in the second and third lines, Φ stands for the natural action induced on measures
by the mapping φ, obtained by duality from the action of Φ on the functions, and the
fourth equality corresponds to (A.6).

As a consequence, we get:

Corollary A.2. To know how to find a Λ-spreading for all initial distributions LpX0q and
for all generators L as above is equivalent to know how to solve this problem when
a ” 1{2.

Proof. Note that conversely in Lemma A.1, the diffeomorphism φ´1 from rI to I enables
to go from p rX, rXq to pX,Xq. Thus, taking into account (A.3), the proof of the above
corollary is reduced to the finding of increasing diffeomorphism φ on I such that ra ” 1{2,
namely φ1 “ 1{

?
2a. This is solved by considering

@ x P I, φpxq B

ż x

0

1
a

2apyq
dy

From a geometric point of view, this amounts to changing the usual metric on I so that
2aB2 corresponds to the second order terms of the Laplacian for the new metric.

Similarly, we can also removed the drift:

Corollary A.3. To know how to find a Λ-spreading for all initial distributions LpX0q and
for all generators L as above is equivalent to know how to solve this problem when b ” 0.

Proof. By the same reasoning as in the proof of Corollary A.2, it is suffisant to find an
increasing diffeomorphism φ on I such that rb ” 0. From (A.4), this amounts to Lrφs “ 0.
This is solved by considering

@ x P I, φpxq B νpr0, xsq

Except when Lr1{
?
as “ 0, it is not possible to perform the two operations of the

proofs of Corollary A.2 and A.3 simultaneously, to end up with the generator of the
Brownian motion on I (absorbed at the boundary when it is reached). Namely, not
every search for Λ-spreadings can be reduced to Pitman’s theorem [25]. Nevertheless,
by Corollary A.2, the one-dimensional processes considered at the beginning of this
appendix can be reduced to the case of Subsection 7.2, up to relaxing the hypotheses on
the drift b there and to assume here that ι´ and ι` are natural boundaries.
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Remark A.4. In Subsection 7.2 we preferred to work with the reduction of Corollary
A.2. We also tried the reduction of Corollary A.3 but it did not led to more explicit
set-valued dual processes, that is why the computations are not presented in this paper.
The reductions of one-dimensional diffusions deduced in Corollaries A.2 and A.3 are
the simplest ones, but other ones can be imagined and maybe among them there is one
leading to more natural couplings.
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