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Abstract

We use moment method to understand the cycle structure of the composition of two
independent invariant permutations. We prove that under a good control on fixed
points and cycles of length 2, the limiting joint distribution of the number of small
cycles is the same as in the uniform case i.e. for any positive integer k, the number
of cycles of length k converges to the Poisson distribution with parameter 1

k
and is

asymptotically independent of the number of cycles of length k′ 6= k.
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1 Introduction and main results

We denote by Sn the group of permutations of {1, . . . , n}, by #k σ the number of
cycles of σ of length k, by #σ the total number of cycles of σ and by tr(σ) := #1 σ.

The cycle structure of a permutation chosen uniformly among the symmetric group Sn

is well understood (see e.g. [2] for detailed results). In particular, the following classical
result holds:

Theorem 1.1. [1, Theorem 3.1] If σn follows the uniform distribution on Sn then for
any k ≥ 1,

(#1 σn, . . . ,#k σn)
d−−−−→

n→∞
ηk := (ξ1, ξ2, . . . , ξk), (1.1)

where
d−−−−→

n→∞
denotes the convergence in distribution, ξ1, ξ2, . . . , ξk are independent and

the distribution of ξd is Poisson of parameter 1
d .

In this work, we question the universality class of this convergence. We show that a
product of conjugation invariant permutations that do not have too many fixed points
and cycles of size 2 lies within this class. More precisely, we have the following.
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A product of invariant random permutations has the same small cycle structure

Theorem 1.2. Let (σn)n≥1 and (ρn)n≥1 be two sequences of random permutations such
that for any n ≥ 1, σn ∈ Sn and ρn ∈ Sn. For any k ≥ 1, let tnk := #k(σnρn). Assume that

– For any n ≥ 1, σn and ρn are independent. (H1)

– For any n ≥ 1, for any σ ∈ Sn, σ−1σnσ
d
= σn, or σ−1ρnσ

d
= ρn. (H2)

– For any k ≥ 1,

lim
n→∞

E

((
#1 σn√

n

)k)
= 0 and lim

n→∞
E

((
#1 ρn√

n

)k)
= 0, (H3)

lim
n→∞

E(#2 σn)

n
= 0 and lim

n→∞

E(#2 ρn)

n
= 0. (H4)

Then for any k ≥ 1,

(tn1 , t
n
2 , . . . , t

n
k )

d−−−−→
n→∞

ηk.

The result can be extended to more than two permutations. We refer the reader to
Section 3.1 for details. Similar results have been obtained in [9] for permutations that
are equicontinuous in both coordinates and converging as a permuton (see definitions
there). With the motivation of random gluing of polygons, a stronger convergence (in
total variation distance) was established in [4] when one of the permutations has all
its cycles of length at least 3 (see also [5]) and in [3] when one of the permutations is
an involution without fixed point. None of the previous results covers for example the
product of two Ewens distributions. They are known to satisfy the convergences required
in H3 and H4 so that our result tells that the product of two Ewens distributions behaves
like a uniform permutation, as far as small cycles are concerned. In our framework, in
the case of two permutations, a weaker result can be obtained without any hypothesis
on the cycles of size 2.

Proposition 1.3. With the same notations as in Theorem 1.2, under H1, H2 and H3, we
have convergence of the first moment i.e for any e ≥ 1,

lim
n→∞

E(tne ) =
1

e
.

Note that when one of the permutations σn or ρn follows the uniform distribution,
under H1, the product also follows the uniform distribution and Theorem 1.2 is a direct
consequence of Theorem 1.1.

Our motivation to understand the cycle structure of random permutations is the
relation, in the case of conjugation invariant permutations, to the longest common
subsequence (LCS) of two permutations. For example, using [6, Theorem 1.2] and that
LCS(σ, ρ) is equal to the length of the longest increasing subsequence of σ−1ρ, if σ−1n ρn
is conjugation invariant and

#(σ−1n ρn)
6
√
n

d−−−−→
n→∞

0,

then for any s ∈ R,

P

(
LCS(σn, ρn)− 2

√
n

6
√
n

≤ s
)
−−−−→
n→∞

F2(s),

where F2 is the cumulative distribution function of the GUE Tracy-Widom distribution.
Another motivation comes from traffic distributions, a non-commutative probability

theory introduced in [8] to understand the moments of permutation invariant random
matrices. As shown in [8], the limit in traffic distribution of uniform permutation matrices
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A product of invariant random permutations has the same small cycle structure

is trivial but Theorem 1.1 can be seen as a second-order result in this framework. It
is therefore natural to ask about limiting joint fluctuations for the product of several
permutation matrices, which is a really non-commutative case. To emphasize this
relation, we rewrite Theorem 1.2 as follows.

Corollary 1.4. Under H1, H2, H3 and H4, for any k ≥ 1,
(
tr(σρ), tr((σρ)2), . . . , tr((σρ)k)

)
converges in distribution to (ξ1, ξ1 + 2ξ2, . . . ,

∑
d|k dξd), where ξ1, ξ2, . . . are independent

and the distribution of ξd is Poisson of parameter 1
d .

It means that in this framework, the fluctuations are only governed by an hypothesis
on fixed points and cycles of order two. The optimality of conditions H3 and H4 will be
discussed at the end of the paper.

2 Proof of results

We begin with a few preliminary remarks and simplifications.
First of all, the equivalence between Theorem 1.2 and Corollary 1.4 is due to the

following classical argument. For any σ ∈ Sn, if ci(σ) denotes the length of the cycle of
σ containing i,

tr
(
σk
)

=

n∑
i=1

1σk(i)=i =

n∑
i=1

1ci(σ)|k =
∑
j|k

n∑
i=1

1ci(σ)=j =
∑
j|k

j#jσ. (2.1)

In the hypothesis H2, we assume that one of the permutations, say σn, may not have a
conjugation invariant distribution. In fact, it is enough to prove Theorem 1.2 in the case
where both permutations are conjugation invariant. Indeed, if we choose τn uniform and
independent of the σ− algebra generated by σn and ρn, the cycle structure of σnρn is
the same as

τ−1n σnρnτn = (τ−1n σnτn)(τ−1n ρnτn)
d
= (τ−1n σnτn)ρn

and (τ−1n σnτn) is also conjugation invariant.

2.1 Preliminary results

To prove Theorem 1.2, we will use the same objects introduced in [7, pages 12-13]
where one can get further details and examples. To a couple of permutations and a
subset of p indices, we will associate a set of 2p graphs. For technical reasons, we
prefer working with σ−1n ρn rather than σnρn : for any k ≥ 1, we define t̃nk := #k(σ−1n ρn).

Under H2, σn
d
= σ−1n and consequently under H1 and H2, ∀k ≥ 1 (tn1 , t

n
2 , . . . , t

n
k ) and

(t̃n1 , t̃
n
2 , . . . , t̃

n
k ) have the same distribution.

Let us now recall the combinatorial objects we will use.

• We denote by Gnk the set of oriented simple graphs with vertices {1, 2, . . . , n} and
having exactly k edges. We allow here loops but not multiple edges. Given g ∈ Gnk ,
we denote by Eg the set of its edges and by Ag := [1(i,j)∈Eg ]1≤i,j≤n its adjacency
matrix.

• A connected component of g is called trivial if it does not have any edge and a
vertex i of g is called isolated if Eg does not contain any edge of the form (i, j) or
(j, i) nor a loop (i, i). Let g ∈ Gnk , we denote by g̃ the graph obtained from g after
removing isolated vertices.

• We say that two oriented simple graphs g1 and g2 are isomorphic if one can obtain
g2 by changing the labels of the vertices of g1. In particular, if g1, g2 ∈ Gnk then
g1, g2 are isomorphic if and only if there exists a permutation matrix σ such that
Ag1σ = σAg2 .

ECP 25 (2020), paper 57.
Page 3/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP334
http://www.imstat.org/ecp/


A product of invariant random permutations has the same small cycle structure

• Let R be the equivalence relation such that g1Rg2 if g̃1 and g̃2 are isomorphic.
We denote by Ĝk := ∪n≥1Gnk /R the set of equivalence classes of ∪n≥1Gnk for the
relation R.

Let n ∈ N∗ and σ, ρ ∈ Sn. Let m ∈ {1, . . . , n} be fixed.

• We denote by (im1 (σ, ρ) = m, im2 (σ, ρ), . . . , imkm(σ,ρ)(σ, ρ)) the cycle of σ−1◦ρ containing

m, so that km(σ, ρ) := cm(σ−1 ◦ ρ) is the length of this cycle. For l ≤ km(σ, ρ), we
define jml (σ, ρ) := ρ(iml (σ, ρ)). In particular, im1 (σ, ρ), im2 (σ, ρ), . . . , imkm(σ,ρ)(σ, ρ) are
pairwise distinct and jm1 (σ, ρ), jm2 (σ, ρ), . . . , jmkm(σ,ρ)(σ, ρ) are pairwise distinct. For
sake of simplicity, when it is clear, we will use the notations km, iml and jml instead
of km(σ, ρ), iml (σ, ρ) and jml (σ, ρ) respectively.

• We denote by Gm1 (σ, ρ) ∈ Gnkm and Gm2 (σ, ρ) ∈ Gnkm the graphs with vertices
{1, . . . , n} such that

EGm1 (σ,ρ) = {(im1 , jmkm)}
⋃(

km−1⋃
l=1

{(iml+1, j
m
l )}

)
and EGm2 (σ,ρ) =

km⋃
l=1

{(iml , jml )}

and by gσ the graph such that Agσ = σ. By construction, for any positive integer
m ≤ n, Gm1 (σ, ρ) (resp. Gm2 (σ, ρ)) is a sub-graph of gσ (resp. gρ). Moreover, we want
to emphasize that Gm1 (σ, ρ) and Gm2 (σ, ρ) have the same set of non-isolated vertices.

For i ∈ {1, 2}, let Ĝmi (σ, ρ) be the equivalence class of Gmi (σ, ρ).

• Let I = (s1, s2, . . . , sl) a set of distinct indices of {1, . . . , n}. We denote by

GI(σ, ρ) = (Gs11 (σ, ρ),Gs12 (σ, ρ),Gs21 (σ, ρ), . . . ,Gsl1 (σ, ρ),Gsl2 (σ, ρ))

and
ĜI(σ, ρ) = (Ĝs11 (σ, ρ), Ĝs12 (σ, ρ), Ĝs21 (σ, ρ), . . . , Ĝsl1 (σ, ρ), Ĝsl2 (σ, ρ)).

• For i ∈ {1, 2}, let G{1,2,...,`}i (σ, ρ) be the graph such that EG{1,2,...,`}i (σ,ρ)
= ∪`j=1EGji (σ,ρ)

and Ĝ{1,2,...,`}i (σ, ρ) be the equivalence class of G{1,2,...,`}i (σ, ρ).

Using the conjugation invariance, Theorem 1.2 is a direct consequence of the follow-
ing: under the same hypotheses, for any ` ≥ 1, for any e1, e2 . . . , e` ≥ 1,

lim
n→∞

∑
ĝi,ĝ
′
i∈Ĝei , 1≤i≤`

n`P
(
Ĝ{1,2,...,`}(σn, ρn) = (ĝ1, ĝ

′
1, ĝ2, . . . ĝ

′
`)
)

= Ce1,e2,...,e` , (*)

where Ce1,e2,...,e` is a constant independent of the laws of the permutations. Note that,

for any ei ≥ 1, the cardinal of Ĝei and therefore the number of terms of the sum is finite.
Let us explain briefly why (*) implies Theorem 1.2. First, for any e1, . . . , e`, we have

P
(
c1(σ−1n ρn) = e1, . . . , c`(σ

−1
n ρn) = e`

)
=

∑
ĝi,ĝ
′
i∈Ĝei , 1≤i≤`

P
(
Ĝ{1,2,...,`}(σn, ρn) = (ĝ1, ĝ

′
1, ĝ2, . . . ĝ

′
`)
)
. (2.2)

Moreover, using the relation (2.1), one can check that the joint moments of (t̃n1 , . . . , t̃
n
k )

can be expressed as follows: for any `1, . . . , `m in {1, ..., k},

E(t̃n`1 , . . . t̃
n
`m) =

1

`1 . . . `m
E

 m∏
p=1

n∑
ip=1

1cip (σ−1
n ρn)=`p


=

1

`1 . . . `m

∑
i∈{1,...,n}m

P
(
ci1(σ−1n ρn) = `1, . . . , cim(σ−1n ρn) = `m

)
.
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For i := (i1, . . . , im) ∈ {1, . . . , n}m, denote ker(i) the partition of {1, . . . ,m} such that
p and q are in the same block whenever ip = iq. By conjugation invariance, for any
i ∈ {1, . . . , n}m, the quantity P

(
ci1(σ−1n ρn) = `1, . . . , cim(σ−1n ρn) = `m

)
depends only on

ker(i) and is denoted P(ker(i)). For any partition λ of {1, . . . ,m}, if |λ| denotes the number
of blocks of a partition λ, there exist e1, . . . , e|λ| such that

P(λ) = P
(
c1(σ−1n ρn) = e1, . . . , c|λ|(σ

−1
n ρn) = e|λ|

)
,

so that

E(t̃n`1 , . . . t̃
n
`m) =

1

`1 . . . `m

∑
λ

n(n− 1) . . . (n− |λ|+ 1)P(λ),

which together with (2.2) makes the link between (*) and Theorem 2.
Before getting into the proof of (*), let us gather some useful combinatorial and then

probabilistic results.

Lemma 2.1. [7, Lemma 15] If m1 ∈ {im2

l , 1 ≤ l ≤ km2
}, then Gm1

1 (σ, ρ) = Gm2
1 (σ, ρ) and

Gm1
2 (σ, ρ) = Gm2

2 (σ, ρ).

Lemma 2.2. For any m ≤ n, for any permutation σ, ρ ∈ Sn,

AGm1 (σ,ρ) = AT
Gρ(m)
2 (ρ−1,σ−1)

.

Proof. It is easy to see that by definition km(ρ, σ) = km(σ, ρ) and

jm` (ρ, σ) = jmkm(σ,ρ)−`+1(σ, ρ), ∀1 ≤ ` ≤ km(σ, ρ),

im` (ρ, σ) = imkm(σ,ρ)−`+2(σ, ρ), ∀2 ≤ ` ≤ km(σ, ρ),

im1 (ρ, σ) = im1 (σ, ρ) = m,

and Lemma 2.2 follows

Lemma 2.3. If all non trivial connected components of Gm1
1 (σ, ρ) and Gm1

2 (σ, ρ) have 2

vertices then both Gm1
1 (σ, ρ) and Gm1

2 (σ, ρ) have no 2-cycles.

Proof. Using the symmetries of the problem (Lemmas 2.1 and 2.2), it suffices to prove
that if all non trivial connected components of G11(σ, ρ) and G12(σ, ρ) have 2 vertices then
it is impossible to have at the same time (1, 2) ∈ G12(σ, ρ) and (2, 1) ∈ G12(σ, ρ). To simplify
notations, let k1 := k1(σ, ρ) = c1(σ−1 ◦ ρ), i1o := i1o(σ, ρ) and j1o := j1o(σ, ρ).

Let A = {η > 1; j1η ∈ {i11, i12, . . . , i1η−1} or i1η ∈ {j11 , j12 , . . . , j1η−1}}. Suppose that (1, 2) ∈
G12(σ, ρ) and (2, 1) ∈ G12(σ, ρ) then k1 ≥ 2 and there exists a unique 1 < l ≤ k1 such that
i1l = 2 and j1l = 1 so that A is non-empty. Let `′ := inf(A) ≥ 2. Assume that `′ > 2. If j1`′ ∈
{i11, i12, . . . , i1`′−1}, then there exists `′′ < `′ such that j1`′ = i1`′′ and since the component
of G12(σ, ρ) containing i1`′ has two vertices and by definition (i1`′ , j

1
`′) and (i1`′′ , j

1
`′′) are two

edges of G12(σ, ρ), then j1`′′ = i1`′ . Since (i1`′ , j
1
`′−1) = (j1`′′ , j

1
`′−1) and (i1`′′+1, j

1
`′′) are edges of

G11(σ, ρ) and since G11(σ, ρ) has only connected components of size 2, we have necessarily
i1`′′+1 = j1`′−1. One can check easily that `′′ < `′ − 2 otherwise either G11(σ, ρ) or G12(σ, ρ)

has a loop. Indeed, if `′′ = `′ − 2, then (i1`′′+1, j
1
`′′+1) = (j1`′−1, j

1
`′′+1) = (j1`′−1, j

1
`′−1) is an

edge of G12(σ, ρ) and if `′′ = `′ − 1, then (i1`′′+1, j
1
`′′) = (j1`′−1, j

1
`′′) = (j1`′−1, j

1
`′−1) is an edge

of G11(σ, ρ). This implies that `′ − 1 ∈ A, which is absurd. i1`′ ∈ {j11 , j12 , . . . , j1`′−1} can be
treated using the same techniques and one can extend easily to `′ = 2.

We now introduce the following notation: given g ∈ Gnk , we denote by

Sn,g := {σ ∈ Sn;∀(i, j) ∈ Eg, σ(i) = j}.

In other words, Sn,g is the set of permutations σ such that g is a sub-graph of gσ. It is
not difficult to prove the two following lemmas.
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Lemma 2.4. Let g1, g′1, g2, . . . , g
′
k ∈ ∪`Gn` and let g, g′ be such that Eg = ∪k`=1Egi and

Eg′ = ∪k`=1Eg′i . Assume that there exists ρ, σ such that

G{1,2,...,k}(σ, ρ) = (g1, g
′
1, g2, . . . , g

′
k).

Then for any random permutations ρn, σn,

P

(
k⋂
i=1

{σn ∈ Sn,gi , ρn ∈ Sn,g′i
}

)
= P

(
G{1,2,...,k}(σn, ρn) = (g1, g

′
1, g2, . . . , g

′
k)
)

= P
(
G{1,2,...,k}1 (σn, ρn) = g,G{1,2,...,k}2 (σn, ρn) = g′

)
.

Proof. We will only prove the first equality. The second one can be obtained using the
same argument.

Let σ′, ρ′ be two permutations. We have seen that Gm2 (σ′, ρ′) is a subset of gρ′ , so that

Gm2 (σ′, ρ′) = g′m ⇒ ρ′ ∈ Sn,g′m
,

and that Gm1 (σ′, ρ′) is a subset of gσ′ , so that

Gm1 (σ′, ρ′) = gm ⇒ σ′ ∈ Sn,gm .

Consequently,

P
(
G{1,2,...,k}(σn, ρn) = (g1, g

′
1, g2, . . . , g

′
k)
)
≤ P

(
k⋂
i=1

{σn ∈ Sn,gi , ρn ∈ Sn,g′i
}

)
.

Now suppose that there exists ρ′, σ′ such that

G{1,2,...,k}(σ′, ρ′) = (g1, g
′
1, g2, . . . , g

′
k).

Let σ, ρ such that σ ∈ ∩ki=1Sn,gi and ρ ∈ ∩ki=1Sn,g′i
. By definition and by iteration on `, one

can check that for any `′ ≤ k, i``′(σ
′, ρ′) = i``′(σ, ρ) and j``′(σ

′, ρ′) = j``′(σ, ρ). Consequently,

G{1,2,...,k}(σ, ρ) = (g1, g
′
1, g2, . . . , g

′
k).

Finally we obtain

P
(
G{1,2,...,k}(σn, ρn) = (g1, g

′
1, g2, . . . , g

′
k)
)
≥ P

(
k⋂
i=1

{σn ∈ Sn,gi , ρn ∈ Sn,g′i
}

)
.

Lemma 2.5. [7, Lemma 16] Let g1, g2 ∈ Gnk . Assume that there exists ρ ∈ Sn such that
Ag2ρ = ρAg1 . If ρ has a fixed point on any non-trivial connected component of g1, then
Sn,g1 ∩Sn,g2 = ∅ or Ag1 = Ag2 .

Lemma 2.6. For any graph g ∈ Gnk having f loops, p non-trivial connected components
and v non-isolated vertices, for any random permutation σn with conjugation invariant
distribution on Sn,

P(σn ∈ Sn,g) ≤
P(σn(1) = 1, . . . , σn(f) = f)

(n−p)!
(n−v)!

≤ (n− v)!

(n− p)!
.
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Proof. It is an adaptation of the proof of [7, Corollary 17]. By conjugation invariance,
one can suppose without loss of generality that the loops of g are (1, 1), (2, 2), . . . (f, f)

and the set of non-isolated vertices of g are {1, 2, . . . , v}.
If there exist i, j, l, with j 6= l such that {(i, j)∪ (i, l)} ⊂ Eg or {(j, i)∪ (l, i)} ⊂ Eg then

Sn,g = ∅. Therefore, if Sn,g 6= ∅, then non-trivial connected components of g having w
vertices are either cycles of length w or isomorphic to gw, where Agw = [1j=i+1]1≤i,j≤w.

Let g ∈ Gnk such that Sn,g 6= ∅. Fix p vertices x1 = 1, x2 = 2, . . . , xf = f, xf+1, . . . , xp
each belonging to a different non-trivial connected components of g. Let xp+1 < xp+2 <

· · · < xv be such that {xp+1, . . . , xv} = {1, 2, . . . , v} \ {x1, . . . xp} be the other non-isolated
vertices. Let

F = {(yi)p+1≤i≤v; yi ∈ {1, 2, . . . , n} \ {x1, . . . xp} pairwise distinct}.

Given y = (yi)p+1≤i≤v ∈ F , we denote by gy ∈ Gnk the graph isomorphic to g obtained by
fixing the labels of x1, x2, . . . , xp and by changing the labels of xi by yi for p+ 1 ≤ i ≤ v.
Since non trivial connected components of g of length w are either cycles or isomorphic
to ḡw, if y 6= y′ ∈ F , then gy 6= gy′ and by Lemma 2.5, Sn,gy ∩ Sn,gy′ = ∅. Since σn is
conjugation invariant, we have P(σn ∈ Sn,gy ) = P(σn ∈ Sn,gy′ ) = P(σn ∈ Sn,g). Remark
also that for any y ∈ F and any i ≤ f , (i, i) is a loop of gy. Thus, Sn,gy ⊂ {σ ∈ Sn;∀i ≤
f, σn(i) = i} and thus

P(σn ∈ Sn,g) =

∑
y∈F P(σn ∈ Sn,gy )

card(F )
=
P(σn ∈ ∪y∈FSn,gy )

card(F )

≤ P(σn(1) = 1, . . . , σn(f) = f)
(n−p)!
(n−v)!

≤ (n− v)!

(n− p)!
.

Lemma 2.7. Let σn be a random permutation with conjugation invariant distribution on

Sn such that, for any k ≥ 1, limn→∞E

((
#1 σn√

n

)k)
= 0. Then, for any f ≥ 1,

P(σn(1) = 1, . . . , σn(f) = f) = o(n−
f
2 ).

Lemma 2.8. For any p ≥ 1, let g be a graph with p non trivial components each having 2

vertices. Assume that at least one of these components is a cycle. Then for any random
permutation σn with conjugation invariant distribution on Sn,

P(σn ∈ Sn,g) ≤
(n− 2p)!P(c1(σn) = 2)

(n− p)!
.

Proof. Remark that by conjugation invariance, one can suppose without loss of generality
that the set of non-isolated vertices of g are {1, 2, . . . , 2p} and that (1, 2), (2, 1) ∈ Eg. Using
the same definitions as the previous proof with f = 0 and v = 2p and by choosing x1 = 1,
we have Sn,gy ⊂ {σ ∈ Sn; c1(σ) = 2}. Thus,

P(σn ∈ Sn,g) =

∑
y∈F P(σn ∈ Sn,gy )

card(F )
=
P(σn ∈ ∪y∈FSn,gy )

card(F )
≤ P(c1(σn) = 2)

card(F )

=
(n− 2p)!P(c1(σn) = 2)

(n− p)!
.

By the previous combinatorial lemmas, we get that the main contribution will come
from the following subset of graphs. Let T nk ⊂ Gnk be the set of graphs g having exactly k
non trivial components each having one edge and two vertices.
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A product of invariant random permutations has the same small cycle structure

E.g. T 3
1 =

 1 2

3

,
2 1

3

,
1 3

2

,
3 1

2

,
2 3

1

,
3 2

1
.

Let T̂k be the equivalence class of the graphs of ∪nT nk . Their contribution is as
follows.

Lemma 2.9. For any p ≥ 1, n ≥ 2p and any graph g ∈ T np , for any random permutation
σn with conjugation invariant distribution on Sn,

(n− 2p)!

(n− p)!

(
1− p2 − p

n− 1
− pP(σn(1) = 1)

)
≤ P(σn ∈ Sn,g) ≤

(n− 2p)!

(n− p)!
.

Proof. The upper bound is due to Lemma 2.6 with v = 2p. Using the conjugation
invariance again, one can suppose without loss of generality that

Eg = {(1, i1), (2, i2), . . . , (p, ip)}

where ij > p are all distinct. Let

Sp
n = {σ ∈ Sn,∀i ≤ p, σ(i) > p}.

By conjugation invariance, for any i ≤ p,

P(σn(i) ≤ p) = P(σn(1) ≤ p) = P(σn(1) = 1) +

p∑
i=2

P(σn(1) = i)

= P(σn(1) = 1) + (p− 1)P(σn(1) = 2)

= P(σn(1) = 1) + (p− 1)

∑n
i=2P(σn(1) = i)

n− 1

= P(σn(1) = 1) +
(1− P(σn(1) = 1))(p− 1)

n− 1
.

Again by the conjugation invariance, we have that

P(σn ∈ Sp
n) = 1− P(σn ∈ Sn \Sp

n) ≥ 1−
p∑
i=1

P(σn(i) ≤ p)

= 1− p
[
P(σn(1) = 1) +

(1− P(σn(1) = 1))(p− 1)

n− 1

]
≥ 1− p2 − p

n− 1
− pP(σn(1) = 1).

In particular, if P(σn ∈ Sp
n) = 0, the lower bound is trivial and one can now assume that

P(σn ∈ Sp
n) > 0. As P({σn ∈ Sn,g} ∩ {σn ∈ Sn \Sp

n}) = 0, one can write P(σn ∈ Sn,g) =

P(σn ∈ Sn,g|σn ∈ Sp
n)P(σn ∈ Sp

n).

Using again the conjugation invariance, we obtain

P(σn ∈ Sn,g|σn ∈ Sp
n) =

(n− 2p)!

(n− p)!

and conclude the proof.
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A product of invariant random permutations has the same small cycle structure

2.2 Proof of Proposition 1.3

Proof. We will adapt the proof of [7, Lemma 14]. Let e1 ≥ 1 be fixed. In the case k = 1,
since Ce1 = 1, (*) holds if we have:

∀ĝ1, ĝ2 ∈ Ĝe1 ,P
((
Ĝ11(σn, ρn), Ĝ12(σn, ρn)

)
= (ĝ1, ĝ2)

)
=
Cĝ1,ĝ2
n

+ o

(
1

n

)
and

∑
ĝ1,ĝ2∈Ĝe1

Cĝ1,ĝ2 = Ce1 = 1.

Let ĝ1, ĝ2 ∈ Ĝe1 . We denote by

pn(ĝ1, ĝ2) := P
((
Ĝ11(σn, ρn), Ĝ12(σn, ρn)

)
= (ĝ1, ĝ2)

)
.

Let Bnĝ1,ĝ2 be the set of couples (g1, g2) ∈ (Gne1)2 having the same non-isolated vertices
such that 1 is a non-isolated vertex of both graphs and, for i ∈ {1, 2}, the equivalence
class of gi is ĝi and there exists σ, ρ such that G11(σ, ρ) = g1 and G12(σ, ρ) = g2. By
Lemma 2.4 and H1, we have

pn(ĝ1, ĝ2) =
∑

(g1,g2)∈Bnĝ1,ĝ2

P
((
G11(σn, ρn),G12(σn, ρn)

)
= (g1, g2)

)
=

∑
(g1,g2)∈Bnĝ1,ĝ2

P(σn ∈ Sn,g1 , ρn ∈ Sn,g2)

=
∑

(g1,g2)∈Bnĝ1,ĝ2

P(σn ∈ Sn,g1)P(ρn ∈ Sn,g2) (2.3)

The graphs ĝ1, ĝ2 being fixed, it determines the number v ≤ 2e1 of vertices of the graphs
g1 and g2. In particular,

card(Bnĝ1,ĝ2) ≤
(
n− 1

v − 1

)
v!2.

Indeed, there are
(
n−1
v−1
)

possible ways to choose the non-isolated vertices (other than 1)
and for every choice of non isolated vertices, there is at most v! possible labellings of ĝ1
(to obtain the graph g1) and at most v! labellings ĝ2 (to obtain the graph g2). Let p1 and
p2 be respectively the number of connected components of g1 and g2.

Starting from (2.3), we now distinguish different cases, depending on the structure
of ĝ1 and ĝ2.

• Case 1: ĝ1 and ĝ2 have respectively f1 and f2 loops i.e edges of type (i, i) with
f1 + f2 > 0. Then 2p1 − f1 ≤ v and 2p2 − f2 ≤ v.

Consequently, by Lemmas 2.6 and 2.7,

pn(ĝ1, ĝ2) = o
(
n
−f1−f2

2

) ∑
(g1,g2)∈Bnĝ1,ĝ2

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!

= card(Bnĝ1,ĝ2)
(n− v)!

(n− p1)!

(n− v)!

(n− p2)!
o
(
n
−f1−f2

2

)
≤
(
n− 1

v − 1

)
v!2

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!
o
(
n
−f1−f2

2

)
= nv−1−(v−p1+v−p2)o

(
n
−f1−f2

2

)
= o(n−1).
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A product of invariant random permutations has the same small cycle structure

• Case 2: ĝ1 and ĝ2 do not contain any loop, so that p1 ≤ v
2 and p2 ≤ v

2 . Then, again
by Lemma 2.6,

pn(ĝ1, ĝ2) ≤
∑

(g1,g2)∈Bnĝ1,ĝ2

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!

= card(Bnĝ1,ĝ2)
(n− v)!

(n− p1)!

(n− v)!

(n− p2)!

≤
(
n− 1

v − 1

)
v!2

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!
= O

(
nv−1−(v−p1+v−p2)

)
.

Therefore, if p1 <
v
2 , as p1 ≤ v−1

2 we have

pn(ĝ1, ĝ2) = O(n−
3
2 ).

The same holds if p2 < v
2 and the only remaining terms are the cases when

p1 = v
2 = e1 and p2 = v

2 = e1. In this case, both graphs have necessarily connected
components having two vertices. By Lemma 2.3, we obtain that the only non trivial
contribution comes from ĝ1 = ĝ2 = T̂e1 . By Lemma 2.9, we obtain

card
(
BnT̂e1 ,T̂e1

) (n− v)!

(n− p1)!

(n− v)!

(n− p2)!
(1 + o(1))) ≤ pn(T̂e1 , T̂e1)

≤ card
(
BnT̂e1 ,T̂e1

) (n− v)!

(n− p1)!

(n− v)!

(n− p2)!
.

Moreover, each element of Bn
T̂e1 ,T̂e1

can be characterized by a choice of i12, i
1
3, . . . i

1
e1 ,

j11 , . . . j
1
e1 pairwise distincts in {2, 3, . . . , n}, so that

card
(
BnT̂e1 ,T̂e1

)
=

(n− 1)!

(n− 2e1)!
.

Since v = 2p1 = 2p2 = 2e1, we get that

pn(T̂e1 , T̂e1) =
1 + o(1)

n
.

Summarizing all cases, we get that Cĝ1,ĝ2 = 0 unless ĝ1 = ĝ2 = T̂e1 , in which case
CT̂e1 ,T̂e1

= 1.

2.3 Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of Proposition 1.3. Instead of studying
G1i , we study G{1,2,...,k}i . We will prove using the same argument that only the event{

(σ, ρ);∀i ∈ {1, 2},G{1,2,...,k}i (σ, ρ) ∈ ∪p≥1T np
}

will contribute to the limit.

Proof of Theorem 1.2. Let e=(e1, e2, . . . ek) be fixed. Our goal is to compute P((σn, ρn)∈
Ae) where

Ae := {(σ, ρ);∀i ≤ k, ci(σ−1ρ) = ei}.

If ∀i ≤ k, ci(σ−1ρ) = ei, then

Ĝ{1,2,...,k}1 (σ, ρ), Ĝ{1,2,...,k}2 (σ, ρ) ∈
⋃

p≤2
∑k
i=1 ek

Ĝp.
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A product of invariant random permutations has the same small cycle structure

Since
⋃
p≤2

∑k
i=1 ek

Ĝp is finite and Ae can been as the disjoint union

Ae =
⊔

ĝ1,ĝ2∈
⋃
p≤2

∑k
i=1

ek
Ĝp

({
(σ, ρ);

(
Ĝ{1,2,...,k}1 (σ, ρ), Ĝ{1,2,...,k}2 (σ, ρ)

)
= (ĝ1, ĝ2)

}
∩Ae

)

it is sufficient to prove that for any pair ĝ1, ĝ2 ∈
⋃
p≤2

∑k
i=1 ek

Ĝp having the same number
of non-isolated vertices, there exists a constant Cĝ1,ĝ2,e such that under the assumptions
of Theorem 1.2,

P
(

(σn, ρn) ∈
{

(σ, ρ);
(
Ĝ{1,2,...,k}1 (σ, ρ), Ĝ{1,2,...,k}2 (σ, ρ)

)
(ĝ1, ĝ2)

}
∩Ae

)
=
Cĝ1,ĝ2,e
nk

+ o

(
1

nk

)
.

Let ĝ1, ĝ2 ∈
⋃
p≤2

∑k
i=1 ek

Ĝp be two unlabeled graphs having respectively p1 and p2

connected components and v vertices. Let Bn,eĝ1,ĝ2
be the set of couples (g1, g2) with n

vertices, having the same non-isolated vertices such that

– 1, 2, . . . , k are non-isolated vertices of both graphs,

– for i ∈ {1, 2}, the equivalence class of gi is ĝi,

– there exists σ, ρ such that for i ∈ {1, 2} and j ∈ {1, . . . , k}, G{1,2,...k}i (σ, ρ) = gi and
cj(σ

−1ρ) = ej .

As before, we denote by

pn,e(ĝ1, ĝ2) := P
(

(σn, ρn) ∈
{

(σ, ρ);
(
Ĝ{1,2,...,k}1 (σ, ρ), Ĝ{1,2,...,k}2 (σ, ρ)

)
= (ĝ1, ĝ2)

}
∩Ae

)
and we have

pn,e(ĝ1, ĝ2) =
∑

(g1,g2)∈Bn,eĝ1,ĝ2

P
((
G{1,2,...,k}1 (σn, ρn),G{1,2,...,k}2 (σn, ρn)

)
= (g1, g2)

)
=

∑
(g1,g2)∈Bn,eĝ1,ĝ2

P(σn ∈ Sn,g1 , ρn ∈ Sn,g2)

=
∑

(g1,g2)∈Bn,eĝ1,ĝ2

P(σn ∈ Sn,g1)P(ρn ∈ Sn,g2).

Starting from there, we distinguish different cases:

• Case 1: ĝ1 and ĝ2 have respectively f1 and f2 loops i.e edges of type (i, i) with
f1 + f2 > 0. Then 2p1 − f1 ≤ v and 2p2 − f2 ≤ v. Consequently, by Lemmas 2.6
and 2.7,

pn,e(ĝ1, ĝ2) = card(Bn,eĝ1,ĝ2
)

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!
o
(
n
−f1−f2

2

)
≤
(
n− k
v − k

)
v!2

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!
o
(
n
−f1−f2

2

)
= nv−k−(v−p1+v−p2)o

(
n
−f1−f2

2

)
= o(n−k).

• Case 2: ĝ1 and ĝ2 do not contain any loop. Then p1 ≤ v
2 and p2 ≤ v

2 . Consequently,

pn,e(ĝ1, ĝ2) ≤ card(Bn,eĝ1,ĝ2
)

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!

≤
(
n− k
v − k

)
v!2

(n− v)!

(n− p1)!

(n− v)!

(n− p2)!
≤ Cnv−k−(v−p1+v−p2).
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A product of invariant random permutations has the same small cycle structure

Therefore, if p1 <
v
2 or p2 <

v
2 then pn,e(ĝ1, ĝ2) = o(n−k). The only remaining terms

are the cases when p1 = v
2 and p2 = v

2 . In this case, both graphs have necessarily
only connected components having two vertices. Assume that one of the two graphs
has a cycle. Then, by Lemma 2.8, we have

pn,e(ĝ1, ĝ2) ≤
∑

(g1,g2)∈Bn,eĝ1,ĝ2

(P(c1(σn) = 2) + P(c1(ρn) = 2))
(n− v)!

(n− p1)!

(n− v)!

(n− p2)!

≤ C(P(c1(σn) = 2) + P(c1(ρn) = 2))n−k.

Under H4, we have P(c1(σn) = 2) + P(c1(ρn) = 2)) = o(1) so that pn,e(ĝ1, ĝ2) =

o(n−k) as soon as one of the graph has a cycle.

As before, the only non-trivial contributions come from the cases when ĝ1 = ĝ2 = T̂p
for some p ≤

∑k
i=1 ei and by Lemma 2.9, we obtain

card
(
Bn,e
T̂p,T̂p

) (n− v)!

(n− p1)!

(n− v)!

(n− p2)!

(
1−O

(
1

n

))
≤ pn,e

(
T̂p, T̂p

)
≤ card

(
Bn,e
T̂p,T̂p

) (n− v)!

(n− p1)!

(n− v)!

(n− p2)!
.

One can conclude since, for any n ≥ 2p,

card
(
Bn,e
T̂p,T̂p

)
= card

(
B2p,e

T̂p,T̂p

)( n− k
2p− k

)
.

Indeed, one can write Bn,e
T̂p,T̂p

as the disjoint union⋃
k+1≤`1<...<`2p−k≤n

(
Bn,e
T̂p,T̂p

∩ {1, . . . , k, `1, . . . , `2p−k are the non-isolated vertices}
)

where each set has the same cardinal, which is equal to card
(
B2p,e

T̂p,T̂p

)
.

Consequently, Cĝ1,ĝ2,e = 0, unless there exists p ≤
∑k
i=1 ei such that (ĝ1, ĝ2) = (T̂p, T̂p)

and then

CT̂p,T̂p,e =
card

(
B2p,e

T̂p,T̂p

)
(2p− k)!

.

As the constants Cĝ1,ĝ2,e do not depend on the distributions of σn and ρn, this concludes
the proof of Theorem 1.2.

3 Further discussion

3.1 Extension to the product of more than two permutations

Using the same technique of proof, one can obtain a similar result for the product of
m permutations.

Proposition 3.1. Let m ≥ 2. For 1 ≤ ` ≤ m, let (σ`n)n≥1 be a sequence of random
permutations such that for any n ≥ 1, σ`n ∈ Sn. For any k ≥ 1, let tnk := #k(

∏m
`=1 σ

`
n).

Assume that

– For any n ≥ 1, (σ1
n, . . . , σ

`
n) are independent. (H1)

– For any n ≥ 1 and 1 ≤ ` ≤ m, for any σ ∈ Sn,

σ−1σ`nσ
d
= σ`n, (H2)

except maybe for one ` ∈ {1, . . . ,m}.
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– There exist 1 ≤ i < j ≤ m such that for any k ≥ 1,

lim
n→∞

E

((
#1 σ

i
n√
n

)k)
= 0 and lim

n→∞
E

((
#1 σ

j
n√
n

)k)
= 0, (H ′3)

lim
n→∞

E(#2 σ
i
n)

n
= 0 and lim

n→∞

E(#2 σ
j
n)

n
= 0. (H ′4)

Then for any k ≥ 1,

(tn1 , t
n
2 , . . . , t

n
k )

d−−−−→
n→∞

ηk.

The case m = 2 is given is Theorem 1.2. To extend to m > 2, we will proceed by
induction on the number m of permutations using the following lemma.

Lemma 3.2. Let (σ1
n)n≥1, (σ

2
n)n≥1 be two sequences of random permutations such that

for any n ≥ 1, σ1
n, σ

2
n ∈ Sn. Assume that (H1) and (H2) hold and that, for any k ≥ 1,

lim
n→∞

E

((
#1 σ

1
n√
n

)k)
= 0 and lim

n→∞

E(#2 σ
1
n)

n
= 0,

then

lim
n→∞

E

((
#1(σ1

nσ
2
n)√

n

)k)
= 0 and lim

n→∞

E(#2(σ1
nσ

2
n))

n
= 0. (3.1)

Proof. We will only give a sketch of the proof. The idea is to repeat the same study as in
the case m = 2 in the two particular quantities.

• Take k ≥ 1 and e1 = e2 = · · · = ek = 1. One can show that, under the hypotheses of
Lemma 3.2,

lim
n→∞

∑
ĝi,ĝ
′
i∈Ĝ1, 1≤i≤k

n
k
2P
(
Ĝ{1,2,...,k}(σ1

n, σ
2
n) = (ĝ1, ĝ

′
1, ĝ2, . . . ĝ

′
k)
)

= 0.

This leads to the first limit in (3.1).

• Take k = 1 and e1 = 2. One can show that, under the hypotheses of Lemma 3.2,

lim
n→∞

∑
ĝ1,ĝ2∈Ĝ2,

P
((
Ĝ11(σ1

n, σ
2
n), Ĝ12(σ1

n, σ
2
n)
)

= (ĝ1, ĝ2)
)

= 0.

This leads to the second limit in (3.1).

3.2 Optimality

In this last subsection, we make a few remarks on the optimality of the assumptions
H3 and H4 in Theorem 1.2. We assume hereafter that H1 and H2 hold true and consider
for the sake of clarity the case m = 2.

• The assumption H3 is optimal in the sense that

if lim inf
n→∞

n−
k
2 min(E((#1 σn)k),E((#1 ρn)k)) = εk > 0,

then lim inf
n→∞

E((#1(σnρn))k) ≥ E(ξk1 ) + ε2k.

Indeed, going back to the equation (*), one can see that in the case e1 = e2 =

· · · = ek = 1, if ĝ is the class of the graph with adjacency matrix Idk the event
{(Ĝ1,2,...,k1 (σn, ρn), Ĝ1,2,...,k2 (σn, ρn)) = (ĝ, ĝ)} will contribute to the limit, leading to
the term ε2k.
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• Similarly H4 is optimal in the sense that if

lim inf
n→∞

(
min(E(#2 σn),E(#2 ρn))

n

)
= ε′ > 0, then lim inf

n→∞
E
(

(#1(σnρn))
2
)
≥ 2+ε′

2
.

Indeed, as above, in the case e1 = e2 = 1, if ĝ′ is the class of the graph with
adjacency matrix ( 0 1

1 0 ), the event {(Ĝ1,2,...,k1 (σn, ρn), Ĝ1,2,...,k2 (σn, ρn)) = (ĝ′, ĝ′)} will
contribute to the limit.

• Assume now that one of the bounds in H3 is not satisfied. More precisely, assume
that there exists k ≥ 1 such that

lim inf
n→∞

n−
k
2E((#1σn)k) = εk > 0, or lim inf

n→∞

E(#2 σn)

n
= ε′ > 0.

Then, by similar arguments, one can check that the convergences

∀k ≥ 1, lim
n→∞

n−
k
2E((#1 ρn)k) = 0 and lim

n→∞

E(#2 ρn)

n
= 0

are a necessary condition to obtain (1.1) and that the convergences

∀k ≥ 1, lim
n→∞

n−
k
2E((#1 ρn)k) = 0, lim sup

n→∞
n−

k
2E((#1 σn)k) <∞

and limn→∞
E(#2 ρn)

n = 0 are a sufficient condition to obtain (1.1).
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