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Abstract

We consider a multivariate non-linear Hawkes process in a multi-class setup where
particles are organised within two populations of possibly different sizes, such that
one of the populations acts excitatory on the system while the other population acts
inhibitory on the system. The goal of this note is to present a class of Hawkes
Processes with stable dynamics without assumptions on the spectral radius of the
associated weight function matrix. This illustrates how inhibition in a Hawkes system
significantly affects the stability properties of the system.
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1 Introduction and main result

We consider a system of interacting Hawkes processes structured within two popula-
tions. We shall label the two populations with “+” or “−” signaling that the population
acts excitatory or inhibitory on the system, respectively. Let N+, N− ∈ N be the number
of units in each population. Introduce weight functions given by

h++(t) =
c++

N+
e−ν+t, h+−(t) =

c+−
N+

e−ν+t, (1.1)

h−+(t) =
c−+

N−
e−ν−t, h−−(t) =

c−−
N−

e−ν−t, (1.2)

for t ≥ 0. In the above formula, h+− indicates the weight function from a unit in the
excitatory group “+” to a unit in the inhibitory group “−”, and so on. The coefficients
of the system of interacting Hawkes processes are the exponential leakage terms ν+ >

0, ν− > 0 and the weights c++, c+−, c−+, c−− satisfying that

c++ ≥ 0, c+− ≥ 0, c−− ≤ 0, c−+ ≤ 0. (1.3)
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Hawkes with inhibition

The multivariate linear Hawkes process with these parameters is given as

Zi+(t) =

∫ t

0

∫ ∞
0

1{z≤ψi
+(X+(s−))}π

i
+(ds, dz), 1 ≤ i ≤ N+, (1.4)

Zj−(t) =

∫ t

0

∫ ∞
0

1{z≤ψj
−(X−(s−))}π

j
−(ds, dz), 1 ≤ j ≤ N−, (1.5)

X+(t) = e−ν+tX+(0) +
c++

N+

N+∑
i=1

∫ t

0

e−ν+(t−s)Zi+(ds) (1.6)

+
c−+

N−

N−∑
j=1

∫ t

0

e−ν+(t−s)Zj−(ds),

X−(t) = e−ν−tX−(0) +
c+−
N+

N+∑
i=1

∫ t

0

e−ν−(t−s)Zi+(ds) (1.7)

+
c−−
N−

N−∑
j=1

∫ t

0

e−ν−(t−s)Zj−(ds),

where the jump rate functions ψi+ : R→ R+, ψ
i
− : R→ R+ are given by

ψi±(x) = ai± + max(x, 0), where ai± > 0, (1.8)

and where the πi±, i ≥ 1, are i.i.d. Poisson random measures on R+×R+ having intensity
dtdz. Notice that the process (X+, X−) is a piecewise deterministic Markov process
having generator

Ag(x, y) = −ν+x∂xg(x, y)− ν−y∂yg(x, y) +

N+∑
i=1

ψi+(x)[g(x+
c++

N+
, y +

c+−
N+

)− g(x, y)]

+

N−∑
j=1

ψj−(y)[g(x+
c−+

N−
, y +

c−−
N−

)− g(x, y)], (1.9)

for sufficiently smooth test functions g.
Classical stability results for multivariate nonlinear Hawkes processes found e.g. in

[1] or in the recent paper [3], which is devoted to the study of the stabilising effect of
inhibitions, are stated in terms of an associated weight function matrix Λ, imposing that
the spectral radius of Λ is strictly smaller than one. In this case the process is termed
to be subcritical . This spectral radius stability condition has a natural interpretation in
terms of a multitype branching process with immigration which is spatially structured
and where each jump of a given type (+ or −) gives rise to future jumps of the same or
of the opposite type, see [6]. The subcriticality condition ensures the recurrence of this
process (see [9]). In our system, the weight function matrix is given by

Λ =

(
c++

ν+

|c−+|
ν+

c+−
ν−

|c−−|
ν−

)
. (1.10)

Notice that in (1.10), negative synaptic weights do only appear through their absolute
values. This is due to the fact that using the Lipschitz continuity of the rate functions
leads automatically to considering absolute values and does not enable us to make profit
from the inhibitory action of c−+ and c−−. Obviously, having sufficiently fast decay, that
is, min(ν+, ν−) >> 1, is a sufficient condition fo subcriticality.
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Hawkes with inhibition

The purpose of this note is to show how the presence of sufficiently high (in absolute
value) negative weights helps stabilising the process without imposing such a subcriti-
cality condition, in particular, without imposing ν+, ν− being large. To the best of our
knowledge, only few results have been obtained on this natural question in the literature.
[1] gives an attempt in this direction but does only deal with the case when c+− and
c−+ are of the same sign (see Theorem 6 in [1]), and [3] do only work with the positive
part of the weight functions, without profiting from the explicit inhibitory part within the
system.

Our approach is based on the construction of a convenient Lyapunov function using
the inhibitory part of the dynamics. As such, this approach is limited to the present
Markovian framework where the weight functions are decreasing exponentials.

In the following, we shall write

c∗++ := c++ − ν+, c
∗
−− := c−− − ν−.

Notice that c∗++ could be interpreted as the net increase of X+ due to self-interactions of
X+ with itself. c∗−− is always negative.

Assumption 1.1. We assume the following inequalities.

c∗++ + c∗−− < 0, (1.11)

(c∗++ − c∗−−)2 < 4c+−|c−+|, (1.12)

c∗++ − c∗−− > 0. (1.13)

This assumption ensures that the system is balanced. Notice that Assumption 1.1
does not imply – nor is implied by – that the spectral radius of Λ is strictly smaller than 1.
For example, if Assumption 1.1 is satisfied for some parameters (c++, c+−, c−+, c−−, ν, ν),
i.e., ν+ = ν− = ν, such that additionally c++ + c−− < 0, then for all C > 1 and all ε > 0,
the set of parameters (Cc++, Cc+−, Cc−+, Cc−−, εν, εν) satisfies Assumption 1.1 as well.
But the associated offspring matrix ΛC,ε of the scaled parameters is equal to (C/ε)Λ,
and thus the spectral radius is also scaled by C/ε.

Assumption 1.2. We assume that either ν+ 6= ν− or ν+ = ν− and (c++, c+−), (c−+, c−−)

are linearly independent.

We are now able to state our main result. It states that under Assumptions 1.1 and 1.2,
the process X = (X+, X−) is positive Harris recurrent, together with a strong mixing
result. To state our result, for any t > 0 and for z = (x, y) ∈ R2, we write Pt(z, ·) for the
transition semigroup of the process, defined through Pt(z,A) = Ez(1A(X(t))). Moreover,
for any pair of probability measures µ1, µ2 on B(R2) and for any function V : R2 → [1,∞[,
we put

‖µ1 − µ2‖V := sup
g:|g|≤V

|µ1(g)− µ2(g)|.

Theorem 1.3. Grant Assumptions 1.1 and 1.2.
1) Then the process X = (X+, X−) is positive recurrent in the sense of Harris, and its
unique invariant probability measure µ possesses a Lebesgue continuous part.
2) There exists a function V (x, y) : R2 → [1,∞[ such that lim|x|+|y|→∞ V (x, y) = ∞ and
there exist c1, c2 > 0 such that for all z ∈ R2 and all t ≥ 0,

‖Pt(z, ·)− µ‖V ≤ c1V (z)e−c2t. (1.14)

Remark 1.4. Notice that if Assumption 1.2 is not satisfied, that is, if ν+ = ν− and if(
c−+

c−−

)
∈ H := R

(
c++

c+−

)
,
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Hawkes with inhibition

then it is easily shown that almost surely, dist(X(t), H) → 0 as t → ∞ and that H is
invariant under the dynamics. Moreover, the restriction of the dynamics to H is Harris
recurrent, having a unique invariant measure µ which is absolutely continuous with
respect to the Lebesgue measure on H. However, it is easy to show that the original
process X, defined on R2, is not Harris in this case, since it is not µ-irreducible.

2 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3.

2.1 A Lyapunov function for X

We start this section with the following useful property.

Proposition 2.1. The process X is a Feller process, that is, for any f : R2 → R which
is bounded and continuous, we have that R2 3 (x, y) = z 7→ Ezf(X(t)) = Ptf(z) is
continuous.

The proof of this result follows from classical arguments, see e.g. the proof of
Proposition 4.8 in [7], or [8].

The next result shows that if the cross-interactions, that is, influence from X+ to X−
and vice versa, are sufficiently strong, then – under mild additional assumptions – it is
possible to construct a Lyapunov function for the system that does mainly profit from
the inhibitory part of the jumps.

Proposition 2.2. Grant Assumption 1.1 and put

V (x, y) :=


V++(x, y) := c+−x

2 − c−+y
2 − (c∗++ − c∗−−)xy x ∈ R+, y ∈ R+

V+−(x, y) := c+−x
2 + qy2 − (c∗++ − c∗−−)xy x ∈ R+, y ∈ R−

V−+(x, y) := px2 − c−+y
2 − (c∗++ − c∗−−)xy x ∈ R−, y ∈ R+

V−−(x, y) := px2 + qy2 − (c∗++ − c∗−−)xy x ∈ R−, y ∈ R−

 ,

with p so small such that

−(c∗++ − c∗−−)(c−− − ν+ − ν−) + 2pc−+ > 0

and q so large such that

(c∗++ − c∗−−)[ν+ + ν− − c++] + 2qc+− > 0 and 4pq > (c∗++ − c∗−−)2.

Then lim|x|+|y|→∞ V (x, y) =∞ and there exist κ, c,K > 0 such that

AV (x, y) ≤ −κV (x, y) + c1{|x|+|y|≥K}. (2.1)

Proof. We calculate AV (x, y) = A1V (x, y) +A2V (x, y), with

A1V (x, y) = −ν+∂xV (x, y)− ν−∂yV (x, y)

and A2 the jump part of the generator.
Part 1.1 Suppose first that x ≥ |c−+|/N−, y ≥ |c−−|/N−. Then

AV (x, y) = A1V++(x, y) +A2V++(x, y) = a++x
2 + b++xy + d++y

2 + L++(x, y),

where L++ is a polynomial of degree 1. A straightforward calculus shows that

a++ = c+−(c∗++ + c∗−−),

b++ = −(c∗++ − c∗−−)(c∗++ + c∗−−)

d++ = −c−+(c∗++ + c∗−−),
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proving that
AV (x, y) = (c∗++ + c∗−−)V (x, y) + L++(x, y).

This implies that there exist K,κ > 0 such that

AV (x, y) ≤ −κV (x, y)

for all x > K, y > K, since c∗++ + c∗−− < 0 by assumption.
Part 1.2 Suppose now that 0 ≤ x < |c−+|/N− and y ≥ |c−−|/N−. Then a jump of one

of the inhibitory neurons will lead to a change x 7→ x + c−+/N− < 0. In this case we
obtain

AV (x, y) = AV++(x, y) +

N−∑
j=1

(aj− + y)(V−+(x+
c−+

N−
, y +

c−−
N−

)− V++(x+
c−+

N−
, y +

c−+

N−
)).

But
|V−+(x+

c−+

N−
, y +

c−−
N−

)− V++(x+
c−+

N−
, y +

c−+

N−
)| ≤ C,

since |x| < |c−+|, and therefore

AV (x, y) ≤ AV++(x, y) + L(y),

where L(y) is a monomial in y. The other case 0 ≤ y < |c−−|/N− and x ≥ |c−+|/N− is
treated analogously.

Part 2.1 Suppose now that x ≥ |c−+|/N−, y ≤ −c+−/N+. Then

AV (x, y) = A1V+−(x, y) +A2V+−(x, y) = a+−x
2 + b+−xy + d+−y

2 + L+−(x, y),

where L+− is a polynomial of degree 1. We obtain

a+− = c+−(c∗++ + c∗−−),

b+− = (c∗++ − c∗−−)(ν+ + ν− − c++) + 2qc+−

d+− = −2ν−q.

Since b+− > 0 by choice of q, this implies that for a suitable positive constant κ > 0,

AV (x, y) ≤ −κV (x, y) + L+−(x, y),

which allows to conclude as before.
Part 2.2 The cases x ≥ |c−+|/N−, 0 ≥ y > −c+−/N+ or 0 ≤ x < |c−+|/N−, y ≤

−c+−/N+ are treated analogously to Part 1.2.
Part 3 Suppose now that x ≤ −c++/N+, y ≥ −c−−/N−. Then

AV (x, y) = A1V−+(x, y) +A2V−+(x, y) = a−+x
2 + b−+xy + d−+y

2 + L−+(x, y),

where L−+ is a polynomial of degree 1 and where

a−+ = −2ν+p,

b−+ = (c∗++ − c∗−−)(ν+ + ν− − c−−) + 2pc−+

d−+ = −c−+(c∗++ + c∗−−).

Notice that by choice of p, b−+ > 0. The conclusion of this part follows analogously to
the previous parts 1.1 and 2.1.

Part 4 Suppose finally that x ≤ −c++/N+, y ≤ −c+−/N+. Then

AV (x, y) = A1V−−(x, y) +A2V−−(x, y) = a−−x
2 + b−−xy + d−−y

2 + L−−(x, y),
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where L−− is a polynomial of degree 1 and where

a−− = −2ν+p,

b−− = (c∗++ − c∗−−)(ν+ + ν−)

d−− = −2ν−q,

leading to the same conclusion as in the previous parts.

As a consequence of Proposition 2.2, the process X is stable in the sense that it
necessarily possesses invariant probability measures, maybe several of them. The
uniqueness of the invariant probability measure together with the Harris recurrence will
follow from the following local Doeblin type lower bound.

Proposition 2.3. For all T > 0 and for all z∗ = (x∗, y∗) ∈ R2 the following holds. There
exist R > 0, an open set I ⊂ R2 with strictly positive Lebesgue measure and a constant
β ∈ (0, 1), depending on I,R and the coefficients of the system with

PT (z, dz′) ≥ β1C(z)ν(dz′), (2.2)

where C = BR(z∗) is the (open) ball of radius R centred at z∗, and where ν is the uniform
probability measure on I.

Proof. We start with the case ν+ 6= ν−, under the assumption that c++, c−−, c+−, c−+ 6= 0.
In this case, [2] in the proof of their Lemma 6.4 establish the lower bound (2.2) for the
four-dimensional Markov process X̄ = (X++, X+−, X−+, X−−) given by

X++(t) = e−ν+tX++(0) +
c++

N+

N+∑
i=1

∫ t

0

e−ν+(t−s)Zi+(ds),

X−+(t) = e−ν+tX−+(0) +
c−+

N−

N−∑
j=1

∫ t

0

e−ν+(t−s)Zj−(ds),

X+−(t) = e−ν−tX+−(0) +
c+−
N+

N+∑
i=1

∫ t

0

e−ν−(t−s)Zi+(ds),

X−−(t) = e−ν−tX−−(0) +
c−−
N−

N−∑
j=1

∫ t

0

e−ν−(t−s)Zj−(ds),

where X++(0) +X−+(0) = X+(0), X−−(0) +X+−(0) = X−(0).
More precisely, they show that for any z̄∗ ∈ R4, there exist R̄ > 0, an open rectangle

Ī ⊂ R4 with strictly positive Lebesgue measure and a constant β̄ ∈ (0, 1), such that

P̄T (z̄, dz̄′) ≥ β̄1C̄(z̄)ν̄(dz̄′),

where C̄ = BR(z̄∗) is the (open) ball of radius R̄ centred at z̄∗, and where ν̄ is the uniform
probability measure on Ī. The above formula can be interpreted in the following way: For
any z̄ ∈ C̄, with probability β̄, the law of X̄(T ) is equal to the law of U = (U1, U2, U3, U4)

where U is a uniform random vector on Ī. Since Ī is supposed to be a rectangle, this
implies in particular the independence of its coordinates U1, . . . , U4.

Notice that we have X(T ) = AX̄(T ), where

A =

(
1 0 1 0

0 1 0 1

)
.

We now show how the above result implies the local lower bound for the original process
X. For that sake let z∗ ∈ R2 be arbitrary and fix any z̄∗ ∈ R4 such that Az̄∗ = z∗. Let R̄ be
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the associated radius and choose R such that BR(z∗) ⊂ ABR̄(z̄∗). Then for all z ∈ BR(z∗)

and z̄ ∈ BR̄(z∗) with Az̄ = z,

Pz(X(T ) ∈ ·) = Pz̄(AX̄(T ) ∈ ·) ≥ β̄P (AU ∈ ·).

Since

AU =

(
U1 + U3

U2 + U4

)
,

by independence of the coordinates U1, . . . , U4, this implies the desired result for the
two-dimensional Markov process X as well.

We finally deal with the case ν+ = ν− and (c++, c+−), (c−+, c−−) linearly independent.
Fix z∗ = (x∗, y∗) andM > |x∗|+|y∗| arbitrarily and letH := {z = (x, y) : |x| ≤M, |y| ≤M}.
Recall (1.8) and introduce finally the event E given by

• π1
+([0, T ]× [0, a1

+]) = 1,

• π1
+([0, T ]×]a1

+, a
1
+ + c++ +M) = 0,

• πi+([0, T ]× [0, ai+ + c++ +M) = 0 for all 2 ≤ i ≤ N+,

• π1
−([0, T ]× [0, a1

−]) = 1,

• π1
−([0, T ]×]a1

−, a
1
− + c+− +M) = 0,

• πj−([0, T ]× [0, aj− + c+− +M) = 0 for all 2 ≤ j ≤ N−.

Define the substochastic kernel

QTz (A) = Pz(E ∩ {X(T ) ∈ A}) = P (E)Pz(X(T ) ∈ A|E).

The conditional law of X(T ) given E, under Pz, is equal to the law of

Yz(T ) = ze−ν+T + e−ν+U+

(
c++/N+

c+−/N+

)
+ e−ν+U−

(
c−+/N−
c−−/N−.

)
,

where the two jump-times U+, U− are independent uniform variables on [0, T ]. Since

C =

(
c++/N+ c−+/N−
c+−/N+ c−−/N−

)
is invertible and the law of (e−ν+U+ , e−ν+U−) is equivalent with the Lebesgue measure
on [e−ν+T , 1]2, the law of Yz(T ) has density

fz : v 7→ |det C|−1f ◦ C−1(v − ze−ν+T ),

where f is the density of (e−ν+U+ , e−ν+U−). The density is positive on the interior of its
support

supp(Yz(T )) = e−ν+T z + C[e−ν+T , 1]2.

Since C is a homeomorphism, it is an open mapping. Thus we can find balls Br(v0) ⊂
B2r(v0) ⊂ C[e−ν+T , 1]2 for all T > 1. Take now T so large that e−ν+T supv∈H ‖v‖ < r. For
such T and all z ∈ H we have

Br(v0) ⊂ e−ν+T z +B2r(v0) ⊂ supp(Yz(T )).

Note now that H ×Br(v0) 3 (z, v) 7→ fz(v) is continuous, so the positivity of the density
gives infz∈H,v∈Br(v0) fz(v) := α > 0. We therefore conclude that

QTz (A) ≥ P (E) · α · λ(A ∩Br(v0)),

for all z ∈ H, where λ denotes the Lebesgue measure on R2. This proves the desired
result.
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We do now dispose of all ingredients to conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. 1) We apply Proposition 2.3 with z∗ = 0. Let R be the associated
radius.

By Proposition 2.2, we know that for a suitable compact set K ⊂ R2, X comes back
to K infinitely often almost surely. For z = (x, y), write

ϕt(z) = (ϕ
(1)
t (x), ϕ

(2)
t (y)) = (e−ν+tx, e−ν−ty) (2.3)

for the flow of the process in between successiv jumps and let ‖z‖1 := |x|+ |y|. Then

sup
z∈K,t≥0

‖ϕt(z)‖1 := F <∞ and sup
z∈K
‖ϕt(z)‖1 → 0 (2.4)

as t→∞. Therefore there exists t∗ such that ϕt(z) ∈ BR(0) for all t ≥ t∗, for all z ∈ K.
Hence,

inf
z∈K

Pz(X(t∗ + s) ∈ BR(0), 0 ≤ s ≤ 2T ) > 0.

Consequently, the Markov chain (X(kT ))k∈N visits BR(0) infinitely often almost surely.
The standard regeneration technique (see e.g. [10]) allows to conclude that

(X(kT ))k∈N and therefore (X(t))t are Harris recurrent. This concludes the proof of
the Harris recurrence of the process.

2) The sampled chain (X(kT ))k∈N is Feller according to Proposition 2.1. Moreover it
is ν-irreducible, where ν is the measure introduced in Proposition 2.3, associated with
the point z∗ = (0, 0). Since ν is the uniform measure on some open set of strictly positive
Lebesgue measure, the support of ν has non-empty interior. Theorem 3.4 of [11] implies
that all compact sets are ‘petite’ sets of the sampled chain. The Lyapunov condition
established in Proposition 2.2 allows to apply Theorem 6.1 of [12] which implies the
second assertion of the theorem.
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