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Abstract

Feller (1945) provided a coupling between the counts of cycles of various sizes in a
uniform random permutation of [n] and the spacings between successes in a sequence
of n independent Bernoulli trials with success probability 1/n at the nth trial. Arratia,
Barbour and Tavaré (1992) extended Feller’s coupling, to associate cycles of random
permutations governed by the Ewens (θ) distribution with spacings derived from
independent Bernoulli trials with success probability θ/(n−1+θ) at the nth trial, and to
conclude that in an infinite sequence of such trials, the numbers of spacings of length
` are independent Poisson variables with means θ/`. Ignatov (1978) first discovered
this remarkable result in the uniform case θ = 1, by constructing Bernoulli (1/n)
trials as the indicators of record values in a sequence of i.i.d. uniform [0, 1] variables.
In the present article, the Poisson property of inhomogeneous Bernoulli spacings is
explained by a variation of Ignatov’s approach for a general θ > 0. Moreover, our
approach naturally provides random permutations of infinite sets whose cycle counts
are exactly given by independent Poisson random variables.
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1 Introduction

In [6], Feller introduces a coupling between the cycle structure of a uniformly
distributed random permutation of order n and the spacings between successes in a
sequence of n independent Bernoulli variables of parameters 1/n, 1/(n − 1), . . . , 1/2, 1.
This coupling has been generalized to Ewens distributions for any parameter θ: a
recent discussion on this topic, with references to further work is provided by Arratia,
Barbour, and Tavaré [3], largely following their earlier work [1]. Their coupling, for
a general positive integer n and θ > 0, may be constructed as follows. Consider
a sequence (Bi(θ))1≤i≤n of independent Bernoulli variables, Bi(θ) with parameters
θ/(θ + i − 1). Conditionally on (Bi(θ))1≤i≤n, construct the random permutation σ of
the set [n] := {1, 2, . . . , n}, as follows. First, define X1 := 1, and then, recursively for
2 ≤ i ≤ n:

• If Bn+2−i(θ) = 1, Xi is the smallest element of [n], different from X1, . . . , Xi−1.

• Conditionally on the fact that Bn+2−i(θ) = 0, and on the values of X1, . . . , Xi−1, the
element Xi is uniformly distributed on [n]\{X1, . . . , Xi−1}.
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Feller coupling of cycles of permutations and Poisson spacings

Then, the cycle structure of the permutation σ is obtained by taking the subsequences of
(X1, X2, . . . , Xn), in such a way that the value Xi is the start of a cycle if and only if i = 1

or Bn+2−i(θ) = 1.
For example, suppose n = 9,

(B1(θ), B2(θ), . . . , B9(θ)) = (1, 0, 1, 0, 0, 1, 1, 0, 0).

A possible realization of the Xi’s is

(X1, X2, . . . , X9) = (1, 7, 3, 2, 4, 9, 5, 6, 8).

Since B3(θ), B6(θ) and B7(θ) are equal to 1, we have cycles starting at X8, X5 and X4,
and then

σ = (173)(2)(495)(68).

Note that written in this fashion, each cycle starts with its minimal element, and the
cycles are written in increasing order of their minimal elements.

To indicate the parameters n and θ used in this construction, let πn,θ denote the
random permutation σ of [n] so constructed. Then πn,θ follows the Ewens distribution

P(πn,θ = π) =
θK(π)

(θ)n
where (θ)n := θ(θ + 1) · · · (θ + n− 1)

and K(π) is the number of cycles of a permutation π of [n]. The proof of this fact is
indicated in [3] and appeals to Feller’s original coupling of B1(1), . . . , Bn(1) to a uniform
random permutation πn,1 for θ = 1, and a simple change of measure argument for θ 6= 1.

The cycle structure of πn,θ can be deduced from the spacings between the Bernoulli
variables Bi(θ) which are equal to 1. More precisely, for ` ≥ 1, let us say that an `-
spacing occurs in a sequence a1, a2, . . . of 0s and 1s, starting at position i− ` and ending
at position i, if

ai−` · · · ai = 10`−1 1

meaning that the string of length ` + 1 is a 1 followed by ` − 1 zeros followed by 1. If
Cn,`(θ) is the number of `-spacings in

B1(θ), . . . , Bn(θ), 1, 0, 0, 0, . . .

then there is the equality

(Cn,`(θ), 1 ≤ ` ≤ n) = (K`(πn,θ), 1 ≤ ` ≤ n) (1.1)

where K`(πn,θ) is the number of cycles of length ` in the permutation πn,θ.
By regarding the sequence (Bi(θ))1≤i≤n as the first n terms of an infinite sequence

(Bi(θ))i≥1 of independent Bernoulli variables, we get a coupling, on a single probability
space, of the families of cycle lengths (K`(πn,θ))1≤`≤n for all values of n. We quickly
deduce the following result by Arratia, Barbour and Tavaré, for which we provide a
sketch of proof here for the reader’s convenience in comparing with later arguments:

Theorem 1.1 (Arratia, Barbour and Tavaré ([1], [3])). If C∞,`(θ) is the number of `-
spacings in the infinite sequence (Bi(θ))i≥1 of Bernoulli variables, Bi(θ) having parame-
ter θ/(θ + i− 1), then (C∞,`(θ))`≥1 is a sequence of independent Poisson(θ/`) variables.

Proof. If Ln(θ) is the position of the last 1 in (Bi(θ))1≤i≤n and Jn(θ) := n+ 1− Ln(θ) is
the last spacing in the finite n scheme, then

Cn,`(θ) ≤ C∞,`(θ) + 1(Jn(θ) = `) (1 ≤ ` ≤ n) (1.2)
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with strict inequality iff there is an `-spacing in the infinite sequence (Bj(θ))j≥1 starting
at j = i − ` and ending at j = i > n. Now, this event and the event {Jn(θ) = `} have
probability tending to zero when n→∞, so for fixed `, Cn,`(θ) = C∞,`(θ) with probability
tending to one. On the other hand, by (1.1), for any fixed K ≥ 1, (Cn,`(θ), 1 ≤ ` ≤ K)

tends in law to independent Poisson(θ/`) variables. The two last facts together imply the
theorem.

Combining (1.1) and (1.2), we get a coupling of counts of small cycles (K`(πn,θ))1≤`≤k
of a Ewens(θ) permutation to independent Poisson (θ/`) counts (C∞,`(θ))1≤`≤k, with a
total variation error depending on k and θ which is easily bounded explicitly. This implies
in particular that

(K`(πn,θ), 1 ≤ ` ≤ k)
(d)→ (C∞,`(θ), 1 ≤ ` ≤ k) as n→∞ (1.3)

for every fixed k, as well as estimates of total variation error in this approximation which
are useful for k = o(n): see [1, Theorems 1 and 3]. See also Sethuraman and Sethuraman
[19] for a review of studies of the distribution of the numbers of `-spacings in infinite
sequences of independent Bernoulli trials with sequences of probabilities pi other than
the sequence pi = θ/(θ + i − 1) involved in this coupling with a sequence of Ewens(θ)
permutations.

The coupling described above provides a way to define a sequence of Ewens(θ)
random permutations (πn,θ)n≥1 whose cycle structures for different values of n are
strongly related: from πn,θ to πn+1,θ, either a single fixed point is added, or a single cycle
of πn,θ has its length increased by one. However, the coupling above does not uniquely
define a joint distribution for πn,θ and πn+1,θ, because it does not say how the content of
the cycles of πn+1,θ and πn,θ are related.

In the particular case θ = 1, when each πn,1 is a uniform random element of the set
Sn of permutations of [n], Ignatov [13] provides a nice construction which defines the
joint law of (πn,1)n≥1 in a unique way. Let (Ui)i≥1 be a sequence of pairwise distinct
elements of [0, 1], with no smallest element. From this sequence, define the lower record
indices I1 < I2 < I3 < . . . , as the set of indices I such that UI is smaller than Ui for all
i < I, the lower indicators (Bi)i≥1, given by Bi = 1 if i is a lower record index and by
Bi = 0 otherwise, and the inter-record stretches (Vk)k≥1 given by:

Vk := (UIk , UIk+1, . . . , UIk+1−1). (1.4)

We notice the following facts:

• the inter-record stretches are elements of the space ∪∞`=1[0, 1]
` of finite sequences

in [0, 1] with undetermined length;

• the first term of the stretch Vk is the k-th lower record value Rk := UIk ;

• this first term Rk of Vk is the minimal term of the stretch Vk;

• the length of the stretch Vk is Ik+1 − Ik, the k-th inter-record spacing.

We can then define, for all n ≥ 1, a permutation πUn of {U1, . . . , Un} whose cycle
structure is given by the inter-record stretches: more precisely, πUn (Ui−1) = Ui for all
i ∈ {2, . . . , n} which are not lower record indices, πUn (UIk+1−1) = UIk if k ≥ 1 is such that
Ik+1 − 1 ≤ n, and πUn (Un) = UIj where Ij is the last lower record index such that Ij ≤ n.
The permutation πUn acts on the set {U1, . . . , Un}: it induces a permutation πn of [n] if
we rename the m-th smallest element of this set by m (for example, the permutation
0.2 7→ 0.9, 0.4 7→ 0.5, 0.5 7→ 0.2, 0.9 7→ 0.4 induces the permutation 1 7→ 4, 2 7→ 3, 3 7→ 1,
4 7→ 2). It is not difficult to check that the permutation πn depends only on the relative
order of U1, . . . , Un, in a way which induces a bijective map from Sn to itself. This
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bijection was proposed by Rényi [17] in the early 60s, and called the “transformation
fondamentale” in a paper by Foata and Schützenberger [8], in a more general setting of
combinatorics on words. Diaconis and Pitman [5] exploited this bijection to obtain the
convergence in distribution (1.3) in the case θ = 1, with a total variation bound. This
bound was sharpened and extended to the case of a general parameter θ > 0 in [1], as
indicated above. But this argument for general θ loses track of the full Poisson structure
of the record process for θ = 1.

Let us recall how this Poisson structure for θ = 1 was first exposed by Ignatov [13]. If
(Ui)i≥1 is a sequence of i.i.d., uniform variables on [0, 1], then for all n ≥ 1, all possible
orders of U1, . . . , Un occur with the same probability and then πn is uniformly distributed
on Sn. On the other hand, the lower record indicators (Bi)i≥1 are independent, Bernoulli
variables, Bi having parameter 1/i. The link between the construction of πn and the Feller
coupling is the following: conditionally on (Bi)i≥1, the distribution of πn is uniform on the
set of permutations whose lengths of the cycles, ordered by increasing lowest element,
are equal to the successive spacings between the 1’s in the sequence (1, Bn, Bn−1, . . . , B1).
One easily deduces the following result: given (Bi)1≤i≤n, the conditional distribution of
πn is the same as that given by the Feller coupling procedure using Bi(1) = Bi for all i.
The Poisson structure obtained by taking all the inter-record stretches together is quite
remarkable:

Theorem 1.2. If the variables (Ui)i≥1 are i.i.d., uniform in [0, 1], then the inter-record
stretches (Vk)k≥1 form a Poisson point process on ∪∞`=1[0, 1]

` with mean measure

µ(•) =
∞∑
`=1

P`(•)
`

(1.5)

where P`(•) is the conditional distribution of (U1, . . . , U`) given that U1 < Ui for every
1 < i ≤ `.

To illustrate the notation:

• P1(•) is the uniform distribution of U1 on [0, 1],

• P2(•) is uniform on {(u1, u2) : u1 < u2} ⊆ [0, 1]2, that is the conditional distribution
of (U1, U2) given the event (U1 < U2) of probability 1/2.

• P3(•) is uniform on {(u1, u2, u3) : u1 < min(u2, u3)} ⊆ [0, 1]3, that is the conditional
distribution of (U1, U2, U3) given the event (U1 < min(U2, U3)) of probability 1/3,

and so on.
Theorem 1.2 is a straightforward extension of the result of Ignatov [13] that {(Rk,

Ik+1− Ik), k ≥ 1} is the collection of points of a Poisson point process on (0, 1)×{1, 2, . . .}
with mean number of points in (s, 1]×{`} equal to (1−s)`/`. See Resnick [18, Proposition
4.1 (iv)] for a proof of this result using the basic spraying property of Poisson processes
[18, Proposition 3.8]. The same spraying argument gives the stronger assertion of
Theorem 1.2. For it is easily seen that given all the points {(Rk, Ik+1 − Ik), k ≥ 1}, for
each particular k, the conditional distribution of the stretch Vk depends only on Rk and
Ik+1 − Ik, and given Rk = r and Ik+1 − Ik = `, the stretch Vk with initial term r and
length ` has the distribution of (U1, . . . , U`) given U1 = r and r < Ui for all 1 < i ≤ `.

If we only consider the length of the inter-record stretches, we immediately deduce
from Theorem 1.2 that the inter-record spacings (Ik+1 − Ik)k≥1, form a Poisson point
process on the positive integers, with intensity 1/` at `, meaning that the random
variables

K∞,` :=

∞∑
k=1

1(Ik+1 − Ik = `) (1.6)
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are independent Poisson variables with means 1/`. This results corresponds to the
case θ = 1 of Theorem 1.1, since the lower record indicators (Bi)i≥1 are independent,
Bernoulli variables, Bi having parameter 1/i.

Regarded as a fact about inhomogeneous Bernoulli trials, this result is not at all
obvious without a broader context involving additional randomization, such as Igna-
tov’s context of record sequences, or the context of the Feller coupling for random
permutations.

The link between the Feller coupling and the lower records of a sequence of random
variables can be extended to the setting of Ewens distributed permutations with general
parameter θ > 0, by changing the distribution of the sequence (Ui)i≥1. We will prove the
following result:

Theorem 1.3. For θ > 0, let Pθ be the probability measure on the set of infinite se-
quences in [0, 1], endowed with its Borel σ-algebra, such that for (Ui)i≥1 following the
law Pθ:

• The first term U1 is Beta distributed with parameters θ and 1.

• Conditionally on (U1, . . . , Un), for min(U1, . . . , Un) = r, the distribution of Un+1 is
the mixture with weights r and 1− r of the distribution of r times a Beta variable
with parameters θ and 1, and the uniform distribution on [r, 1], i.e.

Pθ(Un+1 ∈ du | min(U1, . . . , Un) = r)

du
= θ

(u
r

)θ−1
1(u < r)+1(u ≥ r) (0 < u < 1).

In particular, no matter what θ > 0, the conditional probability of a new lower record at
time n+ 1, given (U1, . . . , Un), is always min(U1, . . . , Un).

Then, the following statements hold:

• The finite dimensional distributions of (U1, . . . , Un) under Pθ are absolutely contin-
uous with respect to the Lebesgue measure on [0, 1]n, with density

dPθ
dP1

(u1, . . . , un) = θKn min(u1, . . . , un)
θ−1 (1.7)

where Kn is the number of lower records in the sequence (u1, . . . , un). In particular,
under P1, the variables (Ui)i≥1 are i.i.d., uniform on [0, 1].

• If (Ui)i≥1 follows the law Pθ, then this sequence has a.s. no smallest element, the
Ui’s are pairwise distinct, and the inter-record stretches (Vk)k≥1 form a Poisson
point process on ∪∞`=1[0, 1]

` with mean measure θµ(•) for µ(•) as in (1.5).

The fact that (Ui)i≥1 are i.i.d., uniform under P1 is a restatement of Ignatov’s Theorem
1.2. The description of the law of (U1, . . . , Un) under Pθ for general θ has already been
indicated by Kerov and Tsilevich [15, Lemma 2], with upper rather than lower records,
which exchanges Ui with 1−Ui in the formulas. Kerov and Tsilevich have also associated
random permutations to sequences following the distribution Pθ, and these permutations
are distributed with respect to the Ewens measure of parameter θ. However, the
construction of [15] does not coincide with the construction given in the present paper

The fact that Pθ may also be described as in Theorem 1.3, by simply changing
the mean intensity measure of the Poisson point process of inter-record stretches on
∪∞`=1[0, 1]

` by a scalar factor of θ, from µ(•) under P1 to θµ(•) under Pθ, does not seem
to have been observed before.

The push forward of this result, from the Poisson point process of inter-record
stretches to the Poisson point process of their lengths, gives the fact that the counting of
the inter-record spacings (Ik+1 − Ik)k≥1 forms a Poisson point process on the positive
integers, with intensity θ/` at `. The following corollary links Theorem 1.3 to the Feller
coupling and explains how Theorem 1.3 implies Theorem 1.1.
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Corollary 1.4. For a sequence (Ui)i≥1 of pairwise distinct elements of [0, 1], with no
smallest element, let (Bi)i≥1 be the corresponding lower record indicators, let πUn be the
permutation of {U1, . . . , Un} whose cycle structure is given by the inter-record stretches,
and let πn be the corresponding permutation of [n], with the same cycle structure. Then,
for (Ui)i≥1 governed by the law Pθ,

• The Bi are independent Bernoulli (θ/(i− 1 + θ));

• Conditionally on all the Bi, the permutation πn is uniformly distributed among the
permutations whose cycle lengths, ordered by increasing lowest elements, are
given by the successive spacings between 1’s in the sequence (1, Bn, Bn−1, . . . , B1);

• Given (Bi)1≤i≤n, the conditional distribution of πn is the same as that given by the
Feller coupling procedure using Bi(θ) = Bi for all i;

• The unconditional distribution of πn is Ewens with parameter θ.

Another thing we can remark is that all the values of θ > 0 can be coupled on a single
probability space. Indeed, under Pθ, the family of inter-record stretches forms a Poisson
point process of intensity θµ(•), so can be constructed simultaneously for all θ by taking
the points of a Poisson process of intensity equal to the product of Lebesgue measure
on R+ by the measure µ(•), and extracting the points for which the R+ coordinate is
smaller than θ. Such a coupling provides a dynamic version of the Feller coupling, with
the parameter θ of the Ewens measure as its time parameter. The path structure of this
Sn-valued process (πn,θ, θ ≥ 0) can be understood as follows. It may be constructed with
right-continuous step function paths, in which each jump involves insertion of a new
cycle of some length ` from 1 to n, corresponding to a Poisson point which is a sequence
in some component [0, 1]k of the sequence space with k ≥ `, whose initial term is greater
than the initial term of at least one sequence contributing to the current permutation of
[n]. This insertion may delete some cycles, and/or shorten the final cycle, depending on
the rank of the initial term of the new sequence relative to the initial terms associated
with existing cycles. It does not seem easy to give a full probabilistic description of
the dynamics of this Sn-valued process. In particular, it may not be Markovian, due to
the latent initial terms of the sequential fragments which determine the order of the
cycles. As the partition of n induced by πn,θ is not necessarily refining as θ increases,
this process is not the same as the evolution described by Gnedin and Pitman [10], in
which partitions following the Ewens (θ) distribution are constructed for all values of
θ > 0 to be refining as θ increases.

Theorem 1.3 and Corollary 1.4 are proven in Section 2 of the present article. In Sec-
tion 3, we use the measure Pθ in order to construct some infinite random permutations,
in a way which generalizes the Feller coupling. In Section 4, we provide a link between
our construction and a result by Shepp and Lloyd on the cycle counts of permutations of
random order.

2 Proof of Theorem 1.3 and Corollary 1.4

By induction on n, using the definition of Pθ, we see that the density at (u1, . . . , un)
of the law of (U1, . . . , Un) under Pθ is given by

θuθ−11

∏
2≤j≤n :uj=min(u1,...,uj)

[
θ

(
min(u1, . . . , uj)

min(u1, . . . , uj−1)

)θ−1]
= θKn(min(u1, . . . , un))

θ−1,

which proves the first statement of the theorem. It is also clear from the definition that
(Ui)i≥1 has a.s. no smallest element and all elements pairwise distinct.
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Now, for a given s ∈ (0, 1), n ≥ 0 and u1, . . . , un ∈ (s, 1), we easily check that

Pθ(U1 ∈ du1, . . . , Un ∈ dun, Un+1 ≤ s)
du1 . . . dun

= θKn(min(u1, . . . , un))
θ−1

∫ s

0

[
θ

(
u

min(u1, . . . , un)

)θ−1]
du

= θKn

∫ s

0

θuθ−1du = θKnsθ.

Let (Fi)i≥0 be the filtration generated by the variables (Ui)i≥1, and let Ts be the first
index i such that Ui ≤ s: it is clear that Ts is a stopping time with respect to (Fi)i≥0. The
equality above shows that for any event An which is Fn-measurable,

Pθ(An, Ts = n+ 1) = sθ−1EP1
[1(An, Ts = n+ 1) θKn ]

where Kn is the number of lower records in the sequence (U1, . . . , Un). Now, let E be an
event which is measurable with respect to the family of all inter-record stretches starting
above the level s, and let L be the total length of these stretches. We can check that for
n ≥ 0, the intersection of E and the event {L = n} can be written as the intersection of
An and Ts = n+ 1 for some Fn-measurable event An, which gives

Pθ(E,L = n) = sθ−1EP1
[1(E,L = n) θNs ]

where Ns is the number of inter-record stretches starting above the level s. Hence

Pθ(E) = sθ−1EP1
[1(E) θNs ],

which implies the following:

• The law of Ns under Pθ has density θNssθ−1 with respect to the law of Ns under P1.

• Conditionally on Ns, the set of inter-record stretches starting above the level s has
the same law under Pθ and under P1.

By Theorem 1.2, the law of Ns under P1 is the Poisson distribution with parameter

∞∑
`=1

P`([s, 1]
`)

`
=

∞∑
`=1

(1− s)`

`
= − log s

and we deduce that the law of Ns under Pθ is the Poisson distribution of parameter
−θ log s. Moreover, conditionally on Ns, under P1, and then also under Pθ, the family of
inter-record stretches starting above s has the same law as the family of elements of an
i.i.d. sequence of variables which are distributed according to the probability measure:

− 1

log s

∑
`

(P`)|[s,1]`

`
.

Hence, under Pθ, the inter-record stretches starting above s form a Poisson point process
with intensity

θ
∑
`

(P`)|[s,1]`

`
.

Since s ∈ (0, 1) can be arbitrarily chosen, we get the second statement of Theorem 1.3.
For the corollaries, we use the following key property: the density on Fn of Pθ with re-

spect to P1 can be written as the product of a function of the relative order of (U1, . . . , Un),
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i.e. θKn , and a function of the order statistics of (U1, . . . , Un), i.e. (min(U1, . . . , Un))
θ−1.

Since the relative order and the order statistics of (U1, . . . , Un) are independent under
P1, they remain independent under Pθ for all θ > 0. Moreover, under P1, the record
indicators Bi are independent Bernoulli(1/i) variables, and the change of measure on
these variables when we go from P1 to Pθ corresponds to a density factor proportional
to

θKn =

n∏
i=1

θBi .

This easily implies that under Pθ, the record indicators are independent Bernoulli(pi(θ)),
where

pi(θ) =
θ/i

1− 1/i+ θ/i
=

θ

i− 1 + θ
.

This gives the first item of Corollary 1.4. Moreover, conditionally on the lower record
indicators and the order statistics of (U1, . . . , Un), all the possible relative orders of
(U1, . . . , Un) have the same probability, because of the form of the density of Pθ with
respect to P1. This implies the second item of Corollary 1.4, since the permutation πn is
uniquely determined by the relative order of (U1, . . . , Un). The third item of Corollary 1.4
is a direct consequence of the two first items, and the last item is due to the classical
properties of the Feller coupling.

3 Infinite permutations

From any sequence (Ui)i≥1 of elements in [0, 1], with distinct values and no smallest
element, we have seen how to construct a permutation πUn of {U1, . . . , Un} and a permu-
tation πn of [n] from the inter-record stretches. It is also possible to define a permutation
πU∞ of the infinite set {Ui, i ≥ 1}, in such a way that the cycles are given by the set of
all inter-record stretches, i.e. πU∞(Ui−1) = Ui for all i ≥ 2 which are not lower record
indices, and πU∞(UIk+1−1) = UIk for all k ≥ 1. One easily checks that πU∞ coincides with
πUn on the set {U1, . . . , Un−1} for all n ≥ 1.

The construction of πU∞ can be seen as some kind of Feller coupling of infinite order,
since the construction of πUn and πn can be related with the Feller coupling of order
n, as we have seen previously. However, we observe that contrary to the case of the
permutation πn which acts on the fixed set [n], the infinite set on which πU∞ acts is itself
a random set. Moreover, we observe that the cycles of π∞ appear in decreasing order of
their smallest element, i.e. in the reverse order with respect to the usual description
of the Feller coupling. If we look at the sequence of permutations (πUn )n≥1 we get a
coupling of permutations of different orders, which has the property noted in the analysis
of [1, §3], that “the cycles are built and completed one by one, in contrast to the Chinese
Restaurant Process”, with reference to the alternative construction of cycle-consistent
random permutations of [n] discussed in [1, §2], and [16].

If the sequence of variables (Ui)i≥1 is distributed like Pθ, then by Theorem 1.3, the
cycle structure of πU∞ is directly given by a Poisson point process on ∪∞`=1[0, 1]

` with
mean measure θµ(•). In particular, the number of cycles of different lengths ` is given
by independent Poisson random variables of parameter θ/`, which generalizes the case
θ = 1 studied by Ignatov.

If we consider, as at the end of the introduction, the dynamical version of our
construction, where all the values of θ > 0 are coupled together, then the evolution of
the cycle structure of πU∞ when θ varies is easy to describe in terms of Poisson processes,
contrary to the case where we consider permutations of finite order. In particular, the
set of cycles of the permutation corresponding to θ = θ1 + θ2 has the same law as the
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union of two independent sets of cycles, corresponding to the parameters θ = θ1 and
θ = θ2.

4 Connection with work by Shepp and Lloyd

In this section, we connect Theorem 1.3 to a model for a random permutation π

of a set of random size N , first introduced by the work of Shepp and Lloyd [20] on
the distribution of the lengths of the longest and shortest cycles of a uniform random
permutation. In the Shepp and Lloyd model, N is assigned the geometric (p) distribution
P(N ≥ n) = (1−p)n for n ≥ 0. In a following paper [4], Balakrishnan, Sankaranarayanan,
and Suyambulingom extended the model of Shepp and Lloyd to a much more general
model of random permutations π of a set of random size N . For a particular choice
of parameters, which was not singled out for special discussion in [4], the model of
[4] assigns N a negative binomial distribution, as in the following Corollary, and given
N = n the permutation π is governed by the Ewens(θ) distribution. See also [9], [12],
[11] (Lemma 2.1). [21] (Theorem 2) and [14] for variants of this result with different
interpretations, and further references.

Corollary 4.1 ([20], [4], [9], [12]). Let θ > 0 and p ∈ (0, 1), and let N(θ, p) denote a
random variable with the negative binomial (θ, p) distribution:

P(N(θ, p) = n) =
(θ)n
n!

(1− p)npθ

for n ≥ 1, which implies that EN(θ, p) = θ(1− p)/p. Let π be a permutation of random
order, such that conditionally given N(θ, p) = n, π has order [n] and is distributed
according to the Ewens(θ) measure. Then the number of cycles of π of different orders `
are independent Poisson variables of parameter (1− p)`/`.

Proof. Let us consider, under Pθ, the permutation πn of random order, n+ 1 being the
first index such that Un+1 < p. If we condition on the value of this index and on the
order statistics of (U1, . . . , Un), we get, from the expression of the density dPθ/dP1, a
permutation πn following Ewens distribution of parameter θ. On the other hand, Theorem
1.3 implies that the number of cycles of different sizes in πn are independent Poisson
variables, the expectation of the number of `-cycles being:

θµ([p, 1]`) = θ(1− p)`/`.

Hence, the corollary is proven if we show that the law of the size n of the permutation is
negative binomal (θ, p). Since the cycle lengths form a Poisson process with intensity
proportional to θ when p is fixed, the law of the size of the permutation in function of
θ corresponds to the marginals of a Lévy process. It is also the case for the negative
binomial distribution, so it is enough to check that for θ = 1, n is geometrically distributed
with parameter p. This fact is immediate since n + 1 is the first time when an i.i.d.
sequence of uniform variables on [0, 1] hits the interval [0, p].

The proof above is related to the fact that if K`(π) is the number of `-cycles of π,

N(θ, p) =

∞∑
`=1

`K`(π) (4.1)

is the canonical Lévy decomposition of the infinitely divisible distribution of N(θ, p) as a
linear combination of independent Poisson variables. Compare with the discussion of
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Feller [7, (2.17)] who gives the well-known probability generating function of the number
K of cycles of a uniform random permutation πn of [n]:

E1θ
K =

(θ)n
n!

(4.2)

by use of his coupling with Bernoulli(1/i) variables for 1 ≤ i ≤ n. This comes immediately
after discussion of the compound Poisson representation of the negative binomial distri-
bution, but without the connection indicated in Corollary 4.1. This model for constructing
a negative binomial variable from independent Poisson counts of cycles of a random
permutation of random size is also not mentioned in the otherwise very comprehensive
account [2] of models related to the Ewens sampling formula.
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