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Abstract

We consider the standard model of i.i.d. first passage percolation on Zd given a
distribution G on R+. We consider a cube oriented in the direction −→v whose sides
have length n. We study the maximal flow from the top half to the bottom half of
the boundary of this cube. We already know that the maximal flow renormalized
by nd−1 converges towards the flow constant νG(

−→v ). We prove here that the map
p 7→ νpδ1+(1−p)δ0 is Lipschitz continuous on all intervals [p0, p1] ⊂ (pc(d), 1) where
pc(d) denotes the critical parameter for i.i.d. bond percolation on Zd. For p > pc(d),
we know that there exists almost surely a unique infinite open cluster Cp [8]. We
are interested in the regularity properties in p of the anchored isoperimetric profile
of the infinite cluster Cp. For d ≥ 2, using the result on the regularity of the flow
constant, we prove here that the anchored isoperimetric profile defined in [4] is
Lipschitz continuous on all intervals [p0, p1] ⊂ (pc(d), 1).
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1 Introduction

1.1 Flow constant

The model of first passage percolation was first introduced by Hammersley and Welsh
[9] in 1965 as a model for the spread of a fluid in a porous medium. In this model,
mathematicians studied intensively geodesics, i.e., fastest paths between two points in
the grid. The study of maximal flows in first passage percolation started later in 1984 in
dimension 2 with an article of Grimmett and Kesten [7]. In 1987, Kesten studied maximal
flows in dimension 3 in [10]. The study of maximal flows is associated with the study of
random cutsets that can be seen as (d− 1)-dimensional surfaces. Their study presents
more technical difficulties than the study of geodesics. Thus, the interpretation of first
passage percolation in terms of maximal flows has been less studied.

Let us consider a large box in Zd oriented according to a direction −→v , to each edge
we assign a random i.i.d. capacity with distribution G. We interpret this capacity as
a rate of flow, i.e., it corresponds to the maximal amount of water that can cross the
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Regularity of the isoperimetric constant

edge per second. Next, we consider the top half and bottom half of the boundary of
the box. We are interested in the maximal flow that can cross the box from its top half
to its bottom half per second. A first issue is to understand if the maximal flow in the
box properly renormalized converges when the size of the box grows to infinity. This
question was addressed in [10], [11] and [16] where one can find laws of large numbers
and large deviations estimates for this maximal flow when the dimensions of the box
grow to infinity under some moments assumptions on the capacities. The maximal flow
properly renormalized converges towards the so-called flow constant νG(−→v ). In [12],
Rossignol and Théret proved the same results without any moment assumption on G,
they even allow the capacities to take infinite value as long as G({+∞}) < pc(d) where
pc(d) denotes the critical parameter of i.i.d. bond percolation on Zd. Moreover, the two
authors have shown that the flow constant is continuous with regard to the distribution
of the capacities. Let us denote βp = νpδ1+(1−p)δ0 for p > pc(d). Thanks to the result of
Zhang in [15], we know that βp is a norm. This norm will be properly defined in section
2. In this paper, we prove that the map p 7→ βp is Lipschitz continuous on every compact
interval included in (pc, 1).

Theorem 1 (Regularity of the flow constant). Let pc(d) < p0 < p1 < 1. There exists a
positive constant κ depending only on d, p0 and p1, such that

∀p, q ∈ [p0, p1] sup
x∈Sd−1

|βp(x)− βq(x)| ≤ κ|q − p| .

The proof of this theorem will strongly rely on an adaptation of the proof of Theorem 1
in [16].

1.2 Anchored isoperimetric profile

The study of isoperimetric problems in the discrete setting is more recent than in
the continuous setting. In the continuous setting, we study the perimeter to volume
ratio; in the context of graphs, the analogous problem is the study of the size of edge
boundary to volume ratio. This can be encoded by the Cheeger constant. For a finite
graph G = (V (G), E(G)), we define the edge boundary ∂GA of a subset A of V (G) as

∂GA =
{
e = 〈x, y〉 ∈ E(G) : x ∈ A, y /∈ A

}
.

We denote by |B| the cardinality of the finite set B. The isoperimetric constant of G, also
called Cheeger constant, is defined as

ϕG = min

{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
.

This constant was introduced by Cheeger in his thesis [2] in order to obtain a lower
bound for the smallest eigenvalue of the Laplacian. The isoperimetric constant of a
graph gives information on its geometry.

Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on the graph (Zd,Ed)

having for vertices Zd and for edges Ed the set of pairs of nearest neighbors in Zd for
the Euclidean norm. Every edge e ∈ Ed is open with probability p > pc(d). We know that
there exists almost surely a unique infinite open cluster Cp [8]. In this paper, we want to
study how the geometry of Cp varies with p through its Cheeger constant. However, if we
minimize the isoperimetric ratio over all possible subgraphs of Cp without any constraint
on the size, one can prove that ϕCp = 0 almost surely. For that reason, we shall minimize
the isoperimetric ratio over all possible subgraphs of Cp given a constraint on the size.
There are several ways to do it. We can for instance study the Cheeger constant of the
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graph Cn = Cp ∩ [−n, n]d or of the largest connected component C̃n of Cn for n ≥ 1. Since
we have ϕCp = 0 almost surely, the isoperimetric constants ϕCn and ϕC̃n go to 0 when
n goes to infinity. Roughly speaking, by analogy with the full lattice, we expect that
subgraphs of C̃n that minimize the isoperimetic ratio have edge boundary size of order
nd−1 and size of order nd with high probability.

In [1], Biskup, Louidor, Procaccia and Rosenthal defined a modified Cheeger constant
ϕ̃Cn and proved that nϕ̃Cn converges towards a deterministic constant in dimension 2. In
[6], Gold proved the same result in dimension d ≥ 3. Instead of considering the open
edge boundary of subgraphs within Cn, they considered the open edge boundary within
the whole infinite cluster Cp, this is more natural because Cn has been artificially created
by restricting Cp to the box [−n, n]d. They also added a stronger constraint on the size
of subgraphs of Cn to ensure that minimizers do not touch the boundary of the box
[−n, n]d. Moreover, they proved that the subgraphs achieving the minimum, properly
rescaled, converge towards a deterministic shape that is the Wulff crystal. Namely, it is
the shape solving the continuous anisotropic isoperimetric problem associated with the
norm βp corresponding to the surface tension in the percolation setting. The quantity
nϕ̃Cn converges towards the solution of a continuous isoperimetric problem.

This modified Cheeger constant was inspired by the anchored isoperimetric profile
ϕn(p). This is another way to define the Cheeger constant of Cp, that is more natural in
the sense that we do not restrict minimizers to remain in the box [−n, n]d. It is defined
as follows:

ϕn(p) = min

{ |∂CpH|
|H|

: 0 ∈ H ⊂ Cp, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ Cp}. We say thatH is a valid subgraph if 0 ∈ H ⊂ Cp,
H is connected and |H| ≤ nd.

We need to introduce some definitions to be able to define properly a limit shape in
dimension d ≥ 2. In order to build a continuous limit shape, we shall define a continuous
analogue of the cardinality of the open edge boundary. In fact, the cardinality of the
open edge boundary may be interpreted in terms of a surface energy associate with the
norm βp. Given a subset E of Rd having a regular boundary, we define Ip as

Ip(E) =

∫
∂E

βp(nE(x))Hd−1(dx) ,

where Hd−1 denotes the Hausdorff measure in dimension d− 1 and nE(x) is the normal
unit exterior vector of E at x. The quantity Ip(E) represents the surface energy of E for
the norm βp. At the point x, the tension has intensity βp(nE(x)) in the direction of nE(x).
To understand the link between βp and the open edge boundary, we refer to sections 3 in
[6] or [4]. We denote by Ld the d-dimensional Lebesgue measure. We can associate with
the norm βp the following isoperimetric problem:

minimize
Ip(E)

Ld(E)
subject to Ld(E) ≤ 1 .

We use the Wulff construction to build a minimizer for this anisotropic isoperimetric
problem (see [14]). We define the set Ŵp as

Ŵp =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ βp(v)

}
,

where · denotes the standard scalar product and Sd−1 is the unit sphere of Rd. Tay-
lor proved in [13] that the set Ŵp properly rescaled is the unique minimizer, up to
translations and modifications on a null set, of the associated isoperimetric problem.
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In [4], Dembin proves the existence of the limit of nϕn(p) and that it converges to-
wards the solution of the continuous isoperimetric problem associated with the norm βp.

Proposition 1. Let d ≥ 2, p > pc(d) and let βp be the norm that will be properly defined

in section 2. Let Wp be a dilate of the Wulff crystal Ŵp for the norm βp such that
Ld(Wp) = 1/θp where θp = P(0 ∈ Cp). Then, conditionally on the event {0 ∈ Cp},

lim
n→∞

nϕn(p) =
Ip(Wp)

θpLd(Wp)
= Ip(Wp) a.s..

In this paper, we aim to study the regularity properties of the anchored isoperimetric
profile. This was first studied by Garet, Marchand, Procaccia, Théret in [5], they proved
that the modified Cheeger constant in dimension 2 is continuous on (pc(2), 1]. We aim here
to prove the two following theorems. Theorem 2 asserts that the anchored isoperimetric
profile is Lipschitz continuous on every compact interval [p0, p1] ⊂ (pc(d), 1).

Theorem 2 (Regularity of the anchored isoperimetric profile). Let d ≥ 2. Let pc(d) <

p0 < p1 < 1. There exits a positive constant ν depending only on d, p0 and p1, such that

∀p, q ∈ [p0, p1] |Ip(Wp)− Iq(Wq)| ≤ ν|q − p| .

Remark 1.1. Actually, the map p 7→ Ip(Wp) is also continuous at 1, this is not a conse-
quence of theorem 2 but it comes from the fact that the map p → βp is continuous on
(pc(d), 1]. This result is a corollary of theorem 2.6. in [12].

Theorem 3 studies the Hausdorff distance between two Wulff crystals associated with
norms βp and βq.

Theorem 3 (Regularity of the anchored isoperimetric profile). Let d ≥ 3. Let pc(d) <

p0 < p1 < 1. There exits a positive constant ν′ depending only on d, p0 and p1, such that

∀p, q ∈ [p0, p1] dH(Ŵp, Ŵq) ≤ ν′|q − p| ,

where dH is the Hausdorff distance between non empty compact sets of Rd.

Theorem 1 is the key element to prove these two theorems.

Remark 1.2. In this paper, we choose to work on the anchored isoperimetric profile
instead of the modified Cheeger constant because the norm we use is the same for all
dimensions d ≥ 2. The existence of the modified Cheeger constant in dimension 2 uses
another norm specific to this dimension (see [1]). In [6], Gold proved the existence of
the modified Cheeger constant for d ≥ 3 with the same norm βp. Actually, we believe
that his proof also holds in dimension 2 up to using similar combinatorial arguments as
in [4]. Therefore, the theorem 2 may be shown for the modified Cheeger constant in
dimension d ≥ 2 using the same ingredients as in this paper.

Here is the structure of the paper. In section 2, we define the norm βp. We prove that
the map p 7→ βp is Lipschitz continuous in section 3. We prove the main results on the
regularity of the anchored isoperimetric profile (theorems 2 and 3) in section 4. Finally,
we write an adaptation of the proof of Zhang [16] in section 5 that is necessary to prove
theorem 1.

2 Definition of the norm βp

We introduce now many notations used for instance in [11] concerning flows through
cylinders. Let A be a non-degenerate hyperrectangle, that is to say a rectangle of
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dimension d− 1 in Rd. Let −→v be one of the two unit vectors normal to A. Let h > 0, we
denote by cyl(A, h) the cylinder with base A and height 2h defined by

cyl(A, h) = {x+ t−→v : x ∈ A, t ∈ [−h, h]} .

The set cyl(A, h) \A has two connected components, denoted by C1(A, h) and C2(A, h).
For i = 1, 2, we denote by C ′i(A, h) the discrete boundary of Ci(A, h) defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
.

We say that the set of edges E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h) if any path γ from
C ′1(A, h) to C ′2(A, h) in cyl(A, h) contains at least one edge of E. We call such a set a
cutset. For any cutset E, let |E|o,p denote the number of p-open edges in E. We shall call
it the p-capacity of E. Define

τp(A, h) = min {|E|o,p : E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h)} .

Note that it is a random quantity as |E|o,p is random, and that the cutsets in this definition
are anchored at the border of A. This quantity is related to the fact that graphs that
achieve the infimum in the definition of ϕn(p) try to minimize their open edge boundary.
To build a norm upon this quantity, we use the fact that the quantity τp(A, h) properly
renormalized converges towards a deterministic constant when the size of the cylinder
goes to infinity. The following proposition is a corollary of proposition 3.5 in [11].

Proposition 2 (Definition of the norm βp). Let d ≥ 2, p > pc(d), A be a non-degenerate
hyperrectangle and −→v one of the two unit vectors normal to A. Let h be a height function
such that limn→∞ h(n) =∞. The limit

βp(
−→v ) = lim

n→∞

E[τp(nA, h(n))]

Hd−1(nA)

exists and is finite. Moreover, the limit is independent of A and h and the homogeneous
extension of βp to Rd is a norm.

As the limit does not depend on A and h, in what follows for simplicity, we will take
h(n) = n and A = S(−→v ) where S(−→v ) is an hyper-square centered at 0, isometric to
[−1, 1]d−1 × {0} and normal to −→v . We will denote by B(n,−→v ) the cube cyl(nS(−→v ), n) and
by τp(n,

−→v ) the quantity τp(nS(−→v ), n).

3 Regularity of the map p 7→ βp

Let p0 > pc(d) and let q > p ≥ p0. Our strategy is the following, we easily get that
βp ≤ βq by properly coupling the percolations of parameters pc(d) < p < q. The second
inequality requires more work. We denote by En,p the random cutset of minimal size
that achieves the minimum in the definition of τp(n,

−→v ). By definition, as En,p is a cutset,
we can bound τq(n,

−→v ) from above by the number of edges in En,p that are q-open, which
we expect to be at most τp(n,

−→v ) +C(q− p)|En,p| where C is a constant. We next need to
get a control of |En,p| which is uniform in p ∈ [p0, 1] of the kind c0nd−1 where c0 depends
only on p0 and d. In [16], Zhang obtained a control on the size of the smallest minimal
cutset that separates the top from the bottom of a cylinder in the general first passage
percolation model, but his control depends on the distribution G of the passage times.
We only consider probability measures Gp = pδ1 + (1− p)δ0 for p > pc(d), but we need to
adapt Zhang’s proof in this particular case to obtain a control that does not depend on p
anymore and a control for cutsets that separates the bottom half from the top half of
the boundary of the cylinder. More precisely, let us denote by Nn,p the total number of
edges in En,p. We have the following control on Nn,p.
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Theorem 4 (Adaptation of theorem 2 in [16]). Let p0 > pc(d). There exist constants C1,
C2 and α that depend only on d and p0 such that

∀p ∈ [p0, 1] ∀n ≥ 1 Pp
(
Nn,p > αnd−1

)
≤ C1 exp(−C2n

d−1) .

We postpone the proof of theorem 4 to section 5. We have now the key ingredients to
prove that the map p 7→ βp is Lipschitz continuous.

Proof of Theorem 1. Let pc < p0 < p1 < 1,−→v ∈ Sd−1, and p, q such that p0 ≤ p < q ≤ p1.
First, we fix a cube B(n,−→v ) and we couple the percolations of parameters p and q in
the standard way, i.e., we consider the i.i.d. family (U(e))e∈Ed distributed according to
the uniform law on [0, 1] and we say that an edge e is p-open (resp. q-open) if U(e) ≥ p

(resp. U(e) ≥ q). Thanks to this coupling, we easily obtain that τp(
−→v , n) ≤ τq(−→v , n) and

by dividing by Hd−1(nS(−→v )) = (2n)d−1, taking the expectation and letting n go to infinity
we conclude that

βp(
−→v ) ≤ βq(−→v ) . (3.1)

Let En,p be a random cutset of minimal size that achieves the minimum in the definition
of τp(n,

−→v ). We consider now another coupling. The idea is to introduce a coupling of
the percolations of parameter p and q such that if an edge is p-open then it is q-open
and En,p is independent of the q-state of any edge. Unfortunately, we cannot find such
a coupling but we can introduce a coupling that almost has this property. To do so, for
each edge e ∈ Ed, we consider two independent Bernoulli random variables U(e) and
V (e) of parameters p and (q − p)/(1− p). We say that an edge e is p-open if U(e) = 1 and
that it is q-open if U(e) = 1 or V (e) = 1. Indeed,

P (U(e) = 1, V (e) = 1 ) = p+ (1− p)q − p
1− p

= q .

Let δ > 0. We have,

P

(
τq(n,

−→v ) > τp(n,
−→v ) +

(
q − p
1− p

+ δ

)
αnd−1, Nn,p < αnd−1

)
≤ P

(
τq(n,

−→v )− τp(n,−→v ) >

(
q − p
1− p

+ δ

)
|En,p|

)
≤
∑
E

P

(
En,p = E, |{e ∈ E : (U(e), V (e)) = (0, 1)}| >

(
q − p
1− p

+ δ

)
|E|
)

≤
∑
E

P

(
En,p = E, |{e ∈ E : V (e) = 1}| >

(
q − p
1− p

+ δ

)
|E|
)

≤
∑
E

P(En,p = E)P

(
|{e ∈ E : V (e) = 1}| >

(
q − p
1− p

+ δ

)
|E|
)

≤ exp(−2δ2nd−1) (3.2)

where the sum is over sets E that cut C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in B(n,−→v ) and
where we use in the last inequality Chernoff bound and the fact that |En,p| ≥ nd−1

(uniformly in −→v ). Finally, using inequality (3.2) and theorem 4, we get

E[τq(n,
−→v )] ≤ E[τq(n,

−→v )1Nn,p<αnd−1 ] + E[τq(n,
−→v )1Nn,p≥αnd−1 ]

≤ E[τp(n,
−→v )] +

(
q − p
1− p

+ δ

)
αnd−1 + |B(n,−→v )|

(
e−2δ

2nd−1

+C1 e−C2n
d−1
)

≤ E[τp(n,
−→v )] +

(
q − p
1− p

+ δ

)
αnd−1 + Cd(2n)d

(
e−2δ

2nd−1

+C1 e−C2n
d−1
)
,
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where Cd is a constant depending only on d. Dividing by (2n)d−1 and by letting n go to
infinity, we obtain

βq(
−→v ) ≤ βp(−→v ) +

(
q − p
1− p

+ δ

)
α

2d−1
(3.3)

and by letting δ go to 0,

βq(
−→v ) ≤ βp(−→v ) + κ(q − p) (3.4)

where κ = α/(2d−1(1− p1)). Combining inequalities (3.1) and (3.4), we obtain that

sup
−→v ∈Sd−1

|βq(−→v )− βp(−→v )| ≤ κ|q − p| .

4 Proof of theorems 2 and 3

Proof of theorem 2. Let pc < p0 < p1 < 1. We recall that, for p > pc(d), Wp denotes the
Wulff crystal for the norm βp such that Ld(Wp) = 1/θp. In this section we aim to prove
that the map p 7→ Ip(Wp) is Lipschitz continuous on [p0, p1]. Notice that as the map
p 7→ θp is non-decreasing, we have

∀p, q ∈ (pc(d), 1] p < q =⇒ Ld(Wp) ≥ Ld(Wq)

and using the fact that Wq is a minimizer for Iq for sets of equal volume, it follows that

∀p, q ∈ (pc(d), 1] p < q =⇒ Iq(Wp) ≥ Iq(Wq) . (4.1)

Moreover, the map p 7→ θp is infinitely differentiable on [p0, p1], see for instance theorem
8.92 in [8]. Therefore, there exists a constant L depending on p0, p1 and d such that

∀p, q ∈ [p0, p1] |θp − θq| ≤ L|q − p| . (4.2)

Let us compute now some useful inequalities. For any set E ⊂ Rd with Lipschitz
boundary, by theorem 1, we have for any p, q ∈ [p0, p1]

|Ip(E)− Iq(E)| =
∣∣∣∣∫
∂E

(βp(nE(x))− βq(nE(x)))Hd−1(dx)

∣∣∣∣
≤
∫
∂E

|βp(nE(x))− βq(nE(x))|Hd−1(dx) ≤ κ|q − p|Hd−1(∂E) (4.3)

where κ is the constant associated with p0 and p1 in the statement of theorem 1. We
recall that the map p → βp is uniformly continuous on [p0, p1]. We denote by βmin and
βmax its minimal and maximal value, i.e., we have

∀−→v ∈ Sd−1 ∀p ∈ [p0, p1] βmin ≤ βp(−→v ) ≤ βmax .

Together with inequality (4.1) and the fact that the Wulff crystal is a minimizer for an
isoperimetric problem, we get for p ∈ [p0, p1]

Ip(Wp) ≤ Ip(Wp0) =

∫
∂Wp0

βp(nWp0
(x))Hd−1(dx) ≤ βmaxHd−1(∂Wp0) . (4.4)

We also have

Hd−1(∂Wp) =

∫
∂Wp

Hd−1(dx) ≤
∫
∂Wp

βp(nWp(x))

βmin
Hd−1(dx) ≤ Ip(Wp)

βmin
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and so together with inequality (4.4), we get

∀p ∈ [p0, p1] Hd−1(∂Wp) ≤ Hd−1(∂Wp0)
βmax

βmin
. (4.5)

Finally, we obtain combining inequalities (4.1), (4.3) and (4.5),

Ip(Wp) ≥ Iq(Wp)− κ|q − p|Hd−1(∂Wp) ≥ Iq(Wq)− κ|q − p|Hd−1(∂Wp0)
βmax

βmin
. (4.6)

As Ld(Wp) = Ld(Wq) · θq/θp = Ld(Wq(θq/θp)
1/d) and as Wp is the minimizer for the

isoperimetric problem associated with the norm βp, we have

Ip(Wp) ≤ Ip

((
θq
θp

)1/d

Wq

)
≤
(
θq
θp

)(d−1)/d

Ip(Wq) ≤
θq
θp
Ip(Wq)

and so using inequalities (4.2), (4.3), (4.4) and (4.5)

Ip(Wp) ≤
θq
θp

(
Iq(Wq) + κ|q − p|Hd−1(∂Wq)

)
≤
(

1 +
L

θp0
|q − p|

)(
Iq(Wq) + κ|q − p|Hd−1(∂Wp0)

βmax

βmin

)
≤ Iq(Wq) + βmaxHd−1(∂Wp0)

(
L

θp0
+

κ

βmin

(
1 +

L

θp0

))
|q − p| . (4.7)

Thus combining inequalities (4.6) and (4.7) together with Theorem 1, we get

|Ip(Wp)− Iq(Wq)| ≤ ν|q − p| (4.8)

where we set

ν = βmaxHd−1(∂Wp0)

(
L

θp0
+

κ

βmin

(
1 +

L

θp0

))
.

Proof of theorem 3. Let pc < p0 < p1 < 1 and p, q ∈ [p0, p1]. We consider β∗p the dual
norm of βp, defined by

∀x ∈ Rd, β∗p(x) = sup{x · z : βp(z) ≤ 1} .

Then β∗p is a norm. The Wulff crystal Ŵp associated with βp is in fact the unit ball
associated with β∗p . Note that the supremum in the definition of β∗p is always achieved
for a z such that βp(z) = 1. Let x ∈ Sd−1. Let y ∈ Sd−1 be the direction that achieves the
supremum for β∗p(x), thus we have

β∗p(x) = x · y

βp(y)

and so using theorem 1,

β∗p(x)− β∗q (x) ≤ x · y

βp(y)
− x · y

βq(y)
≤ ‖x‖2‖y‖2
βp(y)βq(y)

|βp(y)− βq(y)| ≤ κ

(βmin)2
|q − p|

where βmin was defined in the proof of theorem 2. We proceed similarly for β∗q (x)−β∗p(x).
Finally, we obtain

sup
x∈Sd−1

|β∗p(x)− β∗q (x)| ≤ κ

(βmin)2
|q − p| . (4.9)
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We recall the following definition of the Hausdorff distance between two subsets E and
F of Rd:

dH(E,F ) = inf
{
r ∈ R+ : E ⊂ F r and F ⊂ Er

}
where Er = {y : ∃x ∈ E ‖y − x‖2 ≤ r}. Thus, we have

dH(Ŵp, Ŵq) ≤ sup
y∈Sd−1

∥∥∥∥ y

β∗p(y)
− y

β∗q (y)

∥∥∥∥
2

.

Note that y/β∗p(y) (resp. y/β∗q (y)) is in the unit sphere for the norm β∗p (resp. β∗q ). Let
x ∈ Sd−1. Using the definition of β∗, we obtain

1

βmax
≤ x · x

βp(x)
≤ β∗p(x) .

Finally, using inequality (4.9), we obtain

dH(Ŵp, Ŵq) ≤ sup
y∈Sd−1

∣∣∣∣ 1

β∗p(y)
− 1

β∗q (y)

∣∣∣∣
≤ sup
y∈Sd−1

1

β∗q (y)β∗p(y)

∣∣β∗p(y)− β∗q (y)
∣∣

≤ sup
y∈Sd−1

(βmax)2
∣∣β∗p(y)− β∗q (y)

∣∣ ≤ κ(βmax)2

(βmin)2
|q − p| . (4.10)

The result follows.

5 Proof of theorem 4

The proof of theorem 4 is going to be simpler than the proof of theorem 2 in [16],
because passage times in our context can take only values 0 or 1, i.e., to each edge
we associate an i.i.d random variable of distribution Gp = pδ1 + (1 − p)δ0 whereas
Zhang considers in [16] more general distributions. Our setting is equivalent to bond
percolation of parameter p by saying that an edge is closed if its passage time is 0, and
open if its passage time is 1. Let us briefly explain the idea behind that theorem. Let
p ≥ p0. We work on bond percolation of parameter p (equivalently on first passage
percolation with distribution Gp = pδ1 + (1− p)δ0). We aim at bounding the size of the
smallest minimal cutset that cuts the set C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in B(n,−→v ). To
do so we do a renormalization at a scale t in order to build a “smooth” minimal cutset.
For u ∈ Zd, we define Bt(u) = [0, t]d + tu and B̄t(u) =

⋃
v:‖v−u‖∞≤1Bt(v). We say that the

cubes Bt(u) and Bt(v) are ∗-neighbors if ‖u− v‖∞ = 1. The 3t-cube B̄t(u) is the union of
the cube Bt(u) and its ∗-neighbors.

Let us now introduce some useful definitions. A connected cluster C is said to be
p-crossing for a box B, if for all d directions, there is a p-open path in C ∩B connecting
the two opposite faces of B. We define the diameter of a finite cluster C as

Diam(C) := max
i=1,...,d
x,y∈C

|xi − yi| .

Let Tm,t(p) be the event that Bt has a p-crossing cluster and contains some other p-open
cluster D having diameter at least m. We say that Bt(u) has a p-disjoint property if there
exist two disconnected p-open clusters in B̄t(u), both with vertices in Bt(u) and in the
boundary of B̄t(u). We say that Bt(u) has a p-blocked property if there is a p-open cluster
C in B̄t(u) with vertices in Bt(u) and in the boundary of B̄t(u), but without vertices in
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B̄t(u)

Bt(u)

Figure 1: On the left a box Bt(u) with a disjoint property, on the right a box with a
blocked property

a t-cube of B̄t(u). We say that a p-atypical event occurs in Bt(u) if it has a p-blocked
property or a p-disjoint property (see Figure 1).

As the original proof is very technical, the adaptation of the proof is also technical.
There are two points that need to be adapted from Zhang’s proof. First, Zhang controls
the size of a minimal cutset from the top to the bottom of a box in theorem 2 but here we
need to control the size of a minimal cutset from the top half C ′1(nS(−→v ), n) to the bottom
half C ′2(nS(−→v ), n) of a box B(n,−→v ). The second point is that Zhang has a control on the
size that holds for a fixed p, but we need here to have a uniform control of the size for
p ∈ [p0, 1].

Adaptation of the proof of theorem 1 in [16] to get theorem 4. We keep the same nota-
tions as in [16]. The following adaptation is not self-contained. Let p0 > pc(d) and
−→v ∈ Sd−1. In [16], the author bounds the size of the smallest minimal cutset that cuts
a given cylinder B(k,m) from infinity. However, his construction of a linear cutset in
section 2 of [16] is not specific to the set B(k,m) and can be defined in the same way
for any set of vertices. In particular we can replace B(k,m) by C ′1(nS(−→v ), n) and∞ by
C ′2(nS(−→v ), n) (as it is done by Zhang in Theorem 2 in [16] with the top and the bottom
of a cylinder). Note that given the configuration of passage times, the construction
of Zhang’s is totally deterministic. As we only focus on edges inside B(n,−→v ), we can
assume that all edges outside B(n,−→v ) are closed.

We denote by C(n) the set that corresponds to C(k,m) defined in Lemma 1 in [16]:

C(n) = {v ∈ Zd : v is connected to C ′1(nS(−→v ), n) by an open path } .

We denote by G(n) the event that C(n) ∩ C ′2(nS(−→v ), n) = ∅ (it corresponds to G(k,m)

in [16]). On this event, the exterior edge boundary ∆eC(n) of C(n) is a closed cutset
that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n). The problem is that the cutset ∆eC(n) may
be very entangled. We use renormalization to be able to build a smooth closed cutset
upon ∆eC(n). We denote by A the set of t-cubes that intersect ∆eC(n). By Zhang’s
construction, we can extract from A a set of cubes Γt such that Γt is ∗-connected and the
union Γ̄t of the 3t-cubes in Γt (the cubes in Γt and their ∗-neighbors) contains a closed
cutset that separates the set C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n). Moreover, each cube in
Γt has a ∗-neighbor where a p-atypical event occurs.

The set E = {〈x, y〉 ∈ B(n,−→v ) : x ∈ C ′1(nS(−→v ), n) } cuts the set C ′1(nS(−→v ), n) from
the set C ′2(nS(−→v ), n) in B(n,−→v ) and there exists a constant cd depending only on d but
not on −→v such that |E| ≤ cdnd−1. Thus, we obtain that

τp(n,
−→v ) ≤ |E| ≤ cdnd−1 .
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We denote by En,p the cutset that achieves the infimum in τp(n,
−→v ) and such that

|En,p| = Nn,p (En,p corresponds to W (k,m) the minimal cutset between the top and
the bottom of B(k,m) in [16]). For a configuration ω, we denote by e1, . . . , eJ(ω) the
p-open edges in En,p. We have J(ω) = τp(n,

−→v )(ω) ≤ cdn
d−1. We denote by σ(ω) the

configuration which coincides with ω except in edges e1, . . . , eJ(ω) that are closed for
σ(ω). Thus, the set En,p(σ(ω)) is a p-closed (for the configuration σ(ω)) cutset that cuts
C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in B(n,−→v ). Note that the set of edges En,p(σ(ω)) is
determined by the configuration ω whereas we consider the state of its edges is given
by the configuration σ(ω). We recall that all the edges outside B(n,−→v ) are closed so
that the event G(n) occurs in the configuration σ(ω) and we can use the construction
of section 2 in [16] for the configuration σ(ω): there exists a set of cube Γt such that
Γ̄t contains a p-closed (for σ(ω)) cutset Γ that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) (see
Lemma 4 in [16]). The set Γ ∩ B(n,−→v ) is a closed cutset that separates C ′1(nS(−→v ), n)

from C ′2(nS(−→v ), n) in B(n,−→v ).
We now change σ(ω) back to ω. For i ∈ {1, . . . , J(ω)}, the state of the edge ei changes

from closed to open. We write Γ(ω) when we consider the edge set Γ (the edge set Γ is
determined by σ(ω) with its edges capacities determined by the configuration ω. The
set Γ(ω) exists as an edge set, it is still a cutset but it is no longer closed, all edges in
Γ(ω) \ {e1, . . . , eJ(ω)} are closed. Therefore, |Γ(ω)|o,p ≤ J(ω), but by definition of En,p, we
have J(ω) = |En,p(ω)|o,p ≤ |Γ(ω)|o,p ≤ J(ω) and so |Γ(ω)|o,p = J(ω) and {e1, . . . , eJ(ω)} ⊂
Γ. Moreover, for each ω, by definition of Nn,p(ω), we get that |Γ(ω)| ≥ Nn,p(ω).

Note that for the t-cubes Bt(u) ∈ Γt such that B̄t(u) intersects the boundary of
B(n,−→v ), we cannot be sure that there exists a t-cube in B̄t(u) where a p-atypical event
occurs. Thus, we need to obtain a control of the numbers of such cubes. Since edges
outside B(n,−→v ) are closed, the set ∆eC(n) \ B(n,−→v ) is included in the exterior edge
boundary ∆eB(n,−→v ) of B(n,−→v ). Therefore, the cubes Bt(u) in Γt such that B̄t(u) is not
contained in the strict interior of B(n,−→v ) satisfy B̄t(u)∩∆eB(n,−→v ) 6= ∅. We deduce that
there are at most Cd,tnd−1 such cubes in Γt where Cd,t is a constant depending only on
the dimension d and t. Thus, if the number of t-cubes in Γt is greater than βnd−1, then
the number of t-cubes Bt(u) in Γt that do not intersect the boundary of B(n,−→v ) and such
that Bt(u) do not contain any edge among e1, . . . , eJ is greater than (β−Cd,t− 3dcd)n

d−1.
All these t-cubes have at least one ∗-neighbor with a blocked or disjoint property for the
configuration ω.

In the proof of theorem 1 in [16], Zhang sums over all possible sets Γt. To do so,
he needs to find at least one cube Bt(v) that belongs to Γt and then he will be able to
sum over all possible ∗-connected sets that contained Bt(v) of a given size. In our case,
any cube Bt(u) that intersects the boundary ∆eC

′
1(nS(−→v ), n) \B(n,−→v ) belongs to A as

it also intersects ∆eC(n) and by Zhang construction, we can prove that the cube Bt(u)

also belongs to Γt. Thanks to this remark, we avoid the part of Zhang’s proof where
he tries to find a vertex z in the intersection between the cutset W (k,m) and a line L
in order to find a cube that is in Γt. Thus, the term exp(β−1n) in (6.19) in [16] is not
necessary in our case. This leads to small modifications of constants in the proof of
[16]. The remainder of the proof is the same except that we need a uniform decay for
p ∈ [p0, 1] of the probability of a p-atypical event in Bt instead of using the control in [16].
We need to prove the following lemma:

Lemma 1 (Uniform decay of the probability an atypical event occurs). Let p0 > pc(d).
There exist positive constants C1(p0) and C2(p0) depending only on p0 and d such that

∀p ≥ p0 ∀t ≥ 1 P (a p-atypical event occurs in Bt) ≤ C1(p0) exp(−C2(p0)t) . (5.1)

We would like to highlight the fact that in lemmas 6 and 7 in [16], Zhang proves the
same result but with constants C1 and C2 depending on p. Obtaining a decay that is

ECP 25 (2020), paper 34.
Page 11/13

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP313
http://www.imstat.org/ecp/


Regularity of the isoperimetric constant

uniform for p ∈ [p0, 1] is the key element to adapt the proof of Zhang and show that the
constant α in the statement of the theorem 4 does depend only on p0 and d.

Let us now prove lemma 1. We need to adapt some existing proofs in order to obtain
a decay which is uniform in p.

Proof of lemma 1. First, note that if Bt has a p-disjoint property and B̄t has a p-crossing
cluster, then one of the two disjoint clusters is different from the p-crossing cluster.
Therefore, there is a p-open cluster of diameter greater than t different from the p-
crossing cluster, so the event Tt,3t(p) occurs in the box B̄t. Similarly, let us assume that
Bt has a p-blocked property and B̄t and all of its sub-boxes (i.e, boxes Bt(v) such that
Bt(v) ⊂ B̄t) have a p-crossing cluster. We denote by C the p-open cluster in the definition
of the p-blocked property. Thus, there is at least one cluster among C and the p-crossing
clusters of the sub-boxes that are disjoint from the p-crossing cluster of B̄t and so the
event Tt,3t(p) occurs in the box B̄t. Thus,

P(a p-atypical event occurs in Bt ) ≤ P(B̄t does not have a p-crossing cluster)

+ 3dP(Bt does not have a p-crossing cluster]) + P (Tt,3t(p)) (5.2)

As the event {Bt doesn’t have a p-crossing cluster} is non-increasing in p, we have

P(Bt doesn’t have a p-crossing cluster ≤ P(Bt doesn’t have a p0-crossing cluster) .

The probability for a box Bt not to have a p0-crossing cluster is decaying exponentially
fast with td−1, see for instance theorem 7.68 in [8]. Therefore, there exist positive
constants c1(p0) and c2(p0) such that

P(Bt does not have a p-crossing cluster) ≤ c1(p0) exp(−c2(p0)td−1) . (5.3)

It remains to prove that there exist positive constants κ(p0) and µ(p0) depending only on
p0 such that for all p ≥ p0, for all positive integers m and N

P(Tm,N (p)) ≤ κN2d exp(−µm) . (5.4)

In dimension d ≥ 3, we refer to the proof of lemma 7.104 in [8]. The proof of lemma
7.104 requires the proof of lemma 7.78. The probability controlled in lemma 7.78 is
clearly non decreasing in the parameter p. Thus, if we choose δ(p0) and L(p0) as in the
proof of lemma 7.78 for p0 > pc(d), then these parameters can be kept unchanged for
some p ≥ p0. Thanks to lemma 7.104, we obtain

∀p ≥ p0 P(Tm,N (p)) ≤ d(2N + 1)2d exp

((
m

L(p0) + 1
− 1

)
log(1− δ(p0))

)
≤ d.3d

1− δ(p0)
N2d exp

(
−− log(1− δ(p0))

L(p0) + 1
m

)
.

We get the result with

κ =
d.3d

1− δ(p0)
and µ =

− log(1− δ(p0))

L(p0) + 1
> 0 .

In dimension 2, the result is obtained by Couronné and Messikh in the more general
setting of FK-percolation, see theorem 9 in [3]. We proceed similarly as in dimension d ≥
3, the constant appearing in this theorem first appeared in proposition 6. The probability
of the event considered in this proposition is clearly increasing in the parameter of the
underlying percolation which have parameter 1 − p, it is an event for the subcritical
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regime of the Bernoulli percolation. Let us fix a p0 > pc(2) = 1/2, then 1− p0 < pc(2) and
we can choose the parameter c(1− p0) and keep it unchanged for some 1− p ≤ 1− p0. In
theorem 9, we get the expected result with c(1− p0) for a p ≥ p0 and g(n) = n. Finally,
combining inequalities (5.2), (5.3) and (5.4), we get

P(a p-atypical event occurs in Bt)

≤ c1(p0) exp(−c2(p0)(3t)d−1) + 3dc1(p0) exp(−c2(p0)td−1) + κ(p0)(3t)2d exp(−µ(p0)t) .

The result follows.
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