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1 Introduction

The aim of the present work is the construction of a continuous branching process
in a random, time-independent environment, on a box of size . € IN, with Dirichlet
boundary conditions. This processes is built as a scaling limit of a system of independent
particles that branch according to the value of a random potential, and die as soon as
they leave the given box of size L. The article [9] constructs an analogous process on
infinite volume (named rough super-Brownian motion, rSBM), and proves its longtime
survival. Such proof relies on the spectral properties of the Anderson Hamiltonian with
Dirichlet boundary conditions on a large box, and in particular relies on the process
constructed in the present paper for large L.

Morally, in the present setting the scaling limit is simpler to treat than in the infinite
volume case, since explosions are less likely to occur. Indeed, the convergence of the
particle system can be proven by an application of the results in [9, Section 3].

On the other hand, the average behavior of the particle system, conditional on the
environment, is described by the Parabolic Anderson Model (PAM), a stochastic PDE,
with Dirichlet boundary conditions:

Oyw(t, ) = Aw(t, z)+&(w, )w(t, )+ f(t, x), (t,x) € (0,T] x (0, L)%,
w(0, ) = wo(x), w(t,xz) =0, (t,x) € (0,T] x 9[0, L)%,

where € is space white noise. In d = 2 PAM is a singular SPDE, and its solution theory
with Dirichlet boundary conditions require a particularly sophisticated treatment [7, 3].
In the next section we review the approach in [3] for paracontrolled analysis with
Dirichlet boundary conditions, with the aim of proving the convergence of discrete
approximations to (1.1). In particular, we show that the required renormalization is
given by a diverging sequence of constants independent of the size L of the box. In the
last section we introduce the particle system and study its scaling limit.
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2 PAM with Dirichlet boundary conditions

Define N = {1,2,...},INg = NU {0}. Fix L € N and N = 2L. Consider n € INU {co}
(n = oo refers to the continuous case, studied in [3]). Write Z¢ for the lattice 17
(resp. R? if n = 00), A, for the lattice +(Z? N 0, Ln]d) (resp. [0, L]%), ©,, for the lattice

L(z? -2z, 2r)d) /. with opposite boundaries identified (resp. T%: = [-5, 5% /~)
and deﬁne the “dual lattice” 2, = & (Z¢ N [— &2, X)) /| (resp. NZd) aswell as = =
+(Z* N[0, Ln)?), (resp. +ING). Moreover define OA,, = {k € A, : k; = 0 for some i €

{1,...,d}} and similarly =;. Write A} = = \ 05, A7 = =. Finally, for p > 1 and
any function f: ©" — R, write ||f|1ron) = (n74Y con |f(z)|P)? (resp. the classical
LP([-%, 514) norm if n = ).

2.1 The analytic setting

The idea of [3] in the case n = oo is to consider suitable even and odd extensions of
functions on A,, to periodic functions on ©,,, and then to work with the usual tools from
periodic paracontrolled distributions on ©,,. So for u,v: A,, — R such that u|gs, =0 we
define:

Myu: ©, - R, Iu(qoz)= Hq u(x Mov: 0, >R, Iou(gox)=ruv(x),

where z € A,,q € {1, 1}d and we define the product q o x = (q;;)i=1,....q as well as
[Ta= Hl 1 9i- We shall work with the discrete periodic Fourier transform defined for

¢: 0, — Rby
1
Fo,pk)=— > “Imlek) | ke =,
0.¢(k) =5 p(r)e , k€E,

TEO,

As in [3] we have a periodic, a Dirichlet and a Neumann basis, which we indicate with
{ertrez, s {Dk}ke?\aa;a {nk}keE;t respectively. Here ¢, is the classical Fourier basis:

627I'L<£E,k}>
ek(x):v, so that Fo,p(k) =N

while the Dirichlet and Neumann bases consist of sine and cosine functions respectively:

d
2

<(193 ek> ke Env

d
1
e HQSln (2mkiz;), k€ Ay ni(x) = e H21*1<ki:o}/2 cos(2mk;xz;), k € A}
2 7 =1

Dk(x)

To the previous explicit expressions we will prefer the following alternative characteriza-
tion, with v, = 2~ #{i:ki=0}/2,

Moop =0 > J]a-cqors V€A, Temp=vp > eqor, VhE AL
ge{-1,1}¢ qe{-1,1}¢
For [ € {d,n} and n < oo write S{(A,) = span{ly }rcar for the space of discrete distribu-

tions. For n = oo we define distributions via formal Fourier series:

SI([0, L]%) = { 3" il ¢ laxl < C(1+]4["), for some C,~y > o}.
keA

Now let us introduce Littlewood-Paley theory on the lattice, in order to control products
between distributions on A,, uniformly in n. Consider an even function o: =, — R. Then
for ¢ € S{(A,,) we define the Fourier multiplier:

oDy = 3 olk) (e, bl

keA”
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Upon extending ¢ in an even or odd fashion we recover the classical notion of Fourier
multiplier (namely on a torus: o(D)¢ = Fg' (0 Fe,¢)), since 1L, (¢(D)p) = o(D)Il,p and
verbatim for II.. Fix then a dyadic partition of the unity {o;};>_1 as in [8, Definition 2.4]
and let j, = min{j > —1: supp(o;) € (=%, %)%} (jn = oo if n = 0), so as to define for
¢ € S((An):

Al = g;(D)gp for j < jn, Al o= (1 -y Qj(D))sO-
_1Sj<jn

This allows one to define the paraproduct and the resonant product of two distributions
respectively (for n = oo the latter is a-piori ill-posed):

pory= Y Y ATpA,  poy= Y AlpAy.
—1<j<jn —1<2<j—1 li—j]<1
—1<4,5<jn

In view of the previous calculations this is coherent with the definition on the lattice in
[8], in the sense that:

I, (AT¢) = AMLp,  TL(AVe) = Alllp, —1<j < jp.

We then define Dirichlet and Neumann Besov spaces via the following norms:

el g .o a,y = IToull g 0,) = 1292 ol poo,))slles(<s) € Sh(An)

and similarly for n upon replacing II, with II.. For brevity we write C{" (A,) = Byo (M)
and C{*(A,) = BLY(A,) for I € {n,0}. We also write |[ull z(a,) = [[Tloullrro,) and
lull Lz (a,) = [[Teu|lLr(o,)- Having introduced Besov spaces we can define the spaces of
time-dependent functions M"C{, and L/]" for [ € {0,n} as in [8, Definition 3.8] without
the necessity of taking into account weights. The above spaces allow for a detailed
analysis of products of distributions. The last ingredient in this sense are the following
identities:

He(QO’(/J) = [ plletp, Ho(wﬁ) = I, plle. (2.1)
To solve equations with Dirichlet boundary conditions, introduce the following Laplace
operators forn < co (let ¢: A, = R, ¥: ©, — R):

AMp(z) =n® > Yy)-v(@), Alp=(A"Lp),, Atp=(A"TLy)a,
|z—y|=n-1
The latter two operators are defined only on the domain Dom(A}) = S{(A,). A direct
computation (cf. [8, Section 3]) then shows that one can represent both Laplacians as
Fourier multipliers:

ATl =1"(k)l,  1"(k) =) 2n?*(cos(2rk;/n)—1), for [ € {0,n}.

M-

j=1

Note that [" is an even function in &, so all the remarks from the previous discussion
apply. For n = co we use the classical Laplacian: the boundary condition is encoded
in the domain. We write A for the Laplacian on S{([0, L]¢). We introduce Dirichlet and
Neumann extension operators as follows:

Elu = Sn(Hou)|[O7L]d, Ely = 5”(Heu)|[O7L]d, for n < oo,

where the periodic extension operator £” is defined as in [8, Lemma 2.24]. These
functions are well-defined since for fixed n the extension £"(-) is a smooth function.
Moreover a simple calculation shows that

T, (E0u) = E"(Tpu), T (E0u) = E™(TTew). (2.2)
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2.2 Solving the equation

We now study Equation (1.1) in dimension d = 1,2 on a box, starting with the
probabilistic assumptions on the noise (cf. [9, Asumption 2.1]).

Assumption 2.1. For every n € N, {§"()},¢czq is a set of i.i.d random variables with:
n~Y2 M (z) ~ D, (2.3)

for a probability distribution ® on R with finite moments of every order and which
satisfies
E[®] =0, E[®?]=1.

These probabilistic assumptions guarantee certain analytical properties which are
highlighted in the next lemma. For convenience, in the remainder of this work we
shift A,, to be centered around the origin and identify it with a subset of [-L/2, L/2]¢,
naturally extending the results of the previous section to this set. To be precise, for
L € 2N we redefine A,, = {z € Z¢ : z € [-L/2,L/2]¢}. Moreover, in the following let
x be the same cut-off function as in [8, Section 5.1] and in dimension d = 2 define the
renormalisation constant (note that this constant does not depend on L):

x(k)
- dk () ~ log(n). (2.4)

Ry =

Lemma 2.2. Let {En(x)}mezg,nem satisfy Assumption 2.1. There exists a probability
space (Q, F,P) supporting for all n € IN random variables ¢,,v and {§"(2) }oeza € €
S'(R%) such that ¢ is space white noise on R% and " = ¢ in distribution.

Such random variables satisfy the following requirements. Let X}’ be the (random)
solution to the equation —A? X = x(D)£&™. For every w € ) and « satisfying

ae(l,3)ind=1, ac(3,1)ind=2, (2.5)
the following holds for all L € 2IN:
(1) &(w) € Cy3([~L/2,L/2]?) as well as sup,, [[€"(w)llga-2(5,) < +o0 and ELE™ (w) —
§(w) in Cy~2([~L/2,L/2]).
(ii) For any e > 0 (with (-); = max{0,-}):

sup [0 Y2€7 @)l o, +5up It~ V2 @)l 50D I~ Y20 (@) |23 ) < 00

Moreover, v(w) > 0 and Ein~Y2¢0 (W) — v(w), EPn~2|¢"(w)| — 2v(w) in Cy e (Ay).

(iii) If d = 2, in addition, n=%?c, (w) — 0 and there exist distributions X, (w), X, ¢ £(w)
in C¢([-L/2,L/2]%) and C2*~2([-L/2, L/2]¢) respectively, such that:

sup [| X' (w)lles (a,) +sup [[(X{ © £")(w)—cn(w)llgza-2(5, ) < 00

and EF XM (w) = Xn(w) in CF([—L/2,L/2]%), EL (X © €M) (w)—cn(w)) = Xn o &(w)
in C2*=2([-L/2,L/2]%).

Finally, P(c,(w) = kn,Vn € N and v(w) = E®,) =1 and for allw € Q, {"(w) satisfies [9,
Assumption 2.3], with the same renormalisation constant ¢, (w) as above if d = 2.

The proof of this lemma is postponed to the next subsection. For clarity, observe that
the first point is a CLT, the second point a LLN, while the third one, essential in d = 2 in
the proof of the theorem below is a convergence in the second Wiener-It6 chaos. The
statement regarding [9, Assumption 2.3] repeats these three points on the entire space.

ECP 25 (2020), paper 44. http://www.imstat.org/ecp/
Page 4/12


https://doi.org/10.1214/20-ECP319
http://www.imstat.org/ecp/

Killed rSBM

Theorem 2.3. Consider{™ as in Lemma 2.2 and « as in (2.5), anyT > 0, p € [1,+00],7 €
[0,1) and ¥, {, ap satisfying:

(270‘7 a)a d= 17
ve {(2—2040[), i_g STV a>@-2Vv(-a), 26

and let wy € Cgﬁp(An) and f" € M Cy9 (A,) be such that
Eqwy — wo inC5,([-L/2,L/2]"), &' f" — fin M™C5o ([-L/2, L/2]%).

For everyw € Q let w™: [0,T] x A,, — R be the unique solution to the finite-dimensional
linear ODE:

ow"™ = (A§+§”(w)—0n(w)1{d:2})w”+f", w™(0) = wf, w(t,x) =0 Y(t,x) € (0,T]xOA,,.

2.7)
There exist a unique (paracontrolled in the sense of [3] or [8] in d = 2) solution w to the
equation

dw = (Mg +w + f, w(0) =wo, w(t,x)=0 V(t,z)€ (0,T]x—L/2,L/2]%, (2.8)
and for all v > (9—()+/2 V v the sequence w™ is uniformly bounded in £g:g(An):
sup [0 3000,y < 50 0B lles oy + 590 17" agrocs a0

where the proportionality constant depends on the time horizon T' and the magnitude of
the norms in Lemma 2.2. Moreover,

Epw™ — win £37)([~L/2, L/2]%).

Proof. Note that in view of (2.1) solving Equation (2.7) (resp. (2.8)) is equivalent to
solving on the discrete (resp. continuous) torus ©,, the equation:

0" = A"+ (§" (W) — cn(w)l{g=2y) 0"+, f, w™(0) = ywo, (2.9)

and then restricting the solution to the cube A,, i.e. w™ = @"|5 , and w" = II,w". Via
the bounds in Lemma 2.2 this equation can be solved for all w € () via Schauder estimates
and (in dimension d = 2) paracontrolled theory following the arguments of [8] (without
considering weights). From the arguments of the same article and Equation (2.2) we can
also deduce the convergence of the extensions. Note that the solution theories in [3] and
[8] coincide, although the former concentrates on the construction of the Hamiltonian
rather than the solutions to the parabolic equation (cf. [9, Proposition 3.1]). O

For every w € (2 it is also possible to define the Anderson Hamiltonian H7 ; with
Dirichlet boundary conditions. The domain and spectral decomposition for this operator
are rigorously constructed in [3] with the help of the resolvent equation for d = 2 and [6]
via Dirichlet forms in d = 1. We write Hy;', Hy ;. for the operators A7 +£"(w)—c¢p (W) 1{a=2)
and (formally) Ay+£& ((.U)—Ool{dzz} respectively. These operators generate semigroups
TPk — Mo and TP = ¢i.r. In particular, the following result is a simple
consequence of the just quoted works.

Lemma 2.4. For a given null set Ny C Q and all w € N§, for all L € IN the operator
s, has a discrete, bounded from above, spectrum and admits an eigenfunction ey, r)

associated to its largest eigenvalue \(w, L), such that ey, 1)(z) > 0 forallz € (—%, £)d.
ECP 25 (2020), paper 44. http://www.imstat.org/ecp/
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Proof. That the spectrum is discrete and bounded from above can be found in the
works quoted above. For p,v € L*((—%, %)) we write ¢ > ¢ if 1(z) — ¢(z) > 0 for
Lebesgue-almost all z and we write ¢ > ¢ if ¢¥(z) — ¢(z) > 0 for Lebesgue-almost
all z. By the strong maximum principle of [1, Theorem 5.1] (which easily extends
to our setting, see Remark 5.2 of the same paper) we know that for the semigroup
TP = "3 of the PAM we have T7""“¢ > 0 whenever ¢ > 0 and ¢ # 0; we even
get T2"“ () > 0 for all z in the interior (—£,L)4. S0 by a consequence of the Krein-
Rutman theorem, see [5, Theorem 19.3], there exists an eigenfunction ey, z) > 0. And
7t)\(w,L)TtD’L»

“ex(w,1), We have ey, )(z) > 0forall z € (—%, £)d, O

since CA(W,L) =e€ —35)3

2.3 Stochastic estimates

Here we prove Lemma 2.2. The following bounds are essentially an adaptation of [2,
Section 4.2] to the Dirichlet boundary condition setting (see also [3] for the spatially
continuous setting). The key issue is to bound the resonant product X! © En that can
be decomposed in (a discrete version of) its zeroth and second Wiener-It6 chaos. The
main difference with respect to the periodic case, and the central point of the following
proof, is that the zeroth chaos is not a constant, yet our calculations will show that up to
a constant blow up k,, this term is well-defined.

Proof of Lemma 2.2. Step 0. We shall prove the lemma for fixed L, o, . The convergence
happens simultaneously over all parameter choices in view of similar arguments as in
the proof of Corollary 3.9. Instead of proving the path-wise convergences of the lemma,
it is sufficient to show the convergences in distribution. The results then follows by
Skorohod’s representation theorem, setting v(w) = ¢, (w) = {"(w) = 0 on a nullset. Let
us write " instead of En We will show that there exists a space white noise ¢ on R¢ and
(if d = 2) a random distribution X, ¢ £ such that (all convergences being in distribution):

Sup B[ |8z, \] < H00,  E7E" — £in CRT((0, L)), (2.10)

as well as:
SUpEflln =2 4 o=+, + 1072 (€)1l 2(an] < +oo, (2.11)

with Ern=4/2(¢"), — B, in C; ([0, L]%). Moreover, in dimension d = 2, we have (recall
Ky, from (2.4)):

sup E[| X7 lleg (a,) + (X2 © €% ~ullgza2a,)] < +00 (2.12)

as well as X" — X, in CY([0, L]?), and EF(X? ® £"—ky) — X, o € in C222([0, L]%).
Once these bounds and convergences are established, the proof is concluded. Note that
&" satisfies [9, Assumption 2.3] in view of [9, Lemma 2.4].

Step 1. We now observe that the bound and convergence from (2.10) as well as the
bound and convergence for X' from (2.12) are similar to and simpler than the bound
for X' ® £". Also, Equation (2.11) and the following convergences are analogous to [9,
Appendix B]. We hence restrict to proving the bound and convergence of X' © (" from
(2.12).

Step 2. We establish the uniform bounds. We will derive only bounds in spaces of
the kind B}>*~2(A,,) for any p > 1 and « such that 2« — 2 < 0. The results on the Holder
scale then follow by Besov embedding. In order to avoid confusion, we will omit the
subindex n in the noise terms and we write sums as discrete integrals against scaled
measures with the following definitions:

T k
/@n do f(z) = ) % /_ dk f(k) =Y % / da f@) =Y. fla).

= — d
€O, = kEER =11} qe{—1,1}

ECP 25 (2020), paper 44. http://www.imstat.org/ecp/
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Then, observing that v, > = #{q € {~1,1}¢ : qok =k}, one has for f: E,, — C:

/ dk £ (k) =/ dqdk 12 f(go k). (2.13)
=, {—1,1}d x5

In this setting, our aim to estimate uniformly over n the following quantity:

Jn

n ny _ P — (2a—2)jp ) n n _ p
BIX" 0 el | = 30 207 [ o B[ 06" - kPw)]
j=— n

For ki,ks € Z, and q1,q2 € {—1,1}¢ we adopt the notation: kg = kitke,qpe =

q1+d2, (qok)pg) = quoki+qzoks and oy (k1,k2) = > 0i(k1)e;(k2). Hence via (2.13):
Rl
AL (X" 0 ")(2) = / dqi2 dkio Ny, vy, e (@R 02,
({-1,1}4xE})?
03((00 W) U ) 2 €

_ / darz Az L sy N, vy 2@ (@0R)021)

({-1,1}4xE})2

- 05((q 0 k)a)vy (K1, kz) X(k2)

1" (k2)

where Diag indicates the integral over the set {k; = ko }. First, since ® has all moments
finite, we apply a generalized discrete BDG inequality [2, Proposition 4.3] and the same
calculations as in [2, Corollary 4.7] to find:

E[JA;(Me(X™ © &) () —rn)l"]
S E[[A; (e (X™ © £")(x)—E[Diag] ] + [E[Diag] — 11— 13 6n[”

/ dgq2 dki2

For the first term on the right hand side we have:

(€, nky (€7 nk,) + Diag

05 ((q 0 k)2 (F1, k2);,i

+ [B[Diag]—1gj——1yknl".

x(k2) |” n x(k2) [*
/ daua bz [o; (a0 k)5 (k. ko) 7 (| = 32 |03tz (b k2) oo
({~1.1}4x=})? "
< Z /—2 dk1o Ly ko[ ~2i} L[] NQI}Q Z 9idgi(d—4) < 22]'((1—2)7

i>j—07 = >j—

which is of the required order (and we used that d < 4). Let us pass to the diagonal,
term. Using that {({",ny) }rean are uncorrelated we rewrite the term as:

iz, x(k
/ gy T2 R A 0y Az oK) pay L=

We split up this sum in different terms according to the relative values of q;,q2. If
q1 = —qo (there are 2¢ such terms) the sum does not depend on z and it disappears for
j > 0. Let us assume j = —1. Via (2.13) and parity we are then left with the constant:

2d/ dk v ’wn :/En dk ;fl((’?)—mn

ECP 25 (2020), paper 44. http://www.imstat.org/ecp/
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The sum on the left-hand side diverges logarithmically in n and we now show how
to renormalize with k,,. To clarify our computation let us also introduce an auxiliary
constant &, = f_ dk v3 l)ﬁ((];)), where 7, = 2-#Ui: ki=En}/2 For o € R4, r > 0, let us
indicate with Q" (z) C T¢ the box Q7 (z) = {y € T?: |y—2|e < 7/2} (| - | being the
maximum of the component-wise distances in T¢). Then one can bound uniformly over n

and V:
oo L o] 2 1 KR
)

n kEE, (
X

Ik‘d)'”N’

|k —Fn| =

1 ( 1 x(k) 1 1
S+~ sup XL VW) ) S < (1t
N Nd keZE:n 9EQ (K) (I"())? N Nd ke%:zd
where we have used that d = 2, [I"(9)| 2 |9|? on [-n/2,n/2]? as well as |VI"(9)| < |0] on
[-n/2,n/2]%. Similar calculations show that the difference converges: lim,, o £, —Fp, €
R. We are now able to estimate:

x(k)
/5 dk (k) — K
where we used that the sum on the boundary 0=,, converges to zero and is thus uni-
formly bounded in n. For the same reason, the above difference converges to the limit
lim,,—so0 Bn—Fkn € R.
For all other possibilities of q;, g2 we show boundedness in a distributional sense. If
g1 = q2 we have:

S 1+ |Rn—knl <1

~

B
2 2mi(x,2q1k) (2 X( < 2]((172).
| atenemin o <

Finally, if only one of the two components of q1, g2 differs (let us suppose it is the first
one) we find (with = (21, z2) and k = (kq, k2)):

,QJ 2]€2 5
Z | 1|2() Z |k2‘2(1 0) §2JE

ki12>1

2 27‘1’L2.L2k2 . X(k) <
’/_+ dk 12e o) (2he) K| <

for any ¢ > 0, up to choosing 6 € (1/2,1) sufficiently close to 1/2.

Step 3. Now we briefly address the convergence in distribution. Clearly the previous
calculations and compact embeddings of Holder-Besov spaces guarantee tightness of
the sequence X! © {"—k, in the required Holder spaces for any a < 2—d/2. We have to
uniquely identify the distribution of any limit point. Whereas for £, X! the limit points
are Gaussian and uniquely identified as white noise ¢ and A1y (D)¢ respectively, the
resonant product requires more care, but we can use the same arguments as in [8,
Section 5.1] for higher order Gaussian chaoses. O

3 Killed r'SBM

In this last section we introduce a killed version of the rSBM described in [9]. Recall
that we consider the lattice approximation AL = {z € Z¢ : z € [-L/2,L/2]¢} (we
explicitly write the dependence on L because we will let L vary). Define in addition the
space of functions EX = {n € No™ ¢ p(z) =0,Vz € OAL}. Recall that the final statement
of Lemma 2.2 allows us to apply the results of [9]. We work in the following framework.

Assumption 3.1. Let {" be the sequence of random variables on () constructed in
Lemma 2.2 and define:

d
fg(w,x) = gn(wvx)fcn(w)l{d=2}7 0= 5

ECP 25 (2020), paper 44. http://www.imstat.org/ecp/
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Let u™(w,t,z) be the process constructed in [9, Definition 2.6] and let p"(w,t) be the
measure associated to it. Such process lives on a probability space:

(QxQF,PxP"),

where P“" is the quenched law of u™, conditional on the environment {"(w), for w € Q.

Observe that in [9] any 0 > g is allowed. The choice p = % is the most interesting
one, since at this level fluctuations appear, as opposed to convergence to convergence to
the continuous PAM: this is related to the fact that n? is the explosion rate of £”, so that
n~?|¢"| has a nontrivial limit 2E® > 0 only for p = ¢ (see Lemma 2.2).

The process u™ does not keep track of the individual particles (all particles are
identical, only their position matters, cf [9, Appendix A]). Instead we consider here a
labelled process that distinguishes individual particles and in which all particles that
leave the box (—L/2,L/2)? are killed. For this purpose, introduce the space EJ', =
Umen (224 U {A})™, where | | denotes the disjoint union, endowed with the discrete
topology. Here A is a cemetery state. For n € EJ, we write dim(p) = m if n €
(1z% U {A})™. Arigorous construction of the process below follows as in [9, Appendix
Al
Definition 3.2. Fixw € Q and X' € E[', with dim(X{) = |n?],(X{); =0,i =1...[n?].
Let X™(w) be the Markov jump process on EJ, with initial condition X™(0) = X{' and
with generator:

dim(n)

EF)) = D lpzn@)| > (FO™")-Fm)

i=1 ly—mni|=n-"1
(€74 w,ma) (FOI) = F () +(€")~ (w,ms) (")~ F(m) |,
where 11" = 1;(1=11, (7)) +y1(iy (7) and 0y = 031 10,aimo) () +0:L (a1} (7) as well
as n;~ = n;(1-1(;(j))+Al;(4), on the domain D(L}),) of functions F € Cy(E},) is
such that the right hand-side is bounded. We can then redefine the process

u(w,t,x) =#{i e {1,...,dim(X"(w,t))} : X]'(w,t) =2z}

which has the same quenched law P“"™ as the process above.

Similarly, for i € N consider 7""(w) = inf{t > 0: dim(X"(w,t)) > i and X!'(t) €
OAL}. Define X™(w,t) € EJy, by dim(X™"(w,t)) = dim(X"(w,t)) and X" (w,t) =
X (@, )ty + Al ns )<y, and based on XnL define u™ taking values in E*
by

P (w b x) = #{i e {1,. .., dim(XE (W, 1)} 0 X (w,t) = 2}

Write M((—L/2,L/2)?) for the set of all finite positive measures on (—L/2, L/2)¢ and
for u, v in this space we say p > v if also pu—v is a positive measure. The following result
is now easy to verify (cf. [9, Appendix A]).

Lemma 3.3. For any w € §) the process t +— u™(w,t,-) is a Markov process with paths
in D([0, +00); E¥), associated to the generator L7 : Cy,(EY) — Cy(E") defined via:

coeF = Y nx[zn?(F(nM)—F(n))

TcE€AL\OAL z~y

HE )+ (w, D) [F (™) =F ()] + (£) - (w, 2)[F (") =F(n)] |,
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where for n € E* we define n*¥(z) = (n(2)—1{zzg)t+1iaey, ygonLy)+ and nE(z) =
(n(2) £ 1.4} )+. We associate to u™*(w,t) a measure:

P, () = Y [Tt um (w b w)e(x), Ve e C((-L/2,L/2)").  (3.1)

xzEAL

Finally:
ﬂ”’L(wj) < ,u"’L+2(w,t) << (wyt) Yw e Q,t>0. (3.2)

When studying the convergence of the process u", special care has to be taken
with regard to what happens on the boundary of the box. Indeed a function ¢ €
C>([~L/2,L/2]%) (i.e. smooth in the interior with all derivatives continuous on the
entire box) is not smooth in the scale of spaces B;;f; for I € {d,n}, since it does not satisfy
the required boundary conditions. For this reason we consider only vague convergence
for the processes u™%. We write

My = (M((=L/2,L/2)%),7)

for the set of finite positive measures on (—L/2, L/2)? endowed with the vague topology
7, (cf. [4, Section 3]), i.e. u™ — pin M if u"(¢) — p(p), for all p € Co((—L/2,L/2)%),
the space of continuous functions that vanish on the boundary of the box (the latter is
a Banach space, when endowed with the uniform norm). This topology is convenient
because sets of the form Kp C MY, with Kg = {u € M¥§ : u(1) < R} are compact. The
observation below now follows from a short calculation.

Remark 3.4. For a > 0 there is a continuous embedding of Banach spaces
Co([=L/2.L/2)") < Co((=L/2,L/2)).

Moreover, if {u"},ew C M} satisfies that for some R > 0, {1"},en C R, then " — pin
MY is equivalent to:

W) = ple), Ve e CE((-L/2,L/2)%).

Now we study the convergence of the killed process. First observe that one can
bound its total mass locally uniformly in time.

Lemma 3.5. For all w € ) it holds that:

lim supIP“’"( sup p™F(w,t)(1) > R) =0 sup sup ||T7"""%1 0 < 4o00.
R—oo p te[0,T) n t€[o,T)
Proof. The first bound follows from comparison with the process on the whole real line
(i.e. Equation (3.2)), see [9, Corollary 4.3]. The second bound follows from Theorem 2.3
because the antisymmetric extension of 1 is bounded: |II,1(:)| = 1. Hence by comparison
and the discussion preceding Equation (2.9): ||77°"*“1||s < [|@(t)]|se, with @ solving:

Oy = A™T + T1, (€ (W) —cn (W) 1 {ame}) @, @(0) = 1. O

Lemma 3.6. For every w € () the sequence {t — u™%(w,t)}nen is tight in the space
D(R>o; ME). Any limit point p* (w) lies in C(Rso; ME).

Proof. We want to apply Jakubowski’s tightness criterion [4, Theorem 3.6.4]. The
sequence u"! satisfies the compact containment condition in view of Lemma 3.5. The
tightness of the entire process is guaranteed if we prove that the sequence {¢t —
L (t) () bnen is tight in D([0, T); R) for any ¢ € C°((—L/2, L/2)%). Here we can follow
the calculation of [9, Lemma 4.2] (only simpler, since we do not need weights), using the
results from Theorem 2.3. The continuity of the limit points is shown as in [9, Lemma
4.4]. O
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One can characterize the limit points of {y™*},cn in a similar way as the rough
super-Brownian motion, and for that purpose we need to solve the following equation
(for any w € 2, L € 2IN):

aﬁ@ = 7‘[%’7[/@—1/()02, 90(0) = ¥0, @(LI) = 07 V(t,I) € (Oa T] X 8[—L/2, L/2]da (3.3)

where we define ¢ a solution to (3.3) if

t
o(t) = T E% 0y — v / T E[0%(s)] ds.
0

Lemma 3.7. Fixw € Q,L € 2IN. For T > 0 and ¢y € C>((—L/2,L/2)%) with @5 > 0
and 9 as in Theorem 2.3, there exists a unique (paracontrolled in d = 2) solution
v € LY(-L/2,L/2)%) to (3.3) and the following bounds hold:

9,L, cl{r> -t o
0< o) <Ty"“po,  lellco-r/2L/2e) Se W eobeomlloree vz,

The proof is analogous to the one of [9, Proposition 4.5]. We thus arrive at the
following description of the limit points of {1}, cn.

Theorem 3.8. For any w € Q and L € 2IN, under Assumption 3.1, there exists u*(w) €
C(Rso; ME) such that p™t(w) — pl(w) in distribution in D(R>o; M&). The process
pl(w) is the unique (in law) process in C(R>o; M) which satisfies one (and then all) of
the following equivalent properties with 7 = {F}’};>¢ being the usual augmentation of
the filtration generated by " (w).

(i) Foranyt > 0 and ¢y € C>((—L/2,L/2)%),po > 0 and for Uf’L’“’<p0 the solution to
Equation (3.3) with initial condition ¢, the process

Nfo(s) _ e—(ML(w,s),Uf;L;“%’o)7 s e [O,t]
is a bounded continuous F*“-martingale.

(ii) For any ¢ € DH;_L the process:

K9 (t) = (u"(@,1), ) — (60, 0)— / dr (4w, 1) H 1), e [0,T]

is a continuous F“-martingale, square-integrable on [0,T] for all T > 0, with
quadratic variation

(K?), =2 / ar (" (w.r), ).

Proof. The proof is almost identical to the one of [9, Theorem 2.13]. The main difference
is that here we only test against functions with zero boundary conditions and thus use
the results from Section 2. O

We call the above process the killed rSBM on (fé, %)d. Note that one can interpret
the killed rSBM as an element of C(R>o; M(R?)) extending it by zero, i.e. p%(w,t, A) =
pl(w,t, AN (—=L/2,L/2)?) for any measurable A C R%. This allows us to couple infinitely

many killed rSBMs with a rSBM on R¢ so that they are ordered in the natural way.

Corollary 3.9. For any w € (), under Assumption 3.1, there exists a process
(/,L(UJ, ')7 /142 (Wa ')a /1/4(‘*)7 ')7 B )
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taking values in C(Rxo; M(R%))N (equipped with the product topology) such that y is an
rSBM and p” is a killed rSBM for all L € 2IN (all associated to the environment {&"}nen),
and such that:

p(w,t, A) < pt(w, t, A) < --- < p(w, t, A) (3.4)

for all t > 0 and all Borel sets A C R,

Proof. The construction (3.1) of u™ and ™" based on the labelled particle system gives
us a coupling (p™, u™2, u™*,...) such that for all w €

(@it A) < P (w, 1 A) < - St w, t, A)

for all t > 0 and all Borel sets A C R?, where as above we extend ™ to R? by setting it
to zero outside of (—%, %)d (cf. Equation (3.2)). By [9, Theorem 2.13] and Theorem 3.8
one obtains tightness of the finite-dimensional projections (u™, u™2,..., u™") for L € 2N,
and this gives tightness of the whole sequence in the product topology. Moreover, for any
subsequential limit (4, 4%, p,...), 1 is an rSBM and p” is a killed rSBM on (—%Z, ). 1t
is however a little subtle to obtain the ordering (3.4), because we only showed tightness
in the vague topology on M for the ™’ component. So we introduce suitable cut-off
functions to show that the ordering is preserved along any (subsequential) limit: Let
X™ € C=((—L/2,L/2)%), x™ > 0 such that Y™ = 1 on a sequence of compact sets K™
which increase to (—L/2, L/2)? as m — oo. Note that on compact sets the sequence ™%
converges weakly (and not just vaguely). We then estimate (in view of Equation (3.2))

for ¢ € Cy(R?) with ¢ > 0:

(uh().0) = lim (u5(t),0-x™) = lim_ lim (u™"(t), ¢ x™)
< i {u(t), - x™) = {(ult). 9),

and similarly one obtains (1% (t), @) < (uX'(t),¢) for L < L'. Since a signed measure that
has a positive integral against every positive continuous function must be positive, our
claim follows. O
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