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Abstract

We study the asymptotics of Schur polynomials with partitions λ which are almost
staircase; more precisely, partitions that differ from ((m − 1)(N − 1), (m − 1)(N −
2), . . . , (m − 1), 0) by at most one component at the beginning as N → ∞, for a
positive integer m ≥ 1 independent of N . By applying either determinant formulas or
integral representations for Schur functions, we show that 1

N
log

sλ(u1,...,uk,xk+1,...,xN )

sλ(x1,...,xN )

converges to a sum of k single-variable holomorphic functions, each of which depends
on the variable ui for 1 ≤ i ≤ k, when there are only finitely many distinct xi’s and
each ui is in a neighborhood of xi, as N →∞. The results are related to the law of
large numbers and central limit theorem for the dimer configurations on contracting
square-hexagon lattices with certain boundary conditions.
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1 Introduction

Schur polynomials, named after Issai Schur, are a class of symmetric polynomials
indexed by decreasing sequences of non-negative integers (partitions), which form
a linear basis for the space of all symmetric polynomials; see [17]. Besides their
applications in representation theory, Schur polynomials also play an important role
in the study of integrable lattice models in statistical mechanics (see [1, 2]). One
example of such a model is the dimer model, or equivalently, the random tiling model;
see [8, 13]. In this paper, we study the asymptotics of Schur polynomials on partitions
which are almost periodic; the results are related the law of large numbers and central
limit theorem for dimer configurations on contracting square-hexagon lattices. The
connection between asymptotics of Schur polynomials and scaling limit of random tilings
has been investigated, see [11, 4, 5, 6] for uniform perfect matchings on the hexagon
lattice (random lozenge tiling); [7] for uniform perfect matchings on the square grid
(random domino tiling); and [3, 16, 15] for periodically weighted perfect matchings on
the square-hexagon lattice. This paper further develops the technique in [3, 16, 15] to
study the asymptotics of Schur polynomials on more general partitions. We shall begin
with the definition of Schur functions.
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Asymptotics of Schur functions on almost staircase partitions

1.1 Partitions, Young diagrams and Schur functions

We denote by GT+
N the set of N -tuples λ of nonnegative integers satisfying λ1 ≥

λ2 . . . ≥ λN ≥ 0. For λ ∈ GT+
N , let

|λ| :=
N∑
i=1

λi.

A graphic way to represent a non-negative signature µ is through its Young diagram
Yλ, a collection of |λ| boxes arranged on non-increasing rows aligned on the left: with λ1
boxes on the first row, λ2 boxes on the second row, . . . , λN boxes on the N th row. Note
that elements in GT+

N are in bijection with all the Young diagrams with N rows (rows
are allowed to have zero length).

1.2 Main results

Before stating the main theorem concerning asymptotics of Schur polynomials in this
paper, we first introduce a few definitions, notation and assumptions. For any positive
integer a, let

[a] = {1, 2, . . . , a}.

Let

X = (x1, . . . , xN ). (1.1)

and

W = (w1, . . . , wN ),

where

wi =

{
ui, if 1 ≤ i ≤ k;

xi, if k + 1 ≤ i ≤ N,
(1.2)

where k is a fixed positive integer independent of N .
Of special interest is when a lot of values in x1, . . . , xN are equal, in particular, when

there are only finitely many distinct values in x1, . . . , xN as N →∞. The asymptotics of
Schur polynomials sλ(x1, . . . , xN ) as N →∞ in this case are related to the limit shape
and height fluctuations of perfect matchings on a square-hexagon lattice with periodic
weights; see [3, 15, 16]. Let n be a positive integer which is fixed as N →∞. We may
make the following assumption.

Assumption 1.1. Let X be given by (1.1), and assume that in x1, . . . , xN , there are only
finitely many different values as N →∞. Let x1 > x2 > . . . > xn > 0 be all the distinct
values in X. For 1 ≤ j ≤ n, let

K
(N)
j = |{i : 1 ≤ i ≤ N, xi = xj}|.

Then

lim
N→∞

K
(N)
j

N
= γj ∈ [0, 1]. (1.3)

such that
∑n
j=1 γj = 1.

In Assumption 1.1, for 1 ≤ j ≤ n, we assume the asymptotical density of xj in
x1, . . . , xN is a constant γj . In the periodic case when

xl = xs,∀ l, s ∈ [N ], [(l − s) mod n] = 0,

it is straightforward to check that (1.3) holds with γj = 1
n for all 1 ≤ j ≤ n.

The main theorem proved in this paper is the following.
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Asymptotics of Schur functions on almost staircase partitions

Theorem 1.2. Let λ := (λ1, . . . , λN ) ∈ GT+
N . Let m be a fixed finite positive integer

independent of N as N →∞. Assume

1. λ1 = α1N +O(1), where α1 > 1 is a fixed positive number independent of N .

2. For all the 2 ≤ j ≤ N , λj = (m− 1)(N − j); and

3. Assumption 1.1 holds.

Then

lim
N→∞

1

N
log

sλ(W )

sλ(X)
=
∑

1≤i≤k
[Q(ui)−Q(xi)], (1.4)

where

Q(u) =
∑

1≤j≤n
γj log

[
um − xmj
u− xj

]
. (1.5)

Moreover, the convergence in (1.4) is uniform when each ui is in a compact complex
neighborhood of xi.

Let λ(m) be the staircase partition given by

λ(m) = ((m− 1)(N − 1), (m− 1)(N − 2), . . . ,m− 1, 0). (1.6)

In this case, the asymptotics of Schur functions can be obtained by the following explicit
formula (see example 1.3.7 of [17])

sλ(m)(x1, . . . , xN ) =
∏

1≤i<j≤N

xmi − xmj
xi − xj

; (1.7)

and the asymptotics limN→∞ 1
N log

s
λ(m) (W )

s
λ(m) (X) can be shown to be exactly right side of (1.4)

from the formula (1.7) in a straightforward way. Theorem 1.2 discusses the asymptotics
of Schur polynomials on more general partitions; more precisely, the partition differs
from the staircase (1.6) by at most finitely many entries at the beginning. To prove
Theorem 1.2, we shall split 1

N log sλ(W )
sλ(X) into the sum of 3 terms, one of which is given by

1
N log

s
λ(m) (W )

s
λ(m) (X) . Since it is known that limN→∞ 1

N log
s
λ(m) (W )

s
λ(m) (X) is equal to the right hand

side of (1.7), it suffices to show that the limit of the sum of the other two terms, as
N →∞, vanishes. Theorem 1.2 is proved in Sect. 2.

1.3 Applications

Recall that a perfect matching, or a dimer configuration, on a graph is a subset of
edges such that each vertex is incident to exactly one edge. We consider the probability
measure on perfect matchings of a finite graph in which the probability of a perfect
matching is proportional to the product of weights of present edges. The asymptotical
formula for Schur functions given by Theorem 1.2 may be used to obtain the limit
shapes and fluctuations of perfect matchings on the square-hexagon lattice with certain
boundary conditions (contracting square-hexagon lattice), by the general arguments as
described in [3, 16, 15, 12]. More precisely,

1. for the weighted perfect matching model on a contracting square-hexagon lattice,
where the edge weights are periodic with period 1× n and n is an arbitrary fixed
positive integer, the partition function (weighted sum of perfect matchings) can
be computed by the Schur polynomial depending on edge weights and bottom
boundary condition; see Proposition 2.18 of [3].

2. The derivatives of the Schur generating function give the moments of the counting
measure for perfect matchings on each row.
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3. The uniform convergence result given by Theorem 1.2 also guarantees the conver-
gence of the derivatives, hence the limit of the moments of the counting measure
of perfect matchings on each row can be obtained, which gives the limit shape.

4. To consider the fluctuations around the limit shape, one needs to check the Wick’s
formula for the moments to obtain the Gaussian fluctuation.

Following the procedure above, we can prove that when the boundary partition differs
from the staircase partition by at most one component, the limit shape and limit height
fluctuations are the same as those for the staircase partition on the boundary; the latter
was studied in [3, 16].

Theorem 1.3. Consider a contracting square-hexagon lattice consisting of 2N+1 rows of
vertices as defined in Definition 2.3 of [3], and let I2 be defined as in Definition 2.4 of [3].
Assume that the edge weights are assigned periodically with period n, i.e. xi = xj and
yi = yj if (i−j) mod n = 0, where n is a fixed positive integer independent of N . Assume
that the boundary partition is given by (λ1, (m−1)(N−2), (m−1)(N−3), . . . , (m−1), 0) ∈
GTN and satisfy the assumptions of Theorem 1.2. For κ ∈ (0, 1), let mκ be the weak
limit of the counting measure for partitions corresponding to dimer configurations at the
level κ as N →∞, where assume that the bottom boundary is at level 0, while the top
boundary is at level 1. Then

∫
R

xpmκ(dx) =
1

2(p+ 1)πi

∮
Cx1,...,xn

dz

z

zQ′κ(z) +

n∑
j=1

z

n(z − xj)

p+1

,

where Cx1,...,xn is a simple, closed, positively oriented, contour containing only the poles
x1, . . . , xn of the integrand, and no other singularities; and

Q′κ(z) =
1

n(1− κ)

∑
1≤j≤n

(
mum−1

zm − xmj
− 1

z − xj

)
+

κ

n(1− κ)

∑
i∈{1,2,...,n}∩I2

yi
1 + yiz

.

The proof of Theorem 1.3 follows from Theorem 1.2 and the same arguments as in
Section 8.2 of [3].

The effects of changing boundary conditions to the distribution of dimer configu-
rations have been studied, see, for example, [8] for the case of limit shape of perfect
matchings on square grid via a variational principle. In particular, it is proved in [8]
that if the rescaled (by a 1

N multiple) boundary height function has a fixed limit as
N →∞, then the limit shape is uniquely determined. See [14] for the case that the local
statistics of uniform perfect matchings on the hexagonal lattice are preserved under
small perturbation of boundary heights. The paper [14] discusses the distribution of
uniform lozenge tilings near an interior point of the domain, yet the global limit shape is
not discussed. In our assumption, when the boundary condition satisfies Condition (1)
in Theorem 1.2, the rescaled region (by an 1

N multiple) of the tiling is different, indeed
larger even in the scaling limit, from the region of the tiling when the boundary condition
is staircase. Theorem 1.3 shows that the weak limit of the counting measure at each
level does not change.

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2.
Assume that m is a fixed positive integer independent of N . Let λ(m) ∈ GT+

N be the
staircase partition of length N as given by (1.6), and let

λ = (λ1, . . . , λN ) ∈ GT+
N .
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be a length-N partition such that the entries of λ differ from those of λ(m) by at most `
entries λ1, . . . , λl at the beginning, where ` is a fixed positive integer independent of N .

We consider the asymptotics of

1

N
log

sλ(W )

sλ(X)
. (2.1)

as N →∞. Note that
sλ(W )

sλ(X)
= S1 · S2 · S3,

where

S1 =
sλ(W )

sλ(m)(W )
; S2 =

sλ(m)(W )

sλ(m)(X)
; S3 =

sλ(m)(X)

sλ(X)
.

Lemma 2.1. Suppose that Assumption 1.1 holds. Let W be given by (1.2). Then

lim
N→∞

1

N
logS2 =

∑
1≤i≤k

[Q(ui)−Q(xi)];

where Q(u) is given by (1.5).

Proof. By example 1.3.7 of [17], we have

sλ(m)(X) =
∏

1≤i<j≤N

xmi − xmj
xi − xj

.

Then by (1.2) we have

1

N
logS2 =

1

N

∑
1≤i<j≤N

log

(
wmi − wmj
xmi − xmj

xi − xj
wi − wj

)

=
1

N

∑
1≤i<j≤k

log

(
umi − umj
xmi − xmj

xi − xj
ui − uj

)
+

1

N

∑
[1≤i≤k]

∑
[k+1≤j≤N ]

log

(
umi − xmj
xmi − xmj

xi − xj
ui − xj

)
.

When k is fixed as N →∞, we have

lim
N→∞

∑
1≤i<j≤k

1

N
log

(
umi − umj
xmi − xmj

xi − xj
ui − uj

)
= 0.

Then the lemma follows from explicit computations.

Hence to study the asymptotics of (2.1), it suffices to study the asymptotics of 1
N logS1

and 1
N logS3, as N →∞. Let

µ(m) = ((N − 1)m, (N − 2)m, . . . ,m, 0).

Let ∆(X) (resp. ∆(W )) denote the Vandermonde determinant of the variable X (resp.
W ). From the well-known formula to compute the Schur function, we obtain

sλ(W ) =
det[e(λi+N−i) logwj ]1≤i,j≤N

∆(W )
, (2.2)

sλ(m)(W ) =
det[e(m(N−i) logwj ]1≤i,j≤N

∆(W )
, (2.3)

sλ(X) =
det[e(λi+N−i) log xj ]1≤i,j≤N

∆(X)
,

sλ(m)(X) =
det[em(N−i) log xj ]1≤i,j≤N

∆(X)
.
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Lemma 2.2. Suppose that λ ∈ GT+
N differs from λ(m) by at most l components at the

beginning, where l ≥ 1 is a positive integer. Then

sλ(W )

sλ(m)(W )

=
∑

J=j1<j2<...<jl

(∏
r∈J

1∏
s6=r(w

m
r − wms )

) ∑
σ∈Sl

(−1)σ det
[
w
m(i−1)+λσ(t)+N−σ(t)
jt

]
1≤i,t≤l

.

Proof. By (2.2), (2.3) and Condition II of Theorem 1.2, we obtain

sλ(W )

sλ(m)(W )
=

det[e(λi+N−i) logwj ]1≤i,j≤N
det[em(N−i) logwj ]1≤i,j≤N

=
∑

J=j1<j2<...<jl

(−1)
∑l
t=1(jt+t) det[e(λt+N−t) logwjs ]1≤t≤l,1≤s≤l

det[em(N−t) logws ]l+1≤t≤N,s∈[N ]\J
det[em(N−i) logwj ]1≤i,j≤N

.

For each set J ⊂ [N ] with |J | = ` we obtain

det[em(N−t) logws ]l+1≤t≤N,s∈[N ]\J
det[em(N−i) logwj ]1≤i,j≤N

=

∏
i,j∈{[N ]\J},i<j(w

m
i − wmj )∏

1≤i<j≤N (wmi − wmj )

=
1[∏

i∈J,j>i(w
m
i − wmj )

] [∏
j∈J,i∈[N ]\J,i<j(w

m
i − wmj )

]
=

∏
i<j,i,j∈J

(wmi − wmj )
∏
r∈J

(−1)r−1∏
s6=r(w

m
r − wms )

.

Moreover, let Sl be the symmetric group of l elements, ∏
i<j,i,j∈J

(wmi − wmj )

det[e(λt+N−t) logwjs ]1≤t≤l,1≤s≤l

= (−1)
l(l−1)

2 det
[
w
m(i−1)
jt

]
1≤i,t≤l

(∑
σ∈Sl

(−1)σ
l∏
t=1

wλt+N−tjσ(t)

)

= (−1)
l(l−1)

2

[∑
σ∈Sl

(−1)σ det
[
w
m(i−1)+λσ(t)+N−σ(t)
jt

]
1≤i,t≤l

]
.

Then the lemma follows.

Now we discuss the asymptotics of 1
N log sλ(W )

s
λ(m) (W ) as N → ∞, when λ differs from

λ(m) only in the first component. The proof is inspired by [11]. Let i be the imaginary
unit satisfying i2 = −1.

Lemma 2.3. Assume the assumptions of Lemma 2.2 hold with l = 1. Then

sλ(W )

sλ(m)(W )
=

1

2πi

∮
C

mzλ1+N−1+m−1∏N
i=1(zm − wmi )

dz. (2.4)

Here the contour C encloses only the poles of the integrand at z = wi, i = 1, . . . , N .

Proof. By Lemma 2.2, when l = 1 we obtain

sλ(W )

sλ(m)(W )
=

N∑
j=1

wλ1+N−1
j∏

s6=j(w
m
j − wms )

. (2.5)

The right hand side of (2.5) is exactly the sum of residues of the integrand of (2.4) at all
the poles z = wi. Then the lemma follows.
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Let ξ = zm and

y =
λ1 +N − 1

mN
. (2.6)

Then (2.4) becomes

sλ(W )

sλ(m)(W )
=

1

2πi

∮
C

ξNy∏N
i=1(ξ − wmi )

dξ, (2.7)

where the contour C encloses all the singularities of the integrand. The goal is to analyze
the asymptotics of (2.7).

Suppose that Assumption 1.1 holds. Define a piecewise continuous, decreasing
function f : [0, 1)→ [xmn , x

m
1 ] as follows

f(y) = xmi , if y ∈

i−1∑
j=1

γj ,

i∑
j=1

γj

 , (2.8)

where i ∈ [n]. Then it is straightforward to check the following lemma concerning f :

Lemma 2.4. Let σ be a permutation of [N ] such that

xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(N).

Let w1, . . . , wN be defined as in (1.2), and let

ŵi = wmσ(i), for i ∈ [N ].

Let k, m be fixed as N →∞, and assume that each one of u1, . . . , uk is in a fixed compact
neighborhood of x1, . . . , xk, respectively. Let f be the function defined as in (2.8), then

R1(w, f) =

N∑
i=1

∣∣∣∣ŵi − f ( i

N

)∣∣∣∣ R∞(w, f) = sup
1≤i≤N

∣∣∣∣ŵi − f ( i

N

)∣∣∣∣
satisfy that R∞(w, f) is bounded and R1(w,f)

N ∼ O
(

1
N

)
→ 0 as N →∞.

Define

F (ξ; f) =

∫ 1

0

log [ξ − f(t)] dt ξ ∈ C \ {f(t)|t ∈ [0, 1]}.

Then by (2.7) we obtain

sλ(W )

sλ(m)(W )
=

1

2πi

∮
C

eN(y log ξ−F (ξ,f)) ·Q(ξ, λ, f)dξ; (2.9)

where

Q(ξ, λ, f) =
eNF (ξ,f)∏N
i=1(ξ − wmi )

. (2.10)

Lemma 2.5. Let f be defined as in (2.8). Let k, m be fixed as N →∞, and assume that
each one of u1, . . . , uk is in a fixed compact neighborhood of x1, . . . , xk, respectively. Let A
be the smallest connected, convex region in C containing all the points {f(t) : 0 ≤ t ≤ 1}
and {ŵi : 1 ≤ i ≤ N}. Then, by Lemma 2.4 as N →∞,

log |Q(ξ, λ, f)| ≤ O(1)

(
1 + sup

a∈A
| ln(ξ − a)|+ sup

a∈A

∣∣∣∣ 1

ξ − a

∣∣∣∣) .
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Proof. Let Re[z] denote the real part of a complex number z ∈ C. From (2.10) we obtain

log |Q(ξ, λ, f)| = Re [logQ(ξ, λ, f)]

= Re

[
NF (ξ, f)−

N∑
i=1

log(ξ − wmi )

]

≤

∣∣∣∣∣NF (ξ, f)−
N∑
i=1

log(ξ − ŵi)

∣∣∣∣∣
≤ T1 + T2.

where

T1 =

∣∣∣∣∣∣
N∑
j=1

log (ξ − ŵj)−
N∑
j=1

log

(
ξ − f

(
j

N

))∣∣∣∣∣∣ .
and

T2 =

∣∣∣∣∣∣NF (ξ, f)−
N∑
j=1

log

(
ξ − f

(
j

N

))∣∣∣∣∣∣ .
The rest of the proof is devoted to give upper bounds to T1 and T2. Note that

T1 ≤
N∑
j=1

∣∣∣∣∣
∫

[ŵj ,f( jN )]

dt

ξ − t

∣∣∣∣∣ ≤ sup
a∈A

∣∣∣∣ 1

ξ − a

∣∣∣∣
 N∑
j=1

∣∣∣∣f ( j

N

)
− ŵj

∣∣∣∣
 .

where
[
ŵj , f

(
j
N

)]
is the line segment in A starting from ŵj and ending at f

(
j
N

)
. By

Lemma 2.4 we have

T1 ≤ sup
a∈A

∣∣∣∣ 1

ξ − a

∣∣∣∣O (1) .

Moreover,

T2 =

∣∣∣∣∣∣
N∑
j=1

log

(
ξ − f

(
j

N

))
−N

∫ 1

0

log (ξ − f (t)) dt

∣∣∣∣∣∣
≤ N

N∑
j=1

sup
j−1
N ≤t,s≤

j
N

∣∣∣∣ log(ξ − f(t))− log(ξ − f(s))

N

∣∣∣∣
≤ O(1)

(
1 + sup

a∈A
log |ξ − a|

)
,

where the last inequality follows from the definition of f as in (2.8). Then the lemma
follows.

We shall analyze the asymptotics of the integral (2.7) by the steepest descent method;
see also [10, 9]. We will deform the contour to pass through the critical point of
y log ξ − F (ξ; f). The critical point satisfies the equation

0 =
d[y log ξ − F (ξ; f)]

dξ
=
y

ξ
−
∫ 1

0

dt

ξ − f(t)
.

Lemma 2.6. Assume f(t) > 0 for t ∈ [0, 1] and is decreasing in [0,1]. Then for any
y ∈ R \ {1}, there exists a unique ξ0 ∈ R, such that

y −
∫ 1

0

ξ0
ξ0 − f(t)

dt = 0. (2.11)

Moreover, when y > 1, ξ0 > f(0).
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O f(1) f(0) ξ0

C ′

Figure 1:

Proof. Let

g(ξ) := y −
∫ 1

0

ξ

ξ − f(t)
dt.

Then

g′(ξ) =

∫ 1

0

f(t)

[ξ − f(t)]2
dt > 0

under the assumption that f(t) > 0 for t ∈ [0, 1].
Note also that

lim
ξ→−∞

g(ξ) = lim
ξ→∞

g(ξ) = y − 1;

when ξ increases from −∞ to f(1), g(ξ) increases from y−1 to +∞, and when ξ increases
from f(0) to∞, g(ξ) increases from −∞ to y − 1. Therefore for any y 6= 1, there exists a
unique ξ ∈ (−∞, f(1)) ∪ (f(0),∞), such that the identity (2.11) holds.

It is straight forward to check that when y > 1, ξ0 > f(0). Then the lemma follows.

When y > 1, let ξ0 be the unique real solution such that (2.11) holds. Let C ′ be
the counterclockwise circle centered at 0 and passing through ξ0. By Lemma 2.6, C ′

encloses all the singularities of the integrand of (2.7), since all the singularities lies on
the interval [f(0), f(1)] of the real line; see Figure 1.

Hence we have ∮
C

ξNy∏N
i=1(ξ − wmi )

dξ =

∮
C′

ξNy∏N
i=1(ξ − wmi )

dξ. (2.12)

Moreover, for ξ ∈ C ′ and ξ 6= ξ0, we have

Re[y log ξ − F (ξ; f)] = y log |ξ| −
∫ 1

0

log |ξ − f(t)|dt

< y log ξ0 −
∫ 1

0

log |ξ0 − f(t)|dt = Re[y log ξ0 − F (ξ0; f)].

See Figure 1 for why log |ξ − f(t)| > log |ξ0 − f(t)| for all t ∈ [0, 1]. We have the following
lemma.
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Lemma 2.7. Let C ′ be the counterclockwise circle centered at 0 and passing through
ξ0. Let ξ ∈ C ′. Let log denote the branch of the complex logarithmic function defined on
C \ (−∞, 0] with log 1 = 0. Let

η = log ξ; (2.13)

η0 = log ξ0. (2.14)

When |η − η0| ≥ ε > 0, |Re[F (ξ, f)− F (ξ0, f)]| ≥ δ(ε), where

δ(ε) =
1

2
log

(
1 +

2f(1)ξ0(1− cos ε)

[ξ0 − f(1)]2

)
.

Proof. Assume ξ = ξ0e
iθ, where θ = −i(η − η0) ∈ (−π, π). Then we have

|Re[F (ξ, f)− F (ξ0, f)]| =

∣∣∣∣∫ 1

0

log

∣∣∣∣ξ0 cos θ − f(t) + iξ0 sin θ

ξ0 − f(t)

∣∣∣∣ dt∣∣∣∣
=

1

2

∣∣∣∣∫ 1

0

log

∣∣∣∣ [ξ0 cos θ − f(t)]2 + [ξ0 sin θ]2

[ξ0 − f(t)]2

∣∣∣∣ dt∣∣∣∣
=

1

2

∫ 1

0

log

(
1 +

2ξ0f(t)(1− cos θ)

[ξ0 − f(t)]2

)
dt.

Since f is decreasing in [0, 1], from Figure 1 we see that

log

(
1 +

2ξ0f(t)(1− cos θ)

(ξ0 − f(t))2

)
≥ log

(
1 +

2ξ0f(1)(1− cos θ)

[ξ0 − f(1)]2

)
, ∀t ∈ [0, 1].

Moreover, the cosine function is even and strictly decreasing in [0, π), when |η − η0| ≥ ε,
we have

log

(
1 +

2ξ0f(1)(1− cos θ)

[ξ0 − f(1)]2

)
≥ 1

2
log

(
1 +

2f(1)ξ0(1− cos ε)

[ξ0 − f(1)]2

)
.

Then the lemma follows.

Proposition 2.8. Let λ ∈ GT+
N be defined by

λ = (λ1, (N − 2)(m− 1), (N − 3)(m− 1), . . . ,m− 1, 0);

where λ1 ≥ (N − 2)(m− 1) depends on N . Assume that there exists a positive integer
N0, such that for any N ≥ N0,

λ1 +N − 1

mN
> 1.

Let η1 ∈ R (depending on N ) be the unique real solution for the equation

λ1 +N − 1

mN
=

∫ 1

0

eη1

eη1 − f(t)
dt,

then
1

N
log

sλ(W )

sλ(m)(W )
=

(λ1 +N − 1)η1
mN

− F (eη1 ; f) + oN (1).

where oN (1)→ 0 as N →∞.

Proof. Let η and η0 be given by (2.13) and (2.14), respectively. Then when ξ ∈ C ′, η lies
on the vertical line passing through η0. We consider the Taylor expansion of yη−F (eη, f)

when η is in a neighborhood of η0, we obtain

yη − F (eη, f) = yη0 − F (eη0 , f)− (η − η0)2

2

∂2F (eη0 ; f)

∂η2
+ (η − η0)3B.
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Asymptotics of Schur functions on almost staircase partitions

where |B| is bounded by the maximum of
∣∣∣∂3F (eη,f)

6∂η3

∣∣∣ in a neighborhood of η0. Note that

d[yη − ∂F (eη, f)]

∂η
= g(eη).

whose value is 0 when η = η0. Moreover

∂2F (eη0 , f)

∂η2
= −g′(eη0)eη0 < 0.

Let

u = −i

√
−∂

2F (eη0 ; f)

∂η2
;

η = η0 +
s

u
√
N
.

Making a change of variables, we obtain

I : =
1

2πi

∮
C′
eN(y log ξ−F (ξ,f)) ·Q(ξ, λ, f)dξ (2.15)

=
1

2πi

∫ η0+iπ

η0−iπ
eN(yη−F (eη,f)) ·Q(eη, λ, f)eηdη.

We shall split the integral above into two parts

I = I1 + I2; (2.16)

where

I1 =
1

2πi

∫ η0+iε

η0−iε
eN(yη−F (eη,f)) ·Q(eη, λ, f)eηdη;

and

I2 =
1

2πi

∫
[η0−iπ,η0−iε]∪[η0+iε,η0+iπ]

eN(yη−F (eη,f)) ·Q(eη, λ, f)eηdη.

Note that

|I2| ≤
1

2π

∫
[η0−iπ,η0−iε]∪[η0+iε,η0+iπ]

eNRe[yη−F (eη,f)] · |Q(eη, λ, f)| |eη| |dη| . (2.17)

Let L be the vertical line segment between η0 − iπ and η0 + iπ. By Lemmas 2.5 and 2.7,
we have

|I2| ≤ eη0eO(1)(1+supa∈A,η∈L | log(eη−a)|+supa∈A,η∈L| 1
eη−a |)eN(yη0−F (eη0 ,f))e−Nδ(ε).

Moreover,

I1 =
eN(yη0−F (eη0 ,f))

2πi

∫ η0+iε

η0−iε
e
−N(η−η0)2

2
∂2F (eη0 ;f)

∂η2
+NB(η−η0)3Q(eη, λ, f)eηdη (2.18)

=
eN [yη0−F (eη0 ,f)]

u
√
N2πi

∫ ε|u|
√
N

−ε|u|
√
N

e
− s22 + s3√

N
B̃
Q
(
e
η0+

s
u
√
N , λ, f

)
e
η0+

s
u
√
N ds,

where

|B̃| ≤ |u|−3 sup
η∈[η0−iπ,η0+iπ]

∣∣∣∣∂3F (eη, f)

6∂η3

∣∣∣∣ .
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Asymptotics of Schur functions on almost staircase partitions

Assume

ε ∼ N−α, where
1

3
< α <

1

2
,

as N →∞. Then

|u|ε
√
N ∼ N 1

2−α →∞, as N →∞;

sup
s∈[−ε|u|

√
N,ε|u|

√
N ]

∣∣∣∣ s3√N
∣∣∣∣ ≤ O (N1−3α)→ 0, as N →∞;

and
Nδ(ε) ∼ N1−2α →∞, as N →∞.

Then by (2.9), (2.12), (2.16) and (2.16), we obtain

1

N
log

sλ(W )

sλ(m)(W )
=

1

N
log (I1 + I2) .

By (2.17) and (2.18), we have

I1 + I2 = eN [yη0−F (eη0 ,f)]

(
C1√
N

+O
(
e−N

1−2α
))

,

where C1 > 0 is a constant independent of N . Then the proposition follows.

Proposition 2.9. Let λ = (λ1, . . . , λN ) ∈ GT+
N . Assume for all the 2 ≤ j ≤ N , λj =

(m− 1)(N − j). Then

lim
N→∞

1

N
log

sλ(W )

sλ(m)(W )
+ lim
N→∞

1

N
log

sλ(m)(X)

sλ(X)
= 0.

Proof. By Proposition 2.8, it suffices to show that fW (t) = fX(t). But this is obviously
true by Assumption 2.4 and the definitions of X and W .

Then Theorem 1.2 follows from Proposition 2.9 and Lemma 2.1.
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