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On the construction of measure-valued dual processes
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Abstract

Markov intertwining is an important tool in stochastic processes: it enables to prove
equalities in law, to assess convergence to equilibrium in a probabilistic way, to relate
apparently distinct random models or to make links with wave equations, see Carmona,
Petit and Yor [8], Aldous and Diaconis [2], Borodin and Olshanski [7] and Pal and
Shkolnikov [23] for examples of applications in these domains. Unfortunately the
basic construction of Diaconis and Fill [10] is not easy to manipulate. An alternative
approach, where the underlying coupling is first constructed, is proposed here as an
attempt to remedy to this drawback, via random mappings for measure-valued dual
processes, first in a discrete time and finite state space setting. This construction is
related to the evolving sets of Morris and Peres [22] and to the coupling-from-the-past
algorithm of Propp and Wilson [27]. Extensions to continuous frameworks enable to
recover, via a coalescing stochastic flow due to Le Jan and Raimond [16], the explicit
coupling underlying the intertwining relation between the Brownian motion and the
Bessel-3 process due to Pitman [25]. To generalize such a coupling to more general
one-dimensional diffusions, new coalescing stochastic flows would be needed and the
paper ends with challenging conjectures in this direction.

Keywords: Markov intertwining relations; measure-valued dual processes; set-valued dual
processes; Diaconis-Fill couplings; random mappings; coalescing stochastic flows; Pitman’s
theorem; one-dimensional diffusions.

AMS MSC 2010: Primary 60J10, Secondary 37A25; 60J05; 60]J25; 60J60; 60G17; 60J65.
Submitted to EJP on November 9, 2018, final version accepted on January 15, 2020.

1 Introduction

Consider two Markov processes X and X on respective state spaces V and U, whose
generators are denoted L and £. The Markov process X is said to be a dual (by intertwin-
ing) of X when £ and L are linked via a weak conjugation relation £A = AL, where A is
a Markov kernel going from U to V' (so that at least formally, the previous commutation
makes sense). In such circumstances, the processes X and X can usually be nicely
coupled, so that useful informations on the behavior of X can be deduced from X. The
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Measure-valued dual processes

construction of the coupling was given by Diaconis and Fill [10] in the case of finite
state spaces and it is sometimes possible to extend it to more general situations, up
to cumbersome technicalities (see e.g. [21], for one-dimensional diffusions). Here we
propose a direct construction in the context of measure-valued duals X, namely those for
which U is a set of (non-negative and different from 0) measures on V' and A corresponds
to the canonical Markov kernel from U to V:

Ve,  Alm,) = n()/nV) (1.1

When X admits an invariant probability measure 7, we can also consider set-valued duals:
then U is a set of measurable subsets of V and A corresponds to the conditioning of =
with respect to the elements of . Since any measurable subset S of V' can be seen as
1 g7, the measure admitting the indicator function 15 of .S as density with respect to 7 (i.e.
the restriction of 7 on S), set-valued duals are in fact a particular case of measure-valued
duals. When V is finite and X is irreducible, Chapter 17 of Levin, Peres and Wilmer [18]
presents a particular set-valued dual as a Doob transform of the evolving sets of Morris
and Peres [22]. We go further in this direction, by constructing measure-valued dual
X directly from X via an approach sharing similarities with the coupling-from-the-past
algorithm of Propp and Wilson [27]. Some reverse random mappings play the main
role, since after having been conditioned to be compatible with a given trajectory of X,
they are used to make the measure-valued dual evolve (or the set-valued dual spread
through the state space). We will reinterpret the classical examples of the discrete
Pitman theorem [25] and of the top-to-random shuffle due to Aldous and Diaconis [1]
as particular instances of this general construction. To facilitate the exposition, we will
mainly consider finite state spaces and discrete time in this introduction, leaving the
extensions to continuous time and spaces to the last part of the paper, that will enable us
to recover the classical Pitman’s theorem [25] (see also Rogers and Pitman [29]). To deal
with more general one-dimensional diffusions and even multi-dimensional diffusions (see
the preprint [9] for the corresponding definition of £), we would need some coalescing
flows of a new type, whose theory has not yet been developed, despite the works of
Le Jan and Raimond, in particular [15, 16]. Their investigation should lead to direct
constructions of stochastic perturbations of mean curvature flows, in the spirit of [9],
which is the remote motivation for the present study. An alternative approach has
recently been proposed by Machida [19] for set-valued duals of diffusions and another
one is under construction in [3].

Let V be a finite space, endowed with a Markov kernel P = (P(z,y))zyev. A
traditionally associated generator L is P — I, where I is the V x V identity matrix, to
make a connexion with the above paragraph. Instead, we first consider discrete time and
keep working with P instead of L. When we are given a distribution mg on V, there exists
a Markov chain X = (X, )nez . on V whose initial position Xj is distributed according to
mo and whose transition are dictated by P. The law £(X) of X is uniquely determined by
mo and P. From now on, we assume that P is irreducible (i.e. exp(P) has only positive
entries), so that it admits a unique invariant probability 7 := (7(z)),ev. The entries of
are positive. As usual, measures (respectively functions) are seen as row (resp. column)
vectors and the invariance of m writes 7P = 7. This terminology comes from the fact
that when the initial distribution is chosen to be 7, then for any time n € Z., the law of
X, is equal to m. In this situation, it is possible to consider a stationary Markov chain
X = (X,,)nez defined for all times n € Z. The time-reversed process (X_,,),ecz is also a
stationary Markov chain, whose transition matrix P* := (P*(z,y)) is given by

Vax,yeV, P*(z,y) = P(y,x) (1.2)
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Let us recall the evolving set process of Morris and Peres [22] (see also Chapter 17
of Levin, Peres and Wilmer [18]). It is a Markov chain X := (X,;)nez . taking values in
S, where G is the set of all subsets of V. To define its transition matrix .J, fix S € & and
consider a random variable U uniformly distributed on [0, 1]. Denote

o(S) = {yeV:P*y,S)=U} (1.3)
and
VS, Ses, J(S,S) = P[eS) =29 (1.4)

Note that X is absorbed at ¢ and at V € &. The mapping 7 : & 3 S — 7(9) is harmonic
for J, in the sense that Jm = w. This harmonicity of 7 is equivalent to the fact that
(7(Xn))nez, is a martingale. It leads to consider the Doob transform of .J by 7, which
is the G x G transition matrix 3; given by

VS, S8ed, PS8 = J(S, 8" (1.5)

where G = &\{(} is the set of all nonempty subsets of V. The matrix B is the transition
kernel of X conditioned not to be absorbed at (7, cf. Chapter 17 of Levin, Peres and
Wilmer [18]. Let X = (X,)nez . be a Markov chain whose transitions are dictated by 3;.
It is a set-valued dual to X. Indeed, let A be the Markov matrix from & to V' given by

VSe& VzeV, A(Sz) = ;E?) (1.6)

It is not difficult to check the intertwining relation ;A = AP.
More generally, let 8 be a transition kernel on a finite set U and A be a Markov
kernel from U to V such that

PA = AP (1.7)
and let X = (X,,)nez . be a corresponding Markov chain. Assuming furthermore
L(X)A = L(Xop) (1.8)

Diaconis and Fill [10] constructed a coupling of X and X such that the two following
properties hold:

VneZy, L(XpnlX) = L(XfonglX[on]) (1.9)
Vne Z+7 £<Xn‘:£[[0,n]]) A(%n,-) (1.10)

In these identities, £(Y|Z) stands for the conditional law of ) knowing Z, for any (here
finite valued) random variables ), Z defined on a same probability space, [0,n] =
{0,1,...,n} and Y] ] is the stopped trajectory (Y;,)me[o,n] for any process Y := (Y, )nez, .

The first relation (1.9) requires that X can be deduced from X in an adapted way:
for any n € Z, only the knowledge of X[ ,] is needed to construct X ,j, maybe with
the help of independent randomness. The second relation can be seen as a stochastic
prolongation of both £(¥¢)A = £L(Xy) and PA = AP.

Unfortunately, the construction of Diaconis and Fill [10] is not easy to manipulate,
that is why we propose an alternative approach, valid for a extension of the evolving set
point of view (for the generality of this method, see Remark 2.1).

Our main ingredient is the following object. A random mapping ¢ : V — V (defined
on some underlying probability space) is said to be associated to P* when

Vo, eV, Pl(z)=12"] = P*(x,2)
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Consider U the set of non-negative measures on V. It is convenient to have at our
disposal a random mapping ¢, for any given 7 € 0. Such a family (’(/Jn)"e;ﬁ is said to be
locally associated to P* if

_ P /
VneU,VaoeV, Va' esupp(n), Ply,(z)=2"] = C((m,)x) (1.11)
n

where supp(n) is the support of 7 and where ¢ : 0 — (0, +o0) is a given positive mapping
on U (note that necessarily, () = 1 as soon as supp(n) = V). From now on, all the
families (1),cs we will consider will be implicitly assumed to be locally associated to
P*.

A family (¢,)),cq enables to define a random mapping ¥ from 0 to ¥ in the following
way. For any n € U, consider f the density of n with respect to =:

VaxeV, flx) = Zg;
We define
Vned, W) = (foy,)m (1.12)

namely the measure admitting the density § o ¢,, with respect to «.
Denote F (V) the set of real functions defined on V and recall the following notation
for the duality measures-functions:

Vne®B,VfeFV), alfl = ) fl@)n)

zeV

We compute that

Vned, vV feF(V), E[Tm[/]]

> F@)E[f(hy ()] 7(x)

zeV

= ), f@F@PYy(x) = y] 7 (2)

z,yeV

= Y f@iy—
z,yeV
m[fP*[f]]
¢(n)
m[fP[f]]
¢(n)
_alP 113)
¢(n)
where in the third equality, we used that the sum can be restricted to y belonging to the
support of 7, i.e. satisfying f(y) > 0.

The above relation will be crucial for our purposes, but before developing them, let
us make a link with the evolving sets of Morris and Peres [22].

Consider a family of random mappings (¢s) seg, namely which is rather indexed by
the subsets of V. We will refer to this situation as the subset case to distinguish it
from the previous measure case. These two settings are related, as alluded to in the
introductive paragraph: consider the mapping T : & — 2 defined by

VSes, I(S) = 1grm (1.14)
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This embedding enables us to see & as a subset of . In particular, by restriction,
any measure-indexed family of random mappings leads to a subset-indexed family of
random mappings. Conversely subset-indexed family of random mappings (¢s)¢cs can
be extended into a measure-indexed family of random mappings ('l/)n)neﬁ, by example via

Y — 7/’8» when n= T(S)

vned, ¥y = { g, otherwise

Remark 1.1. Measure (respectively subset)-indexed family of random mappings will
lead to measure (resp. subset)-valued dual processes. Measure-valued dual processes
are more general than subset-valued processes, while the latter can be interesting in
their own right, as they are related to natural objects such as the evolving sets of Morris
and Peres [22] or mean curvature flows, see for instance [9]. Nevertheless in hypoelliptic
continuous settings, subset-valued dual processes may lack a natural continuity property
of their trajectories, cf. [20], and to recover this regularity, it is better to reinterpret
them as measure-valued dual processes, as the topologies put on sets of measures are
traditionally weaker than topologies put on sets of subsets.

Remark 1.2. A family (¢,),cy is said to be globally associated to P* when all its
random mappings v, are associated to P*. All the examples of Section 3 are set-valued
and globally associated to P*. The interest of the notion of local association only
appeared while writing Section 5, when dealing with Polish spaces. A posteriori it
seemed a natural point of view that can be useful for some applications, even in the finite
setting. Indeed, looking for set-valued intertwining relations with a link A as in (1.6)
where 7 is replaced by a probability measure i which is not invariant for the transition
kernel P of the (primal) Markov chain, it is tempting modify P “far away” from the initial
point so that ¢ becomes invariant. Until these “far away” points are attained, the Markov
chain “does not know” its transition kernel has been modified, so we can intertwine it
using the modified A. Here we will not investigate the consequences of this possibility of
working locally.

The family (¢)s)s.s enables to define a random mapping ¥ from & to & via
VSe8, WS = {yeV :s(y)eS} (1.15)

It is easy to check that the definitions (1.12) and (1.15) are compatible with the
identification map %, in the sense that Yo ¥ = ¥ o ¥, Similarly to (1.13), we compute that

VSeS,VyeV, Plye¥(S)] = Plps(y)es]
= D Pls(y) =]
y'eS
= > P,v)/K(S)
y'eS

P*(y,5)/¢(5)

Thus when ¢ = 1, in particular for globally associated to P* random mappings, it appears
that for any y € V and S € &, P[y € ¥(5)] = P[y € ®(5)], but in general the law of ®(S5)
and ¥(S) are not equal, as it can be seen on the examples of Section 3.

Remark 1.3. The subset case is absorbing for the measure case in the following sense.

Let (1) ,,ex be a family of random mappings indexed by measures and ¥ be the associated
mapping defined in (1.12). Then we have

(G < 6
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where G is seen as a subset of ¥, via the identification (1.14). This is due to the fact
that & corresponds to the measures whose density with respect to 7 only takes values
in {0,1}. Note from (1.12) that the set of values taken by ¥(n) is a subset of the set of
values taken by 7 € 0.

As a consequence, if the algorithm we present below produces at some time a measure
belonging to &, then all subsequent measures will also belong to &. In particular,
when we start with a Dirac mass (which is identified with the singleton of S where is
concentrated the Dirac mass), only (), is needed for the constructions presented
below, namely it is sufficient to consider the subset case.

We now come back to the measure situation. Generalize (1.4), by considering the
transition matrix K from U to U given by

Vo, el,  Kmn) = P[¥(@n) =1 (1.16)
In order to extend the Doob transform of (1.5), let us define
VneD, w(n) = n(V) (1.17)

This definition may seem strange at first view, but note that in the subset case, it is quite
natural, as it just asserts that

VSeq, m(lgm) = x(5)

We can now generalize (1.5) via

Vo, eD,  P,n) = (n,1") (1.18)

where U := 0\ {0} is the set of measures on V which do not vanish identically. Even in
the subset case, in general 3 does not coincide with 93;. It will be shown in Corollary 1.6
below that 8 is a Markov transition kernel. It will also be useful to introduce the
following conditioned transition: fix ,2’ € V such that P(z,2’) > 0 (i.e. P*(2/,2) > 0)
and denote for any n € U whose support contains z,

Vi'el, Kewomn) = P[P0 =7, () =] (1.19)

Note that the conditioning is non-degenerate, since P[¢, (2') = ] = P*(2’,2)/¢(S) > 0
due to the fact that « € supp(n).
Consider

W = {(x,n) eV xY : zesupp(n)} (1.20)

and let A be the set of probability measures m on W which can be written under the
form

Vegn)eW, mxn) = upn)An ) (1.21)

where p is the marginal of m on U (i.e. the image of m by the mapping W 3 (z,n) — n €
0). Define a Markov kernel @ on W via

V(z,n), (&) eW,  Q(x,n),(@",1) = Pla,2')Kyw(n,n’) (1.22)

Remark 1.4. This expression should be compared with the one given by Levin, , Peres
and Wilmer in Section 17.7 of [18], where they introduce a Markov kernel Q on W via

V(x,8), («,)eW, QxS8),(,8) = P )5
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where, with the notation of (1.3),
VSew V(a5 eW, Ju(5,8) = P[®(S) =95
and where W corresponds to W in the subset case:
W = {(2,9eVx6:zeS8)} (1.23)

In Subsection 2.3, we will check that @ is a particular case of (), for an appropriate
choice of the family of random mappings (¢s)ses in the subset case. The generality
of the random mapping point of view leads to easy constructions in practice, even
if they are not optimal, with a coupling-from-the-past flavor (see Subsection 2.4). In
particular, it facilitates the reinterpretation of classical set-valued dual processes (see
Subsections 3.1 and 3.2). Another advantage of the random mappings is that they can
be transformed into coalescing stochastic flows in the diffusion setting (see Section 6 for
the general approach, Subsection 7.1 for an application to the real Brownian motion and
Subsection 7.2 for corresponding conjectures about general one-dimensional diffusions).

We can now state the first main result of this paper (continuous space and time
extensions will be presented in Theorems 5.2, 5.4 and 6.7 of Sections 5 and 6).

Theorem 1.5. Let (X,,, X, )nez, be a Markov chain on W whose initial distribution
L(Xo,Xo) belongs to A and whose transitions are given by Q. Then X = (X,)nen and
X = (X,)nen are Markov chains whose respective transitions are given by P and ‘B.
Furthermore the conditions (1.9) and (1.10) are fulfilled.

It follows that the kernel 3 is Markovian. As another consequence, we get an
extension of properties recalled for the evolving sets:

Corollary 1.6. The intertwining relation (1.7) is satisfied. Furthermore when ( =1, in
particular in the case of globally associated to P* random mappings, «, as defined in
(1.17), is harmonic for K.

Proof. The last assertion is obtained by summing in (1.18) with respect to 1’ € 0. The
intertwining relation can be checked directly, but it also comes from the computation of
P[X,+1 =z|X, =1n], forne Z,., x € V and n € 9, in two different ways:

On one hand, we have

]P[Xn+1 = xlxn = 77]

2 P[XnJrl = x|:{n+1 = n/a}:n = n]IP[xn+1 = 77/|:£n = 77]
n'ey

= AW, 2)P0,n)
n'eV
= ‘13/\(777 'T)

and on the other hand,

]P[Xn+1 = m|%n = 77]

3 P[Xpp1 = X, = @', Xy = ]P[X, = 2/|X, = 1]
z'eV

= Z A(va/)IP[XnH =X, = o, X, = n

z'eV

= Z A(n,2")P(2', x)
z’'eV

= AP(n,z)

where the last-but-one equality comes by summing over 7’ in (1.22). O
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Theorem 1.5 leads to an algorithm for the construction of X, given X, when poA =
mo, where ug = L(Xy) and mo = L£(X,) (in practice, one is often only interested in
the situation where mg is a Dirac mass at some xy € V and pg is the Dirac mass
at {0}, trivially satisfying A({zo},z9) = 1). Assume that a trajectory (z,)nez, of X
is given. We begin by sampling X, according to the probability measure U 3 n —
po(mA(n, xo)/mo(zo). Next, for n € Z,, assume that X,, has been constructed. We
consider a random mapping %, locally associated to P*, whose law may depend on
X, (but not directly on (Z,,)me[o,n], S€€ Subsection 2.2 for a generalization with a
dependence on X[y ,]) and whose underlying randomness is independent from all that
has been done before (except for the index parameter X,,). We condition by the fact
that ¥x, (zn+1) = 2, and we sample a corresponding mapping ¢ (which is no longer
associated to P*, since in general this property is not preserved by conditioning), to
construct X,, 1 via

VyeV., Xonly) = Xu(ey) (1.24)

In particular, since ¢(2,4+1) = x,, we get that X, 11 (2n11) = Xn(@n)7(@n41)/m(20),
and by iteration it appears that x,, € supp(X%,) foralln e Z, .

In the subset case, (X,,)nez , is subset-valued and the evolution step (1.24) is replaced
by

Xn1 = {yeV oy eX,}

By iteration, we check that z,, € X, forallne Z, .

This procedure is maybe better illustrated by the explicit constructions of Sub-
sections 2.3, 2.4, 3.1 and 3.2 in the subset case. There, only classical examples are
considered, as this paper is primarily concerned with the theoretical aspects of the
random mapping point of view. Theorem 1.5 describes a general method of construction
of measure-valued dual processes as well as their couplings with the primal processes.
The obtained dual processes will be good or bad (with respect to their fast spreading
over the primal state space in the set-valued case) depending on the underlying random
mappings. In practice, a relevant choice of the latters is thus crucial (the principle
alluded to at the end of Subsection 2.3 could serve as a general guide). This is another
task, so that more examples will be presented in future works. While in the finite state
space setting random mappings are easy to describe, this is no longer true in continuous
frameworks, as the underlying coalescing stochastic flows should be investigated further,
beginning with dimension one. Nevertheless we also expect applications for elliptic
diffusions on manifolds, then even the construction of dual processes is difficult (see the
recent preprint [9]) and the coupling apparently out-of-reach by traditional approaches.
We believe that the coalescing stochastic flows will provide a constructive existence of
the dual processes and of their couplings with the primal processes. As illustrated by
Theorem 1.5 and Corollary 1.6, the coupling should be constructed first and the dual
process deduced in a second step. Thus our method is in reverse order in comparison to
the original work of Diaconis and Fill [10].

Remark 1.7. In the first version of this paper, only the subset case was considered.
The referee pointed out that there are natural measure-valued dual processes, as illus-
trated e.g. by the papers of Avena, Castell, Gaudilliére and Mélot [4, 5] and he/she was
wondering if random mappings could be used in this situation. It led to the present
theoretical extension. The question of finding the random mappings indexed by mea-
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sures inducing the measure-valued dual processes of Avena et al. [4, 5] is very inter-
esting and should be investigated further, as it would provide an algorithm for the
coupling of the primal and dual processes. Again, this is out of the scope of the present
paper, whose main goal is to establish the principles behind such coupling construc-
tions.

From Section 3 on, we will only work in the subset case, since in Sections 3
and 4, we consider Dirac masses (i.e. singletons) as starting points for the dual pro-
cesses, and Sections 5, 6 and 7 should be seen as the first steps toward the cou-
pling of stochastically modified mean curvature flows with their primal diffusion pro-
cesses.

Remark 1.8. The finite state space framework is sufficiently important (as illustrated by
the book of Levin, Peres and Wilmer [18]) to prevent us from presenting a more general
version of Theorem 1.5 in this introduction. Nevertheless, it can be extended to infinite
transition matrices P := (P(z,y))s yev, Where V is a denumerable state space, under the
following conditions:

Finite degree: for any = € V, there is only a finite number of y € V such that
P(x,y) > 0.

Reversibility: there exists a measure 7w giving a positive weight to any x € V, such
that

Va,yeV, m(x)P(x,y) = =(y)P(y,x)

Indeed, in this situation, take 2 to be the set of measures with a finite support in
V, so that the kernel A given in (1.6) is still well-defined on U := U\{0}. We look for
dual processes taking values in 2. By reversibility, we have P* = P. Consider (1/),7)776@
a family of random mappings locally associated to P. Note that U is left stable by the
mapping ¥ defined in (1.12), due to the finite degree assumption. Theorem 1.5 is still
valid, because it is sufficient to work up to some arbitrarily fixed time-horizon n > 0 and
the Markov chains we are interested in have an initial distribution with finite support
(i.e. belongs to Y, up to a normalisation). Thus up to time n, the Markov chain stays
in a fixed finite state space S c V (depending on n). We can then apply the previous
constructions on the finite state space S. Let Pg be the restriction of P to .S, obtained by
transferring the probabilities to exit S to self-loops. The reversibility assumption implies
that the renormalization of the restriction of 7 to S is invariant for Ps. This property
insures us of the compatibility of these constructions for different times n.

The latter property is not true for general denumerable Markov chains (even under
the finite degree assumption). Furthermore the invariant measure may not be unique
(even up to a factor), even when there is one invariant measure which is reversible.
Thus, at least locally in time and for finite degree Markov kernels, it should be possible
to construct different measure-valued duals, associated to various invariant measures
through the corresponding A. We did not try to investigate further the opportunities
suggested by this observation.

When there is an invariant probability measure 7 for P, the extension of Theorem 1.5
is simpler, since it can be easily verified that all the computations are still valid. In this
situation, we take 2 to be the set of measures on V whose total weight is finite. Again
the kernel A given in (1.6) is still well-defined on 2 := 2\{0}. Let (¢;), 5 be a family
of random mappings locally associated to P*. The only point which has to be checked
is that the mapping V¥ defined in (1.12) a.s. leaves 0 invariant. Consider n e ¥, it is
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sufficient to show that E[¥(n)(V)] < +o0. We compute:

BEmW)] = Y 9() D[, () = y]

z,yeV ﬂ-(y)
N 7(z) P*(z,y)
R e
3 P(y, )
B zévn(y) ¢(n)
_ n(y)
a y;/((n)
_ V)
¢(n)
< +00

The plan of the paper is as follows. Theorem 1.5 is proven in the next section and
we will see how random mappings can also be used to deduce non-Markov measure-
valued dual processes. The classical set-valued dual processes of the discrete Pitman
theorem and of the top-to-random shuffle are treated in Section 3. In Section 4, we
generalize the discrete Pitman theorem to restless birth and death chains, i.e. necessarily
moving at each time step. In Sections 5 and 6, we provide extensions of the random
mapping analysis, respectively to Polish state spaces and to continuous time. From these
abstract considerations, Section 7 recovers Pitman’s theorem [25] about the explicit and
deterministic coupling associated to the intertwining of the Brownian motion with the
Bessel-3 process and proposes some conjectures about general one-dimensional diffusion
processes. Our hope is that the underlying challenge of the existence of some needed
singular coalescing stochastic flows will motivate a more thorough investigation in their
direction. An appendix ends the paper, showing why in dimension 1 it is sufficient to
study diffusions whose variance coefficient is 1, via some traditional transformations of
the state space R.

2 Random mappings

The proof of Theorem 1.5 generalizes that of Theorem 17.23 of Levin, Peres and
Wilmer [18], itself in the spirit of Diaconis and Fill [10]. The argument will be extended
to non-Markov measure-valued dual processes in Subsection 2.2, obtained by slightly
relaxing the notion of random mappings, it leads to more general dual processes. In
Subsection 2.3, we justify the assertions of Remark 1.4 and in Subsection 2.4 we discuss
the link with the coupling-from-the-past algorithm.

2.1 Proof of Theorem 1.5

By definition, we have for any n € Z, and (zo,n0), (£1,71), -, (Tn, ) € W,

]P[(X07%O) = (foano)» (le'/{l) = (xlvnl)v"'v (X’na}:n) = (x’nann)]
= NO(UO)A(nOa 370) H P(xm»$m+1)me,wm+1(nm’nerl) (2.1)
me[0,n—1]

where o = L(Xy). Summing over all g, n1,...,7, € U (so that xg € supp(ny), z1 €
supp(m), ..., T, € supp(ny,)), we get that for any zg, z1,...,z, €V,

P[XO = (I,‘(J,Xl, =T, ,Xn = In] = mo(.fl,‘o) n P(azm,me) (22)
me[0,n—1]

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
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where
mo(we) = Y po(no)A(no, zo)
o€V

(the r.h.s. sum can be restricted to 7y whose support contains z,, since otherwise
A(no, zo) = 0). It follows that (X, )me[o,»] is Markovian with transitions given by P and
initial distribution mq. Since this is true for all n € Z., we get that X is Markovian with
transitions given by P and initial distribution my.
For any m € [0, n], dividing (2.1) by (2.2) and summing over 7,41, ..., ,, we get
P[Xo =10, X1 = 11, s X = | Xo = 20, X1 = 21, .., Xyy = 7]
#o(n0)A(mo0, o
= (,rn)((x)) KIL,IZ+1(77l>771+1)
00 1e[0,m—1]

= IP[xO =10, X1 = N1, .., X = 77m|XO =20, X1 =21, ..., Xy = zm]
Fixing m € Z, and 7y ,,,J, note that the process (P[X[o, ] = 1[0,m]|X0; X1, -s Xn])nez, is
a non-negative martingale which is well-known to converge toward P[X[o ,n] = 7]0,m]|X])
for n large. It follows that

P[X[0,m] = mo.m)l X1 = P[X[o,m] = 1j0,m] | X[0,m]]

namely (1.9).
The Markov property of X and (1.10) are less immediate and the argument is based
on an iteration with respect to the following statements, forn e Z.:

The finite stochastic chain (X, )me[o,»] i Markovian with transitions given by f (A,)

For n = 0, the assertion (A4() is void and (Bg) is a rewriting of the assumption
£(X0, %0) e A.
Next assume that (4,) and (B,,) are true for some n € Z, and let us prove (A,.1) and

(Bn+1)-
Let (z,n) € W be given, we compute that

P[X,q1 = 2, Xn 1 = 1[X[o,n]
= Z IP[XnJrl =z, Xps1 = n‘Xn = yvx[[(),n]]]IP[Xn = ylx[[(],n]]]
yesupp(Xn)

Due to the Markov property of the couple (X, X), we deduce that for any y € supp(X,),

)
P[Xni1 =2, Xp41 = 0| X, = yvx[[o,n]]] = P[Xp41=2,X0401 =0[Xn =y, X0]
= Py, 2)Kyo(Xn,n)
( P[¥(Xn) = 0,9z, () = y]
Plyx, (z) = y]
PlV(X,) = n,¢x, () = y]
P*(z,y)

T
= Py,z

)

Y

= P(y,z)((Xn)

_ :E”yf;axnm[mn) b, (2) = 3] (2.3)

where the local association with P* was used in the fourth equality. On the other hand,
(By,) asserts that for y € supp(X,),
IP[Xn = y|x[[0,n]]] = A(xna y)

X, (y)
7r(}:n)

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
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and we get that

IP[Xn+1 =2,Xp41 = 77|:{[[0,n]]] Z W(x) C(%H)P[qj(%n) = ﬂa¢3€n ($) = y]

yesupn(en) TEn)
_ :(g)g(aen)mwxn) = 40, (2) € %]
- ;Eg?j)g(xn)]?[m(xn) =1,z €1
S COLLTESED)
= :Ef};‘ﬁ(%n 1)

where we used Definitions (1.16) and (1.18).
Summing over x € supp(n), we get

P[X, 41 = 77|3€[[0,n]]] = P(Xn,n)
whose validity for all n € U is (A,,+1). Using that for all (z,n) € W,

P[Xny1 =2, Xns1 = 0|X[o,n]
]P[%nJrl = 77‘:{[[071]]]
m(z)

IP[X7L+1 = x‘xn-‘rl = 777%[[0,71]]]

m(n)
= A(na Z)

we conclude to (B, 11).

2.2 Auxiliary measure-valued processes

In the definition of random mappings locally associated to P* given in the introduction,
we assumed that we had at our disposal a family (¢,,), 5. Suppose now that we rather
have a family (¢, .1 )y, ,;em, Where

ne

Q_U = I_lnE]NiTn

and whose elements are written under the form 7y ,j = (70,71, .-, )n), for some n € Z
and 79,71, ---, M € Y. The local association with P* of the family (1&,7[[0’n]])m[O Ljea NOW
means that

P*(x,a’)

V npong €W,V z eV, Va' esupp(n,), Py, (2) =] = Con)

where ¢ : 20 — (0, +00) is a positive mapping on 2 (note that necessarily {(njo,n}) = 1
as soon as supp(n,) = V). Following (1.12), we get a random measure depending on
Njo,n] € 2 and given by:

Vo €,  U(npomg) = (oo Ung,q)7

where f, is the density of 7,, with respect to «.
The analogue of (1.16) is a transition kernel from 27 to U

Voo €WV €D, Kpan) = P[¥(pon) =11

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
Page 12/64


https://doi.org/10.1214/20-EJP419
http://www.imstat.org/ejp/

Measure-valued dual processes

and (1.18) must be transformed into a kernel from 27 to U:

7(n')¢(Mpo,np)
M 7[0,n] € 20,V 77/ €Y, s13(17[[0_’71]], ’17/) = T[[)OHK(U{[OJL]]J]/) (2.4)

where 20 is the space
W = I_Ine]Nmn

By working as in the introduction, define conditioned transition kernels as in (1.19)
via

v Mo,n] € QH7 v 77/ € ma Kwﬁm’ (nﬂ(),n]] y 77/) = IP["I/(n[[(),n]]) = 77/‘1%[[0,"], (l’/) = ‘T]

for any x, 2’ € V with z € supp(n,) and P(z,2’) > 0. As a consequence of the dependence
on 7o) € W in (2.4), we cannot expect in Theorem 1.5 that X will still be Markovian.

Nevertheless, the other parts of Theorem 1.5 are satisfied. Indeed, it is sufficient to
replace everywhere in the previous subsection ¢x, by ¢z, ;. U(X,) by ¥(X[o,,)) and

The algorithm explained after the proof of Corollary 1.6 is straightforwardly adapted
to this extended situation. The finite sequence X[y, constructed in this way from a
given trajectory z[o ) is called an auxiliary measure-valued process. It can be used
to construct strong stationary times for X (see Fill and Diaconis [10]): consider

T = inf{neZy : X, =7} e Z,u{+wn} (2.5)

When 7 is (a.s.) finite, we have that 7 and X, are independent and the distribution of X,
is the invariant measure 7. In the subset case, (2.5) has to be replaced by

7 = inf{neZy : X, =V} e Zyu{+x0} (2.6)

and this is under this form that that strong stationary times are often met in the literature
(see the top-to-random shuffle of Aldous and Diaconis [1], recalled in Subsection 3.2
below).

An auxiliary measure-valued process can also be seen as a Markovian non-measure-
valued dual process. Indeed, use the traditional trick transforming any process into a
Markov process by adding all its history in its present state. More precisely, consider the
2-valued process ) := (X[o,n])nez, - The process 2) is clearly Markovian, its transition
kernel 9 being given, for any 7 ], nf[O,n/ﬂ € 2, by

Q(1g0,n1> Mo ,n7) { 23(77[[0,”]], Ths)s M= n 1 andmoay =Mooy
, otherwise

Extend A into a Markov kernel from 20 to V' via

Vo EW, VeV, Ao, ) =

As in Corollary 1.6, we deduce the intertwining relation
NA = AP

showing that %) is a dual process to X. Thus from the general theory of Fill and Diaconis
[10], we know that a Markov chain with transition kernel £ can be used to construct a
strong stationary time, as soon as a.s. it ends up reaching the set {Y € 20 : A(Y,:) = 7},
which corresponds in the above situation to the fact that 7 defined in (2.6) is a.s. finite.

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
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Remark 2.1.

(a) Measure-valued processes (not necessarily Markovian) are essentially the more
general intertwining dual processes that can be associated to X, up to a deterministic
factorization. Indeed, let X = (Xn)neZ . be an intertwining dual process associated
to X through a Markov kernel A going from the state space of X to the state space
of X, namely such that

L(X[on1X) = L(XponglX[o,n])
V n e Z+,

_ o (2.7)
»C(Xn|X[[0,n]]) = A(Xna )

Consider the (probability) measure-valued process X := (X,,)ncz, defined as a deter-

ministic function of X via

Vne Z+, xn = ]X(Xﬂa)

We deduce from (2.7) that (1.9) and (1.10) are satisfied, with A given by (1.1). In
general X will not be Markovian, even when X is Markovian.

(b) Consider X = (X,,)nez . a measure-valued process, not necessarily Markovian. We
say it is algebraically intertwined with X if the following is true: for any n e Z,
given Xy, X1,..., X,,, on one hand sample )Z'n according to X,,/X,,(V), then sample
5(,”+1 according to P()N(n, -). On the other hand, sample X,,;1 according to its condi-
tional law knowing Xy, X1, ..., X,, and next sample )A(Hl according to X,,11/X,+1(V).
Then )Z'nﬂ and )?nﬂ should have the same law, still conditioned on X, X1, ..., X,.

This condition writes down

VneZ,, E[af"“ tnp 2.8)

(of course the equality E[X,+1/Xn1(V)|Xn, Xn-1,..-,X0] = E[Xn11/Xn1(V)|X0]
does not imply that X is Markovian).

‘xnvxn—lv"'vxoil =

Given a family W'n[{o,nn )n[[o,n]] <oy as in this Subsection, such a measure-valued process
X can be constructed by using the transition kernel defined in (2.4). But it should
be observed that not all measure-valued processes algebraically intertwined with X
can be constructed in this way. Indeed, since the set V'V of mappings from V to V is
finite, for any given n € Z, and 7y, € 2, the distribution (1} ], ) is necessarily
a finite sum of Dirac masses, so the same is true for £(X,1|Xn, Xn_1, ..., X0) when
X is constructed using a family (1’[}77|10,n’]])"7|10,n’]]€®' But in general, one can find
measure-valued processes satisfying (2.8) such that £(X,11|Xn,Xn—1,...,X0) is a
diffuse distribution. Maybe the most general case can be obtained by replacing
random mappings by random transition kernels locally associated to P*.

(c) The previous argument cannot be applied to set-valued dual processes, since the set
{0,1}" of subsets from V is finite, contrary to the set of measures on V.

2.3 The Levin, Peres and Wilmer construction

Let us come back to the construction of Chapter 17 of Levin, Peres and Wilmer [18]
and interpret it in the random mapping setting, in the subset case.

In practice, a random mapping ¢ is often given in the following way: let I := (I )z yev
be a family of measurable subsets of [0, 1) such that

VezeV, [0,1) = |_| Ly (2.9)
yeV
Vz,yeV, ANgy) = P*(z,y) (2.10)
EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
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where ) is the Lebesgue measure. Let U be a random variable uniformly distributed
on [0,1). A random mapping v associated to P* can be defined in terms of I and U by
deciding that

VaeyeV,  {Y) =yt = {Uely)

Remark 2.2. Conversely, any random mapping associated to P* has the same law as a
random mapping constructed as above. This is a consequence of the fact that the set of
functions from V to V is finite and that any probability distribution on a finite number of
points can be seen as an image of the restriction of the Lebesgue measure on [0,1). Thus
there is no loss of generality in only considering random mappings of the previous form.

Let S € G be fixed and label the elements of V as 1, 2, ..., |V|, where |V] is the cardinal
of V, in order to insure that S = [1, |S|]. Next define a family I = (I, ;) yev Via

v T,y € V= [[]-7 |VH]7 Ix,y = [P*(l'v Hlvy_ 1]]),P*(.’L, [[Ly]]))

it is immediate to check both (2.9) and (2.10). Let ¢s be the globally associated to P*
random mapping constructed in this way. With the notations of the introduction, we have

U(S)

{xeV : ¢ps(z) e S}

= {zeV :U€e|0,P*(z,5))}
= {zeV :U<P*x>9)}

= 9(5)

It follows that the evolving sets of Morris and Peres [22] are a particular case of the
construction via the random mappings. The special random mapping ¢ has the tendency
to put a maximal number of points inside ¥(.S), when U is small, and a minimal number
of points inside ¥(S), when U is close to 1. So it seems that among all random mappings,
¢s induces the maximal possible oscillation for 7(¥(S)) (e.g. measured through its
variance). By analogy with the result stating that the best way to couple two Brownian
motions is the mirror symmetry coupling (see for instance Jacka, Mijatovi¢, and Siraj
[13]), a tempting conjecture is that the evolving set construction is the best possible
choice for X to grow as fast as possible (property which is important in the construction
of strong stationary times). We believe it is true when the underlying geometry is simple
(as for birth and death processes, see Section 4, this phenomenon was encountered for
one-dimensional diffusions in [21])), but maybe not in the general setting.

Remark 2.3. The task of finding a “good” random mapping should be illuminated by
characterizations of measure-valued dual processes which are sharp in the sense of
Diaconis and Fill [10]. In a diffusion context, here is a conjecture on how to recognize
sharp set-valued duals (inspired by results from [21] and [9]): the volume (with respect
to the invariant measure) of the dual process conveniently time-changed by the square
of the volume of its boundary should be a Bessel-3 process, namely in some sense, the
Pitman intertwining relation is a prototype for sharpness. It would be instructive to state
and to prove a similar result in a discrete context.

2.4 Independent random iterative mappings

A particularly simple instance of globally associated to P* random mappings is when
they are not allowed to depend on a measure 7 € *J, corresponding to the current state
of X. The algorithm of the introduction then takes the following form. Let be given
n € Z, and a trajectory z[g ) of X. In this subsection, we assume for simplicity that
Xo = {z0}, in particular we are in the subset case, as seen in Remark 1.3. Consider n

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
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independent mappings 1, 99, ..., ¥, globally associated to P*, which may not have the
same law. For any m € [1,n], condition v, by ¢, (z.,) = 2,1, and to avoid confusion,
let us call the new random mapping ¢,, (it is no longer associated to P*, except when
P*(xy, xm—1) = 1). The construction of X,, is now:

X, = {yeV :piopo---opn(y) = o} (2.11)
In particular, the strong stationary time defined by (2.6) is given by the collapsing time
T = inf{neZ; :VyeV,piopz0---0p,(y) = zo} (2.12)

Formulas (2.11) and (2.12) are valid more generally, up to the forward simultaneous
definition of the (1, X1), (¢2,X2), ..., (on, X,) presented in the introduction. But when
1,9, ...,1, are independent, a backward construction can also be envisaged. This
possibility will also be satisfied by the non-independent random mappings associated to
restless birth and death chains in Section 4. Let us describe an algorithm constructing
X,, for any fixed n € Z,, in this spirit. Label V' as {yo,y1, .,y jv|-1}, With yo = z,

and define x\) := {x,}. We look iteratively for the first m € [1,n] such that ¢, 11 ©
On—m+2 0+ 0@n(y1) = Tp_m. If there is no such m, we know that y; ¢ X, and we
let X\ = {z,}. Otherwise we define P = {Zn,y1}. Assume that %" has been
constructed for some [ € [1, |V| — 2]. We look iteratively for the first m € [1,n] such that
Pr—m+1 © Pr—m+2 0 0 On(Yi+1) € ng). If there is no such m, we infer that y;.1 ¢ X,
and let %Sf“) = %g). Otherwise we define %55*1) = %Ef) U {yi1+1}. At the end, we consider
X, = 3551""*”. This procedure can also be used to test if 7 < n, where 7 is defined in
(2.12): this is equivalent to the fact that for all the above steps for [ € [0, |V]| — 2], there
isam € [1,n] such that @, —m+1 0 Pn—m+20 - 0 QOu(yr+1) € 2,

This test can be strongly simplified when V' is endowed with a partial order admitting a
unique minimal element ¥, and a unique maximal element y, and when the independent
random mappings 1, ¥s, ..., ¥, preserve the partial order (of course this is only possible
if P* is equally preserving the partial order). Then the random mappings 1, ¢, ..., ©n
equally preserve the partial order and the validity of 7 < n is equivalent to the existence
of m € [1,n] such that

Pn—m+1°Pn—m+20 0 Spn(y/\) = Pn—-m+1°Pn—m4+20-°°0 (Pn(yv)

These observations are strongly reminiscent of the coupling-from-the-past algorithm
of Propp and Wilson [27] (see also their review in Chapter 22 of Levin, Peres and Wilmer
[18]). Recall they consider a family (¢,,),c—n of independent identically distributed
random mappings associated to P. For any N € N, they testif¢_10---0¢_nyi10%_xN
sends the whole state space V' into a single point. When this is true, the single point is
distributed according to 7. Otherwise they consider another integer number N’ > N
(usually N’ = 2N) and start again the above procedure. Their algorithm is equally greatly
simplified under the assumptions that V' is endowed with a partial order admitting a
unique minimal element y, and a unique maximal element y, and that the independent
random mappings ¢_1,%_o,...,%)_n preserve the partial order (this is only possible if P
is equally preserving the partial order).

Of course there are big differences between the two procedures: our initial point is
fixed, the final point of coupling-from-the-past is distributed accordingly to the invariant
measure, the preservation of the partial order by P* and P are not equivalent, we
fix a trajectory and allow (except in this subsection) dependence between the random
mappings through the already constructed set-valued dual etc. Nevertheless, it would
be interesting to investigate further the links between the two algorithms, e.g.:
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¢ Could the convergence of the coupling-from-the-past algorithm be improved by
allowing, for N € IN fixed, choices of ¢)_,, depending on¢)_,,_10---09)_ni109_n(V),
for n € [1, N]?

* What happens to the examples treated by the coupling-from-the-past algorithm if
we look at them from the intertwining/strong stationary times point of view?

3 Classical examples

Up to now, the considerations were both abstract and simple. It is time to give some
examples showing how Theorem 1.5 works in practice. As it can be guessed, all the
difficulty is to find nice random mappings. The families of random mappings considered
here will be globally associated to P*, as mentioned in Remark 1.2. We will work in the
subset case, since the dual processes are to start from Dirac masses, identified with
singletons (recall Remark 1.3).

3.1 The discrete Pitman theorem

For this example due to Pitman [25], the state space is the denumerable set Z, but
we are in the situation described in the beginning of Remark 1.8. The kernel P is the
transition “matrix” of the simple random walk on Z, namely,

172, ifly—z|=1

Va,yeZ, P(z,y) = { 0 otherwise

which has finite degree 2 at every point. The counting measure 7 is invariant for P and is
even reversible for P. It follows that P* = P, where P* is defined as in (1.2). Following
Remark 1.8, we take G to be the set of finite non-empty subsets of Z, so that the kernel
A given in (1.6) is still well-defined.

Let X = (Xp)nez , be a random walk with transition kernel P and starting from 0.
Introduce the process XV = (XY ),ez, defined by

VneZy, X, = 2M,-X,
where M,, := max{X,, : m € [0,n]}. Finally consider X := (X,,)nez, given by
VneZy, X, = {X)-2m:me[0,X)]} (3.1)

Pitman [25] has shown that (1.9) and (1.10) hold with the above processes X and X, it is
in fact the first historical instance of such a coupling.

Let us prove that this result is a consequence of Theorem 1.5. Since (1.9) is obvious,
we concentrate our attention on (1.10).

Consider the function 1 given by

x+b, ifz>max(S)

x—b, ifz<max(9) (3.2)

VSeG,VaeeZ, Vbe {-1,1}, (S, z,b) = {

Consider a Rademacher variable B, i.e. such that P[B = —1]
fixed S € 6, let 1)s be the random mapping given by

P[B = 1] = 1/2 and for

VrelZ, Ys(x) = (S, z,B) (3.3)

It is clear that g is a random mapping associated to P* = P. So let be given a
trajectory z[p,) of X stopped at time n € Z, and starting with o = 0. Construct
the finite sequence X[, ) as in the introduction, starting with X, := {0}. Denote by
(SDm)me[[Ln]] the corresponding random mappings used in this construction, conditioned
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by the compatibility relations ¢, (z,,) = z;—1 for m € [1,n]. Given the stopped trajectory
T[o,n]. these random mappings are here deterministic:

Vme [[1,71]], Om = w(%mfla'ubm)
with
b e -1, if 1 = max(X,;,—1) and z,, — X1 =1
moT Tm — Tm—1, Otherwise

Since under these mappings the parity of the positions are alternating, we remark that

vV m e [0,n], Xm

27, if m is even
27+ 1, ifmisodd

Consider for any m € [0, n], Y, = min(%X,,) and Z,, := max(X,,). By a forward iteration
on m € [0,n], we show that Z,, = XY, Y,, = —Z,, and that X,,, contains all the elements
in [Y;,, Z] with the same parity as Z,,. It proves the validity of (3.1). This is well-
illustrated by Figure 1, where for m € [0,n — 1], the elements of X,, are represented by
full disks, the elements of X,,.1 by circles, the transition from X,, to X,,+1 by a double
line, the dashed lines are the actions of the random mappings (from the right to the left),
the green (respectively red) line is the transition from Z,, to Z,,.1 (resp. from Y,, to

}/m-‘rl)~

m m+1 m m+1 m m+1 m m+1

Figure 1: Schematic proof of the discrete Pitman theorem via random mappings

The symmetry with respect 0 leads to another Pitman transformation: rather intro-
duce the process X” = (X )nez, defined by

VneZy, Xy = Xn—2M}
where M, = min{X,, : m € [0,n]} and consider X := (X,)ncz, given by
VneZy, X, = {X)—2m:mel0,X ]} (3.4)

By sxmmetry in law of X, it is clear that (1.9) and (1.10) equally hold for processes X
and X. This can also be obtained by replacing the mapping ¢ of (3.2) by

~ _ x+b, ifz>=min(S)
VSe®, VreZ Vbe{-1,1}, (S ,x,b) = { b iz < min(S) (3.5)
EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
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More generally, at each time n € Z, either ¢ or 1Z can be chosen to construct random
mappings and this choice itself may depend on the current state X,, and on independent
noise. Of course the description of the deduced set-valued dual X will then be more
tricky than (3.1) or (3.4).

One may wonder how to guess that the random mappings described by (3.3) or (3.5)
are interesting. It is not mere inverse engineering: the underlying idea is that they
strictly satisfy the principle put forward in Subsection 2.3: these random mappings
(as well as their above variants) are such that the two points just outside the current
discrete segment S (forgetting the points with the “bad” parity) either both enter S or
both go away from S. In the spirit and the notations of Subsection 2.3, the above random
mappings can be described via labelings of Z depending on S. For instance for (3.3),
max(S) + 1 is named 1, max(.S) is named 2, max(S) — 1 is named 3, ..., until min(S) — 1 is
named max(S) — min(S) + 3, then max(S) + 2 is named max(S) — min(S) + 4, min(S) — 2
is named max(S) — min(S) + 5, max(S) + 3 is named max(S) — min(S) + 6, etc. ((3.5)
corresponds to a “mirror” labeling). One can imagine other labelings (where the first
labels are given to the elements of [min(S) — 1, max(S) + 1], or only to those of S as in
Subsection 2.3, according to any fancy rule), it will not change the law of X (starting
from {0}), only the law of the coupling (X, X) will be modified, as in the above cases
deduced from (3.2) and (3.5).

Let us present two other examples of dual processes for the usual random walk based
on other random couplings following strictly the principle of Subsection 2.3. They are
discrete analogues of intertwining couplings of subset-valued processes for diffusions
on manifolds, on which we are currently working with Marc Arnaudon and Koléhée
Coulibaly-Pasquier [3]. There we use a different approach relying on directly coupling
a stochastic variant of mean curvature flow with the primal diffusion process. At least
in the discrete context and for the two examples below, this can be easily translated in
terms of random mappings.

Example 3.1. Looking for dual processes that will stay symmetric with respect to 0, we
can consider random mappings not depending on a finite subset S of Z (as mentioned in
Subsection 2.4), by breaking their direction exactly at 0 (and not at max(.S) or min(S) as
above). More precisely, in analogy with (3.2), define

r+b, ifzxr>0

z—b, ifz<0 (3.6)

VeeZ Vbe{—1,1}, P(z,b) = {

and the random mappings associated to P* = P via
VeeZ, ¢s(x) = 9(S,z,B)

where B is a Rademacher variable B.
Denote (L, )nez, the local time associated to X at the transition from 1 to 0:

VneZ.,, L, = Z ]]‘(Xl—lle)=(le)
=1

We let as an exercise of manipulations of graphics similar to Figure 1, to check that
the dual process constructed by Theorem 1.5 in this situation is given by
VneZ,, X, = {|Xu|+Ln—2m :me[0,|X,|+ L]}

A continuous equivalent of this dual process will appear in Subsection 7.1.
In (3.6), instead of 0, the break of direction could be chosen at any other point k € Z.
The resulting dual process is given, for any n € Z, by

T ) kX =k + L —2m cme 0,k + X, — k| + L]}, otherwise
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where

T inf{fne Z, : X,, =k}

Vne Z+7 L’SLk) = Z H(Xl717XI):(k+17k)
=1

The volume of these subset-valued dual processes for k # 0 has an initial slower
growth than in the case k = 0, in the sense of the stochastic domination for the stopping
times defined, for any A € IN, by

T4 = inf{neZ; : n(X,) = A}

It can be seen as a consequence of the fact that the principle of Subsection 2.3 is not
satisfied, until X reaches k. Note that the worst case corresponds to letting k£ goes to
+00 or —oo: with probability 1/2 one of the two mappings

Ve, Y_(x) = x—-1
YV xel, Ye(x) = x+1

is chosen. Starting with X, = {X,}, we get that for all n € Z,, X, = {X,,} (more
generally, for any initial law of X, on & satisfying (1.8), we end up with 7(%X,,) = 7 (%)
forallne Z,).

Example 3.2. Random mappings are clearly stable by mixture. Thus we can con-
sider the random mapping which, given S € &, chooses with probability 1/2 the ran-
dom mapping (3.3) and with the remaining probability 1/2, the random mapping de-
duced from (3.5). Write X := (X,,),ez, the corresponding set-valued dual process. It
remains symmetric with respect to 0, so let us write for any n € Z,, Xy = {z €
[ R., R,] with the same parity as R, }. Using graphics similar to Figure 1 and taking
into account the independent Bernoulli variables choosing between (3.3) and (3.5), it is
not difficult to check that for any n € IN, R,, — R,,_1 is independent from X,, — X,,_; and
uniformly distributed on {—1, 1}, except in two cases:

e whenX,, 1 =R, 1jand X, =X,,_ 1+ 1, then R, =R, 1 +1
e whenX,, 1=-R, 1and X,, =X,_1—1,then R, =R,_1+1

Namely, (R, )nez, evolves as a random walk independent from X, except when X hits
the boundary of X and tends to push it away from 0, in which case (R, )nez . do the only
possible move keeping X inside X: it also go away from 0 by adding 1 to its previous
value.

3.2 The top-to-random shuffle

The top-to-random shuffle is a simple model of shuffling cards: at each time, take the
top card and put it at a uniform random location in the deck. This stochastic evolution
is described mathematically by a Markov chain X := (X,,)necz, on the symmetric group
V = Sy, with N € IN\{1}, whose transition matrix P is given, for any o,0’ € Sy, by

Plo,o') = 1/N, ifthere existsl e [, N]witho' =(1>1—>1I—-1—:-- > 2)oo
@0) = 0, otherwise

where (1 -1 > 1—1— --- — 2) is the cyclic permutation, seen as the function from
[1, N] to [1, N], transferring the card at position 1 to position /, the card at position / to
position [ — 1, ... and the card at position 2 to position 1.
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The transition matrix P is irreducible and the corresponding invariant measure 7 is
the uniform probability distribution on Sy. The Markov chain X admits a famous dual
process defined by Aldous and Diaconis [1] in terms of the position of the last card of X in
the deck X,, at time n € Z . More precisely, represent a permutation ¢ by the sequence
of its values (o(1),0(2),...,0(N)). Start X from the identity: X, = (1,2,..., N) = id
and at any time n € Z,, let Y,, € [1,N] be the position of the last card defined by
X, (Y,) = N. It is not difficult to check that Y := (Y},)nez, is a Markov chain. Define
T =1inf{n € Z; : Y, = 1}, the first time the last card arrives at the top of the deck. It is
well-known that 7 + 1 is a strong stationary time, it is even the first historical instance of
a strong stationary time in a finite context. We modify Y by imposing that Y,, = 0 for any
n>rT.

For any o € Sy and y € [0, N, define

Asy = {o'eSy:0'(1)=0(1),...,0'(y) =0o(y)}

with the usual convention that A,y = Sy. Aldous and Diaconis [1] considered the
set-valued dual X := (X,,)nez, deduced from (X,Y") by defining

VneZy, X, = Ax,y, (3.7)

Let us construct a better set-valued dual X = (X,)nez , via random mappings. Note
that P* is the transition matrix of the random-to-top shuffle and corresponds to taking a
card of the deck at a uniform random location and putting it at the top. Consider for any
z € [1, N], the mapping ¢(*) : Sy — Sy which acts on any permutation o by removing
the card x from the deck and putting it at the top. Formally, we have

VoeSy, V@ (o) = 1->2—>-->o x)) oo (3.8)

(note that o~ !(x) is the position of the card z). Let (U,)new be a family of independent
random variables uniformly distributed on [1, N] and for any n € IN, denote by 1,, the
random mapping ¢(Y»), which is clearly associated to P*. There is no dependence on a
subset S € G and we are in the context of independent random mappings of Subsection
2.4. Let be given a trajectory x| ], for some fixed n € Z, starting from the identity,
xo = id. For any m € [1, n], let ¢,, be the conditioning of ¢,,, by ¥, (¥s,) = Zp,—1. Remark
that as in the previous subsection, ¢,, is deterministic, as we have ¢, = 1(@»-1(1),
Starting from X, = {id}, we get from (2.11) that

X, = {0eS8Sy:pi10opr0---0¢,(0)=1id}

Let us check that X is better than the set-valued dual X of Aldous and Diaconis [1], in
the sense that

VneZ,, X, < X, (3.9)

It is furthermore strictly better, because Z%; = Ax, 1 is strictly included into X; = Sy, as
we will see below. It implies that 7 < 7 < 7 + 1, where 7 is the strong stationary time
associated to X as in (2.12) (recall that 7 + 1 is the strong stationary time associated to
X).

Indeed, to show (3.9), consider o € %n By definition, we have

o = (6(1),0(2),...,0(Y,—1),N,0(Y, +1),....0(N))

Observe that for [ € [1,Y;, —1], o(I) = X,,(I) and for [ € [Y,, +1, N], the values o(!) belongs
to {z,,(1) : m € [0,n]}, since they have had to be at the top of the deck before time n
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to be sent below the last card N. By iteration on m € [1,n], it follows that the Y,,_,,+1
first coordinates of ¢, ;11 © @n_mi20° - -0 Yu(0) and Y, _mi1 © Pr_mi2 0 - 0 Eu(Xy)
coincide. In particular for m = 1, since @1 0 g 0 -+ 0 v, (X,) = id, we get that o € X,,, so
that (3.9) is proven.

To prove that X is strictly better than X, note that 3~€; is the set of permutations
o € Sy such that o(1) = N, in particular x> + Sy. Applying a reasoning similar to the
proof of (3.9), we get that for any 0 € Sy, p1 0920 0pz(0) = p1 0@z 0 - 0wz(X3),
except maybe for the last coordinate o(N). This is a consequence of the fact that all the
values of [[1, N — 1] will have been placed at a same time m € [1,7] at the top of the deck
by ©m © @m+1 ©--- 0 @z. But if all the coordinates except the last one coincide for two
permutations, it means that the permutations are the same. It follows that X; = Sy as
announced.

Corollary 3.3. The first time 7 that the card N — 1 comes to the top and is inserted
is a strong stationary time. It is a strict improvement over the strong stationary time
constructed by Aldous and Diaconis [1], which is the first time 7+ 1 that the card N comes
to the top and is inserted. But this improvement is negligible: we have E[7] = E[7] + N,
while as N goes to infinity, E[7] ~ N In(N).

This result is the content of Exercise 6.2 of the book of Levin, Peres, and Wilmer [18].

Proof. Let us show that 7 coincides with the strong stationary time 7 defined in (2.12).
Indeed, as a consequence of the above proof that X> = Sy, we see that 7 is smaller than
1 plus the first time when all the cards except N have been at the top, namely 7 < 7.
Conversely, let o be a permutation where the card N is above the card N — 1. Forn < 7,
the same is true for the permutation ¢; o @3 o --- 0 (o), since neither N nor N — 1
have been put at the top. So we get that o ¢ X,,, i.e. 7 > n and it follows that 7 = 7.
Note that 7 is a sum of independent geometric random variables of parameters 2/N,
3/N, ..., 1, which correspond respectively to the first time a card goes under N — 1, the
inter-time until a second card goes behind N — 1, etc. Similarly, 7 is a sum of independent
geometric random variables of parameters 1/N, 2/N, ..., 1. Thus E[7] — E[] is equal to
the expectation of a geometric random variable of parameter 1/N, namely N. The last
assertion of the corollary is a consequence of the equality
~ 1 1 1
E[T] = 1+§+§+-~N O

One can wonder if the set-valued dual given in (3.7) has a random mapping repre-
sentation. It is indeed the case, the subsequent simple construction resorts to random
mappings depending on a fix set S € & (we don’t know if it is possible to devise a
construction via independent random mappings as in Subsection 2.4). The underlying
random mappings zZS are described as follows.

» Assume S is of the form A, j for some o € Sy and k € [1, N] with o(k) = N. Let
(U,U) be a random variable taking values in {0,1} x [1, N] such that P[U = 0] =
(k —1)/N and knowing that U = 0 (respectively U = 1), U is uniformly distributed
on [1,k — 1] (resp. on [1, N — k + 1]). Let be given a permutation ¢’ € Siy. When

~

U =0, we take ¢g(c’) = (U)(¢"), where for any z € [1, N],
Vo'eSy, ¢@W(0) = (1->2—--->z)o0’

In words, a position is chosen among the first £k — 1 ones and the corresponding
card is sent to the top. On the contrary, when U = 1, we choose a label of card
among those whose position are in [k, N] according to the following procedure. Let
(1) <o(2) <--- <d(N —k+ 1) be the ordering of the set {¢’(l) : I € [k, N]}. We
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then take 1;3(0’) := (@) (5"), with the notation introduced in (3.8). The mappings
¥@ and ¢® may look similar at first view, but it is the difference between the
choice of a position and a label of card that will result in the distinction between
the dual processes X and X. Note that 'LZS depends on subsets S as above only
through k.

» Assume S is not of the form A, ; for some o € Sy and k € [1, N] with o(k) = N.
This situation is not important, since the algorithm will only construct subsets of
the previous form (starting with Xy = {id}), and it would be possible to restrict S to
contain only such sets. Nevertheless, for definiteness, take for instance 125 = pU)
where U is uniformly distributed on [1, N].

It is immediate to check that 125 is associated to P* and its interest is encapsulated
in the following result.
Lemma 3.4. Let S be of the form A, for some o € Sy and k € [1, N] with o(k) = N.
Fix z € [1, N] and denote by & the deck of cards obtained from o by putting the top card
o(1) at position z. Condition 7;5 by the fact that zZS(&) = o, to obtain a random mapping
Ps. The mapping @g is in fact deterministic and defining

B = {0d'eS8n: Ps(c’)e S}

we have

with k = (5)"1(N).

Proof. Let (U, ﬁ) be the random variable appearing in the definition of ¢/s. The value
of U can be deduced by comparing z and k: if x € [1,k — 1] then U = 0 and 0therw1se
U =1. When U = 0, U is determined by the relation 5(U) = (1) and when U = 1, U is
determined as the rank of o(1) in {5(k),5(k + 1), ...,5(IV)} (which is also the rank of (1)
in{o(1),0(k+1),0(k+2),...,0(N)}. It follows that Jgs is determined, since it randomness
only comes from (U, U).

For the assertion concerning B, let be given ¢” € S and ¢’ € Sy such that gg(c’) = o”
and consider separately two alternatives.

e The case U = 0, whiNCh is equivalent to the identity k= k. Necessarily we have
o'(l) =o0"(l) for l € [U + 1, N] and

(0" (0),0' (1), 0o’ (U = 1)) = (0"(1),0"(2), ... 0" (U))
Furthermore, note that
(0"(1),0"(2),....a"(0)) = (o(1),0(2),..,a(0))
= (3(0),5(1),...5(U—1))
It follows that the set of ¢’ obtained when ¢” runs through S is just A~ % as

announced.
* The case U = 1, which is equivalent to the identity £ = k£ — 1. We get that

(' (1),0'(2),...,0'(k=1)) = (0"(2),0"(3),....,0"(k))
(0'(k), 0’ (k+1),...0"(N)gry = (¢"(k+1),0"(k+2),....,0"(N))

where (o'(k),0'(k + 1),...,0'(N))on(1) stands for the finite sequence (o'(k), o’ (k +
1),...,0’(N)) where ¢”(1) has been deleted. It appears that contrary to the case
U = 0, the permutation ¢’ is not determined by ¢”, as we have N —k + 1 possibilities
for the insertion of ¢”(1) in (¢/(k),0'(k + 1), ...,0"(N))on(1). Nevertheless, the set of
o’ obtained when ¢” run through S is again Ay O
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Construct, as described in the introduction, a set-valued dual X = (%n)nEZ , starting
from X, = {id} and using the random mappings modeled after the family (JS)Seg. By
applying iteratively Lemma 3.4, we get that Xis given by (3.7), showing in particular
that it is taking values in subsets of the form A, ; for some o € Sy and k € [1, N] with
o(k) = N, as forecasted.

4 Birth and death chains

The construction of the random mappings used to recover the discrete Pitman
theorem is extended here to “restless” birth and death chains. It is a discrete analogue of
the results we are looking for in the context of one-dimensional diffusions (see Subsection
7.2). As in the previous section, we restrict our attention to the subset case (the dual
processes will start from singletons) and only globally associated to P* random mappings
will be considered here: associated will mean globally associated.

Let be given (p(x)).cz a family of elements of (0,1). We are interested in the irre-
ducible transition kernel P given by

p(x), ify=o+1
Va,yeZ, P(x,y) = 1—px), ify=ax-1 4.1)
0, otherwise

An associated Markov chain X := (X, )nez , is said to be a restless birth and death chain,

since at each time n € Z it chooses to go up or down of one unity and cannot stay at
the same position. Up to a factor, a corresponding invariant measure 7 is given by

P(0,1)P(1,2)---P(z—1,z) .

P@,z—1)P(a—Lz—2)-P(1,0)° ifz>1

VreZ, m(x) = 1, ifx=0

PO~1)P(-1,-2)-Pa+la)
Pas TP io - proyy e <—1

Depending on the family of coefficients (p(z)).ez, the measure measure = may be finite
or not. Whatever the case, as in Subsection 3.1, the measure 7 is reversible for P, in the
sense that P* = P, where P* is defined as in (1.2). The kernel A given in (1.6) is also
well-defined, as soon as we restrict G to be the set of finite non-empty subsets of Z.

A random mapping associated to P* = P can be constructed by mimicking the
definition given in Subsection 3.1. Define for z € Z and u € [0, 1),

x—1, ifuel0,1—p(x))
z/1+(:1c,u) = { r+1, iqu[l_p(l')v]-)

¢—($,U) = 1/)+(x,1—u)

and introduce the mapping

VSe®, VreZ Yuel0,1), (S z,u) = { ngzg gi Z Eiﬁg; 4.2)
A random mapping s is obtained by considering (S, -, U), where U is uniformly dis-
tributed on [0, 1). It leads to the construction of a (conditioned) set-valued dual ¥ (starting
from a singleton) as prescribed after the proof of Corollary 1.6. More precisely, fix a finite
trajectory x[g ) of X with n € Z, and let Uy, Us, ..., U, be independent random variables
uniformly distributed on [0,1), so that X, is constructed recursively on m € [1,n] as
follows. Condition the random mappings (X, -, U1),¥(X1,,U2), ..., ¥(Xm-1,, Un) by
1&(%0,331,(]1) = X0, 1/)(%1,1‘2,(]2) = L1, eees ¢(:£m_1,$m,Um) = Tm—1 and call ©1, P2, «.uy
©m the induced random mappings. We define X = {z(} and iteratively

Vme[1,n], Xn = {WeZ: on(y) € Xm1} (4.3)
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Our goal in this section is to simplify the description of X[, via a backward con-
struction that will be useful for one-dimensional diffusion processes.
For any m € [0,n], consider

Ry,
Ry,

max(X,,)
min(X,,)

These numbers determine X,,,:

Lemma 4.1. For any m € [0,n], R,, and R}, have the same parity and X,, is the set of
integers between R,, and R/, with the same parity as R,,.

Proof. All the mappings 1, ¢2, ..., ¥, change the parity of their argument. Since
Xy = {xo}, we deduce that for all m € [0, n], the parity of all the elements of X,,, is the
same as that of o when m is even and is the other one when m is odd.

The second assertion of the lemma is proven by iteration on m € [1,n], based on the
fact that if x and « + 2 belong to X,,,_1, then necessarily x + 1 € X,,,, by restlessness. O

Before proceeding toward a simplified presentation, let us be more specific about our
conditioning operations. For any m € [1,n] and any r € Z, consider

— p(xm)7 ife,1 <zp, <7
UTm1, T, T) = { 0, otherwise (44)
Define another number b(2,,_1, %, ) via
1—p(xm), fzmo <zm,
m—1y<4Lm = . 4.
b(@m—1,m) { (), ifxy,—1 > xm (4.5)

The interest of these numbers is:

Lemma 4.2. The conditioning ¥)(X,,—1, Tm, Um) = Tm—1 a.s. amounts to the conditioning
Um € [a(l‘m_l, T,y Rm—1)7 a(xm—la Ty Rm—l) + b(-rm—lz xm))

Proof. We consider several cases:

* When z,, > x,,—1 and x,, > Rpy—1: then ¥(X,_1,2m,Un) = ¥4 (xm,Un), so for
this term to be equal to 2,1 = z,, — 1, we must have U,, € [0,1 — p(z,,)) =
[a(Zm—1,Tm, Rm-1);a(Tm—1,Tm, Rm—1) + b(Xm_1,Zm)), with a(zm—_1, Tm, Rm-1) =0
and b(z;y—1,Tm) = 1 — p(xm).

* When z,, > z,,—1 and z,, < Ry—1: then ¥(X,-1,2m,Un) = Y_(m,Un) =
Y4 (xm,1 — U,) so for this term to be equal to z,,—1 = x,, — 1, we must have
1—Upn € [0,1 —p(xy,)), namely U, € (p(zm), 1], which a.s. corresponds to U,, €
[a(Zm—1,Zm, Bm-1), &(Tm—1,Tm, Rm—1) + 0(@m—1,Tm)), wWith a(zmym—_1,Zm, Rm—1) =
p(zy) and b(zym—1,Tm) = 1 — p(zm).

* When z,, < z,,-1: since z,, < zy—1 < R;,—1, we have ¥(X,-1,2m,Un) =
V_(Tm,Un) = Yi+(xm,1 — Uy,,), so for this term to be equal to z,,—1 = z,, + 1,
we must have 1 — Uy, € [1 — p(zy,),1), namely U,, € (0, p(z,,)], which a.s. cor-
responds to U,, € [a(@m—1,Tm, Rm-1), &(Tm—1,Tm,, Rm-1) + b(Tm—1,2m)), with
a(Tm—1,Tm, Rm—1) = 0 and b(xm—1, Tm) = p(zm). O

It follows from Lemma 4.2 there exist (71, (72, e ﬁn independent random variables
uniformly distributed on [0, 1) so that

Vme [1,T‘Lﬂ, Sﬁm(') = U](xm—lv ',Q(Im_l,l’m, Rm—l) + b(xm—laxm)ﬁm) (4.6)

where we recall that v is defined in (4.2).
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Let us now show how (R,;)me[o,n] can be constructed backwardly in the spirit of
Subsection 2.4. Similarly to ¢1, o, ..., ©m, we would like to consider the random
mappings ¢1, ¢a, ..., ¢, obtained by conditioning the random mappings ¢ ({xo,z1}, -, U1),
Y({z1, 22}, U2), s ¥({Zm—1, T}, -, Um) by ({zo, 21}, 21,U1) = 20, ({21, 22}, 72, Us) =
1y e O {Tm—1,Tm}, Tm, Um) = Tm—1. Since we want the construction of ¢1, ¢o, ..., ¢y, to
be coupled with 1, @9, ..., m, we define

Vme[l,n], om() = Yp{Tmo1,2m} (o1, T, T V Tn) + b(T1, iEm)ﬁm)
= 1/’({%171, xm}a * a(fﬁmfla xm) + b($m,1, ZL'm)Um) (4.7)
where
R _ [ Paw), en <o
a(zm-1,om) = { 0, otherwise

Remark that the above definition of the ¢,,, for m € [1,n], is using the finite trajec-
tory X[o,m—1], only through x,, and x,,—1, and is not recursive (¢,, does not need the
knowledge of ¢,,_1, ..., ¢1). More precisely, this definition coincides with (4.6) if we had
Xm-1 = {Tm-1,Tm}. Denote

VmE[[l,n]], (bm,n = ¢m+1o¢m+2o"'o¢n

with the usual convention that ¢, ,, is the identity mapping.

Proposition 4.3. With the above notations, we have
R, = max{z >z, : 3me [0,n] with ¢,,, n(x) = zp,}
Proof. Let us prove by iteration on m € [1,n] that
R,, = R, = max{z > ,, : 31 € [0,m] with ¢, ,,(z) = x;}

For m = 1, by definition

~

Ry = max{z >z : 31 €[0,1] with ¢ 1(z) = =}
= max{x =z : x =21 or ¢1(x) = zo}
max{z € Z : ¢1(x) =z}
= max{z €Z : ¢1(x) = x0}
= max(%X;)

= R

where in the third equality we used that ¢, (z1) = z¢ and in the fourth, that ¢; = ¢, when
x1 < o, and that ¢;(x1) = ¢1(x1) = 2o (@as well as p1(x1 + 2) > z¢ and ¢ (21 + 2) > o),
when z; > xp.
Assume that R,,, = ﬁm for some m € [1,n — 1] and let us show that R,,11 = }NBmH.
We have

~

Ry,+1 = max{z m+1 : 31 € [0,m + 1] with ¢y i1 (x) = 21}

= x
= max{T = Tm+41 : T = Tyy1 OF 31 € [0, m] with ¢y (Prm1(z)) = 21}

= max(Tmi1, max{s = Tmi1 : Omi1(x) € An})
where

Ay, = {yeZ :31e]0,m] with ¢, (y) = x;}

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
Page 26/64


https://doi.org/10.1214/20-EJP419
http://www.imstat.org/ejp/

Measure-valued dual processes

In particular z,, € A,,, so that z,, 11 € {z = Tymt1 : dms1(x) € A}, since dpi1(Tmy1) =
T.,. We deduce that

Rm+1 = max{x = Tpyyi1 : Omi1(x) € Ap} (4.8)

Due to restlessness, the parity of the elements of A,, is the parity of x,, and the parity
of the elements of {x > x,+1 : dmi1(x) € A} is the same as the parity of z,,41.
Furthermore, on the set of odd (respectively even) integers, the mapping ¢,,+1 is non-
decreasing, thus

{r=22mi1 : Gmpr1(w) € A} = {22 2mp1 2 Gmy1(w) € By}
where

B, = {y>=x, :31e[0,m] with ¢;,,(y) = z;}

~

It follows by our iteration assumption that max(B,,) = R,, = R,.

Note also that B,, is exactly equal to the subset of elements from [z,,, R,,] which
have the same parity as x,,. This comes from restlessness, which implies that two
trajectories (¢1,m(y))icfo,m] and (é1,m(y'))iefo,m], Where y and y' are integers with the
same parity, either stay one above the other or end up coalescing. So for any y €
[#m, R] which has the same parity as z,,,, the trajectory (¢i,m(v))ieo,m] is sandwiched
between (¢1m(2m))icfo,m] = (Z1)iefo,m] @Nd (¢1,m (Rm))icfo,m]. thus ends up coalescing
with (1) ie[0,m]-

It follows from this description of B,, and (4.8) that EWH = R,, — 1, except if
&m+1(Rm + 1) = R, in which case ﬁmH = R,, + 1. Let us show that

¢m+1(Rm + 1) = Spm+1(Rm + 1) (4.9)
We consider two cases:

e When R, +1 > z,, vV T,,+1: We have
Om+1(Rm +1) = Ui (R + La(xm, Tmy1) + b(mm,xmﬂ)ﬁmﬂ)

Since R,, + 1 > R,,, we also get

~

Sﬁm-i—l(Rm + 1) = 7JN—(Rm +1, a(xmvxm-k—l»Rm) + b(zmaxm+1)Um+1)

Thus to deduce (4.9), it is sufficient to see that a(z,, Tm+1) = a(Tm, Timy1, Rm)- This
is always true when z,, 11 > x,, and when z,,, 1 < x,,, it requires that z,,,1 < R,
which is implied by R,,, + 1 > x,,4+1 here.

e When R,, +1 <z, V Tjy41: Since z,,, < Ry, we get R, = ¢y < Typy1 = Ry + 1. It
follows that ¢, 41 (R + 1) = ¢ (Tma1) = T = @ma1(Rm + 1).

It follows that

7 _ R,+1, ifoni1(Rn+1)=R,
mAl R,, —1, otherwise

It is easy to check by similar arguments that the r.h.s. is the iteration defining R,,+1,
showing that R,,1+1 = Rpa1- O

A first guess would be that a similar formula holds for the minima of X,,, namely that

R = R} = min{z <, : 3me [0,n] with ¢, (z) = 2/, }
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but this is wrong! Indeed, in the discrete Pitman example of Subsection 3.1, we get that
RA = x, for all n € Z,, see Picture 2 showing that z, 11 — RnJrl =z, — RA forallneZ,
(the dotted lines correspond to the action of the mapping ¢,+1, to be read from the right
to the left, remember it is constructed by pretending that X,, = {xn, Znt1}): whatever
the motion from Tn to 41, RA follows a parallel motion to go to Rn +1- Since RO = xg,
we deduce that RQ =ux, forallneZ,.

< : T T )anrl
o DLn+1 L e

L o~ L-7 Ipna
S - Rn+1
AL ~ 4 AN L7 1
Rn\ Rpr
| | DA L 1
Rn+1
n n+1 n n+1

Figure 2: Action of ¢, 11

To get a correct backward formula, we must replace ¢,,, for m € [1, n], by the random
mapping ¢,,, using the acquired knowledge of R[; ,,j. Indeed, from (4.6), the mapping

(m is completely determined by z,,,—1, %, R;n—1 and the random variable ﬁm. Denote
Vme[l,n],  ©Omn = @mi10Pmi20 00y

Proposition 4.4. With the above notations, we have

R} = min{z <z, : 3me [0,n] with ¢, ,(x) =z}

n

Proof. The arguments are similar to those of the proof of Proposition 4.3, but simpler
since we just play with the family of random mappings (SDm)me[[Ln]]- So let us prove by
iteration on m € [0, n] that

R7 - R)

m

= min{x < z,, : 31 € [0,m] with ¢ ,,(z) = x;}

For m = 0, by definition

Ry = min{z <z : ©o0(z) = 0}
= min{z <z : x = 20}
o
= Ré\

Assume that R), = R/, for some m € [0, n — 1] and let us show that R} 1= Iéfnﬂ.
We have

Tm+1 : 31 [0,m + 1] with ¢y i1 (z) = 2}

T4l @ T = Ty OF 31 € [0,m] with ¢y (@m+1(x)) = 21}

= min(zpyr, min{e < 2yt 0 Emea(z) € ALY

]?ZQLH = min{z <
= min{zr <

where

AL = {yeZ :31e]0,m] with ¢, (y) = =i}

m
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In particular z,, € A}

2, sothat @41 € { < i1 om(x) € A)}, since @, (Tmt1) = T
We deduce that

EQH_I = min{z < Tmi1 : pm(x) € A} (4.10)

Due to restlessness, the parity of the elements of A/, is the parity of x,, and the parity of
the elements of {z < z, 41 : ©m(z) € A}, }is the same as the parity of 2, 1. Furthermore,
on the set of odd (respectively even) integers, the mapping ¢,, is non-decreasing, thus

{r <@mi1 t pm(z) € AL} = {2 <ami1 : om(®) € B}
where
B} = {y<zy : 31e[0,m] with ¢, (y) = 21}

It follows by our iteration assumption that min(By)) = R}, = R},
As in proof of Proposition 4.3, remark that B/, is equal to the subset of elements from
[R},, ] which have the same parity as T It follows from (4.10) that Rm =Ry +1,

except if ¢, (R7, — 1) = R/, in which case R, +1 = R}, — 1. Thus we have

m

DA _ Rr/;vflv lf@m(R;r\ril) :R7/7\1
mAl R +1, otherwise

It is easy to check by similar arguments that the r.h.s. is the iteration defining R/, ,,,
showing that ), ., = R}, ;. O

To facilitate the analogy with the last section, let us summarize the procedure followed
here to construct X,, for any fixed n € Z, given z[g ). First we sample (71, U’g, e ﬁn
independent random variables uniformly distributed on [0, 1). Next we construct the
family (¢ )me[1,n] Via (4.7). Proposition 4.3 enables to deduce the family Ry, ,j. From
the latter, we construct the family (wm)me[u,n]] via (4.6). Then Proposition 4.4 enables to
deduce the family R[[AO n]" Finally, Lemma 4.1 leads to the construction of X,,.

Remark 4.5. In the discrete Pitman example of Subsection 3.1, the random variables
U17 Ug, .. U are not needed. Here th1s extra randomness is necessary to construct
the famlly Rpo,n)- But the two families U[[o,n]] and Rjo ) are sufficient to deduce R[[o,n]]'
namely no additional randomness is required.

5 Markov chains on Polish spaces

The construction of set-valued intertwining dual processes presented in the introduc-
tion for finite state spaces can be extended in several directions. Here, while keeping
the time discrete, we let the state space be a general Polish space.

Let V be a Polish space endowed with a Markov kernel P. We assume that P
admits an invariant probability 7, so that P can be extended as a bounded operator on
IL2(7). Let P* be its adjoint operator. It is an abstract Markov operator: P* preserves
non-negativity as well as 1. The probability measure = is invariant for P* in the
sense that n[P*[f]] = #[f], for any f € B(V), the space of bounded and measurable
functions defined on V. We used a traditional notation for integration: «[f] := { f dr.
The motivation for the Polish assumption on V' is that P* can also be seen as a Markov
kernel. More precisely, consider on V' x V the coordinate mappings Xy and X; and the
probability measure «(dzo)P(xo,dz1). Note that by the invariance of «, the law of X is
7. Using that V' x V and V are Polish spaces we get that the conditional law of X given
X can be described by a Markov kernel M from V to V (see for instance Section V.8 of
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Parthasarathy [241]). It follows that 7(dzo)P(zo, dz1) = 7(dz1) M (x1,dx). It is now easy
to see that P* is the extension of M as an operator on IL.?(7). From now on, M will be
denoted P*. Let us extend the definitions of the introduction to the present setting.

A random mapping ¢ from V to V is a measurable mapping

V:OAXV SV

where (2, F,P) is an auxiliary probability space. Since we want to insure the existence
of conditional distributions, let us furthermore impose that (€2, F) is the Borel o-field
associated to a Polish space. The random mapping ¢ is said to be associated with
P*, when for any z € V, the law of ¥(z) is P*(z,). As in the finite state space case,
we want to allow for the dependence of ¢ on some subsets S < V. Let G be a set of
measurable subsets S — V such that 7(V) > 0. We assume that & is endowed with a
Polish space topology and that the mapping V' x & 5 (z, S) — 1g(z) is measurable with
respect to the corresponding product Borelian o-field. This hypothesis will be called
(H1). Define A the mapping associating to any S € & the probability measure A(S,-)
which is the conditioning of w on S. This is an elementary conditioning, since 7(V') > 0.
It is straightforward to deduce from the measurability part of Fubini’s theorem and
from the above assumption on & that for any f € B(V'), the mapping & 3 .5 — A(S, f) is
measurable. It follows that A can be seen as a Markov kernel from & to V.
A measurable mapping

P :QAxGxVs(wS z)— vs(w, )

is called a G-random mapping and is said to be locally associated to P* when for
any fixed S € G, any measurable A c S and any z € V, we have

Plys(z) e A] = Pz((xs’)m (5.1)

where ¢ : & — (0, +o0) is a measurable and positive mapping on & (as in the finite case,
we must have ((V) = 1). As it is customary, the dependence on w € Q) will often not be
written explicitly. When for any fixed S € &, 15(+) is a random mapping associated to P*,
1) is said to be globally associated to P*.

As in (1.12), to a G-random mapping ), we associate

YVwe VSed, U(w,S) = {yeV :¢s(w,y)es}

A priori ¥(S5) is a measurable subset of V for any S € &. We furthermore make the
assumption, subsequently called (H2), that G, its topology and ¥ have been chosen so
that ¥ is a random mapping from & to G. We would like to extend the definition given in
(1.19), but the conditioning by ¥ s(2’) = x is no longer an elementary one. Nevertheless,
our topological hypotheses make it possible, for any given '’ € V and S € 6, to find a
Markov kernel K, g from V to & such that for any (z,2/,5) e V x V x &, Ky s(x,-) is
a regular version of the conditional law P[¥(S) € -|¢)s(z’) = z]. Introduce Assumption
(H3), asserting that K(z,2',S,-) = Ky s(z,-) is a Markov kernel from V x V x & to
G, i.e. we are furthermore requiring that for any measurable A ¢ &, the mapping
V2 x & 3 (z,2',5) — K, s(z,A) is measurable. This technical assumption is needed to
be able to use K(z,a’, 5, ) to construct associated Markov chains, via Ionescu-Tulcea’s
theorem. It is automatically satisfied when V is denumerable. When the measurability
assumptions (H1) (H2) and (H3) are satisfied, we say that the G-random mapping
locally associated to P* is standard.
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Remark 5.1.

(i) Let My, (V) be the set of signed measures on V with finite total absolute weight.
From (H1) and the measurability part of Fubini’s theorem, we have that for any
€ My (V), the mapping

VSe®, Fu(S) ={sdu

is measurable.

If we have that the Borel o-field on G is generated by these mappings, then (H2)
follows from (H1). Indeed, it is then sufficient to check that for any x € M, (V), the
mapping Q x & 3 (w, S) — F,(¥(w, S)) is measurable. This is again a consequence
of (H1) and of the measurability part of Fubini’'s theorem, since the mapping
Ax G xV3(wS x)— 1s(t(w,S,x)) is measurable.

We believe (H3) should equally follow from (H1), under the same assumption on the
Borel o-field on G, but we prefer not entering such measurability questions here.

(ii) A priori (H2) and (H3) depend on & and ), but we rather see these conditions
as relative to the the topology of &, in the sense they should be satisfied for
all G-random mappings . In this situation, & is said to be a standard subset
topological space.

Similarly, (1.22) is replaced by
V(z,8)eV x &, Q((z,9),d(',S") = P(z,dd')K(x,2',S,dS’) (5.2)

As in (1.21), we are interested in the set A of probability measures m on V x & which
can be decomposed under the form

m(dx,dS) = pu(dS)A(S,dx) (5.3)

where p is the marginal law of m on &. When considering Markov chains starting from
initial distributions in A and evolving according to @, it is possible to reduce the state
space V x G to

W = {(z,5)eVx&:z2eS} (5.4)

as in (1.20), since for z € S, K(z,2’,S,-) should be supported by {S' € & : 2’ € S’}. But

in the definition of the regular version of a conditional expectation, one has to be careful

with negligible subsets, that is why the justification of this restriction will only be given

below, in the proof of Theorem 5.2. Note that W is a Borelian subset, according to (H1).
Finally, extend (1.16) and (1.18) by defining the kernels K and ¥ on & via:

vSes, { K(S,dS") P[U(S) € dS']

/ 5.5

PB(S,dS") = %K(S, ds’) (5.5)
Both K and ‘3 are Markovian: it is obvious for K and it is a consequence of the following
generalization of Theorem 1.5 to the present framework:

Theorem 5.2. Assume that we are given a standard G-random mapping v locally asso-
ciated to P*. Let (X,, X, )nez, be a Markov chain on V x & whose initial distribution
L(Xo,X0) belongs to A and whose transitions are given by (), constructed as in (5.2).
Then X = (X,)nen and X = (X,,)new are Markov chains whose respective transitions
are given by P and . Furthermore the conditions (1.9) and (1.10) are fulfilled and a.s.
forallneZ,, (X,,%X,) e W.

EJP 25 (2020), paper 6. http://www.imstat.org/ejp/
Page 31/64


https://doi.org/10.1214/20-EJP419
http://www.imstat.org/ejp/

Measure-valued dual processes

Proof. The arguments are essentially the same as those of the proof of Theorem 1.5, to
make them rigorous we just have to resort to conditional expectations.

The first part of the proof, namely that X := (X,)nen is @ Markov chain whose
transitions are given by P and the validity of (1.9), is very simple, as well as checking
(Ao) and (By), with the notation from the proof of Theorem 1.5. Thus we concentrate
our attention to the deduction of (A,,4+1) and (B,+1) from (4,,) and (B,,), for some given
neZy.

Let G : V x & — R be a bounded and measurable test function. We have

E[G(Xn+1axn+1)|x[[0,nﬂ] = J E[G(Xn+1»xn+1)|Xn =Y, x[[O,n]]]IP[Xn € dy|x[[0,n]}]
14

J E[G(Xni1, Xn1)|Xn = yax[[o,n]]]IP[Xn € dy|x[[07n]]]

n

since due to (B,), P[X,, € -|X[]] is supported by X,,. The reformulation of (2.3) in the
present context is that for any bounded measurable test function & : V — R, we have

f E[G(Xns1, Xnp 1)1 X = 3 X0 1h(y) (dy)

n

_ <<xn>fv L5 (G, U(X,)h(x, (2))] w(dx) (5.6)

where the exponent of the expectation of the r.h.s. indicates that the integration is only
with respect to the randomness of the random mapping v, , while X,, is fixed, as told by
its presence as an index. In this equality, & can depend on X,, (even on X[ ), it will be
written hx, in the following computations. Let us prove (5.6). By the Markov property,
we have that the L.h.s. is equal to

L E[G(Xn 11, Xn41)| X =, Xnlha, (y) 7(dy)
- f 7(dy) Py, de)K (y, 2, X, S )G 2, S, ()
X, xVx&
- L () Py, B (Gl ¥ (X)) i, () = b, (0

~ [ maoP @ an g (G V@D, @) = slbr, ) 6D
VxX,
Recall that by local association, P*(x,-)/¢(%X,) and the law of ¢x, () coincide when they
are restricted on X,,, so that

c(alen) Ln P*(z, dy) B [G(z, U(X,) |z, (2) = ylhz, (y)

= BV B [Ga, U(X,) [, (@)]ha, (x, ()]
= EY5 [G(a, U(X,))ha, (Y, (2))] (5.8)

The announced equality (5.6) follows. Taking into account (B,,), asserting that

= 1x,(y)
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we deduce from (5.6), with h = hx,, = 1x, /7(%,),

7(d
E[G(Xnt1, Xnt1)|Xpon)] = J E[G(Xn+1, Xn+1)|Xn =y, X[0,n]] (dy)
X, m(Xn)
1
= f E [G(Xn+17:{n+1)|Xn = y»%[[o,n]]] Wi?{(y)) 7(dy)

((Xn) L By (G, U(%) Ly, (Vx, (2))]/7(X,) m(dz)

ED fv B (G, W(X) Ly, ()] (%) ()

(%) fv . w(dz)K (%,,dS) G(z,S)Ls(z)/m(%,)

f m(dz)P (X, dS) G(z, S)1g(z)/m(S) (5.9)
Vx&

where we used the definitions from (5.5). When G does not depend on the first variable,
i.e. is of the form

V(2,5)eV x6, G(z,S) = g(95)

for a bounded and measurable test function g : V — R, we get

Elg(Xn )| Xpong] = wan,dsm(&

which amounts to (A, 41).
Next consider G of product form:

V(z,5)eV x 6, G(z,S) = h(z)g(S)

where g : V - Rand h : & — R are bounded and measurable test functions. We
compute that

f 7(d2) (X, dS)G (z, S)Ls(x)/m(S) = fm(xn,dsm(sm[hw
Vx& S

Let F : 6197 — R be another bounded and measurable test function. From the above
consideration, we get

E[F(X[0,n)9(Xn+1)h(Xnt1)] = E[F(X[0,n)Elg(Xn+1)P(Xn+1)|X[0,n]]]
E[F(X[o,n))BlgA[R]](X0)]
E[F(%[[o,n]])g(anrl)A[h](an)]

Since F' and g are arbitrary bounded and measurable functions, it follows that
E[h(X7L+1)|x[[O,n+l]]] = A[h](xn-&-l)

namely (B, 1), due to the fact that & is equally an arbitrary bounded and measurable
function.

It remains to show that a.s. for all n € Z,, (X,,X,,) € W. For n = 0, this is an
immediate consequence of the belonging of the initial distribution to A. Forn € Z,
successively apply (5.9) with the mappings G : V x & 3 (z,5) — 1g(z) and G =1y e
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to get
P[Xys1 € Xost|Xpong] = f P, dS)Ls(x)Ls (x)/n(S)
V><6
_ J B(X,, dS)Ls()/7(S)
be
= E[lvxe(Xni1, Xni1)X[o.n]]
= 1 O

It is straightforward to generalize Corollary 1.6 to the present framework. In the
statement of this result, 7 is seen as the measurable mapping & 5 .S — w(S5) € (0, 1].

In the applications we have in mind, the state space & is too small since we would like
that it contains the singletons, which in practice are often negligible with respect to 7
when V is not denumerable. Consider for instance X := (Xt)t>o an elliptic diffusion on a
compact Riemannian manifold V. For fixed € > 0, we are interested in the time-skeleton
Markov chain X = ()N(m)nez .. Its invariant probability measure 7 is also the invariant
probability measure of X, which gives zero mass to every singleton, since it admits a
density with respect to the Riemannian measure. Nevertheless, we are looking for a
set-valued dual X = (X,)nez, starting from X, := {Xo}, constructed via some random
mappings (e.g. to escape the difficulties encountered in [21] and [9] to get singletons
as starting points). In discrete time, the problem is only in the initial step, since for
n € IN, X,, should be a “nice” compact subset of V with w(%,,) > 0. So to end this section,
we show a way to enlarge G to include the singletons. Again, random mappings are
very helpful in this respect, but they will no longer be locally associated to P* and we
need a slight generalization of this notion, see Remark 5.3(a) below. Unfortunately, this
approach will not receive here the full treatment it deserves and this lack of development
will prevent it from being useful in the next section.

We come back to the general setting of this section and begin by presenting some
straightforward modifications of the definitions. Consider

S = Gu{{z}:zeV} (5.10)

(here the notation differs substantially from that of the introduction, where & was the set
of all subsets of V and & := &\{}). Assume that & is endowed with a Polish topology
such that & is a measurable subset of G and such that the mapping V x& 3 (z,5) — 1g(z)
is measurable.

Extend A into a Markov kernel A from & to V, via the convention that when S is the
singleton {z}, then A({z},) := d,, the Dirac mass at = (this definition is coherent with
the conditioning when 7 ({z}) > 0). The state space W has to be enlarged into

W = {(z,9)€eVx6&:xeS}
= Wou{(z,{z}) : x€ S}
The set of initial distribution we are interested in is .4, the set of probability measure on

W which can be decomposed as in (5.3).
Consider a measurable mapping

Y QxGxV>s(wS, x)— s(w,z)

Assume that the restriction ¢ of ) to Q x & x V is a standard G-random mapping locally
associated with P*. Replacing & by &, we could define similarly a notion of a &-random
mapping 1 locally associated with P*, nevertheless the condition (5.1) on singletons
{20} € & would just mean

Ptz () = z0] = P*(x,{z0})/¢({w0}) (5.11)
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where ( has been extended on & as a measurable and positive function. In our present
context, the r.h.s. often vanishes and the requirement that P[¢,}(z) = zo] = 0 is not
appropriate for our purposes. In some sense, we need a density equivalent of (5.11),
which leads us to strengthen our assumption on the Markov kernel P. So introduce
Hypothesis (H4) asking for the existence of a measurable functionp : V xV — R, such
that

Va,yeV,  Pz,dy) = p(z,y)r(dy)
This density assumption implies immediately that P* is given by
Va,yeV,  P*(z,dy) = ply,z)r(dy)
Condition (5.1) has to be amended with
Vag,eeV,  Plduy (@) =x] = p(xo,2)/¢({zo}) (5.12)

where ¢ : & — (0, +o) is a measurable function. When (5.12) is satisfied (in addition
to ¢ being a standard &-random mapping locally associated with P*), we say that ¢ is

G-random mapping locally associated with P*.
Remark 5.3.

(a) As observed above and strictly speaking, zﬂ{wo} is not locally associated to P*, since
it does not satisfy (5.11) in general. Nevertheless, Equation (5.12) can be seen as
a limit of (5.1), when S converges to {x¢} and ¢((S5)/7(S) converges to (({xo}). This
point of view inspired the notion of local association to P*. It also explains the
expression obtained in (5.14) below.

(b) The measurability of ¢ in (5.12) plays no role when we start with Xy = x¢ and
Xo = {x0}, for some fixed zy € V. Anyway, it seems quite natural to assume that
V 3z — {r} € & is a measurable bijection, as well as its inverse (i.e. V can be
identified as a measurable space to {{z} : z € V}), so that one can go from the
measurability of & 5 S + ((S9) to the measurability of & 5 S + ((9) via the additional
condition that V' 3 x +— (({z}) is measurable.

The mapping ¢ will be said to be standard, when the following extensions (H2) and
(H3) of Assumptions (H2) and (H3) hold:

+ (H2) requires that the mapping
Y Se6, U(S) = {yeV :s(y)esS}

is measurable from & to &. In particular, ¥({z,}) must have positive mass for any
To € V.

+ (H3) provides us with a Markov kernel K from V x V x & to &, which, as in (5.2),
enables us to define a Markov kernel Q from V x & to V x & via

V(z,8)eVx6&,  Qx,S),d,S")) = P(z,d')K(z,2',5,dS") (5.13)
Next let us come to the analogue of (5.5). The kernel K is defined similarly to K:
vSe&, K(S,dS) = P[¥(S)eds]
Due to (H2), K is a Markov kernel from & to G. One has to be more careful with the

definition of P:

vSe&, P(S,ds) 7(S) 5.14)

f | XS g5 497, if 7(S) > 0 (
' (8¢ ({x0})K(S,dS"), if S = {x0} is a singleton

Now we have all the ingredients necessary for stating the extension of Theorem 5.2:
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Theorem 5.4. Assume that we are given a standard G-random mapping 1) locally asso-
ciated to P*. Let (X,,X,)nez, be a Markov chain on V x & whose initial distribution
L(Xo, %) belongs to A and whose transitions are given by @, constructed in (5.13).
Then X := (X,))new and X = (X,,)new are Markov chains whose respective transitions
are given by P and ‘13 Furthermore the conditions (1.9) and (1.10) are fulfilled and a.s.
forallne Z, (X,,X,) e W.

As in Corollary 1.6, we deduce the following consequences.

Corollary 5.5. The kernel ‘4_3 is Markovian and the intertwining relation (1.7) is satisfied.
When ¢ = 1 (in particular for globally associated to P* random mappings), 7 is harmonic
for K. Furthermore, &\G is an entrance boundary for X, in the sense that for anyn > 1,
X,€6, namely after time 1, (Xm :%n)nG]N is a Markov chain on V x & of the same type
as those considered in Theorem 5.2.

Proof of Theorem 5.4. Let us come back to the proof of Theorem 5.2 and review the
changes to be made. They correspond to the situation where %, is a singleton and it
is sufficient to consider the time n = 0. Fix some z, € V and assume that X, = {zo}.
Equation (5.6) is to be replaced by

E[G(X1, X1)| Ko = 20, %o — {w0}] = fv 70 [Gla, U ({ao) L, | (2)oany] T(d2)

where G : V x & — R is a bounded and measurable test function. Its proof, justifying
Condition (H4), is the following modification of (5.7):

E[G(X1,£1)|Xo = x(h:%O = {350}]
= P(xg,dz)K (29,7, {z0},dS")G(x,5")

~ | Ploo.dayET o0 (Gl H({a0}) ipa (@) =
~ | a0, 0B [, U0} iy (2) = 0] ()
~ Clan}) | BP0 Gl W) gy 01w ()
~ Clan}) | BP0 [Gla Blfaol) L, ()] ()

The definition of ‘13 is dictated by the analogue of (5.9), which now writes:

E[G(X1, X1)|Xo] E[G(X1, X1)[Xo = w0, Xo = {20}]

— ¢({zo)) fv %0 [Gla, U({wo})1g,, (20)] 7(da)

= C({xo})fv m(dz) K ({zo}, dS) G(z, S)Ls(x)

xS

_ f 7(dz)B({zo},dS) G(x, S)Ls(x)/(S)
Vx&

The end of the proof readily follows the arguments given in the proof of Theorem 5.2. O

Remark 5.6. As in the finite situation, the law of the random mapping enabling to
construct Z%nﬂ (or X,,4+1 in Theorem 5.2) from (X, X, X,+1) may depend on the time
n € Z4. Indeed the proofs of Theorems 5.2 and 5.4 are only concerned with a transition
from n to n + 1. One can even go further, by considering different state spaces V,,
at each time n € Z,. The invariant probability m has then to be replaced by a family
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(Tn)nez, of probability measures which are related by the underlying Markov kernels:
TPy = mh41, for any n € Z,, where P, is the transition kernel between times n and
n + 1. Corresponding Markov kernels (A, ),en have to be considered.

6 Markov processes

Here we leave the discrete-time setting for a continuous-time framework, with the
purpose of extending the construction of set-valued intertwining duals given by Theorem
5.2 to diffusion processes. The full development of this theory is out of the scope of the
present paper and we hope to provide more details in future works. Nevertheless, below
we outline the principles underlying such extensions. An illustration will be given in the
next section, where we will also discuss further applications, up to the availability of
convenient stochastic flows.

Let V be a Polish space endowed with a probability distribution 7. Let & be a set of
certain measurable subsets of VV which are given a positive weight by 7. For any S € G,
let A(S,-) be the elementary conditioning of = on S. Assume that & is endowed with a
Polish topology such that the mapping V x & 3 (x,S) — 1g(x) is measurable. It follows
that A, the mapping associating to any S € & the probability A(S, -), is a Markov kernel
fromSto V.

Let X = (X});>0 be a time-homogeneous V-valued diffusion (i.e. a Markov process
with continuous paths), whose semigroup P = (P;);>0 admits 7 as an invariant probability
measure. Denote P* = (P}*);~o the adjoint Markov semi-group in I.?(). As in Section 5,
our topological assumptions insure that the semi-group is given by Markov kernels. By
our hypotheses below, the Markov processes associated to P*, X* = (X[*);>o, will admit
versions that are diffusions. For any = € V, X*(x) will stand for such a process starting
from z.

We want to consider stochastic flows on V extending the random mappings of the
previous sections. We will need a notion of stochastic flow more general than that
considered in a series of papers by Le Jan and Raimond [14, 15, 16, 17] (see also
Tsirelson [30]), since typically, due to the possible dependence on subsets of &, we
would like the increments of the flow to be non-stationary. It is even worse, since once
the time has been returned, the subset on which the construction depends is in the
future of the flow, fortunately there is an important independence property helping
us, see Lemma 6.3 below. In some sense, there is the same difference between the
stochastic flows of Le Jan and Raimond and those we would like to construct as the
coupling-from-the-past technique of Propp and Wilson [27] and the random mappings
considered in the introduction. So a lot remains to be investigated in this direction.

It is convenient to be quite explicit about the underlying probability space, so we are
led to the following definitions.

We assume that we are given R(V) a vector space of measurable functions from V to
V endowed with a Polish topology such that the mapping V x R(V) 3 (z,¢) — ¥(x) is
measurable (all product spaces are endowed with the product measurable structure).
Let A stand for {(s,t) € R2 : s < t} and more generally for any I < R, we define
A1 = {(u,v) € I? : u < v}. Define the space Q(°) as the set of all measurable mappings

P AxVa(s,t,x) — tPsu(z)eV (6.1)

such that for any fixed (s,¢) € A, the restricted mapping v, belongs to R(V). The
notation ¢ = (v5,:(x))o<s<t,zev Will designate the canonical coordinates on Q®). The
space Q) is endowed with the sigma-field generated by the canonical coordinates.

Remark 6.1. The space Q) is too large to be endowed with a Polish structure. It would
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be nicer to define Q) as the space of mappings of the form (6.1) such that
A3 (s,t) — s eR(V)

is continuous. Unfortunately this assumption is for the moment too strong and would
not enable us to rely on the results of Le Jan and Raimond [17] in Subsection 7.1 below,
where V' = R and R(R) will be the space of non-decreasing cadlag mappings from R to
R, endowed with the Skorohod topology.

The above presentation differs from that of Le Jan and Raimond [15] by the intro-
duction of the space R(V) (in the same spirit as that of &) to avoid the handling of
measurable representations.

A stochastic flow on the state space V is a probability distribution P(®) on Q)
such that for all 0 < s <t < u, a.s. Y, 5 is the identity operator and v, ; 0 9 = Vs 4.
Given such a probability P(®), the sigma-field of Q(®) is completed with all its negligible
subsets. By a slight abuse of terminology, we will also say that the canonical 1) on Q) is
a stochastic flow (implicitly under P®)). The stochastic flow is said to be associated
to P* if for any fixed t > 0 and = € V, (¢;—s,¢(¥))se[0,,] has the same finite-dimensional
marginal laws, over the time domain [0, ¢], as a diffusion associated to P* and starting
from z. Namely ¢ (or P(®)) provides a coupling of the X[T).t] (z), forany x € V and ¢t > 0.
Let us ask more, since we are rather interested in the notion of global association with
P*, where there is an underlying dependence on subsets of &. To proceed toward its
definition, let us extend (H2) into (H5): for any 0 < s < ¢, the mapping

QO x &3 (1,8) — ¥ 1(S)

takes values in Su{} and is measurable (where Su{J} is endowed with the sigma-field
generated by that of G and {}).

Enlarge Q) into Q@ = & x Q0), the canonical coordinate on & will be denoted
Xo. A probability distribution P®) on Q4 will be said to be a stochastic flow when the
coordinates Xy and 1 are independent and the distribution of v is a stochastic flow. On
(QW PW), we define

V=0, X = v5,(Xo) (6.2)

It follows from (H5) that ¥ = (X;);>0 is a G-valued stochastic process whose initial
variable X, is independent from the stochastic flow ). Note that no regularity is assumed
with respect to the time (to go into this direction, one should improve the time regularity
of the flow, for instance by considering the condition mentioned in Remark 6.1), X is only
a collection of random variables indexed by the time.

For any A ¢ A x V, denote ¥4 = (¥u,v(7))(u,v,0)ca and for any ¢t > 0, let G; be
the sigma-field generated by ¢A[O,t]xv and X,. The stochastic flow ¢ is said to be a
G-stochastic flow when

Vi 0,VaeV, Llbag . v|G] = Llbag ., <v]E] 6.3)

Since Q(®) is not endowed with a Polish topology, we have to be more careful about the
meaning of the above identity: the signification is that any corresponding conditional
expectations are a.s. equal. With the same convention, a G-stochastic flow is said to be
globally associated to P*, when

Vo<s<t,VaxeV, PWH[p,(z)edylGs] = PF (,dy) (6.4)

In particular such a flow v is associated to P*.
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Remark 6.2. By analogy with the definitions of the previous sections, a G-stochastic
flow ¢ is said to be locally associated to P*, when for any 0 < s < ¢, any « € V and any
measurable A c X, we have

POy, (z) € AIGs] = PF (z,A4)/C(s,t,X,)

where ¢ : A x (6u{Z}) — (0,+w) is a measurable mapping. But to avoid technicalities
and since we will not need it in the next section, we will not investigate this promising
notion in the time-continuous setting.

Enlarge the probability space (2, P() into (), P(), with
QB = QW xvy
PO = PUer (6.5)

and denote Z for the canonical coordinate on V.
An important consequence of global association to P* is:

Lemma 6.3. For any (s,t) € /\, X, and 1, +(Z) are independent under P®) as soon as
P® js a G-stochastic flow globally associated to P*. It follows that Yap.gxv and Vs i(Z)
are independent.

Proof. Let F and G be bounded and measurable functions defined respectively on G and
V. By definition, we compute that

EV[F(X,)G(¢s4(2))] = JVW(dZ)E(4)[F(%S)G(zbs,t(Z))]

- fvw(dz>E<4>[F<xs>E<4>[Gws,t(zmxs]]

| maEorpe)r le)e)

— B0 | w()pr [6)e)

= ECF(X,)]x[C]

where we used (6.4) in the third equality and the invariance of 7 for the semi-group
P* in the last equality. Considering ' = 1 in the above computation, we also get that
7[G] = E®[G(¢5.4(Z))], so that finally

E@[F(X,)G(s1(2))] = E@[FX)ED[G(¢s4(2))]

and the wanted independence of X; and v, .(Z).
Note that the construction of ¢, ;(Z) depends only on Z and YA, oy x V., SO it follows
from (6.3) that ¢, ,(Z) is in fact also independent from g;. O

A more interesting enlargement of Q(®) is
Q" = 9(4) % V[0,+OO)

The canonical coordinates on C([0,+00),V) are denoted by the process Y = (Yi)i>0-
For fixed ¢ > 0, let H; be the sigma-field generated by G, and Y[y ;. We consider the
probability P on (Q”, ;) which is the image of P(®) by the mapping

O 5 (X0,9,2) = (X0, ¢, (¥51(2))sefonn)
Lemma 6.3 insures that the probability spaces (", H;,P}), for t > 0, satisfy the Kol-

mogorov compatibility criterion. We get there exists a probability P” on Q" endowed
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with its natural sigma-field, so that P” coincides with P} on #;, for any ¢ > 0. Note
furthermore that under P”, the process Y is a stationary diffusion associated to the
semi-group P starting with Y}, distributed according to = and that we have

V (s, t) e A, P'Y, =95 (YV2)] = 1 (6.6)

For any measurable functional F' defined on Q”, which is either bounded or non-
negative, we are interested in the conditional expectation, IE"[F|X;, Y[, 4], of I knowing

the sigma-field generated by X, and the Y, for u € [s,t]. We denote E o) [F] =

E"[F|Xs = S, Y54 = [s4], keeping in mind that it is only defined a.s. with respect to a
set S € & and a trajectory [, € VI*!, distributed according to the law of (X, Y[ ).
Recall from Lemma 6.3 that X and Y[, ;; are independent and that the law of the latter
is that of a stationary diffusion. Since neither Q” nor V[*| are Polish spaces, we cannot
represent the above conditional expectation via integration w.r.t. a Markov kernel from
S x VIt to Q.

Here is another compatibility consequence of global association that will be important
in the sequel.

Lemma 6.4. Assume the G-stochastic flow 1) is globally associated to P*. Then for any
0 < s <t, anyu > 0 and any bounded and G,-measurable functional F, we have

EY.  [F] = E., [F]

S, T s, t4u] S,@(s,4]

where the equality holds a.s. with respect to S € & and [ ;4] € Vlsit+u] independently
distributed according to the law of X5 and to a stationary X, ;1 -

Proof. To get the above a.s. identity, it is sufficient to show that for any bounded and
G;-measurable functional F, for any bounded and measurable functions G; : 6 — R,
Gs : VIstl 5 R and G5 : VIBt+ul 5 R, we have

E”[FGl(xs)Gz(Y[s,t )GS( tt+u])]
= E"[E%, v, [F1G1(X:)G2(Ys,1) G35 (Yt p4)] (6.7)

So let us start with the 1L.h.s. and condition it by G;:

E'[FG1(Xs)Ga(Yis,)G3(Vitt4u))]
= E//[FGl(xs)E/ [G ( [s t]) 3(Y[t,t+u])|gt]]
= E'[FG1(Xs)E"[G2((0,t(Y2)) vefs,)) G3 (Yt e 1) Ge ]

Note that under the conditioning by G;, the mappings (1,,t(-))ve[s,] are fixed and that
(Yi1v)ve[o,u] 18 @ stationary diffusion associated to P. It follows that

E"[Go((10,t(Ye) )vels,1]) G3 (Yt 4u))Ge]
=jG2<<wv,t<x>>veSt> (G (Kot (2))oeprsug)] 7(d)

where X (z) is a diffusion associated to P starting from z.
It leads us to introduce the measurable mapping

H:vEl 5 R
Ys,) = GQ(y[s,t])E[GB((vat(yt))ve[t,t-&-u])]
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since we can write, once again taking into account the independence property of Lemma
6.3,

E'[FG1(X:) G2 (Ys,0)G3(Vtpru))] = JE”[FGl(%S)H((%,t(ﬁv))ve[s,t])]W(dl‘)

E'[FGy(Xs)H((t,t(Ye))vers,i))]
= E'[FGi(X5)H(Ysn)]
= E'[E%, v, ,[FIG1(X)H(Ys)]
To get (6.7), it remains to reverse the above computations, or more precisely, to apply

them with F = 1 and the mapping & x V[ 5 (S, Yrs,1) = G1(S)Ga(yps,4) replaced by
S x Vs (S iy = Gi(9)Ga(ypn)Fsy, , [F] O

Given a full trajectory x| 4) € V10:+%) and a set S € G, we can consider conditional
expectations Egq, ., [-] as before Lemma 6.4, corresponding to the conditioning by
Xo = Sand Y =z ;). The conditional expectations Es ., . ,['] are only defined a.s.
with respect to (S, z[o,+«)) distributed according to the tensor product of the law of X,
and the stationary law of X. These conditionings are the time-continuous version of the
conditioning of the random mappings by the Markov chain (X},),ez, encountered in the
previous sections. As we have done before, when working under Es ., .. [] or under
its integrated version IP defined in the next paragraph, the flow ¢ = (¢s+)o<s<t Will be
denoted ¢ = (ps,+)o<s<t (to avoid the error of thinking that ¢ is globally associated to
P*).

Assume that X, is deterministic and let X = (X}):>0 be a diffusion process associated
to P starting from A(Xo,-), say defined on a probability space (',P’). We endow
Q= Q' x Q" with the probability measure IP whose marginal distribution on ' is P’ and
whose conditional distribution on Q" knowing the coordinate X on €' is Px, x[-]. This
is well-defined through expectations, since the law of X is then absolutely continuous
with respect to the stationary law of a diffusion associated to P (the Radon-Nikodym
density being 1x,(Xo)/m(Xy)). More generally, this construction has to be integrated
with respect to the law of X;. This is possible when the initial law of X has the form
§ A(S,-) u(dS), where p is a probability measure on &. In this case the law of (X, Xo)
belongs to A, namely is of the form described in (5.3), or equivalently, we have

L(Xo|Xo) = A(Xo,") (6.8)

When P is constructed as above starting with P(°), a stochastic flow globally associ-
ated to P*, we say that P is a (P*, &)-conditioned stochastic flow. We deduce from
Lemma 6.4 that under such a probability, the analogue of (1.9) is satisfied:

Lemma 6.5. Under a (P*, &)-conditioned stochastic flow P, we have
V=0,  L(ZXpglX) = L(XpylXp.x)

Proof. Let us first compute the conditional expectation under P knowing X. Consider a
bounded and G,,-measurable functional F' (i.e. F' is measurable with respect to Xy and
), as well as a bounded and measurable mapping G : VI[%+®) — R. Denote x the law of
Xo. By definition, we have

E[FG(X)] = L Vu(dS)A(Svdl‘)E;[G(X) s, x[F1]

where under P/, X starts from x € V and is associated to the semi-group P. The previous
r.h.s. can be written under the following form, with S, :={Se€ & : x € S}

E,[G(X)ES x[F]]
Jv m(dz) J-G (dS) m(S)

x
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Since the distribution of Xy admits

Vazr — Lsm u(dS)%

as density with respect to 7, we get that the conditional expectation of ' knowing
X = 2,40 € VIO+®) is given by

Jo., ML, [F]
So., 1(dS) 55

Note that by the martingale convergence theorem, we have

E[F‘X = :I:[O,-&-OO)] (69)

. " "
SET@ va[O,S] [F] = ES7X[0»+OO) [F]

(a priori a.s. with respect to a stationary X, but equally under P, by absolute continuity).
Fix t > 0 and assume now that F' is furthermore G;-measurable. We deduce from Lemma
6.4 that

EgvX[o‘+m> LKl = gvX[o,t] L¥]
so that
SGTO /’(‘(ds)Eg’,x[Od] [F]
S, 1(dS) sy

In particular, the l.h.s. only depends on zy. By the tower property of conditional
expectation, we get that

E[F|X = 20, +o0)]

E[F|Xj0,0)] = E[F|[X[4]
Since this is true for any G;-measurable F, we deduce the wanted equality. O

To go further in the description of IP, especially to show that the analogue of (1.10)
equally holds, we try to come back to the setting of the previous section by considering
discrete-time skeletons.

More precisely, for ¢ > 0, consider the Markov kernel P, from V to V. Associated
Markov chains are the e-skeleton X (9 := (X, )nez, . For n e Z,, let wr(f)x be Vepe(nt1)

conditioned by G.,,. The family (1/)7(:)5)366 has to be understood in the following sense: let
F be a bounded or positive measurable function on R, by definition, the expectation of
F(w,(f)s) is equal to E"[F(Yen e(n+1))|Xen = S], a.s. in S distributed according to the law
of X.,,. Here our notations may be slightly confusing, so let us review the construction

considered in Section 5, taking into account Remark 5.6, since the family (wff_)s)nez +, Se&

is inhomogeneous with respect to the time n € Z . Starting from i‘((f) = Xy, we define

7 = (@f%,) " (Xo)
— (Po.0) " (%)
= xe

What is important is that the law of 3656) knowing 36(()6) is exactly the law of X, knowing X,

so that the law of (xff), x@) is equal to the law of (X, X.). Construct X(¢ := (3655))%%
via the induction

VneZy, X9, = @Y%) NEY)
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By iteration of the above argument and taking into account (6.3), we end up with X(¢)
having the same law as (X, )nez, - We will identify X(¢) with (X, )nez, , since above all we
are interested in their law, to be conditioned below. Besides, our previous assumptions on
1 insure that for any n € Z ., the random mapping 1/)516)5 is, a.s. in S with respect to the law
of X, a G-random mapping globally associated to P*. Assumption (H1) was assumed
at the beginning of this section and (H5) implies (H2) for the discrete-time random
mappings 1/17(5)5 forn e Z, and S € &. To go in the direction of (H3), let us define, for any
0<s<tz,2' €eVandSe6,Es,,, [|]the conditional expectation under P” knowing
that X, = S, Ys = v and Y; = 2’. Next, let K((S;s,z;t,2'),-) be the image of P, .., ./[]
by the mapping ¢ — w;tl(S). For fixed 0 < s < t, we can see it as a Markov kernel from
S x V x V to G, since it corresponds to the conditioning of X; by (X, X, X;) and we
can work on the Polish space & x V x V x & endowed with the law of (X;, X, X;, X3).
When s = en and t = e(n + 1), K((S;en,z;e(n + 1),2’),-) can almost play the role of
K(z,2',S,) in Condition (H3) for the discrete-time random mapping 1#7(,5)5 except that
K((S;en,z;e(n+1),2'),-) is maybe not a Markov kernel corresponding to the conditional
distribution of (1/17(5)5)_1(5) knowing wf;)s(x’ ) = x, for all fixed S € & and 2’ € S (and

a.s. in x with respect to the law of z/)f:)s(a:’)), but only a.s. for S distributed as X, and
for (z,2’) distributed (independently) according to = (dz)P.(z,dz’) = w(da')P*(2', dz).
Nevertheless, this extension of Condition (H3) is sufficient for the validity of Theorem
5.2, as it is checked by a direct examination of its proof. Indeed, (5.7) and (5.8) have
now to be understood a.s., respectively w.r.t. the law of X,, and in x w.r.t. 7.

Remark 6.6. The above construction of the process (Y;):>o could also be performed in
the discrete-time setting of Section 5 for globally associated to P* random mappings
to get a stationary chain (Y),),cz, associated to the transition kernel P and satisfying
the analogue of Property (6.6). In the restricted setting of global association, it leads
to a variant of Theorem 5.2 where Condition (H3) has been removed and replaced by
the hypothesis that the random mappings belongs to some Polish functional space fR. It
would be interesting to get similar constructions in the context of local association.

These considerations lead to the following continuous-time extension of (1.10):

Theorem 6.7. Under a (P*, &)-conditioned stochastic flow IP, we have
V t 2 0, ‘C(Xt‘%[Oﬂf]) = A(%t, ) (610)

Proof. According to the above observations, we are in position to apply Theorem 5.2 to
the time-inhomogeneous random mappings induced by the family (z/Jﬁz)S)neZ ., Ses. More
precisely, let us come back to the kernel described by K ((S;en,z;e(n + 1),27),-), for
Se&,neZ, and z,z’' € V. The tower property of conditional expectation implies that

Eg‘;en,z;e(nJrl),m' []
= J ES oo cinsny [ Penzie(nr1),2 (AT en e(n+1)) (6.11)
C([en,e(n+1)],V)
where P, 4.c(n1),2r 1S the law of the bridge X[¢, ¢(n+1)] associated to P and conditioned
by X, = 2 and X(,,4+1) = x. Here we don’t need the results of Fitzsimmons, Pitman
and Yor [12] for the existence for such bridge laws, since we just require their existence
7(dx)P.(x,dx’)-a.s. and not for every z, 2’ € V.
Let X(©) = ()Z',(f))nez . be a Markov chain with transition kernel P, and starting from
A(Xy,-), first assuming that X, is deterministic. As in Section 5, let ¥() := (56516))%@ be
obtained from (w,(i g)nez ., ses through its iterative conditionings:

VneZy, 7/’7(:)55(@ ()?7(121) = X
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The law of (X(9), X(9) coincides with the law of (X(9, X(9). Indeed, by iteration, it

is sufficient to see that for any n € Z., the conditional law of ()?221,56521) knowing

()?fﬁ), %%’)meﬂo,nﬂ is equal to the law of (X (1), Xe(n+1)) knowing (Xem, Xem)me[o,n]- On
one hand, by definition, by taking into account (6.11) and with the kernel K defined
above Remark 6.6, we have

P[(X\11, X)) € (do, dS) (X2, X)) meo n]

m

= P(X),da) K (X en, X5 e(n + 1), 2),dS)

- PRI ) |
C([en,e(n+1)],V)

K((Xr(f) ) ‘T[en76(n+l)])ﬂ ds)éfbe(nﬂ) (dx) P€n7Y$L5) (dx[eme(nJrl)])

~

K((Xr(f)’ x[en,e(n+1)])a dS) ]Peny)m(;(f) ;5(n+1)’x(dx[en,e(n-ﬁ-l)])

L([en,e(n+1)],V)

where

* K((S;Z[en,e(n+1)])s ) is the image of IPg;I[m’e(nH)] [-] by the mapping ¢) — ¢;ll,s(n+1)(5)'
* P., . (+) is the law of Xen,e(n+1)] associated to P, starting at time en from ' eV.

On the other hand, with arguments similar to those of Lemmas 6.4 and 6.5, we check
that

P[(Xe(n+1)7 xe(n+1)) € (dl‘, dS) |X[O,en] ) x[O,en]] (6.12)

J- K((X[O,en]a x[en,e(n-&-l)])a ds)éaje(nJrl) (d.’I}) IPen,XEV,L (dm[en,e(TH—l)])
C([en,e(n+1)],V)

It follows that
P[(Xe(n+l)7 xe(n+1)) € (dlL’, dS)|(Xema xem)?rLE[[O,nﬂ]

K((X[O,en]v x[en,e(n+1)])7 ds)éme(nJrn (dl’) IPen,Xen (dz[en,e(nJrl)])

J\C([eme(nJrl)],V)

and this ends the proof of the equality in law of (X (9, X¥(9) and (X(©), x()). At least when
Xo is deterministic, but this identity in law is next extended by integration with respect
to E(}:O)

Taking into account Remark 5.6, Theorem 5.2 now implies that

VneZy, L(Xan|X0,Xe,Xen) = AXen,?) (6.13)

If we had some time regularity for the process X, the announced result would follow
by usual approximations. To go further, let us remark that in the above arguments, the
time mesh 0, ¢, 2¢, ..., ne can be replaced by any finite sequence tg < t; <t < --- < ¢y,
The Markov chain (Xy,, X¢,, Xt,, ..., X¢,,) iS no longer time homogeneous, but as pointed
out in Remark 5.6, this is not crucial in the deduction that

L(Xe | Xy, Xy, Xty Xt) = ARy, ") (6.14)

Now fix ¢ > 0 and consider two bounded and measurable functions F' : V — R and
G : 609t - R. We want to show that

E[F(X)G(Xj0,)] = E[AF(X)G(X0,9)] (6.15)

Due to the product measurable structure of G0, there exists a sequence (Sn)nez, of
distinct elements from [0, ¢] such that G(X[o]) only depends on the values (X;, )nez, -
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For N € N, consider

GN((xsn)ne[[o,N]]) = E[G(x[o,t])|(xsn)ne[[O,N]]]

The martingale convergence theorem implies that G ((Xs, )nefo,n]) converges for large
N toward G(X[o,) in I?(P), so to prove (6.15), it is sufficient to see that

E[F(X)GN((Xs,)nepony)] = BIA[F](X)GN((Xs, )nego,ng)] (6.16)

Letty <t; <ty <t3 <---tyy1 be the ordering of the elements s, s1, s2, ..., SN, ¢, (6.14)
implies (6.16) via the conditioning by the sigma-field generated by (X, )nefo,n]- O

Other parts of Theorem 5.2 can be extended to the continuous-time framework: of
course under P, X remains a diffusion process associated to the semi-group P. The
process X = (¥;):>0 is Markovian, but in general it will no longer be time-homogenous.
The associated semi-group P = (Ps.:)o<s<: iS given by

/ _ 71'(5") ’
VO<s<tVSe®, P (9,d5) = - K, 4(S,dS")
K.4(5,dS") = PW[x, edS|x, = 5]

Furthermore, the process (X:, X:):>0 is Markovian, indeed, a version of this property
was used in (6.12). Concerning the set W defined in (5.4), we get that for any sequence
(tn)nez, of non-negative times, we have

PVneZ,, (X, %, )eW] = 1 (6.17)

To go further and deduce that W can be taken as state space of (X, X) under I, we would
need further regularity conditions, e.g. that there is version of X which is continuous
and W is closed.

As in Theorem 5.2, the initial X; in Theorem 6.7 have positive weights with respect to
7. We cannot go around this drawback by following the approach leading to Theorem 5.4,
since we did not investigate the local association in the continuous time setting. Instead
of trying to develop an alternative general approach to get a set-valued dual process
starting from a singleton, we refer to the particular case presented in Subsection 7.1.

7 One-dimensional diffusion processes

As already alluded to, we would like to apply the analysis of the previous section
to diffusion processes. Unfortunately and despite the works of Le Jan and Raimond
[14, 15, 16, 17], the theory of stochastic flows has not been developed in the direction
needed by our purposes. The next subsection presents a treatment of the Brownian
case starting from 0 based on a stochastic flow due to Le Jan and Raimond [16], it leads
to a segment-valued dual process directly coupled with the primal Brownian motion
through its local time at 0. It turns out to be equivalent to the classical Pitman’s theorem
[25], which is thus recovered in this way. In the second subsection, we show how to
extend this analysis to simple one-dimensional diffusions, if we had at our disposal nice
stochastic flows. Subsection 7.2 ends by a conjecture about the existence of the strange
stochastic flows we would like to use, as a first step for one-dimensional processes. In
Appendix A, we will take advantage of classical transformations of the state space to
transfer the considerations of Subsection 7.2 to more general elliptic one-dimensional
diffusions.
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7.1 The Brownian motion case

Here we give a first illustration of how to put in practice the abstract considerations
of the previous section.

Let X = (X;)s>0 be a Brownian motion and let P = (P;),>0 be the associated semi-
group, whose generator is half the Laplacian 02/2. Note that the Lebesgue measure \
is reversible for P, we also interpret P as a self-adjoint semi-group on IL?()), so that
P* =P,

A priori we are not in the framework of Section 6, since A cannot be renormalized into
a probability measure. Nevertheless Theorem 6.7 can be extended to this situation when
the elements of G are furthermore assumed to have a finite weight under A. Indeed,
in (6.5), P must be replaced by the sigma-finite measure P() ® \ and the following
expectations have to be changed into integrations with respect to the corresponding
measures (the test functions have to be assumed to be integrable or non-negative). We
end up with a probability measure IP, since in its construction, P” is conditioned by the
event { X, € X,}, which has the finite weight (%) € (0, +0).

Let B := (By)s>0 be another Brownian motion, it is not important to specify its initial
condition, since only the associated white noise will be needed. For fixed ¢ > 0, we
consider the following system of equations, for all y € R,

{dYs(”(y) — —sen(Y(y))dB",  Vselo,]

(7.1)
Yy = v

where sgn is the sign function on R taking the value —1 on (-0, 0] and 1 on (0, +o0) and
where B®) = (B(Et))se[o’t] = (Bt—s)sef0,4] is the time-reversed process associated to B at
time ¢ > 0.

Le Jan and Raimond [16] provide a coalescing stochastic flow solution to (7.1), but it
is non-Wiener, meaning that extra-randomness, in addition to the Brownian motion B, is
necessary to its construction. For the general meaning of a (Wiener) coalescing stochastic
flow solution, we refer to Le Jan and Raimond [15]. Define ¢ := (¥ t(y)) (s,t,y)er xR Vid

VeeR VO<s<t, oy = Y0 (7.2)

(be careful that our convention for the direction of the time is reversed with respect
to that of Le Jan and Raimond [15]: 9, should be seen as acting on the state space at
time ¢t toward the state space at time s). The stochastic flow v is associated to P, as an
immediate consequence of (7.1) and of Lévy’s characterization of the Brownian motion.
Since the state space is the real line, the regularity of ¢ can be made more precise,
bringing us back to the assumptions of Section 6. Let R(RR) stands for the set of mapping
from R to R which are non-decreasing and cadlag.

Lemma 7.1. There exists a version of i) which is such that a.s., for any (s,t) € A,
Qﬁ&t € R(IR,)

Proof. Due to the temporal continuity and coalescing property of the solution Y :=
(Ys(t) (7)) (s,t)er zer Of (7.1), we get that for any given z < y € R, we have Y( )( ) < Ys(t) (y)
a.s. for any (s,t) € AA. So we can extend (Ys( )( T))(s,t)en, zeq iNtO Y = (Ys( )<x))(s,t)eA,xe]R
by
Vis,t) e, VazeR, Y®@) = lim YO()
y—x, y>z, yeQ

Iiet J be obtained from Y as in (7.2). By construction, Y is such that a.s. for all (s,t) € A,
s+ € R(R). Furthermore, according to the point (e) in the Definition 1.6 of Le Jan and
Raimond [15], we have that for any (s,t) € A and any z € R, as. Y(t)( ) = v )( ). It
follows that Y is also a solution of (7.1) and thus w provides the wanted version of v. O
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Remark 7.2. The validity of Lemma 7.1 is not related to the choice of sgn(0). With a
similar proof, one could deduce a version of ¢) which is a.s. caglad. In fact the definition
of sgn(0) is irrelevant, as E[Sé ]l{o}(Ys(t)(y)) ds] =0, for all y € R.

From now on, we will only consider a version of ¢/ as in Lemma 7.1. As announced in
Remark 6.1, R(R) is endowed with the Skorohod topology, which insures the measurabil-
ity of the mapping R x R(R) > (z, ) — 9 (x). To apply the results of the previous section,
we must equally specify the space of nice subdomains G. As it will become apparent
later, it is convenient to consider:

S = {[a,b) : a<beR} (7.3)

This set & is endowed with the topology inherited from R? and satisfies the properties
required in Section 6. Indeed, let us check the following property, relating Lemma 7.1 to
our choice of G.

Lemma 7.3. For any (s,t) € A the mapping
638 — Y /(5 e u{d} (7.4)
is measurable.

Proof. First, for given (s,t) € A, we verify that for [a,b) € S, the set w;tl([a, b)) belongs
to & L {J}. This is a consequence of ¢, ; € R(R): to see that ¢/ ([a,b)) is a segment,
let < y belong to [a,b). For z € [x,y], we have a < 9, +(x) < ¥s4(2) < ¢¥s4(y) < b, so
that z € z/;;tl ([a,b)). Next let (z,,)nez, be a decreasing family of elements from z/;:} ([a,]))
converging toward some = € R. Then we have lim,,_,, ¢; (z,,) = ¥,,.(z) and since the
Lh.s. belongs to [a,b), we deduce that = € ¥/ ([a,b)) and that the segment ¢/ ([a, b)) is
closed on the left side. To see that it is open on the right side, consider z € zz;;tl([a, b)).
As y > x decreases toward x, we have that ¢, ,(y) converges toward 1, ,(z), so that for y
sufficiently close to , we have 1 (z) < ¥,.(y) < a, L.e. y € ¥,/ ([a,b)).

It follows from these observations that for any = < y € R, we have z,bs_tl ([z,v)) = [a,b),
with

a = influeR : s(u)
b

}

=T
influe R : ¢¥s4(u) =y}

Fix u < v € R and consider A = {[a,b) : a < u, b > v} < &. We compute that
{Se6: w;tl(S) eA} = {[zr,y) €6 : x <y (u) and y > 9, (v)}
It follows without difficulty that the mapping defined in (7.4) is measurable. O

Note that the Lebesgue measure ), invariant for the Brownian semi-group P, takes
positive and finite values on G. As in Subsection 3.1, we get that the corresponding
conditioning kernel A can be seen as a Markov kernel from & to R.

Fix t > 0 and a Brownian trajectory X[q ;. Conditioning ¢ by the event

V S € [07 t:la qu(e,t(Xt) = Xs (75)
implies in particular that
Vsel0,t], dX® = —sgn(X®)dBY (7.6)

but it is not clear what happens to the extra-randomness, since this Tanaka’s stochastic
differential equation does not admit a strong solution either (see for instance Exercise
1.19 of Chapter 9 from Revuz and Yor [28]). Nevertheless we deduce that

Vsel0,t], dBY = —sgn(X®)adx® (7.7)
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and it follows that the conditioned flow, denoted ¢ = (s +(¥))(s,t,y)er xr in Section 6, is
given by

VO<s<t,VzeR, ¢.(2) = 29 (2) (7.8)
where
dz"(z) = sen(z{(2))sgn(x{?)ax? 7.9)
Zét)(z) = z .

This system is the same as (7.1), once we have replaced B() by (— SS sgn(Xigt)) dXét))se[Qﬂ

which is a standard Brownian motion. In particular the resolution of (7.9) also requires
some extra-randomness, but this is not a shortcoming for our present purpose since we
just need a solution. Indeed, for any given r > 0, assume that the initial law of X is v,
the uniform distribution on [—r,r). Define for any ¢ > 0,

R/" = inf{z eR : Zét)(z) < r} = sup{z eR : Z(()t)(z) < r}
R = inf{zeR: 20(2) = —r} (7.10)
&7 = [RYRYT) = ()

where for the last equality we took into account the proof of Lemma 7.3. Remark that
2™ = (2{"),20 remains non-trivial, namely that it never collapses to a singleton or to
the empty set: this is a consequence of the fact that X; € X; and of the structure of the
elements of G. We are now in position to apply Theorem 6.7 to deduce:

Theorem 7.4. For any r > 0, the process X") is a set-valued dual for the Brownian
motion X starting from v,..

We would like to let r go to zero to be able to get X starting from 0. It will also provide
a more explicit set-valued dual. Indeed, assume that X starts from 0 and consider the
coalescing flow ¢ defined by (7.8) and (7.9). By analogy with (7.10), define the process
X = (X(t))=0 via

Vi=0,  X(t) = ¢p,({0}) (7.11)

We still have that for any ¢ > 0, X(¢) is a segment closed on the left. We will see in the
proof of Proposition 7.5 that for any ¢ > 0, the right boundary of X(¢) is open (but it is
closed at time 0, since X(0) = {0}). Anyway, the closure of X(¢) is [R", R¥] with

sup{z€e R : Zét)(z) =0}
inf{zeR : Zét)(z) = 0}

Ry
Ry

and these quantities can be described explicitly:

Proposition 7.5. We have for any t > 0,

RY = LX) +]X¢]
Ry = —(L{(X) + X))

where L°(X) = (LY(X)):>0 is the local time of X at 0.

Proof. Due to the fact that ¢ is a coalescing flow and that X, = 0 we have

RY = sup{zeR : 3 sel0,t] with 2 (z) = X
R} = inf{zeR :3Ise[0,t]with Z{)(z) = X}
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From (7.9), we have for any z € R,
Vsel0,t], sgn(Z®(2)dzP(z) = sgn(X)dx® (7.12)
and Tanaka’s formula (see e.g. Chapter 6 of Revuz and Yor [28]) implies that
Vsel0,t], dz®(z)]—-dl%(Z2Y(z)) = dXP|—dL%x®) (7.13)
where LY(Z®)(2)) = (LY(Z1(2)))sefo,q and LO(X D) = (LY(X D)) [0, are respectively

the local times of Z(*)(z) and X® at 0.

Fixz >z = Xét) = X}, assume that z > 0 and define

. = inf{se[0,t] : Z{(z) =0}

S

(with the convention that inf((¥) = +o0). Consider the case 7, < +0o0 and let us show that
Xg) = (0. The argument is by contradiction, assuming that Xﬁ? #+ 0. Define

v = sup{se[0,7.] : X =0}

with the convention that v = —co if the set in the r.h.s. is empty. For s € [0 v v, 7,), we
have Z"(z) > 0, L2(Z(")(z)) = 0 and LO(X W) = L§. (X®). It follows from (7.13) that

t t
Z$),(2) = 1X, | = Z0(z) - |x)]
- —x®)
< 0
ie. Zétv)v(z) < |X(§tv)7|. Note that depending on v € [0, ¢] or v = —oo, we have Xétv)V =0or
Xétv)V > 0 (since when v = —0, X*) keeps the same sign on [0, -], which is the sign of

(t)

0vr’ which is in contradiction with the fact

that Z(Y)(z) remains above X ") by the coalescing property.
Define

x). In any case, we end up with Zétv)v(z) <X

o, = inf{se [O,t] : th) :th)}

Due to the fact that Xg) = 0 when 7, < 400, we deduce that ¢, < 7,. Integrating (7.13)
between the times 0 and ¢,, we thus get

o, <+ = |ZV] -z = | XY -2 - L (XV)

Oz

= z=a+L (XxV) (7.14)
Since
RY = max{z>2x: o0, <+w}
we get that
R = x+ LSR; (x®) (7.15)

Let us show that o := oggy is equal to ¢. Again the argument is by contradiction:
assume that o < t. Define

T = inf{sefo,t] : X =0}

S

Since 0 is an accumulation point of {s € [0,¢] : X; = 0}, we get that 7 < ¢t. Let us show
that X,_; contains a right neighborhood of 0, namely that for z sufficiently close to 0.,
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we have that Z(¢-7) (z) coalesces with X(=7) Indeed, if this was not true, according to
the first part of the proof above, we would have that Z(*~7)(z) does not touch 0 for any
z > 0. From (7.9), we deduce that

V z € (0,+0), Vse[0,7], ZE () = 248,
where 3 := (8;)se[0,-] is the Brownian motion defined by
v se[0,71], Bs = J sign(X ¢~y dx =)
0
This shows that Z(*~7)(z) touches 0 for any z € (0, — inf [0, Bs], @ contradiction.
Using the right continuity of our stochastic flows, we get

lim Z0(:) = ZORY)
- XxW
= 0

Thus for z in a right neighborhood of R)’, we get that Zﬁt)(z) belongs to X;_; and by
consequence that z € X;. This is in contradiction with the definition of R;” and we finally
conclude that o = t.

Coming back to (7.15), we get that

RY = x+L)(XW")
= X+ L{(X) (7.16)

under the previous assumption that X; = = > 0.
When X; < 0, consider

¢ = inf{se[0,t] : X =0}
We deduce from (7.12) that
Vsel0,],  ZP(-x) = —X{(2)
In particular, we get
RY = sup{z>-—z:2Z0eXx,_}

Note that for all z > —x, we have

vV se[0,¢], Z(t)(z) -z = Zs(t)(—x) — (—x)

S

so that

Ry = —z+ R/
1 X:| + Ry (7.17)

Using (7.16) with t replaced by t — ¢, we get

R . = Xi¢+L) (X)
= 0+ L{(X)

Recalling (7.17), we conclude to the validity, in all cases, of

Ry = [Xi|+ L{(X)
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By symmetry, the expression for R} is easily deduced:

R} = —sup{—zeR :3Isel0,t]with Z{)(z) = XV}
— —sup{zeR : Ise0,t] with 2 (—z) = XV}
= —sup{zeR : Ise0,t] with Z{(z) = — XV}

= (| =X + LY(=X))
= (X + L{(X)) m

In particular, we get that for any ¢ > 0, X; € G and is not reduced to a singleton. This
property is in fact sufficient to deduce the following variant of Pitman’s theorem.

Theorem 7.6. The process X = ([—(LY(X) + | X¢|), LY(X) + | X¢|))i=0 is a set-valued dual
for the Brownian motion X starting from 0.

Proof. The property
Vt=0, L(XpglX) = L(XpqlXp.)

is obvious from the explicit expression for X.
The important point is to prove that

Vit=0, C(Xt‘%[&t]) = A(X,) (7.18)

To take advantage from Theorem 7.4, enlarge the underlying probability space for X so
that it contains a random variable U independent from X and uniformly distributed on
[0,1]. Forany n € Z, lett,, :=1/(n + 1) and define the random variable U,, € (| X%, |, +0)
by

Un X2 2 d
J uexp(t”u)u - U (7.19)
| %, ) tn

The interest of U,, is that, denoting %ﬁ:) = [-U,,U,) € 6, the law of (th,xgjj)) onR xS
is given by
PX,, €dr, X" €dS] = v (dS)A(S, dx) (7.20)
where v(") is the probability distribution on Gy, = {[~u,u) : u > 0} c & described by
v (d[—u,u)) = 2u®exp(—u?/(2t,))du/~/2mt3
Indeed, we compute that
f v M(dS)A(S,dx) = exp(—z?/(2t,))dx/\/ 2Tty
IS

sym

= P[Xt € d.’I}]

n

and (7.20) is a consequence of Bayes’ formula.
Shifting the origin of time to t,,, we apply the considerations preceding Theorem 7.4
to the trajectory X|;, y«) and to the initial set-valued variable .%‘,E:L) to construct

Vist, XY = gl (x)
= {zeR: ¢, 4(2) e [-U,,Upn)}
According to Theorem 7.4, we have

Vit LX) AE™) (7.21)
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For any ¢ > 0 and n € Z, denote

U0, 08 @) = x

According to Lemma 7.7 below, we have a.s.
lim, o UM (1) = RY (7.22)
lim, o U (8) = Ry

Considerpe N, 0 <51 < 53 <--- < s, =t and g1, go, ..., gp SOme continuous and bounded
functions from R? to R. We associate to these ingredients the mapping

G : G(O}t] 3 ([(ls, bs))se(O,t] = 01 (a517b51)92(a327b52) T gp(a5p7 bsp)

Let h : R — R be a measurable and bounded function. From (7.22), considered with ¢
replaced by the sy, s, ..., s, we get the a.s. convergence of G(%Ef) t]) toward G(X[o¢])
for n large. We deduce that

lim B[(X)G@E )] = E[R(X)G(Xp.q)]

Next, taking into account that X; € &, we also deduce from (7.22) the a.s. convergence
of A[h] (%E”)) toward A[h](X:) and consequently

Tim B[A[R](X)G () )] = E[ALR)(X)G(Xp0)]
It follows from (7.21) that
E[h(Xt)G(x[o,t])] = E[A[h](Xt)G(%[O,t]ﬂ
Since this is true for all A and G as above and that X, = {0} is deterministic, we get
(7.18). 0O

Lemma 7.7. For any t > 0, the convergences (7.22) are satisfied a.s.

Proof. Since X\ = [-U™ (1), U{™(t)) and X = [-Ry, R}), it is sufficient to see that for
any z € R

2¢ X = nli_r)réo ]lxgm (z) = 0 (7.23)
ze (=R, R/) = nh_r))%O ]lxi’”(z) =1 (7.24)
Let us come back to (7.19), which is equivalent to
exp(~U2/(2t,) = (1-U)exp(—(Xe,)?/(2tn))
namely
U2 = (X,)*—2t,In(1-0)

where we see that lim,,_,, U,, = 0.

We begin by showing (7.23): when z ¢ X;, we have ¢o.(z) + 0. So since
lim, o ¢4, t(2) = @o,.(2), it appears that for n € Z, large enough, we cannot have
o1, t(2) € [-Uy,U,), i.e. z ends up not belonging to %in).

We now come to (7.24). From (7.14) we deduce that for z in the open set (—R}', R} ),
we have o, < ¢, meaning that the trajectory [0,¢] 5 s — ¢, +(2) is equal to X, for s small

enough. Thus for n large enough, we have

lor, e (2)] = |Xq,
< V(X,)?—2t,In(1-TU)
= Un
so that z belongs to X", O
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Remark 7.8. Define
Vit=0, M; = max{X; : se[0,t]}

The classical Pitman’s theorem [25] states that the process X = ([—(2M; — X;, 2M; —
X1))t=0 is a set-valued dual for the Brownian motion X starting from 0 and that (2M; —
X)i=0 is a Bessel-3 process. The process (LY(X) + | X;|))¢>o is also a Bessel-3 process,
as a consequence of Lévy’s theorem (see e.g. Theorem 2.3 of Chapter 6 of Revuz and Yor
[28]).

A segment-valued process (9+)t=0 is said to be more \-expansive than another
segment-valued process (2););=o, when for any fixed ¢ > 0, the volume A(2);) is stochas-
tically dominated by A(2);). Thus the processes X and X are iso-A- -expansive. It can be
proven, by extending the arguments of the Remark 2.39 of Diaconis and Fill [10] (see
also Fill and Lyzinski [11] or [21]), that if (+):>0 is a set-valued dual for the Brownian
motion X starting from O, then it is less expansive than X, i.e. X and X are two examples
of the most expansive set-valued duals for X.

Let us deduce more precisely the classical Pitman’s theorem [25] from Theorem 7.6.
With the notations of the above remark, Lévy’s theorem asserts the identity in law

L
(My = Xi, My)i=0 = (1X|, LY(X))i=0
We infer for any ¢ > 0 the identity in law

(LX) + X Do 1Xel) £ ((2M — X))o, My — Xo)
= (M — X)po,q, (2M; — X1)/2 — X¢/2)

From Theorem 7.6, the distribution of |X;| knowing (L°(X) + |X|)[o,4 is the uniform
distribution over [0, LY(X) + | X;|]. It follows that the distribution of (2M; — X;)/2 — X, /2
knowing (2M — X)[o 4 is the uniform distribution over [0,2M; — X;]. To get Pitman’s
theorem, it remains to note that for any constant » > 0, when U is a random variable
such that r/2 — U/2 is uniformly distributed on [0, 7], then U is uniformly distributed on
[—r,7].

These arguments can be reversed to conversely deduce Theorem 7.6 from Pitman’s
theorem. This implication is succinctly mentioned by Yor [32] (at the end of page 4).

Remark 7.9. Despite the set-valued dual processes X = ([—(LY(X) + |Xy]), LY(X) +
|X;Deso and X := ([—(2M, — X;), 2M; — X;])1=0 are iso-A\-expansive, some of their features
are quite different: the Brownian motion X never hits the boundary of X except at time 0
(since for ¢t > 0, we have LY(X) > 0), while X recurrently hits the upper boundary of x.

An potential advantage of the stochastic flow approach to set-valued dual processes
is its expected flexibility in the choice of the stochastic flow. In the next section, we will
present a conjectural but promising stochastic flow associated to the Brownian motion,
which should enable to directly recover the classical Pitman theorem by mimicking the
random mapping proof considered in the finite setting. But one can imagine a lot of
other examples, here is another one, which is a Wiener solution to a system of coalescing
stochastic flow equations.

Let B := (Bs)ss0 and W = (Wy),>0 be two independent Brownian motions. For fixed
t > 0, we consider the following system of equations, for any y € R,

avi () = —sen(¥?(y)+ W aBY,  vselo,1] 7.25)
N =
EJP 25 (2020), paper 6. http://www.imstat.org/ejp/

Page 53/64


https://doi.org/10.1214/20-EJP419
http://www.imstat.org/ejp/

Measure-valued dual processes

where W) = (Ws(t))se[(),t] = (Wi—s)sefo,) and B®) = (Bgt))se[o,t] = (Bi—s)se[o0,] are
time-reversed processes. Again define 1) := (15.+(y))(s,t,y)enxr Via

VeeR,VO<s<t, oy = Y4 (7.26)

With the help of Le Jan and Raimond [17], we get

Proposition 7.10. There exists a Wiener solution of (7.25) such that v is coalescing
stochastic flow associated to P and such that a.s., for any (s,t) € A, s+ € R(R).

To be a Wiener solution of (7.25) means that the filtration generated by the stochastic
flow is included into the filtration generated by the white noises associated to B and W.

Proof. Consider Z_ = (Z_(s))ss0 and Z; = (Z1(8))s>0 two independent Brownian
motions (not assumed to be standard). Le Jan and Raimond [17] show there is coalescing
stochastic flow & := (§u,4 (7)) (u,0,0)er xr SOlution to the following system of equations, for
anyrxe Rand 0 < u < v,

{ dvguﬂ)(z) = ]]'gu‘u<0dZ_(/U) + II'£1L,1;20dZ+(U)
buulz) = 2

Furthermore the coalescing stochastic flow ¢ is a.s. unique and a Wiener solution:
it is constructed without resorting to extra-randomness outside Z_ and Z,. Fixt > 0
and consider the two independent Brownian motions z" and Z(f) over the time interval
[0,¢] given by

(7.27)

6 _p®
Z(t) (s) = w —B(
Vse [O,t], J(rt) W(t,}/EB(t) (7.28)
Z(s) = o5

Let (§£€L($))(u,v,m)ea[o‘ﬂ <R be the corresponding solution of (7.27) and define

%
VyeR Vsel0,], YOy = o) (yffzt)‘Ws(“

Via immediate substitution, we check that (Ys(t) (¥))se[0,4], yer 18 @ solution of (7.25).

Let t > 0 be a free variable again. From (7.26), we deduce a family of random
variables v := (¢s+(y))(s,t,y)eaxr- To check that it is a stochastic flow, let us first remark
that

VeeR,Vt=0,Vsel0,d],Voel0s], & (€ (@) = &)_,(x) (7.29

Indeed, consider for any fixed z € R, ¢t > 0 and s € [0,¢],

e () )
Vuelo,s) { o= @)
Cu = 5OJE*SJru(:E)
By definition, we have
dxu = 1Xﬂ<0dZ&g)(U)+]lXu>ode)(u)

= 1y, <0dZ_(s—u) + 1,,50dZ4 (s — u)
— 1y, 0dZ(t — s+ u) + 1y, 50dZ " (t — s+ u)

where Z, are defined as in (7.28), with the exponents (¢) removed. Thus (Xu)ue[o,s] and

(Cu)uelo,s] satisfy the same evolution equation. Since we also have xo = 582_3(13) = (p, we
get (7.29) from the uniqueness result of Le Jan and Raimond [17] (see also Prokaj [26]).
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Let us deduce from (7.29) the flow property of . Indeed, we have fory e R, t > 0,
s€[0,t] and v € [0, 5],

YosWse(y)) = YO, 1)
v ) + Ws> B

V) ((y + Wh)/v2) - WL, + m) T

s W,
= e (0 (M) -
- ) (TR - w,
= YO0
= wv,t(y)

Finally, the association of ¢ to P is an immediate consequence of (7.25) and of Lévy’s
characterization of the Brownian motion and the last assertion of the lemma is proven as
in Lemma 7.1. O

Most of the previous arguments for the stochastic flow defined in (7.2) can now be
extended to the stochastic flow considered in (7.26). E.g. fix ¢ > 0 and a Brownian
trajectory X ;. Conditioning 1 by the event described in (7.5) amounts to asking that
B, satisfies

Vsel0,t], dX® = —sgn(X® +w®)aB®

S

Indeed, Prokaj [26] has shown (taking into account a transformation similar to that
used in the proof of Proposition 7.10) that this equation in X *) admits a unique strong
solution. We get that

Vsel0,t], dBY = —sgn(X® +w®)ax®

and it follows that the conditioned flow ¢ = (©5.+(¥))(s,t,y)er xR 1S given by

VOSs<tVzeR, gulz) = ZY(2)
where
dZé(,t)(z) = Sgn(Zé(t)(z) + Ws(t))sgn(th) + Wit))dngt)
Z(t) —
o (2) z

Then Theorem 7.4 is still valid, with X(") defined as in (7.10), for any r > 0. The
troubles begin with the process X defined as in (7.11), for which we did not find an
explicit expression. Nevertheless we believe that this process X is still a set-valued dual
for the Brownian motion X starting from 0 and not reduced to a singleton, for all positive
times. Furthermore, we think that this X is strictly less A-expansive (in the sense of
Remark 7.8) than the process X described in Theorem 7.6.

More generally, for any n > 0 it should be possible to solve the coalescing stochastic
flow equation

(t) _ (t) MygBW
VyeR, dYS(t)(y) = —sgn(Ys ' (y) + nWs")dBs (7.30)
Yo'(y) = vy
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and to show that the corresponding segment-valued are less and less \-expansive as
1 increases (see [21] for certain families of segment-valued dual processes satisfying
this monotonicity property, with A replaced by the underlying invariant probability).
Unfortunately and despite the work of Prokaj [26] giving us a strong solution Y () (y)
for any fixed y € R, we did not find a reference insuring the existence of a coalescing
stochastic flow solution for (7.30), for n € (0, +0)\{1}.

7.2 Conjectures about one-dimensional diffusions processes

Here we propose an extension of Pitman’s theorem [25] (see also Rogers and Pitman
[29]) to simple one-dimensional diffusion processes. The considerations of this subsection
remain hypothetical since they assume the existence of convenient coalescing stochastic
flows, see in particular Conjecture 7.14.

Let be given a smooth and bounded mapping b : R — R. We consider the stochastic
differential equation

dX, = dW, +b(X,)dt (7.31)

where W = (W}):>0 is a standard Brownian motion.
The process X is reversible with respect to the measure 7w, whose density, still
denoted m, with respect to the Lebesgue measure on R is given by

xr
VzreR, m(x) = exp (2] b(y) dy) (7.32)
0

Again the measure 7 gives an infinite weight to R and we must take the same
precautions as in the previous subsection.

Let P := (P;);=0 be the semi-group associated to X, it is self-adjoint in I.?(r), so that
P* = P. We renew Definition (7.3) for the set of nice subsets. The kernel A is still
Markovian from & to R, corresponding to the elementary conditioning operation under
.

Let B := (Bs)s>0 be another Brownian motion. For fixed zy € R and ¢ > 0, we consider
the following system of equations, for all y € R,

a9 y) = —sen(Vi(y) - 20)dBI +b(¥v{V(y))ds,  Vse[0,1]
) =y

(7.33)

with the same conventions as in Subsection 7.1, in particular for the sign. Let us assume
we have at our disposal a coalescing flow solution to (7.33). Lemma 7.1 enables us
to get a version which is such that for any s € [0,¢], the mapping R 3 y — Ys(t)(y) is
non-decreasing and cadlag. Again to such a version we associate 1 := (1s,¢(¥)) (s,t,y)eA xR
via

Vo<s<t,VyeR, tu(y) = Y@ (7.34)

Subsequently, we can partially adapt the strategy of the previous subsection. Fix
t > 0 and a trajectory X[y, associated to P and whose initial distribution is A(Xo, ).
Conditioning i by the event (7.5) implies that we have

Vsel0,t], dX® = —sgn(X —20)dBY +b(X1)ds
We deduce that

Vsel0,t], dBY = —sgn(X® —20)(dX® —b(XH)ds) (7.35)
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and it follows that the conditioned flow, denoted ¢ = (s +(¥))(s,t,y)er xr in Section 6, is
given by

VO<s<t VzeR, wsi(z) = Zt(i)s(z) (7.36)
where
{ dZét)(z) = sgn(th)(z) - xo)sgn(Xs(t) - xo)(dXét) - b(th))dS) + b(Zét)(z))ds (7.37)
Zét)(z) = z ’

The observations mentioned after (7.9) are still valid. For given ", ¥ > 0, assume that
the initial law of X is A([r",r"),-). Define for any ¢ > 0,

Ry = inf{zelR : Z(()t)(z)srv} = sup{ze]R : Zét)(z)<rv}
R} = inf{zelR : Zét)(z) >7‘A}
Xe = [RYRY) = ¢oi([r",rY)

where for the last equality we took into account the proof of Lemma 7.3, which can also
be applied here. Thus the process X := (X;);>0 remains non-trivial and as in the previous
subsection, Theorem 6.7 would lead to the following result, if we had at our disposal a
solution to (7.33):

Conjecture 7.11. The process X is a set-valued dual for the diffusion process X starting
from the distribution A([r",rV),").

The above conjecture should hold for any =y € R, but we would like the dual process
X to be quite large and this requires a good choice of zy. In Subsection 7, we could have
replaced sgn(-) by sgn(- — x¢), but the corresponding dual process X would have stayed
trivial until the first time 7 that X, the Brownian motion starting from 0, hits xg:

vtE[O,T], %t = {Xt}

When, as in Theorem 7.4, the Brownian motion starts from the uniform distribution on
[—r,r) for some r > 0, the set valued dual is a translation of X, = [—r, r) until the closure
of X; contain x, in particular the volume of X; remains constant until the occurrence of
this event.

In the setting of this subsection, we expect similar behaviors. In particular if we want
X: to be quite large for small times ¢ > 0, it seems preferable to take xy € Xy. Conjecture
7.14 below can be seen as an attempt to keep z( in the closure of X, by letting =, evolve
and be the supremum of X.

We are equally wondering about letting X start from a deterministic point. From
the above observation, it seems wise to take xy equal to this initial point. So let us
assume that (7.33) admits a solution when Xy = {z(}. As in Subsection 7.1, we are led
to introduce

R/ = sup{zeR: Z(()t)(z) = 20}
R} = inf{zeR: Zét)(z) = 20}
X = [Rtv’RtA)

Unfortunately, we did not found a nice explicit expression of X in terms of X, as
in Proposition 7.5, this prevents us from to conclude, as in Proposition 7.6 that X is a
non-trivial set-dual associated to X starting from z3. Nevertheless, here is an indication
going in this direction.
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Lemma 7.12. For anyt > 0, X; is a right neighborhood of X,.

Proof. Fixt > 0 as well as ¢ € (min{X; : s € [0,¢]},x0). Define

inf{s >0 : X, =€} € (0,¢)
v = sup{s€[0,7] : Xs = z0}

Consider the flow (Fs(t)(z))zeR se[0,1] solution of the system

(®) v (t) (t)
{dFS (2) = —(dX" —b(Xs")ds) + b(F"(2))ds (7.38)

Fét) (2) = =z

It is a regular flow: for any s € [0, ¢], the mapping R 3 z — FY (z) is a diffeomorphism
of R. This is also true for the random times 7 and v: the mapping R 5z — FT(T_)W(J:) isa
diffeomorphism. Consider the unique £ € R such that FT(T,)V(S) = .

Let us show that for s > 0 sufficiently small, Fﬁi@_s(g) > x9. Indeed, we have

FO (&) —xg = —(F2©)—-FD_(€)
T—" T—"Y
= f dx® — f bX) +b(FP(2)) du
T—Y—58 T—Y—5
T
= 2o-X7 _, — f b(X D) + b(FD (2)) du (7.39)

T—Y—S

If X|o,;j was a Brownian motion, the process zy — X[, ;; would be a Bessel-3 process
starting from O and stopped when it reaches —¢, according to Williams’ Brownian path
decomposition (see e.g. Theorem 4.9 of Chapter 7 of Revuz and Yor [28]). From Wichura
[31], we would then be able to get that a.s.

P To — X’y+s
liminf —————
5=0+ 1/s/In(In(1/s))

This behavior is shared by the diffusion process X[, ;, since Girsanov theorem insures
that its law is equivalent to that of the Brownian motion on the time interval [0, t], see
also Bass and Erickson [6]. Furthermore, we have that

T—7
f BXY) + B(EO () du| < 2[bl, s

T—y—s

thus (7.39) implies that for s > 0 small,

FO (&) =20 ~ 20— Xyps

(m)
Vse (0, 0’]7 { XT—'y—s(g) < Xo

From (7.37), we deduce that
Vse(0,0), FT & = 27

Define
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so that

ZEreN ) = FOT(Q)
=
_ X((TW-HT)

We deduce that ¢ € X,4,. Note that ( > 9 > X4, it follows that X,., is a right
neighborhood of X, .. Finally, taking into account the right continuity of R 3 z

Zt(t,)v,a(z), we obtain that X is a right neighborhood of X;. O
Remark 7.13.

(a) The above proof can be adapted to show that for any ¢ > 0, there exists s € (0, )
such that X, is a neighborhood of X,. But this is not sufficient to get that X; is
a neighborhood of X;. Nevertheless, we believe it is true. This is specific to the
set-valued duals to be constructed with flows of the form (7.33), it is not true for the
classical Pitman’s dual, recall Remark 7.9, and cannot be expected for set-valued
duals to be constructed with flows of the form (7.40) below.

(b) Proposition 7.5 is still valid in the particular case where b is given by the non-regular
drift

Vzel, b(x) = csign(z)
where c € R is a fixed constant. Indeed, in general (7.12) should be replaced by
Vsel06],  sen(Z0 ()20 (z) —b(ZP(2)ds) = sen(XP)(dXD —b(XP)ds)
and one exactly recovers (7.12) with b of the above form.

The existence of a convenient coalescent flow solution to the system (7.33) seems a
reasonable conjecture and hopefully could be worked out using the techniques of Le Jan
and Raimond [15, 16, 17], but is out of the scope of this paper. What we really would like
to do is to solve the following more challenging one. It will probably require a fixed point
approach and thus a global topological structure on an adequate set of flows, in the spirit
of Remark 6.1. The conjecture below is a direct transposition of the approach presented
in Section 4 for birth and death chains and it would enable to construct set-valued dual
processes for one-dimensional diffusions in a similar way:.

Conjecture 7.14. As at the beginning of this subsection, let B := (Bs)s>0 be a Brownian
motion and fix some Xy € &. We are interested in the following system of equations, for
allt>0andy e R,

v (y) = sen(Ry, — Y\ ()dBY +b(y D (y)ds, Vse[0,1]
Yy = (7.40)
Ry, = sup{yeR : V" " (y) < max(X,)}

Obviously there is a measurability problem in (7.40), since R, _, belongs to the future
at time s of the filtration generated by B®"). Nevertheless, we believe that for any
s = 0, R, will be independent from the white noise of B after time s, namely from the
sigma-field generated by the B, — B,, for v > u > s. In particular, the solution will
be such that the process (Sg sgn(Yu(t)(y) — R{_u)dBff))se[o,t] is a Brownian motion in the
filtration generated by B®"), so that for any y € R, Y!)(y) = (Ys(t)(y))se[oﬁt] is a diffusion
associated to P. This solution should be sufficiently regular and in particular the process
RY = (R} )t=0 should be a continuous semi-martingale.
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A Reduction of one-dimensional diffusion processes

The purpose of this appendix is to show that it is not very restrictive to only consider
diffusions of the form (7.31).

Consider the second order operator L := ad? + b0 on C*(I), where a > 0 and b are
smooth functions on the open interval  := (:7,:*) < R. Up to performing a shift, assume
that 0 € I. The corresponding scale and speed functions v and u are defined by

._ _(%b
veel, { v(z) = expl( $o 2(y) dy) A1)
plx) = Za(z)v (@)

By a usual abuse of notation, v and p will also stand for the the scale and speed
measures which admit respectively the scale and speed functions as densities with
respect to the Lebesgue measure restricted to I.

Let (X¢)se[o0,-) be a diffusion whose generator is L (in the sense of martingale prob-
lems), where 7 > 0 is its (random) explosion time, which is such that

lim X; = ¢ or lim X, =."

t—7— t—7—

To simplify the notation, we extend the above diffusion to all times via

Vite[r,+0), X, = lim X,

§—>T—

so that X := (X;)¢>¢ is V-valued with V := [t—,.7] = R. The process X is absorbed at ¢~
and . (if it reaches them). It is sometimes called a minimal Markov process associated
to L and its law is determined by its initial law £(Xj).

Denote

G)
S

{[z7,27) : 27,2t eVand 2z~ <z"}

Suf{{z}: ze V R}

and as usual, define the Markov kernel A from & to V via

o . Ou, if 2t =2~
ve=lE)es, AN = otherwise

e ’

We are looking for a A-spreading for X, namely a set-valued dual process X :=
(X4)t=>0 such that for any ¢ > 0, we have X, € &. We show below how to come back to the
setting of Subsection 7.2.

First, let us check that the problem of finding a A-spreading is invariant by diffeo-
morphisms. More precisely, let ¢ be a smooth function from I to R, whose derivative is
positive (in particular it never vanishes). There will be no loss of generality in assuming
that ¢(0) = 0. Let I := (i_,7}) := ¢(I) and also interpret ¢ as an operator ® from C*(I)
to C*(I) via

~

Vieco(D), @[f] = foo (A.2)

Consider the operator L := &~ oLo®on c*(I). It is not difficult to check that if X is a
diffusion associated to L, then X := (¢(Xt)):>o is a diffusion associated to L (where ¢
has been extended to V by ¢(:7) :=7" and ¢(¢1) :=TT).

Lemma A.1. Assume that X is a A-spreading for X. Then X = (¢(X,))i=0 is a A-spreading
for X.
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Proof. Since ¢ is an homeomorphism between I and I, all the defining properties of a
A-spreading are immediate to obtain, except (6.10), which requires the knowledge of A.
So let us compute L. Recall that we have

VfeCr(I),VFeC?(f(I), L[Fof] = FI[fILLf]+F"[fIT/]

(this property is equivalent to the fact that L generates processes with continuous
trajectories), where the carré du champ operator I' is defined by

1

TUfL = (%)= 20 LIf))

= a(0f)?

It follows that for any F' € C*°(I), we have the change of coordinate formula:

v feC®),

L[Fog¢] = T[¢]F"[¢] + L[s]F'[¢]
so that
LIF] = (T[glo¢ " )F" + (L[g]og ") F’
namely
N a=T[g]og™! = (a(¢)?) oo™ (A.3)
b= L[glog™" = (ag")o¢™! + (bg)) 0o g~! (A.4)

We deduce that

Vael, v(z) = exp

_em-Jj%KJ;@+£w0d@@>

Similarly, we get
Vaxe I~7 p(x) = W
1
(@) 0 515 O (6 @)@ )
= (oM (@) (™" (2)/¢(0)

It just means that v and ji are the images of v and u by ¢, up to the factors ¢'(0) and
1/¢'(0). It follows that
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Denote also by ¢ the mapping & > [27,2%) — (¢(27),¢(27)) € S and by ® the corre-
sponding functional operator, as in (A.2), transforming measurable mappings on S into
measurable mappings on S. At the operator level, the relation (A.5) translates into the
intertwining relation

dA = AD (A.6)

From these invariance relations and from the fact that the o-field generated by 3~€[07t]
contains the same events as the one generated by Xy ¢, we deduce that for any ¢ > 0,

E(Xt‘%[o,t]) = £(¢(Xt)|x[07t])
(‘C(Xt)‘x[o,t])
(A(Xe, )
(
(

I
B

¢(Xt)a )
X,

\
=l

where in the second and third lines, ® stands for the natural action induced on measures
by the mapping ¢, obtained by duality from the action of ® on the functions, and the
fourth equality corresponds to (A.6). O

As a consequence, we get:

Corollary A.2. To know how to find a A-spreading for all initial distributions £(X,) and
for all generators L as above is equivalent to know how to solve this problem when
a=1/2.

Proof. Note that conversely in Lemma A.1, the diffeomorphism ¢! from I to I enables
to go from (X, X) to (X,X). Thus, taking into account (A.3), the proof of the above
corollary is reduced to the finding of increasing diffeomorphism ¢ on I such thata = 1/2,
namely ¢’ = 1/4/2a. This is solved by considering

Vzel, o(x) = LI ZZ(y) d

From a geometric point of view, this amounts to changing the usual metric on I so that
2a0? corresponds to the second order terms of the Laplacian for the new metric. O

Similarly, we can also removed the drift:

Corollary A.3. To know how to find a A-spreading for all initial distributions £(X,) and
for all generators L as above is equivalent to know how to solve this problem when b = 0.

Proof. By the same reasoning as in the proof of Corollary A.2, it is suffisant to find an
increasing diffeomorphism ¢ on I such that b = 0. From (A.4), this amounts to L[¢] = 0.
This is solved by considering

Veel, o) = v(0,z]) O

Except when L[1/4/a] = 0, it is not possible to perform the two operations of the
proofs of Corollary A.2 and A.3 simultaneously, to end up with the generator of the
Brownian motion on / (absorbed at the boundary when it is reached). Namely, not
every search for A-spreadings can be reduced to Pitman’s theorem [25]. Nevertheless,
by Corollary A.2, the one-dimensional processes considered at the beginning of this
appendix can be reduced to the case of Subsection 7.2, up to relaxing the hypotheses on
the drift b there and to assume here that .~ and ;" are natural boundaries.
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Remark A.4. In Subsection 7.2 we preferred to work with the reduction of Corollary
A.2. We also tried the reduction of Corollary A.3 but it did not led to more explicit
set-valued dual processes, that is why the computations are not presented in this paper.
The reductions of one-dimensional diffusions deduced in Corollaries A.2 and A.3 are
the simplest ones, but other ones can be imagined and maybe among them there is one
leading to more natural couplings.
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