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Abstract

We present results on phase transitions of local and global survival in a two-species
model on Poisson–Gilbert graphs. Initially, there is an infection at the origin that
propagates on the graph according to a continuous-time nearest-neighbor interacting
particle system. The graph consists of susceptible nodes and nodes of a second type,
which we call white knights. The infection can spread on susceptible nodes without
restriction. If the infection reaches a white knight, this white knight starts to spread on
the set of infected nodes according to the same mechanism, with a potentially different
rate, giving rise to a competition of chase and escape. We show well-definedness
of the model, isolate regimes of global survival and extinction of the infection and
present estimates on local survival. The proofs rest on comparisons to the process
on trees, percolation arguments and finite-degree approximations of the underlying
random graphs.
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1 Setting and main results

In this paper, we pick up a line of research that very recently has attracted some at-
tention, about the survival of some species when chased by another species, see [DJT18]
and references therein. To add another interpretation, our motivation for the model
stems from applications in device-to-device networks. Imagine a device is infected by
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Chase-escape models on Poisson–Gilbert graphs

some malware at time zero, where the device is a vertex in some random geometric
graph representing an ad-hoc telecommunication network. In order to stop the malware
from spreading into the system like an infection, special devices can be introduced that
have the ability to remove the malware from infected neighboring devices. The special
devices that carry the patch are sometimes called white knights. The white knights
are not allowed to simply transfer the patch to any device in their vicinity, but only to
malware-carrying devices. This is motivated by the fact that legal regulations do not
allow forceful installation of patches without the consent of susceptible devices, unless
the device poses a detected threat. However, once the safety hazard is detected, the
operator is allowed to take countermeasures. Once the patch is installed, the infected
device becomes a white knight itself, creating again chase-escape dynamics where the
malware is followed by white knights, see Figure 1 for an illustration. We present more
background in Section 2.

Figure 1: Realization of a random network of nodes that are either infected (red),
susceptible (blue) or white knights (green), in a disc at two finite times (left and right).
Edges (gray) connect nodes at close proximity and allow for transmission of malware or
patching. Circles (black) indicate the maximal distance of the malware to the origin in
which the malware was placed initially.

More specifically, we consider a random network of nodes in Rd given by a homoge-
neous Poisson point process X = {Xi}i∈N with intensity µ > 0, plus an additional node
o at the origin. Any two nodes Xi, Xj ∈ X ∪ {o} are connected by an edge if and only
if Xj ∈ Br(Xi), where Br(x) denotes the ball centered at x ∈ Rd with radius r > 0 that
we treat as a fixed system parameter. This gives rise to the classical Boolean model or
Gilbert graph gr(X ∪ {o}) from stochastic geometry. Any particle Xi at time t ≥ 0 can be
in one of three states,

ξ(t,Xi) =


S, if Xi is susceptible at time t,

I, if Xi is infected at time t,

W, if Xi is a white knight at time t.

For the set of all susceptible, infected and white-knight nodes at time t, we write
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Chase-escape models on Poisson–Gilbert graphs

respectively

S(t) = {Xi ∈ X ∪ {o} : ξ(t,Xi) = S},
I(t) = {Xi ∈ X ∪ {o} : ξ(t,Xi) = I} and

W (t) = {Xi ∈ X ∪ {o} : ξ(t,Xi) = W}.

The propagation mechanism is given by a continuous-time Markov jump process with
the following transition rates.

1. If ξ(t,Xi) = S, then Xi becomes infected with rate λI#
(
I(t) ∩Br(Xi)

)
and

2. if ξ(t,Xi) = I, then Xi becomes a white knight with rate λW#
(
W (t) ∩Br(Xi)

)
,

where λW > 0 is the patch rate and λI > 0 is the infection rate. Through a re-scaling
on the time axis we can set without loss of generality λW = 1 for the remainder of this
manuscript.

We will always assume that the infection starts at the origin, i.e., I(0) = {o}. Note here
that putting an additional node into the network at the origin, amounts to considering
the network under the Palm distribution, by Slivnyak–Mecke’s theorem. Using this
interpretation, the initially infected node is a “typical node” in the system. As for the
initial configuration of white knights, we assume them to be an i.i.d. thinning of X with
parameter p ∈ [0, 1]. In particular, the initial set of white knights XW = W (0) then is
again a Poisson point process with intensity µW = pµ and the initial set of susceptible
particles XS = S(0) is a Poisson point process with intensity µS = (1− p)µ. It is one of
the classical result in continuum percolation theory that there exists a unique critical
intensity 0 < µc

r < ∞ such that for µS > µc
r, the graph gr(XS ∪ {o}) contains a unique

infinite component of nodes with probability one and for µS < µc
r, the graph gr(XS ∪ {o})

contains no infinite component of nodes with probability one, see for example [MR96].
Note that due to scaling relations, without loss of generality, we could set r = 1.

More formally, let us denote by P = Po ⊗ P ξ the joint probability distribution of
the network model Po and the propagation model P ξ with initial configuration ξ. More
precisely, by Po we denote the joint distribution of the superposition of the independent
Poisson point processes XS and XW, with an additional node at the origin. For a given
realization gr(XS ∪XW ∪ {o}) of the associated Gilbert graph, P ξ denotes the probability
kernel of the Markov propagation model with ξ the initial configuration of states of nodes.
ξ is given by

ξ(Xi) = ξ(0, Xi) =


I, for Xi = o,

S, for Xi ∈ XS,

W, for Xi ∈ XW.

Our first result establishes well-definedness of the propagation model for almost-all
network realizations. The proof is presented in Section 3.

Proposition 1.1 (Well-definedness). P ξ is a well-defined standard continuous-time
Markov jump process on {I,S,G}XS∪XW∪{o}, Po-almost surely.

Our main interest lies in the analysis of extinction and survival of the infection.
Denote by

E = {there exists t ≥ 0: #I(t) = 0},

the event of extinction of the infection and call Ec the survival event. Due to the
percolation properties of the underlying network, we further want to distinguish two
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types of survival. Let us call

L = {for all t ≥ 0: #I(t) > 0} ∩ {#
( ⋃
t≥0

I(t)
)
<∞},

the event of local survival, in which infected nodes are present for all times, but the
number of such nodes is finite. On the other hand, let

G = {for all t ≥ 0: #I(t) > 0} ∩ {#
( ⋃
t≥0

I(t)
)

=∞},

denote the event of global survival, in which the infection never disappears and addition-
ally reaches infinitely many nodes. All the events E, L and G of course depend on all the
model parameters, which we suppress in the notation for convenience.

Let κr denote the Lebesgue volume of the ball Br(o) and assume µSκr ≥ 1, then we
define the quantity

ρ(µSκr) = 2µSκr − 1− 2
√

(µSκr)2 − µSκr,

and note that ρ : [1,∞) → (0, 1], x 7→ ρ(x) is strictly decreasing. Further note that if
µS ≥ µc

r, then µSκr ≥ 1, see for example [Pen91, Equation 6.2]. We are now in the
position to state our main result about extinction.

Theorem 1.2 (Global extinction). If 0 ≤ µS < µc
r, then P(G) = 0 for all λI ≥ 0 and

µW ≥ 0. Further, if µS ≥ µc
r and λI ≥ 0, then there exists µc

W(λI, µS) < ∞ such that for
all µW > µc

W(λI, µS) we have that P(G) = 0. Finally, if µS ≥ µc
r and λI ≤ ρ(µSκr), then

µc
W(λI, µS) = 0.

Before we present our result about global survival, let us comment on the preceding
theorem. In simple terms, Theorem 1.2 says that if the graph of susceptible nodes is
insufficiently connected, i.e., µS < µc

r, then global survival is impossible for any infection
rate and even without any white knights in the system. Next, if the infection is too weak
with respect to the intensity of susceptible nodes, i.e., λI ≤ ρ(µSκr), then global survival
is also impossible for any positive intensity of white knights. On the other hand, for any
infection rate, sufficiently many white knights in the system lead to global extinction, see
the green part in Figure 2 for an illustration. As we will explain later in Section 2, the
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Figure 2: Phase diagram of global survival and extinction in the plane of infection rate
vs. white-knight intensity, obtained via simulations for d = 2, r = 1, µS = 3, λW = 1.
Regimes where extinction and survival are covered by the Theorems 1.2 and 1.3 are
additionally indicated by solid lines.

ECP 25 (2020), paper 25.
Page 4/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP306
http://www.imstat.org/ecp/


Chase-escape models on Poisson–Gilbert graphs

specific form of the threshold ρ is due to a comparison to the propagation model on trees.
We also present a more detailed explanation and references to preceding research there.

The next result is about global survival, see the red part in Figure 2 for an illustration.

Theorem 1.3 (Global survival). For all µS > µc
r and µW ≥ 0 there exists λcI(µW, µS) <∞

such that for all λI > λcI(µW, µS), we have that P(G) > 0.

In words, Theorem 1.3 states that there is a positive chance for global survival if
the underlying graph of susceptible nodes is sufficiently connected and the infection is
strong enough to overcome the chasing white knights.

For statements about local survival, let us introduce the notation Co for the cluster of
all nodes in X = XS ∪XW for which there exists a path in gr(X ∪ {o}) connecting them
to the origin. Similarly, we denote by CSo the cluster of nodes connected to the origin in
gr(XS ∪ {o}). Further, denote by θ(µS) = Po(#CSo =∞), the percolation probability of
the process of susceptible nodes. Note that the infection can never leave the set CSo and
hence global survival is impossible if CSo is finite and this implies P(G) ≤ θ(µS).

Lemma 1.4 (Local survival). For all parameters,

exp(−µκr) ≤ P(L) ≤ (1− θ(µS)) exp(−µWκr).

In particular, if the process of susceptible nodes is subcritical, we have P(G) = 0,
P(L) ≤ exp(−µWκr) and thus exp(−µκr) ≤ P(Ec) ≤ exp(−µWκr). If the process of
susceptible nodes is supercritical but the other parameters guarantee global extinction
as described in Theorem 1.2, then for the survival probability exp(−µκr) ≤ P(Ec) ≤
(1− θ(µS)) exp(−µWκr). Note that µ 7→ θ(µ) tends to one exponentially fast, see [PP96],
and hence local survival is exponentially unlikely for dense networks both in µS and µW.

In the next section we explain the strategy of the proofs, and comment on related
results in the literature. The proofs are presented in Section 3.

2 Strategy of proofs

The study of epidemic models defined in terms of interacting particle systems with
some additional randomness coming from an environment has, by now, a long history,
see for example the early works [Lig92, And92]. The consideration of such processes on
random graphs has attracted attention more recently, see for example [Dur10a, Dur10b]
and references therein. Here, a particularly interesting class is given by random graphs
with a prescribed degree distribution, see for instance [CD09, MVY13, MMVY16, MV16],
dense Erdös–Rényi graphs [dALRR15], and Galton–Watson trees [Kor16]. The literature
on interacting particle systems on random geometries, i.e., where the random graphs
are embedded in space, and in particular do not obey any degree bounds, is much
sparser and younger. Notable here is the work [MS16], which establishes existence of a
subcritical phase of the contact process on Poisson–Gilbert graphs and Poisson–Delaunay
tessellations.

As mentioned in the beginning, propagation models analogous to the one pre-
sented in this manuscript have been studied in recent years on various fixed networks
such as trees [Kor05], complete graphs [Kor15], and lattices [DJT18] also via simula-
tions [TKL18], and mainly motivated by applications in probabilistic biology and rumor
spreading. Typically, there the infection is represented by red particles and white knights
by blue particles. Apart from our generalization towards random geometries, another
difference in the analysis presented here is that, in the initial configuration, the white
knights form a Poisson point process of infinitely many nodes, whereas in the preceding
works on fixed geometries there is only a finite number of white knights present in the
system. This leads to the new phenomenon that we can have almost-sure extinction,
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even for λI > 1, as the infection will constantly discover white knights. Nevertheless,
our proofs are partially based on the results for fixed networks, in particular the tree
considered by Kordzakhia [Kor05], since there it is possible to derive explicit bounds for
the infection rate by balancing numbers of paths compared with propagation along one
path, which is then in fact one dimensional. More precisely, let us consider our propaga-
tion model on a fixed connected graph H that includes a root {o} and a generic point
{o′} which is only connected to the root by a single edge. Let the starting configuration
be given by

ξ′(x) =


W, for x = o′,

I, for x = o,

S, H \ {o, o′}.

Let λcI(H) denote the critical rate for (global) extinction of the infection based on the
propagation model as explained above, where the underlying Gilbert graph and the initial
condition ξ are replaced by H and ξ′. Then, the following result is proved in [DJT18,
Theorem 1, Corollary 2].

Lemma 2.1 (Extinction on fixed networks). Let Γn(H) denote the set of self-avoiding
paths of length n in H, starting from the root. If there exists k ∈ {2, 3, . . . } such that for
all n ∈ N we have that #Γn(H) ≤ kn, then

λcI (H) ≥ λcI (Tk) = 2k − 1− 2
√
k2 − k,

where Tk is the rooted k-ary tree.

The next result establishes existence of a constant, the connective constant, bounding
the number of self-avoiding paths for almost-all realizations of the Poisson–Gilbert graph.

Lemma 2.2 (Connective constant). For all µS, r > 0 and all γ > µSκr we have

lim sup
n↑∞

n−1 log #Γn
(
gr(XS ∪ {o})

)
≤ log γ, (2.1)

for Po-almost all XS.

We present the proof of Lemma 2.2 in Section 3. Now the last statement of The-
orem 1.2 is an immediate consequence of the following proposition, which leverages
Lemma 2.2 and the proof idea of Lemma 2.1 to the setting of infinitely-many white
knights.

Proposition 2.3. If µS ≥ µc
r, λI ≤ ρ(µSκr) and µW > 0, then P(G ∩ {#Co =∞}) = 0.

Proof of Theorem 1.2, first and last statement. First of all, if µS < µc
r, then, as men-

tioned above, P(G) ≤ θ(µS) = 0. For the last statement, let µS ≥ µc
r, λI ≤ ρ(µSκr) and

µW > 0, then using Proposition 2.3, we have that

P(G) = P(G ∩ {#Co =∞}) + P(G ∩ {#Co <∞}) = 0,

since global survival is impossible on finite clusters.

The technique used for the proof of Proposition 2.3, which is based on the works
on trees, fail in the regimes of large λI, since the discovery of a new white knight on a
one-dimensional path not only stops the infection on this path, but also creates new white
knights. However, with the help of percolation arguments we prove in Section 3 the
following proposition, which immediately implies the second statement of Theorem 1.2.

Proposition 2.4. For all λI ≥ 0 and µS ≥ 0, there exists µc
W(λI, µS) <∞ such that for all

µW > µc
W(λI, µS), we have that P(G ∩ {#Co =∞}) = 0.
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Proof of Theorem 1.2, second statement. In the setting of Proposition 2.4, we have
P(G) = P(G ∩ {#Co =∞}) + P(G ∩ {#Co <∞}) = 0.

Before we comment on the proof of Theorem 1.3, let us make some remarks on
Figure 2. First, the linear dependence of λI 7→ µc

W(µS, λI) can be heuristically understood
as follows. Consider the rescaled process of white knights with intensity αµW and patch
rate 1/α for α > 0. Then, the rescaled chase-escape model, in the limit as α tends
to infinity, converges to a contact process on gr(XS ∪ {o}) with recovery rate given
by µWκr and infection rate λI. Then, the linear dependence in λI emerges through a
re-scaling on the time axis. As a second remark, we note that our simulations, leading
to the phase-transition line in Figure 2, indicate that global survival is even possible
in a situation where the infection is strictly slower than the patching, i.e., λI < 1. This
is proven for trees [Kor05], but only conjectured on the lattice [DJT18], and also not
covered by our results. The simulations also suggest monotonicity and uniqueness of the
phase-separating line.

The main challenge for the proof of Theorem 1.3 lies in the fact that almost-all network
realizations have an unbounded degree. Although large degrees should support survival
of the infection, lack of monotonicity prevents us from using this idea directly. See also
our comments on monotonicity below. However, we can estimate the network by graphs
of bounded degree and use discrete percolation arguments for the approximations. The
proof of Theorem 1.3 is presented in Section 3.

Finally the quantitative statements about local survival as presented in Lemma 1.4,
are a simple consequence of void-space probabilities, let us give the proof here as well.

Proof of Lemma 1.4. First, note that local survival is only possible if #CSo < ∞ since
otherwise, with probability one, there exists a white knight in the set Br(CSo ) =⋃
Xi∈CS

o
Br(Xi), which is eventually reached by the infection. Consequently, the in-

fection can only survive if it escapes towards infinity on CSo . In particular, local survival
is only possible if no white knights are in Br(CSo ), i.e.,

P(L) = P(L ∩ {#CSo <∞}) = E
[

exp(−µW|Br(CSo )|)1{#CSo <∞}
]

≤ (1− θ(µS)) exp(−µWκr).

On the other hand, the infection survives if the origin is isolated. This gives the lower
bound.

Let us finish this section by commenting on monotonicity properties of the phase
diagram as sketched in Figure 2. Both, simulations and common sense suggest exis-
tence of a unique phase-separating curve and several monotonicities depending on the
parameters. For example that additional infected nodes or an increase in the infection
rate should increase the probability for the infection to survive. However, to prove
existence, uniqueness and monotonicities is challenging, mainly because of the existence
of configurations that exhibit counterintuitive effects, standing in the way of coupling
arguments. Let us give one example here. Note that white knights can only act towards
perviously infected nodes, and therefore an increase in infected nodes also benefits the
spread of white knights. To illustrate this, consider the nearest-neighbor graph on N as
presented in Figure 3 with a white knight at node 1, an infection at node 3 and all other
nodes being susceptible. Imagine node 2 and its associated edges were absent, then the
infection would spread towards infinity unstopped for any positive infection rate. Now,
if we add an infected node at position 2, then more infections are in the system. Still,
if λI < 1, the infection will now go extinct. Other examples can be constructed to also
showcase configurations where an increase of λI leads to a decrease for the probability
of survival of the infection.
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Figure 3: Illustration of a configuration of a white knight (green, position 1), an infected
node (red, position 3) and susceptible nodes (blue) for which adding an infected node at
position 2 would stop the infection that would otherwise propagate to infinity.

Let us finally mention that in the survival regime it is reasonable to believe that there
exists an infection speed α depending on all the parameters of the system, such that as
t→∞ we have Bαt(1−ε)(o) ⊂ I(t) ⊂ Bαt(1+ε)(o) with probability one, conditioned on the
event that the origin is connected to infinity.

In the following section we present all remaining proofs.

3 Proofs

In the sequel, we denote by Eo and Eξ the expectations associated to Po and P ξ,
respectively. We abbreviate for balls, Bn(o) by Bn and for boxes, Qn(o) by Qn. For any
A ⊂ Rd we write Ac = Rd \A.

Proof of Proposition 1.1. Note that for positive intensities, Po-almost surely, all the
Poisson–Gilbert graphs gr(XS ∪ {o}), gr(XW ∪ {o}) and gr(X ∪ {o}) have an unbounded
degree, potentially leading to blow-ups in finite time for the propagation model. In
particular, well-definedness of the propagation model on the Gilbert graphs can not
be guaranteed using the standard conditions based on generators. For example there
exists no finite bound on the transition rate uniformly in the nodes, as required in [Lig85,
Proposition 3.2 Chapter 3].

However, in our case, we can establish well-definedness due to the fact that in
our initial condition there is only one infection present. More precisely, consider the
process (ξn(t, ·))t≥0 on gr

(
(X ∪ {o}) ∩ Bn

)
with n ∈ rN, defined via the same rates as

presented above. Then, for Po-almost-all network realizations, the process (ξn(t, ·))t≥0 is
well-defined and standard as a finite state space Markov process. Next, let

τn = inf{t > 0: In+1(t) 6⊂ Bn}

denote the time at which the infection, based on the process ξn+1(t, ·), hits the boundary
of Bn. Then, for all t < τn our original process ξ(t, ·) coincides with ξn(t, ·) and is thus
well-defined.

What remains to be shown is that P-almost surely limn↑∞ τn =∞. To show this, we
will use a large-deviation argument to establish a bound on the minimal asymptotic
speed of the infection process and apply the Borel–Cantelli lemma. More precisely, first
note that for any α > 0 and n ∈ rN, we have that

P ξ (τn < n/α) ≤ #Γn/rP
ξ
(
Sn/r < n/α

)
, (3.1)

where #Γm is the number of self-avoiding paths in gr(XS ∪ {o}) of length m ∈ N starting
in {o} and Sm is the sum of m independent exponentially-distributed random variables
with parameter λI. For the estimate (3.1) we used that, in order for the infection to
reach Bc

n in less than n/α time, at least n/r infection events happened along at least one
of the self-avoiding paths of length n/r in less than n/α time. Now, using Lemma 2.2 and
large-deviation bounds for independent exponentially-distributed random variables, we
obtain for α > rλI and Po-almost all network realizations the bound

lim sup
m↑∞

1

m
log
(

#ΓmP
ξ
(
Sm <

mr

α

))
≤ log γ − λIr

α
+ 1 + log

λIr

α
= −Cγ,λI,r(α). (3.2)
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In particular, for α > αc with αc = inf{α > rλI : − Cγ,λI,r(α) > 0}, there exists no ∈ rN
such that ∑

n∈rN
P ξ (τn < n/α) < no +

∑
n∈rN : n>no

exp(−nCγ,λI,r(α)/2) <∞.

Finally, by an application of the Borel–Cantelli lemma, Po-almost surely, we have that
P ξ
(
lim supn↑∞{τn < n/α}

)
= 0 and thus almost surely under P, for all but finitely many

n, we have τn ≥ n/α, which finishes the proof.

Let us note that the above proof of existence of the process also derives bounds on
the minimal speed of propagation of the infection in terms of solutions to fixed-point
equations determining the critical speed αc.

Proof of Lemma 2.2. First, we compute the expectation of #Γn by multiple applications
of Slivnyak–Mecke’s theorem. More precisely, let Xi0 be an alternative notation for o,
then for any n ∈ N we have that

Eo[#Γn] = Eo
[ 6=∑
i1,...,in∈N

n∏
k=1

1{|Xik −Xik−1
| < r}

]

= µS

∫
Eo
[ 6=∑
i1,...,in−1∈N

n−1∏
k=1

1{|Xik −Xik−1
| < r}1{|x−Xin−1

| < r)}
]
δx

= µSκr Eo
[ 6=∑
i1,...,in−1∈N

n−1∏
k=1

1{|Xik −Xik−1
| < r}

]
= (µSκr)

n,

where the 6= sign indicates that we sum over mutually distinct indices. Next, using the
Markov inequality, we have

Po(#Γn ≥ γn) ≤ γ−nEo[#Γn] =
(
µSκr/γ

)n
,

and thus, for γ > µSκr we obtain
∑
n∈N Po(#Γn ≥ γn) <∞. Hence, the Borel–Cantelli

lemma yields that #Γn > γn only for finitely-many n. This completes the proof.

Proof of Proposition 2.3. It suffices to consider the critical and supercritical regimes
where µS ≥ µc

r. Let us abbreviate A =
⋃
t≥0 I(t). First, note that it suffices to prove

that for almost-all network realizations we have that Eξ[#A] <∞ for λI ≤ ρ(µSκr) and
any µW > 0, as this implies P ξ(G) = 0. For this, we want to bound #A from above by
numbers of infected nodes along one-dimensional paths. We have to be careful here
since by the lack of monotonicity, as explained at the end of Section 2, we cannot simply
remove white knights in order to produce a situation as in Lemma 2.1. However, note
that for every x ∈ A there must exist a self-avoiding path ϕn(x) ⊂ gr(XS ∪ {o}) of some
finite length n = n(x), started at the origin, such that x received its infection along ϕn(x).
Let In ⊂ A denote the set of nodes in A that were infected at some time along a path of
length n. Then, for Po-almost all X with XW ∩Br(o) 6= ∅, i.e., realizations of the network
where the origin is directly adjacent to a white knight, we have

Eξ[#A] ≤
∑
n≥0

Eξ[#In] ≤
∑
n≥0

#ΓnP
′(o infects n on N ∪ {o} ∪ {o′}), (3.3)

where P ′ denotes the distribution of the process described in Lemma 2.1 for H =

N ∪ {o} ∪ {o′}. Here, we used that more neighboring white knights along a fixed path
lead to even smaller probability of survival.
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An application of Lemma 2.1, as presented in [DJT18, Theorem 1 and Corollary 2],
yields that

P ′(o infects n on N ∪ {o} ∪ {o′}) ≤ C(λI)λ
′n
I n−3/2,

for λ′I = 4λI/(1 + λI)
2, which is derived via the reflection principle in case of λI < 1.

Note that by assumption, γ > 1 and thus for λI ≤ 2γ − 1 − 2
√
γ2 − γ < 1 in particular

λ′I < 1. Hence, for such λI, the right-hand side of (3.3) is finite and thus Eξ[#A] <∞ for
Po-almost all X with XW ∩Br(o) 6= ∅.

To finish the proof let us consider the network realizations where XW ∩ Br(o) = ∅,
i.e., where the origin is not adjacent to a white knight. Denote the set of all connected
finite subsets of nodes that contain at most one node adjacent to a white knight by

J =
{
J ⊂ XS ∪ {o} : o ∈ J,#J <∞, J connected,#{Xi ∈ J : dist(Xi, XW ) < r} = 1

}
,

where dist(x,B) = inf{|x − y| : y ∈ B} denotes the distance of a point x ∈ Rd to a set
B ⊂ Rd. For any J ∈ J we define ξJ to be the configuration where the infected nodes
are precisely given by J , i.e., we define for all Xi ∈ X

ξJ(Xi) =


I, if Xi ∈ J
S, if Xi ∈ XS \ J
W, if Xi ∈ XW.

Then, for Po-almost-all X with #Co = ∞ we define τ = inf{t ≥ 0: ξ(t, ·) = ξJ for some
J ∈ J }, the stopping time at which the process explores the white knights for the first
time. With these definitions, note that∑

J∈J
P ξ
(
ξ(τ) = ξJ

)
= 1,

since every realization of the infection propagation on an infinite cluster eventually
reaches a white knight in finite time. Furthermore, the node that explored the white
knight is unique and will be denoted by oJ . Therefore, for Po-almost-all X with #Co =∞
we have

P ξ(G) =
∑
J∈J

P ξ
(
G | ξ(τ) = ξJ

)
P ξ(ξ(τ) = ξJ).

Now, due to the strong Markov property, we have

P ξ(G | ξ(τ) = ξJ) = P J(G | ξ(τ) = ξJ) ≤ P J(G)/P J(ξ(τ) = ξJ) = 0,

where P J denotes the infection process not started in o, but in oJ , constructed on
the same probability space as P ξ. The last equality holds, as P J(ξ(τ) = ξJ) > 0 and
P J(G) = 0, since with these definitions, there is a white knight next to the origin and the
first part of the proof can be applied again. Now, since J is countable, we can conclude
that indeed for Po-almost all X we have P ξ(G) = 0.

Proof of Proposition 2.4. The proof is based on a percolation argument. We call a node
Xi ∈ XS an open node if

1. Xi is not isolated in gr(XS ∪ {o}), and

2. once Xi is infected, then it transmits its infection towards at least one of its
neighbors in XS (regardless if neighbors are already infected or patched) before
Xi is directly patched by a neighboring white knight in XW.
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We call Xi a closed node otherwise. For example Xi is an open node if it is not isolated
in gr(XS ∪ {o}) but isolated in gr(XW ∪ {Xi}). Note that a node is labeled open or closed
based on its neighborhood at initial time. If we would do the labelling at some later
time, there would be potentially more white knights or less susceptible nodes in the
neighborhood. Hence, it would be less likely for the node to be open. This construction is
designed particularly to create a time-monotone behavior (with respect to the probability
for a node to be open), in an otherwise notoriously non-monotone model. An infinite
self-avoiding path of open nodes in gr(XS ∪ {o}) does not guarantee global survival of
the infection, since we do not require that the infection propagates to infinity on this
path. However, absence of an infinite self-avoiding path of open nodes implies absence of
global survival in the realization. Indeed, if there is no path to infinity of nodes that are
able to infect at least one neighboring node from the initially susceptible nodes, then in
particular there is no path to infinity of nodes that are able to infect neighboring nodes
that are still susceptible at the time at which the infection arrives. Let us emphasize
that this comes from the fact that less susceptible nodes or more white knights in
the neighborhood make it even harder to transmit the infection towards at least one
neighboring susceptible node before being patched by a neighboring white knight.

In order to show absence of an infinite self-avoiding path of open nodes, let us
discretize space into boxes Q3r(3rz) of side-length 3r, centered at 3rz with z ∈ Zd and
use results on lattice percolation. The site z ∈ Zd is called an open site, if one of the
following events happens,

Am(z) = {#
(
XS ∩Q3r(3rz)

)
≥ m}, or

Bn(z) = {there exists Xi ∈ XS ∩Q3r(3rz) : #
(
XS ∩Br(Xi)

)
≥ n+ 1}, or

Ck,µW
(z) = {there exists x ∈ Q3r(3rz) : #(Br(x) ∩XW) < k}

D(z) = {Q3r(3rz) contains an open node}.

Otherwise z ∈ Zd is called a closed site. Now, suppressing the dependence on z if z = o,
we have that

P(o is an open site) = 1− P(Dc | Ac
m ∩Bc

n ∩ Cc
k,µW

)P(Ac
m ∩Bc

n ∩ Cc
k,µW

).

If a node Xi has n ≥ 1 neighbors in XS and k ≥ 0 neighbors in XW, the probability for
Xi to be a closed node is given by k/(k + nλI). Hence, we can bound

P(Dc | Ac
m ∩Bc

n ∩ Cc
k,µW

)

≥ Eo
[ ∏
Xi∈XS∩Q3r(o)

#
(
XW ∩Br(Xi)

)
#
(
XW ∩Br(Xi)

)
+
(
#(XS ∩Br(Xi))− 1

)
λI
| Ac

m ∩Bc
n ∩ Cc

k,µW

]
≥
( k

k + nλI

)m
,

and

P(Ac
m ∩Bc

n ∩ Cc
k,µW

) ≥ 1−
(
P(Am) + P(Bn) + P(Ck,µW)

)
.

Now, for any λI ≥ 0 and ε > 0, there exist mo, no ∈ N such that for all m > mo and n > no
we have

P(Am) < ε and P(Bn) < ε

and ko(m,n) ∈ N such that for all k > ko(m,n) we have( k

k + nλI

)m
> 1− ε.
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Finally, we can then pick µc
W(k) sufficiently large, such that for all µW > µc

W(k) also

P(Ck,µW
) < ε.

Together, the probability for an open site can be made arbitrarily small, since

P(o is an open site) ≤ 1− (1− ε)(1− 3ε) = 4ε− 3ε2.

The random field of good and bad sites constitutes a two-dependent site-percolation
model on Zd that can be dominated by an independent site-percolation model, using
the domination-by-product-measures result [LSS97, Theorem 0.0]. Then, for sufficiently
large µW we have absence of percolation of good sites. As the side-length of the boxes
is larger than 2r, this also excludes the possibility of continuum percolation of open
nodes in the Gilbert graph, which then implies absence of global survival of the infection
process also on the event {#Co =∞}.

Proof of Theorem 1.3. Similar to the proof of Proposition 2.4 we will use a percolation
argument for a suitably chosen discretization of Rd to show existence of an infinite
cluster of nodes that transmit their infection faster than any cure attempt of neighboring
white knights. More precisely, we call Xi ∈ XS an open node if Xi transmits the infection
to all its neighbors in gr(XS) before an attempt to cure Xi has been made by any neighbor
in gr(XS ∪ XW). We call Xi a closed node otherwise. With this definition, using also
the strong Markov property, for the global survival of the infection, it suffices to prove
existence of an infinite cluster of open nodes, which is connected to the origin, with
positive probability.

We aim to achieve this by choosing the infection rate λI large, however, due to
the unbounded degree of the graphs, there is no globally sufficiently large infection
rate such that for Po-almost all graphs the survival rate is above a fixed ε > 0. We
therefore introduce a discretization of Rd into boxes and distinguish those boxes in
which the degrees are bounded. For this, let gm,nr,λI

(XS ∪XW) denote the Gilbert graph
with connectivity threshold r > 0 and vertex set

{Xi ∈ XS : #
(
XW ∩Br(Xi)

)
≤ m, #

(
XS ∩Br(Xi)

)
≤ n+ 1 and Xi is an open node}.

(3.4)

This is a Gilbert graph based on a dependently thinned Poisson point process, where
vertices are removed if they have too many neighbors in XS and XW or transmit their
infection too slowly. Let θm,n,λI(µS, µW) denote the associated percolation probability.
Our parameters are such that θ(µS) > 0. We claim that

lim
m,n,λI↑∞

θm,n,λI(µS, µW) = θ(µS). (3.5)

If (3.5) holds, then this implies that for sufficiently large m,n and λI also gm,nr,λI
(XS ∪XW)

is supercritical and the infection survives globally. In order to prove (3.5), first note
that for all m,n, λI we have that θm,n,λI(µS, µW) ≤ θ(µS) since gm,nr,λI

(XS ∪XW) is based
on a thinning of the vertices in gr(XS). To show the reverse direction, consider boxes
Qs(sz) for z ∈ Zd with s > r and define for any set A ⊂ Rd the diameter of A by
diam(A) = sup{|x − y| : x, y ∈ A}. We say that a site z ∈ Zd is a good site if all the
following events happen

Am(z) = {for all Xi ∈ XS ∩Q3s(sz) : #
(
XW ∩Br(Xi)

)
≤ m},

Bn(z) = {for all Xi ∈ XS ∩Q3s(sz) : #
(
XS ∩Br(Xi)

)
≤ n+ 1},

CλI
(z) = {all Xi ∈ XS ∩Q3s(sz) are good nodes},

Ds(z) = {gr(XS) contains a unique cluster Z in Qs(sz) with diam(Z) ≥ s/2}, and

Es(z) = {gr(XS) contains a unique cluster Z in Q3s(sz) with diam(Z) ≥ s/2}.
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Otherwise z is called a bad site. In particular, if o is connected in gr(XS) to ∂Qs and o is
contained in an infinite cluster of good sites z ∈ Zd, then the infection survives globally.
Indeed, since o is connected in gr(XS) to ∂Qs, there is a cluster Zo with diam(Zo) ≥ s/2
in Qs(o). Further, let z be a neighbor of o in the infinite component of good sites. Then,
there exists a unique cluster Zz in Qs(z) again with diam(Zz) ≥ s/2. Since Zo and Zz are
also unique in Q3s(z) respectively Q3s(o), Zo and Zz must be connected in Q3s(o)∪Q3s(z).
This can be iterated along the path of good sites to infinity. By the goodness of that
path, also there is no thinning, and hence the infection can globally survive. Now we can
estimate,

0 < θ(µS) ≤ P(o is part of a finite cluster of good sites) + P(G),

and it suffices to show that the percolation probability for the process of good sites can
be pushed arbitrarily close to one as the parameters s,m, n and λI tend to infinity. Note
that by the definition of goodness of nodes, goodness of sites, and since s > r, the process
of good sites is a 3-dependent percolation process. Using the domination-by-product
measure result [LSS97, Theorem 0.0], it suffices to bound the 3-dependent percolation
process from below by a supercritical Bernoulli percolation process with parameter
arbitrarily close to one, in the usual sense of evaluations of increasing events. In other
words, it suffices to show that

lim sup
s↑∞

lim sup
m↑∞

lim sup
n↑∞

lim sup
λI↑∞

P(o is a bad site) = 0.

For this, we can bound the probability for a bad site by

P(o is a bad site) = 1− P(Am ∩Bn ∩ CλI ∩Ds ∩ Es)
≤ P(Am ∩Bn ∩ Cc

λI
) + P(Ac

m) + P(Bc
n) + P(Dc

s) + P(Ec
s),

where we suppressed the dependence on z = o. Now, using the large-deviation estimates
in [PP96, Theorem 2], we can choose s sufficiently large such that

P(Dc
s) < ε and P(Ec

s) < ε.

Next, for given s, we can choose n and m sufficiently large such that also

P(Ac
m) < ε and P(Bc

n) < ε,

by convergence in bounded domains. Finally, for given s,m and n, note that, under the
events Am and Bn, the probability of a node Xi ∈ XS ∩ Q3s(o) to be an open node is
bounded from below by(

λI

λI + #
(
Br(Xi) ∩XS

)
− 1 + #

(
Br(Xi) ∩XW

))#(Br(Xi)∩XS)−1

≥
(

λI
λI + n+m

)n
.

Moreover, by the neighbor constraint imposed by the event Bn, there is also a maximal
number of nodes that can be contained in Q3s(o), i.e., there exists k = k(s, n) ∈ N such
that #(XS ∩Q3s(o)) < k. This implies that

P(Am ∩Bn ∩ Cc
λI

) ≤ 1−
(

λI
λI + n+m

)nk
,

where we used that the indicators that nodes are open is a family of independent random
variable indexed by the nodes in XS. In particular, for given s,m and n, we can now
choose λI sufficiently large such that also

P(Am ∩Bn ∩ Cc
λI

) < ε,

which concludes the proof.
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