
Bayesian Analysis (2022) 17, Number 1, pp. 127–164

Joint Bayesian Analysis of Multiple
Response-Types Using the Hierarchical

Generalized Transformation Model

Jonathan R. Bradley∗

Abstract. Consider the situation where an analyst has a Bayesian statistical
model that performs well for continuous data. However, suppose the observed
dataset consists of multiple response-types (e.g., continuous, count-valued, Ber-
noulli trials, etc.), which are distributed from more than one class of distributions.
We refer to these types of data as “multiple response-type” datasets. The goal
of this article is to introduce a reasonable easy-to-implement all-purpose method
that “converts” a Bayesian statistical model for continuous responses (call this the
preferred model) into a Bayesian model for multiple response-type datasets. To do
this, we consider a transformation of the multiple response-type data, such that the
transformed data can be reasonably modeled using the preferred model. What is
unique with our strategy is that we treat the transformations as unknown and use a
Bayesian approach to model this uncertainty. The implementation of our Bayesian
approach to unknown transformations is straightforward, and involves two steps.
The first step produces posterior replicates of the transformed multiple response-
type data from a latent conjugate multivariate (LCM) model. The second step
involves generating values from the posterior distribution implied by the preferred
model. We demonstrate the flexibility of our model through an application to
Bayesian additive regression trees (BART) and a spatio-temporal mixed effects
(SME) model. We provide a thorough joint multiple response-type spatio-temporal
analysis of coronavirus disease 2019 (COVID-19) cases, the adjusted closing price
of the Dow Jones Industrial (DJI), and Google Trends data.

Keywords: Bayesian hierarchical model, big data, multiple response-types,
Markov chain Monte Carlo, non-Gaussian, nonlinear, Gibbs sampler, log-linear
models.
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1 Introduction

Suppose you have a Bayesian statistical model for continuous responses that you believe
works extremely well in several settings. Refer to this statistical model as the “preferred
model.” Also suppose you have observed a dataset consisting of multiple response-
types (e.g., continuous, count-valued, Bernoulli trials etc.). These response-types may be
“mismatched” with the response-types of the preferred model. For example, the dataset
may consist of count-valued observations, but this preferred model may be derived
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only for Gaussian data. The primary goal of this article is to introduce a reasonable
easy-to-implement all-purpose method that “converts” a Bayesian statistical model for
continuous responses into a Bayesian model appropriate for the analysis of multiple
response-type datasets.

There are several methods for jointly modeling data consisting of multiple response-
types, however these approaches require one to either abandon the preferred model, or it
requires you modify it in a manner that creates computational difficulties. For example,
Markov models Yang et al. (2014), copulas (Liu et al., 2009; Xue and Zou, 2012; Dobra
and Lenkoski, 2011; Liu et al., 2012), multi-task learning models (Argyriou et al., 2007;
Kim and Xing, 2009; Yang et al., 2009), regression trees, and random forests (Hastie
et al., 2009; Fellinghauer et al., 2013) have been adapted to this multiple response-type
setting. However, these methods do not immediately incorporate a data scientist’s pre-
ferred model. An important goal of this article is to allow our model to be flexible enough
that it can be adapted to other data scientist’s preferred model. While our proposed
model allows for this flexibility, it can be interpreted as a simple combination of two
existing methods: generalized linear mixed effects models (GLMM; e.g., see McCulloch
et al., 2008, for a standard reference) and LCMs (Bradley et al., 2020+).

The GLMM is a standard approach to model non-Gaussian data. For example, Pois-
son data is modeled hierarchically, where the log mean parameter can be analyzed using
a data scientist’s preferred model. GLMMs can lack conjugacy, which creates noticeable
difficulty when implementing a GLMM on a modern high-dimensional dataset. There
are several examples of where this approach has been used to analyze multiple response-
type datasets (e.g., see Christensen and Amemiya, 2002; Schliep and Hoeting, 2013; Wu
et al., 2015; Clark et al., 2017; Todd et al., 2018, among several others). A more re-
cent alternative is the LCM. Basic theoretical results and empirical analyses in Bradley
et al. (2018), Hu and Bradley (2018), Yang et al. (2019), Bradley et al. (2019b), and
Bradley et al. (2020+) suggest that one can outperform a standard GLMM (specifically
Latent Gaussian Process (LGP) models) in terms of prediction error. However, both
the GLMM and LCM requires the preferred model to be a mixed effects model, and the
LCM requires one to modify the distribution of random effects to follow the appropriate
distribution based on conjugacy.

A classical approach is to transform the data, so that the transformed data can be
reasonably modeled using the distribution assumed by the preferred model. In the non-
Bayesian settings this literature is extremely well-developed and includes the Box-Cox
transformations (Box and Cox, 1964), the alternating conditional expectations (ACE;
Breiman and Friedman, 1985) algorithm, graphical techniques (McCulloch, 1993), and
the Yeo-Johnson power transformation (Yeo and Johnson, 2000), among other tech-
niques. More recently developments in rank based algorithms (Servin and Stephens,
2007; McCaw et al., 2019; Beasley et al., 2009) and quantile-matching (McCullagh and
Tresoldi, 2020) have also been proposed in the non-Bayesian setting. It is important to
note that Bayesian models for transformations have been proposed as well, but focus
on the case where continuous non-normal data are observed and the preferred model
assumes normality. In particular, these Bayesian models put a prior on the free parame-
ter within the Box-Cox transformation or the Yeo-Johnson power transformation (Kim
et al., 2013; Charitidou et al., 2015; Bean et al., 2016; Charitidou et al., 2018). No such
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Bayesian model has been developed to analyze multiple response-type data using any
preferred model for a continuous response.

There are three distributions that define our hierarchical generalized transforma-
tion (HGT) model: (a) the distribution of the data given a transformation, (b) the
prior distribution of the transformation, and (c) both the distribution of the transfor-
mation given the latent process and the distribution of the process of interest (i.e.,
multiplicative terms in the aforementioned preferred model). Here, cross-correlations
are explicitly modeled using the preferred model. In this article, we model the data
given a transformation (a) using members from the exponential family. Specifically,
given a transformation, continuous data follows the normal distribution, categorical
data follows the binomial distribution, and count-data follow the Poisson distribution.
These distributions are conjugate with the normal, the logit-beta (Gao and Bradley,
2019; Bradley et al., 2019b) and the log-gamma distributions (Bradley et al., 2018; Hu
and Bradley, 2018; Bradley et al., 2020+; Yang et al., 2019), which are special cases
of the Diaconis-Ylvishaker (DY) distribution (e.g., see Diaconis and Ylvisaker, 1979;
Chen and Ibrahim, 2003, for key references). Consequently, the prior distribution of the
transformation (b) is modeled with a DY distribution, which defines an LCM model
for the transformations. To combine (a), (b), and (c) we also have to introduce a mul-
tiplicative term to the preferred model to ensure propriety and to avoid contradictions
when computing the marginal distribution of the transformations. While we include
this multiplicative term in the expression of the preferred model, implementation of the
preferred model is un-altered when learning the values of the latent process and asso-
ciated parameters. The implementation of our approach can be done using composite
sampling. In particular, the first step is to sample from the posterior distribution of the
transformation. Then the second step is to sample from the conditional distribution of
the latent process of interest given the transformation.

The first step of the composite sampler is computationally straightforward because
the DY distribution is conjugate (and easy to sample from) with the exponential family.
Additionally, the first step of this algorithm is important for the purpose of analyzing
multiple response-types. Specifically, at the end of the first step we obtain a replicate
from the posterior distribution of the transformation (which is continuous valued). Thus,
the first step of the composite sampling algorithm “transforms” the multiple response-
type data into a continuous-valued quantity appropriate for the preferred model.

Implementation of the preferred model is unchanged (from the standard use of the
preferred model) in the second step of our composite sampling algorithm. This is par-
ticularly noteworthy, as many of the Bayesian statistical models derived for Gaussian
data are not immediately computationally efficient in the non-Gaussian data setting
(e.g., see Bradley et al., 2019a; Kang and Cressie, 2011; Katzfuss and Cressie, 2012, for
examples in the spatial setting). This is because GLMMs in the non-Gaussian setting
have full-conditional distributions that are not Gaussian, and can not be sampled from
immediately. Bayesian methods that do not have easy to sample from full-conditional
distributions require difficult to tune Metropolis-Hastings algorithms (e.g., see Bradley
et al., 2020+, for an example), inefficient rejection samplers (e.g., see Damien et al.,
1999), or significant reparameterization to make approximate Bayesian methods (that
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are only appropriate for small parameter spaces) practical (Rue et al., 2009; Neal, 2011).
The second step of our composite sampling algorithm allows one to circumvent this is-
sue entirely, and simply use the computational strategies that were developed for the
preferred model.

The two steps of our composite sampler can be seen as sequential smoothing. By
“smoothing” we mean a function of the data that attempts to discover important fea-
tures in the data (e.g., see Simonoff, 2012, for a standard reference). Multiple layers
of smoothing may lead to estimates that are “oversmooth,” in the sense that many
features of the data are not captured. To avoid oversmoothing we specify the model
so that the posterior distribution of the transformation is “saturated.” Recall a satu-
rated model is one in which there exists at least as many parameters as there are data
points, and fitting this model allows you to exactly recover the original dataset. Hence,
saturated models are often an extreme example of overfitting. Thus, in the first step
of our composite sampler we choose to overfit the multiple response-type data, and in
the second step we smooth overfitted values (again this is done to avoid oversmooth-
ing).

In the classical log-linear model literature, saturated models are useful for selecting
more parsimonious models (e.g., see Agresti, 2007, for a standard reference). Specifically,
the most parsimonious reduced model that is not significantly different (in terms of
the deviance or chi-square statistic) from the saturated model is used for statistical
inference. Consequently, specifying the data model to be saturated allows us to assess
the goodness-of-fit of the preferred model in a fully Bayesian manner that is similar to
what is done in classical residual analysis.

We use our method to analyze spatio-temporal COVID-19 incidences and social
distancing related variables. This COVID-19 dataset is observed daily over large sparse
regions (i.e., countries and provinces). Social distancing can be described as an effort
to maintain a physical distance between individuals and has become a necessary public
health measure to combat COVID-19 (CDC, 2020). Social distancing is known to weaken
incidences and deaths due to COVID-19, however, there are detrimental economic and
psychological effects. This motivates us to analyze incidences (and deaths) of COVID-
19 along with a measure of the health of the US economy (i.e., the adjusted closing
price of the Dow Jones Industrial), and a measure of the public interest in COVID-19
through Google Trends data. The HGT model is developed to be easily adapted to
a data scientist’s preferred method for continuous data, which aids future analyses of
this important dataset. It has recently been shown that forecasts regarding COVID-
19 require sophisticated models. Following the results of Donnat and Holmes (2020),
we include spatio-temporal random effects through the use of basis function expansions
(e.g., see Cressie and Wikle, 2011, for a standard reference). Additionally, to improve the
performance of forecasting we adopt the training, validation, and testing data framework
that has become standard among the machine learning literature (e.g., see Hastie et al.,
2009, for a standard reference). In particular, we incorporate a Bayesian version of
ResNet (He et al., 2016), where validation data is used to make linear adjustments to
improve forecasts. While we are partially motivated by COVID-19 and the detrimental
impacts of social distances, the HGT developed in this manuscript is of independent
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interest, since this is a new way in Bayesian statistics to model non-Gaussian processes
using models for continuous data. Furthermore, our methodology also allows one to
analyze a single non-Gaussian response-type in a straightforward manner.

The remainder of this article is organized as follows. In Section 2, we describe
how standard modeling procedures are not appropriate for this multiple response-type
dataset. Then, we introduce the HGT model to analyze multiple response-type data
with unknown transformations in Section 3. Additionally, we provide an example model
specification. Then in Section 4, we provide details on using training, validation, and
testing data for statistical inference. This allows us to perform linear adjustments to our
predictions in a similar manner to He et al. (2016), which aids in forecasting. A sum-
mary of all the Bayesian models used in our analysis is also provided. In Section 5, we
give simulation studies to illustrate that our approach has been developed in a manner
that one can incorporate their preferred statistical model. In particular, we apply our
approach to BART models and a spatio-temporal mixed effects (SME) model. Section 6
contains our joint analysis of COVID-19 mortality, incidences and recoveries, along with
Google Trends data, and DJI data. Section 7 contains a discussion and derivations are
provided in the Supplementary Materials (Bradley, 2020).

2 Motivation

Denote the multiple response-type data with Zij , where i indexes replicates and j in-
dexes response-type such that i = 1, . . . , Ij and j = 1, 2, 3. We consider the setting where
for each i, Zi1 is continuous-valued, Zi2 is integer-valued ranging from 0, . . . , bi, and Zi3

is count valued. There are many “off-the-shelf” approaches that one might consider to
analyze multiple response-type data. For example, one might define the following linear
model,

Zi1 = x′
i1β1 + βZ2Zi2 + βZ3Zi3 + ξi1; i = 1, . . . , I1,

where ξi1 is normally distributed with mean zero and variance σ2
ξ , βZk ∈ R, β1 is an

unknown p-dimensional vector, and xi1 is a p-dimensional covariate vector. However,
this conditionally specified model enforces a strong assumption of linearity between the
different response-types. Furthermore, the variability (and dependence) of Zi2 and Zi3

is not explicitly modeled. Additionally, it assumes that the responses are paired, which
may not be the case; that is, it is assumed that we observe the triplet (Zi1, Zi2, Zi3).

To incorporate the variability across response-types (i.e., across j) and allow for
non-linear relationships, one might also consider the following hierarchical model:

Zi1
ind∼ Normal(Yi1, v),

Zi2
ind∼ Binomial

{
bi,

exp (Yi2)

1 + exp (Yi2)

}
,

Zi3
ind∼ Poisson {exp (Yi3)} ; i = 1, . . . , Ij , (2.1)

where we assume conditional independence of Zij given Yij , Yij is an unobserved latent
process, Normal(Yi1, v) is a shorthand for the normal distribution with mean Yij ∈ R
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and variance v > 0, Binomial(bi, p) is a shorthand for the binomial distribution with
bi > 1 number of trials and probability of success p ∈ (0, 1), Poisson(μij) is a shorthand
for the Poisson distribution with mean μij . The covariance between observations is
determined by the model for Yij :

cov(Zij , Zk�) = E {cov(Zij , Zk�)|Yij , Yk�}+ cov{E(Zij |Yij), E(Zk�|Yk�)}
= cov {E(Zij |Yij), E(Zk�|Yk�)} = cov

{
cijg

−1
j (Yij), ck�g

−1
� (Yk�)

}
, (2.2)

for k �= m and � �= j, where the functions g1(xi) = xi, g2(xi) = log(xi/1 − xi), and
g3(xi) = log(xi) are referred to as “link functions,” and ci1 = ci3 = 1 and ci2 = bi.
Similarly, predicted values are determined by the model for Yij :

E(Zij) = E {E(Zij |Yij)} = E
{
cijg

−1
j (Yij)

}
. (2.3)

Thus, cross-dependence and predictions are modeled through the statistical model as-
sumed for the process Yij , and a standard choice in this context is the GLMM:

Yij = x′
ijβj + S′

ijη + ξij , (2.4)

where xij is a known p-dimensional vector of covariates and Sij is a pre-specified r-

dimensional vector of basis functions, βj = (β1j , . . . , βpj)
′, η = (η1, . . . , ηr)

′, βkj
ind∼

Normal(0, σ2
β), ηk

ind∼ Normal(0, σ2
η), ξij

ind∼ Normal(0, σ2
ξ ), σ2

β > 0, σ2
η > 0, and

σ2
ξ > 0. Then, the cross-response spatio-temporal covariance implied by this model

is cov
(
Yij , Yk�|σ2

η

)
= σ2

ηS
′
ijSk�, which propagates through and enforces dependence in

the multiple response-type data through (2.2). The relationship between the different
response-types can be found by estimating the unknown function S′

ijη (e.g., using pos-
terior means and credible intervals).

Computationally, the GLMM is difficult to implement in a Bayesian context. For
example, a Gibbs sampler requires one to simulate from the following full-conditional
distributions (Gelfand, 2000), and in this setting these distributions do not have a known
form that is straightforward to simulate from. There are several approximate Bayesian
computational tools available, however, for moderate sizes of p and r these approaches
are not feasible. In particular, Hamiltonian Monte Carlo (HMC; Neal et al., 2011) and
the integrated nested Laplace approximation (INLA; Rue et al., 2009) are only appro-
priate for small parameter spaces (e.g, Martino and Riebler, 2019, suggests no more than
15 parameters when implementing INLA). Additionally, INLA only allows for marginal
inference (Kristensen et al., 2015). The computational issues of the generalized linear
mixed model in (2.1) and (2.4) may become even more cumbersome when considering
a different model for Yij . This is especially pertinent for our multiple response-type
dataset in Section 6, since the US government has put out a call to action (Office of
Science and Technology Policy, 2020) for data scientists to analyze COVID-19 datasets,
and it would be preferable to have an approach that is flexible enough for others to
specify their own model for Yij without major changes to implementation.

There are also parameters that are fixed and require specification in the GLMM. For
example, the dimension of η (i.e., r) is chosen by the data analyst. In practice, measures
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of out-of-sample variability can be used to specify such parameters. This is because
estimates are often biased towards the training data, since estimators are defined to be
“close” to the training data (Hastie et al., 2009). Consequently, the use of validation
data (held separate from the training data) to estimate r can aid in accounting for
out-of-sample error. In particular, define a validation dataset to be zval = (Zij : i =
Ij + 1, . . . , Ivalj , j = 1, 2, 3)′, which is observed over the indices i ∈ {Ij + 1, . . . , Ivalj }
and j = 1, 2, 3, where Ij < Ivalj < I. Then a posterior predictive step (e.g., see Gelman
et al., 2013) can be used to predict at zval. For example, suppose we obtain an estimate

of E(zval|ztrn, r) using MCMC, where n =
∑3

j=1 Ij and the n-dimensional data vector

ztrn = (Zij : i = 1, . . . , Ij , j = 1, 2, 3)
′
. Then one could use E(zval|ztrn, r̂) for inference,

where for illustration

r̂ = arg min {(zval − E(zval|ztrn, r̂))′(zval − E(zval|ztrn, r̂))} ,

and the arg min is computed over r. Additionally, to assess the overall predictive per-
formance of the selected r a testing dataset could be used. For example, let the testing
data Zij be defined over the indices i = Ivalj + 1, . . . , I for Ivalj < I. Then the metric∑I

i=Ij+1(Zij −E(Zij |ztrn, r̂))2 can be used to assess the out-of-sample error of predic-
tions based on the selected r.

Computationally, the posterior predictive steps to estimate E(zval|ztrn, r̂) can be
done efficiently once replicates of Yij from the posterior distribution have already been

generated. That is, denote the b-th posterior replicate of Yij with Y
[b]
ij . Then a posterior

replicate of Zij for i > Ij can be generated by simulating from the distribution for

Zij |Y [b]
ij . Consequently, we will use the HGT to fit training data (developed in Section 3),

but continue to use the GLMM to fit validation and testing data (see Sections 4.2–4.4).

Instead of using validation data to estimate existing parameters, in our implemen-
tation, we introduce new parameters to model the validation data to adjust for out-of-
sample error. That is, we introduce an additional linear model for {Yij : i > Ij}, and
then use the validation data to estimate the parameters in the linear model. This is
similar to an approach in machine learning called ResNet (He et al., 2016), and will aid
in adjusting for biases that occur when forecasting COVID-19 incidences and deaths.
More details and justification are given in Section 4.2.

3 The Hierarchical Generalized Transformation Model

As discussed in the Introduction, there are three main components that define the HGT:
(a) the distribution of the data given a transformation, (b) the prior distribution of the
transformation, and (c) both the distribution of the transformation given the latent
process and the distribution of the process of interest (i.e., terms in the aforementioned
preferred model). Before making explicit specifications of Items (a), (b), and (c), in Sec-
tion 3.1, we provide a general discussion on allowing transformations to be an unknown
process to estimate. Then, in Section 3.2, we describe general Bayesian implementation
using any proper generic specifications of (a), (b), and (c). Then in Section 3.3, we
provide an explicit specification of Items (a) and (b) that are used in this manuscript.
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Finally, in Section 3.4, we provide an example specification of densities that define the
preferred model in (c). In Supplementary Appendix A, we provide a table of terminology
to aid in keeping track of both terminology and notation.

3.1 Unknown Transformations of Multiple Response-Types

One classical strategy to model non-Gaussian data is to impose a transformation such
that,

hj(Zij)|Yij ,θ
ind∼ f(hj(Zij)|Yij ,θ), i = 1, . . . , Ij , j = 1, 2, 3, (3.1)

where hj(·) is a transformation of the datum Zij , the hj(Zij)’s are conditionally indepen-
dent given {Yij} and θ, f is a short-hand used for a probability density function (pdf) or

a probability mass function (pmf), one should read “hj(Zij)|Yij ,θ
ind∼ f(hj(Zij)|Yij ,θ)”

as “hj(Zij)|Yij ,θ is distributed according to the pdf f(hj(Zij)|Yij ,θ),” gj {E(Zij)} =
Yij ∈ R, and θ ∈ Θ ⊂ R

p. Additionally, Yij is defined for i = 1, . . . , I and j = 1, 2, 3,
where recall I ≥ max(I1, I2, I3). Here, f(hj(Zij)|Yij ,θ) represents a multiplicative term
in the aforementioned preferred model. In what remains, inference on {Yij} and θ is
the primary goal. To aid in our exposition we drop the functional notation for hj(·) and
write hij = hj(Zij). As an example of f(hj(Zij)|Yij ,θ), suppose we assume

hij = Yij + εij , (3.2)

where εij
ind∼ Normal(0, σ2

ε ) and σ2
ε > 0, and the mixed effects model on Yij in (2.4) is

assumed.

Transformations convert a multiple response-type dataset (e.g., {Zij}) to a single
response-type dataset (e.g., {hij}), since hij follows a single distribution with a contin-
uous support. Consequently, transformations have become a standard tool in analyz-
ing multiple response-types. Recall, transformations such as these have a long history
including the box-cox transformations (Box and Cox, 1964), graphical techniques (Mc-
Culloch, 1993), the alternating conditional expectations (ACE; Breiman and Friedman,
1985) algorithm, and the Yeo-Johnson power transformation (Yeo and Johnson, 2000,
among others).

In this paper, we introduce a Bayesian solution to the problem of an unknown
transformation through the use of the following pdfs and pmfs:

(a) The distribution of the data given a transformation is denoted with f(Zij |hij).
We refer to the distribution f(Zij |hij) as a “data model.”

(b) The prior distribution of the transformation is denoted with f(hij |γ), where γ is
a real vector-valued hyperparameter. We call f(hij |γ) a “transformation prior”
and f(γ) a “transformation hyperprior.”

(c) Consider the density f(h|y,θ) =
∏

i

∏
j f(hij |Yij ,θ) and the “process model”

f(y|θ), where the n-dimensional transformed data vector h = (h11, . . . , hI33)
′
,

N = 3I ≥ n, and the N -dimensional latent process y = (Y11, . . . , YI1, Y12,
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. . . , YI2, Y13, . . . , YI3)
′
. Notice, that Ij ≤ I, which allows for missing values of

Zij .

In Section 3.2, we describe general Bayesian implementation when Items (a), (b), and
(c) have been specified.

3.2 General Bayesian Implementation

In this section, we describe Bayesian implementation of the HGT. The preferred model
is represented in terms of a hierarchical model:

h|y,θ,γ ∼ f(h|y,θ)m(h|γ),
y|θ ∼ f(y|θ),
θ ∼ f(θ), (3.3)

where the product of each density in (3.3) defines the conditional density f(h,y,θ|γ)
and γ is conditionally independent of (y′,θ′)′ given h. Following the terminology used
in Cressie and Wikle (2011), we call f(h|y,θ)m(h|γ) the “transformed data model,”
f(y|θ) the “process model,” and f(θ) the “prior” for θ.

To guarantee that our choice of the transformation prior and transformed data model
are consistent with each other we set

m(h|γ) = f(h|γ)/
∫ ∫

f (h|y,θ) f(y|θ)f(θ)dydθ.

To illustrate the need for m(h|γ) consider the incorrect specification of m(h|γ) = 1.
Then the preferred model in (3.3) would imply a different marginal distribution for h
than the transformation prior f(h|γ), since∫ ∫

f(h|y,θ)f(y|θ)f(θ)dydθ �=
∫

f(h|γ)f(γ)dγ = f(h),

where recall that f(γ) is the “transformation hyperprior.” However, setting m(h|γ) =
f(h|γ)/

∫ ∫
f (h|y,θ) f(y|θ)f(θ)dydθ guarantees that the marginal distribution of h

stays same when computing using either the preferred model or the transformation
prior. That is,∫ ∫ ∫

f(h|y,θ)f(y|θ)f(θ)m(h|γ)dγdydθ

=

∫
f(h|γ)f(γ)dγ

∫ ∫
f(h|y,θ)f(y|θ)f(θ)dydθ 1∫ ∫

f(h|y,θ)f(y|θ)f(θ)dydθ
= f(h).

Notice that the presence of m(h|γ) in the preferred model does not change the preferred
model proportionally as a function of y and θ. Consequently, the presence of m(h|γ)
will not have an effect on updating y and θ in an MCMC.
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Algorithm 1 Implementation of the HGT Model.

1: Set b = 1 and initialize h, γ, y, and θ with h[0], γ[0], y[0], and θ[0].
2: Sample h[b] from f(h|ztrn,γ[b−1]).
3: Sample γ[b] from their full-conditional distributions. We use the slice sampler (Neal

et al., 2003) if the full-conditional does not have a closed form.

4: Sample y[b] and θ[b] from f(y,θ|h[b]), which is the posterior distribution associated
with the preferred model described in (3.4).

5: Set b = b+ 1.
6: Repeat Steps 2−5 until b = B for a prespecified value of B.

Bayes rule can be used to produce the following conditional distribution (e.g., see
Gelman et al., 2013, for a standard reference),

f (y,θ|h) = f (h|y,θ) f(y|θ)f(θ)∫ ∫
f (h|y,θ) f(y|θ)f(θ)dydθ . (3.4)

Similarly, one can use Bayes rule to produce the posterior distribution of the transformed
data. That is,

f(h|ztrn) =
∫
f(ztrn|h)f(h|γ)f(γ) dγ∫ ∫
f(ztrn|h)f(h|γ)f(γ) dh dγ

. (3.5)

Equations (3.4) and (3.5) can then be used to produce a posterior distribution for
y and θ. That is, suppose f(h|y,θ), f(y|θ), f(θ), f(ztrn|h), f(h|γ), and f(γ) are
proper. Suppose ztrn is conditionally independent of γ given h, γ is conditionally inde-
pendent of (y′,θ′)′ given h, and ztrn and (y′,θ′)′ are conditionally independent given h.
Then:

f(y,θ|ztrn) =
∫

f(y,θ|h)f(h|ztrn)dh. (3.6)

The derivation of the posterior distribution of the latent process and parameters stated
in (3.6) can be found in Supplementary Appendix B.

The posterior distribution of the latent process and parameters can easily be simu-
lated from using a composite sampling scheme, provided that it is easy to simulate from
f(y,θ|h). Algorithm 1 gives the step-by-step implementation of how to simulate from
the posterior distribution in (3.6). Here, we see that the implementation of the HGT
model is similar to the bootstrap implementation, where we have replaced a resampling
step with sampling from f(h|ztrn) and the full-conditional distributions associated with
γ. This similarity emphasizes the flexibility of allowing for unknown transformations in
a Bayesian context, since the bootstrap algorithm is an established flexible approach
in the literature (e.g., see Efron, 1992, for an early reference). Of course, the bootstrap
algorithm produces replicates from a different distribution than that of Algorithm 1.
Specifically, the bootstrap method results in an approximate sample from the sampling
distribution of a statistic. Whereas, the composite sampling approach in Algorithm 1
can be seen as a means to sample from the posterior distribution in (3.6). This is also
different from the Bayesian bootstrap (Rubin, 1981), which does not restrict the samples
to be from a posterior distribution of the form in (3.6).
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3.3 Data Models, Transformation Priors, and Transformation
Hyperpriors

Consider the following specifications of the data models:

Zi1|hi1, v
ind∼ Normal(hi1, v),

Zi2|hi2
ind∼ Binomial

{
bi,

exp (hi2)

1 + exp (hi2)

}
,

Zi3|hi3
ind∼ Poisson {exp (hi3)} ; i = 1, . . . , Ij , j = 1, 2, 3, (3.7)

which is different from the GLMM in (2.1). Specifically, instead of conditioning on the
latent process of interest Yij , we condition on the transformation hij . Thus, the data
models in (3.7) imply that the Zij ’s are conditionally independent given {hij} and v (v
will be given a prior and integrated out).

With the data model f(ztrn|h) defined, we are left to specify a transformation prior
and transformation hyperprior. We define the transformation prior to be the conjugate
distributions associated with the data models in (3.7). It follows from Diaconis and
Ylvisaker (1979) that the conjugate distribution for hij is given by,

fDY (hij |αj , κj , a, b) = K(αj , κj)exp {αjhij − κjψj(hij)} ; i = 1, . . . , Ij , j = 1, . . . , J,
(3.8)

where K(αj , κj) is a normalizing constant, hij ∈ R, α1 ∈ R, κ2 > α2, αq > 0, and
κk > 0; for q = 2, 3, and k = 1, 3. Let ψ1(Z) = Z2, ψ2(Z) = log(1 + eZ), and
ψ3(Z) = exp(Z). Also, we use the shorthand DY(αj , κj ; ψj) to represent the pdf of
the Diaconis and Ylvisaker (1979) prior in (3.8). Finally, let γ = (α1, α2, α3, κ1, κ2, κ3)

′

be the transformation hyperparameter. The DY distribution is a special case of the
recently introduced conjugate multivariate distribution (Bradley et al., 2020+), where
the matrix-valued covariance parameter is set equal to the identity matrix.

The data models and the DY priors in (3.7) and (3.8) can be used to produce a
full-conditional distribution for the elements of transformations h:

hi1|Zi1,γ
ind∼ Normal

{(
2κ1 +

1

v

)−1 (
Zi1

v
+ α1

)
,

(
2κ1 +

1

v

)−1
}
; i = 1, . . . , I1,

hi2|Zi2,γ
ind∼ DY (α2 + Zi2, κ2 + bi; ψ2) ; i = 1, . . . , I2,

hi3|Zi3,γ
ind∼ DY (α3 + Zi3, κ3 + 1; ψ3) ; i = 1, . . . , I3. (3.9)

The derivations of the full conditional distributions are fairly straightforward, and are
given in Supplementary Appendix B. One can simulate directly from the posterior
distribution of the transformations in (3.9). Posterior replicates of hij from (3.9) can be
computed using the following transformation (Bradley et al., 2020+):

hi1
d
=

(
2κ1 +

1

v

)−1 (
Zi1

v
+ α1

)
+ w1; i = 1, . . . , I1,
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hi2
d
= log

(
w2

1− w2

)
; i = 1, . . . , I2,

hi3
d
= log (w3) ; i = 1, . . . , I3, (3.10)

where “
d
=” stands for equal in distribution, w1|Zi1, α1, κ1, v is distributed normally with

mean zero and variance
(
2κ1 +

1
v

)−1
, w2|Zi2, α2, κ2 is distributed according to a beta

distribution with shape parameters (α2+Zi2) and (κ2−α2+bi−Zi2), and w3|Zi3, α3, κ3

is distributed according to a gamma distribution with shape parameter (α3 + Zi3) and
rate parameter (κ3 + 1). Step 2 of Algorithm 1 involves simulating according to (3.10),
which is straightforward.

The specification of a transformation hyperprior for γ is crucial to guarantee that
f(hij |Zij ,γ) is proper in the event that Zi3 = 0, Zi2 = 0, or Zi2 = bi. Thus, we assume
α1 = κ1 = 0, α2 and α3 are distributed according to a gamma distribution, κ2|α2 is
distributed according to a shifted (by α2) gamma distribution, κ3 follows a gamma
distribution, and v is distributed according to an inverse gamma distribution (e.g., see
Gelman, 2006, among others). These transformation hyperpriors are explicitly stated,
and the full-conditional distributions for γ are derived in Supplementary Appendix
C.1. In this context α2 and α3 play the role of a continuity correction for zero-valued
responses. The use of continuity corrections for zero-valued responses has a long history.
For example, see Cox (1970)’s use in contingency tables and Yates (1934) who suggest
adding a 1/2 to zero-valued responses so that log-odds ratios are defined. The value 1/2
forces an average approximation error to zero (Cox, 1970). Different (smaller) values
have been proposed, including more data driven techniques (Mosteller and Tukey, 1977;
Fienberg, 1969; Sweeting et al., 2004, among others). A major difference between these
continuity corrections and the proposed HGT is that, we add a random amount for the
correction, rather than a pre-determined fixed amount.

The general Bayesian implementation described in Section 3.2 is flexible enough to
allow for a transformation prior that implies cross-dependence among the elements of h,
but we do not consider this case in this article. The main reason for this choice is that
transformations are used in place of the original multiple response-type dataset when
implementing the preferred model (Step 4 of Algorithm 1). That is, the transformed
values are used as a proxy for (or in place of) the multiple response-type data in the
preferred model. Consequently, we would like to specify h to “overfit” the data so that
h can reasonably be thought of as a proxy for the data.

Our choice of the DY prior in (3.8) leads to posterior replicates that overfit the data.
In particular, it is straightforward to verify that

lim
κ1→0

lim
α1→0

E {hi1|Zi1,γ} = Zi1,

lim
κ2→0

lim
α2→0

E
{
bjg

−1
2 (hj2)|Zj2,γ

}
= Zj2, (3.11)

lim
κ3→0

lim
α3→0

E
{
g−1
3 (hk3)|Zk3,γ

}
= Zi3; i = 1, . . . , I1, j = 1, . . . , I2, k = 1, . . . , I3.

See Supplementary Appendix B for the derivation of (3.11). Thus, the posterior mean of
h (on the original scale of the multiple response-type data) is exactly the observed data
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{Zij} as the hyperparameters go to zero. This suggests that estimates from f(h|ztrn)
overfits the data, however, it is not necessarily true that f(y,θ|ztrn) overfits the data.

3.4 Example of Bayesian Implementation

Consider the following mixed effects model for the transformed data (e.g., see Cressie
and Johannesson, 2008, among others):

Transformed Data Model: h|β,η, ξij ,λ ∼ m(h|λ)
∏
i

∏
j

φ
(
hij |x′

ijβ + S′
ijη + ξij , σ

2
)
;

Process Model 1: η|σ2
η ∼ Normal

(
0r, σ

2
ηIr

)
;

Process Model 2: ξij |σ2
ξ

ind∼ Normal
(
0, σ2

ξ

)
;

Prior 1: σ2 ∼ IG (αv, βv) ;

Prior 2: β ∼ Normal
(
0p, σ

2
βIp

)
;

Prior 3: σ2
ξ ∼ IG (αξ, βξ) ;

Prior 4: σ2
η ∼ IG (αη, βη) , (3.12)

where φ(·|μ, v) is the pdf of a normal distribution with mean μ and variance v, xij

is a p-dimensional vector of known covariates, Ir is a r × r identity matrix, 0r is an
r-dimensional vector of zeros, αv = αη = αξ = 1, βv = βη = βξ = 1, σ2

β = 100, and
ξ = (ξ11, . . . , ξI33)

′. The hyperparameters are chosen so that the prior is relatively “flat”
and we find that our results are robust to these specifications. In Algorithm 1, we set
Yij = x′

ijβ + S′
ijη + ξij and θ = (β′, σ2, σ2

ξ , σ
2
η)

′. The choice of basis functions and
specification of r are important. In Supplementary Appendix C.2, we give these details.

The full conditional distributions for y and θ are well-known (e.g.,see Cressie and
Wikle, 2011, for a standard reference) and are listed in Supplementary Appendix C.2.
Thus, Step 2 of Algorithm 1 involves simulating according to (3.10), which produces
MCMC replicates {h[b]} and {γ[b]}. Then Step 4 of Algorithm 1 involves the following
steps:

1. Sample θ[b] from its’ full conditional distribution f(θ|η[b−1], {ξ[b−1]
ij },h[b]), and

note that one can easily allow for block-wise updates. Notice that the full condi-
tional distribution has the conditioning event h[b], but does not condition on ztrn
and γ[b] due to the conditional independence assumptions described in Section 3.2.

Let η[0] and {ξ[0]ij } be a pre-defined initialization.

2. Sample η[b] from the full-conditional distribution f(η|{ξ[b−1]
ij },θ[b],h[b]).

3. Sample {ξ[b]ij } from the full-conditional distribution f({ξij}|η[b],θ[b],h[b]).

4. Set Y
[b]
ij = x′

ijβ
[b] + S′

ijη
[b] + ξ[b] and let y[b] = (Y

[b]
ij : i = 1, . . . , Ij , j = 1, 2, 3)′.

These standard full-conditional distributions and other details are given in Supplemen-
tary Appendix C.1 and C.2.
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4 Statistical Inference

Estimation and prediction over the training set can be done by computing summary
statistics using the quantities generated in Step 4 of Algorithm 1. However, to forecast
values (e.g., future cases or deaths due to COVID-19) we make use of validation and
testing datasets.

4.1 Goodness-of-Fit Using Training Data

Assessment of the goodness of fit can be done similar to residual analyses of transformed
data in traditional regression analyses. We compute the residuals δ = (δij : i = 1, . . . ,
Ij , j = 1, 2, 3)

′
, δij = hij − Yij , and compute a credible region associated with δ (e.g.,

see Gelman et al., 2013, for a standard reference). For example, for each i and j, find
the values qL,ij and qU,ij , where∫ qU,ij

qL,ij

f(δij |ztrn)dδij = 1− α; i = 1, . . . , Ij , j = 1, . . . , J, (4.1)

where 1 − α defines the “level” of the credible interval, is prespecified, and is different
from the hyperparameters of the DY distribution. A default choice is α = 0.05. In

practice, it is rather straightforward to approximate qL,ij and qU,ij . Let h
[b]
ij and Y

[b]
ij be

the b-th posterior replicate of hij and Yij so that δ
[b]
ij = h

[b]
ij − Y

[b]
ij is the b-th posterior

replicate of δij . Then qL,ij and qU,ij can be approximated with the α/2 and 1 − α/2

percentiles of the set {δ[b]ij : b = 1, . . . , B}, respectively. If the value of zero lies within
this interval (e.g., qL,ij < 0 < qU,ij) for many values of i and j, then this suggests that
the model for y provides a reasonable fit to this dataset.

Equation (3.11) shows that the posterior mean of the transformation overfits the
data, which we motivated as a way to avoid oversmoothing estimates of y and θ in
Algorithm 1. However, the fact that the posterior distribution of the transformations
overfit is also important from the point-of-view of diagnostics. In particular, in the
goodness-of-fit literature, overfitted values are often used as a proxy for the data. For
example, in log-linear models the most parsimonious reduced model that is not signif-
icantly different (in terms of the deviance or chi-square statistic) from the saturated
model (an overfitted model) is used for statistical inference (e.g., see Agresti, 2007, for
a standard reference). This is exciting because it provides a new way to conduct classi-
cal residual analysis in a Bayesian multiple response-type data context. In particular, in
Section 5 we give an example of plotting the (posterior median) residuals versus a useful
covariate not included in the analysis to assess whether or not it should be included in
a model.

Since hij is unknown it is also of interest to determine the goodness-of-fit of our
model for hij . That is, we use δij to assess the goodness of fit of Yij , but one should
consider the goodness of fit of hij as well. One approach is to “back-transform.” How-
ever, since our model for the transformation hij is unknown, the back-transformation is
also unknown. The Bayesian perspective is flexible enough to do inference on the back



J. R. Bradley 141

transformation. In particular, we define the unknown back-transformation of hij to be
the replicate from the data model f(Zij |hij), since replicates from f(Zij |hij) correspond
to the transformation hij . Thus, posterior predictive data (denoted with Z∗

ij) can be
used to estimate the unknown back-transformed value, and subsequently, be used to
assess the performance of the transformation. In particular, if Zij is consistently (ac-
cording to the posterior distribution) close to Z∗

ij , we obtain a transformation model
that overfits, which is a goal for our model for hij . That is, the traditional posterior
predictive p-value (e.g., Meng et al., 1994; Gelman et al., 1996) can be used to assess
the goodness-of-fit of the back-transformation, and hence, the transformation itself. In
practice, one might compute the proportion of times, over replicates of Z∗

ij , where

∑
i

∑
j

{
Z∗
ij − E(g−1

j (hij)|ztrn)
}2

E(g−1
j (hij)|ztrn)

,

is larger than the observed chi-square statistic (or sum of squared Pearson residuals).
Outside of the HGT setting, a preferable posterior predictive p-value would be 0.5
(e.g.,see Gelman, 2013, for a more complete discussion and other considerations when
interpreting the posterior predictive p-value), since values close to one and zero indicate
overfitting and oversmoothing, respectively. However, since we purposefully overfit the
HGT when estimating {hij}, we prefer the traditional posterior predictive p-value to
be “close” to one, which indicates a good fit for the model for the transformation.

4.2 Estimating Hyperparamers Using a Validation Dataset

In machine learning, one often adjusts the model for being biased towards the training
data by holding aside a dataset to estimate hyperparameters. This hold-out dataset
is referred to as a validation dataset (Hastie et al., 2009), where recall, the validation
dataset zval = (Zij : i = Ij + 1, . . . , Ivalj , j = 1, 2, 3)′ is observed over the indices

i ∈ {Ij + 1, . . . , Ivalj } and j = 1, 2, 3. Additionally, let Y ∗
ij be the posterior predictive

replicate of Yij . We can not replace Y ∗
ij with Yij in our analysis of the validation data,

otherwise, the validation data would be included with the training data when updating
Yij . Then, we assume

Zi1|Y ∗
i1

ind∼ Normal(k1(Y
∗
i1,κ), v),

Zi2|Y ∗
i2

ind∼ Binomial
[
bi, g

−1
2 {k2(Y ∗

i2,κ)}
]
,

Zi3|Y ∗
i3

ind∼ Poisson
[
g−1
3 {k3(Y ∗

i3,κ)}
]
; i = Ij + 1, . . . , Ivalj ,

κ ∼ f(κ), (4.2)

where κ is a generic d-dimensional vector of real-valued parameters and f(κ) is the
prior distribution of this parameter. We parameterize the unknown function kj with κ.
In this article, we define kj to be a line so that Y ∗

ij can be adjusted linearly,

kj(Y,κ) = κj0 + κj1 Y ; j = 1, 2, 3, Y ∈ R, (4.3)
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Algorithm 2 Steps Needed for Fitting the Validation Data.

1: Set b = 1 and initialize Y ∗
ij and κ with Y

∗[0]
ij and κ[0].

2: Sample Y
∗[b]
ij using Algorithm 1.

3: Sample κ[b] from it’s full-conditional distribution. We use the slice sampler (Neal
et al., 2003) since the full-conditional distribution does not have a closed form.

4: Set b = b+ 1.
5: Repeat Steps 2−5 until b = B for a prespecified value of B.

and κ = (κ10, κ20, κ30, κ11, κ21, κ31)
′. When we consider κ unknown, we choose the

improper flat prior f(κ) = 1. We also consider setting κ = (0, 0, 0, 1, 1, 1)′ so that kj
is simply the identity function. Algorithm 2 describes implementation of our model for
validation data.

There are two main reasons why we consider introducing kj . The first, as discussed at
the end of Section 2, is that often times estimates are biased towards the training data,
since estimators are defined to be “close” to the training data. Consequently, the use of
validation data to estimate κ can aid in accounting for out-of-sample error. A second
reason for the use of kj and κ is to model a certain feature in our COVID-19/social
distancing dataset, where the validation and testing data are the second to last and last
day of available data, respectively. Specifically, there is potential for dramatic day-to-
day changes in our application, which may suggest that the training data is centered
at a completely different value than the validation and testing. In this setting, κj0 is
needed to re-center the last two days. Additionally, one might redefine the link function
to include kj directly when implementing the HGT for training data; however, this
specification implies that the training data will inform κ and as a result the out-of-
sample error is not controlled. This post-processing step has been done before in the
machine learning literature, where successive linear models are applied to residuals and
are referred to as a “ResNet” (He et al., 2016). What differs in our implementation
is that (1) we enforce only a single linear model kj(·,κ) (i.e., we do not do multiple
composites of a linear model), and (2) we are Bayesian in our implementation.

4.3 Forecasting

We produce next day forecasts for the variables in our study, which we treat as testing
observations indexed over i = Ivalj + 1, . . . , I for j = 1, 2, 3. We let κ∗ and Y ∗∗

ij be
distributed according to f(κ|ztrn, zval) and f(Yij |ztrn), respectively. Again, we can not
let Y ∗∗

ij equal Yij , since otherwise, the testing data would be included when updating
Yij based on the training data. Then, we assume that

Zi1|Y ∗∗
i1 ,κ∗ ind∼ Normal(k1(Y

∗∗
i1 ,κ∗), v),

Zi2|Y ∗∗
i2 ,κ∗ ind∼ Binomial

[
bi, g

−1
2 {k2(Y ∗∗

i2 ,κ∗)}
]
,

Zi3|Y ∗∗
i3 ,κ∗ ind∼ Poisson

[
g−1
3 {k1(Y ∗∗

i3 ,κ∗)}
]
; i = Ivalj , . . . , I. (4.4)
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Algorithm 3 Algorithm 3: Steps Needed for Forecasting.

1: Set b = 1 and initialize Y ∗∗
ij and κ∗ with Y

∗∗[0]
ij and κ∗[0].

2: Sample Y
∗∗[b]
ij using Algorithm 1.

3: Sample κ∗[b] using Algorithm 2.

4: Sample Z
[b]
ij from (4.4).

5: Set b = b+ 1.
6: Repeat Steps 2−5 until b = B for a prespecified value of B.

7: Compute the sample mean and variance (across the index b) of Z
[b]
ij .

Predictions of the data process and estimation of cross-covariances can be found in a
similar manner as in the GLMM example in (2.3) and (2.2). That is, the posterior mean
and covariance of Zij and Zk� is, E(Zij |ztrn) and cov(Zij , Zk�|ztrn), where recall, if we
assume the process model in Section 3.4 cov(Zij , Zk�|ztrn) = S′

ijcov(η|ztrn)Sk�, which
is not necessarily zero. Implementation is summarized in Algorithm 3. When kj is the
identity function, the predictions and covariances are simply

E(Zij |ztrn) = E
{
cijg

−1
j (Yij)|ztrn

}
, (4.5)

cov(Zij , Zk�|ztrn) = cov(cijg
−1
j (Yij), ck�g

−1
� (Yk�)|ztrn).

In the context of observing daily data, once the testing data is observed (i.e., once to-
morrow’s data is realized), we can assess the performance of our forecasts (e.g., through
the root mean squared error, etc.).

4.4 Summaries of the Models used for Inference

We have defined models for the training data, validation data, and testing data, which we
now summarize. The joint distribution of the training data, processes, and parameters
is written as the product of the following conditional distributions:

Training Data Model 1 : Zi1|hi1, v
ind∼ Normal(hi1, v);

Training Data Model 2 : Zi2|hi2
ind∼ Binomial

{
bi,

exp (hi2)

1 + exp (hi2)

}
;

Training Data Model 3 : Zi3|hi3
ind∼ Poisson {exp (hij)} ; i = 1, . . . , Ij , j = 1, 2, 3;

Transformed Data Model : h|y,θ,γ ∼ f(h|y,θ)m(h|γ); (4.6)

Process Model : y|θ ∼ f(y|θ);
Prior 1 : θ ∼ f(θ);

Prior 2 : v ∼ IG(1, 1);

Transformation Hyperprior : γ ∼ f(γ).

The model in (4.6) is the aforementioned HGT model. This is a well defined proper
model (see Supplementary Appendix B for these details), provided that f(hij |θ), f(y|θ),
and f(θ) are proper.
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Recall that one motivation for the model in (4.6) is that one can incorporate their
preferred model for continuous data directly into our framework, since Algorithm 1 does
not require one to change the implementation of their preferred model. This flexibility
arises in the data scientist’s specification of f(hij |θ), f(y|θ), and f(θ). In Section 3.4
we specify f(hij |θ), f(y|θ), and f(θ) using a mixed effects model, and in Section 5
we also consider using BART to illustrate this flexibility. Although we only consider
Bayesian specifications of the preferred model, Step 4 can easily be substituted with
replicates/estimates of y and θ (computed using h[b]) from empirical Bayesian models,
approximate Bayesian models, or frequentist models.

The LCM is explicitly used in the HGT model in (4.6) through the term m(h|y),
where recall

m(h|y) =
∏

i,j fDY (hij |αj , κj , a, b)∫ ∫
f(h|y,θ)f(y|θ)f(θ)dydθ ,

γ = (α1, α2, α3, κ1, κ2, κ3, a, b)
′, fDY denotes the DY prior, and the prior for γ is de-

fined in Supplementary Appendix C.1. Recall that Algorithm 1 is a collapsed Gibbs
sampler, where we update transformation h and γ using the marginal distribution of
the HGT model in (4.6) that is found by integrating out the process y and parameters
θ. Specifically, when integrating out y and θ in (4.6), we obtain

Training Data Model 1 : Zi1|hi1
ind∼ Normal(hi1, v);

Training Data Model 2 : Zi2|hi2
ind∼ Binomial

{
bi,

exp (hi2)

1 + exp (hi2)

}
;

Training Data Model 3 : Zi3|hi3
ind∼ Poisson {exp (hij)} ; i = 1, . . . , Ij , j = 1, 2, 3;

Transformation Prior : h|α1, α2, α3κ1, κ2, κ3, a, b ∼
∏
i,j

fDY (hij |αj , κj , a, b);

Transformation Hyperprior : γ ∼ f(γ),

which leads to the computationally simple updates of the transformations h and pa-
rameters γ developed in Section 3.3 to be used in Step 2 of Algorithm 1.

The joint distribution of the validation data, processes, and parameters is written
as the product of the following conditional distributions:

Validation Data Model 1 : Zi1|Y ∗
i1,κ

ind∼ Normal(k1(Y
∗
i1,κ), v); (4.7a)

Validation Data Model 2 : Zi2|Y ∗
i2,κ

ind∼ Binomial
[
bi, g

−1
2 {k2(Y ∗

i2,κ)}
]
; (4.7b)

Validation Data Model 3 : Zi3|Y ∗
i3,κ

ind∼ Poisson
[
g−1
3 {k3(Y ∗

i3,κ)}
]
; (4.7c)

Posterior Process Model : Y ∗
ij |ztrn ∼ f(Y ∗

ij |ztrn);
Prior : κ ∼ f(κ); i = Ij + 1, . . . , Ivalj , j = 1, 2, 3,

where recall that the goal of this model is to estimate κ from its posterior f(κ|zval, ztrn),
which is a parameter that allows one to avoid overfitting the training data. The distribu-
tion f(Y ∗

ij |ztrn) is the posterior distribution implied by the HGT model in (4.6). Model
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(4.7) can be implemented through Algorithm 2. When f(y|θ) is specified according to a
linear model (i.e., Equation (2.4)) then Equations (4.7a) through (4.7c) can be thought
of as a GLMM (McCulloch et al., 2008). GLMMs also arise in our model for testing
data. The joint distribution of the testing data, processes, and parameters is written as
the product of the following conditional distributions:

Testing Data Model 1 : Zi1|Y ∗∗
i1 ,κ∗ ind∼ Normal(k1(Y

∗∗
i1 ,κ∗), v);

Testing Data Model 2 : Zi2|Y ∗∗
i2 ,κ∗ ind∼ Binomial

[
bi, g

−1
2 {k2(Y ∗∗

i2 ,κ∗)}
]
;

Testing Data Model 3 : Zi3|Y ∗∗
i3 ,κ∗ ind∼ Poisson

[
g−1
3 {k3(Y ∗∗

i3 ,κ∗)}
]
; (4.8)

Posterior Process Model : Y ∗∗
ij |ztrn ∼ f(Y ∗∗

ij |ztrn);
Posterior Parameter Model : κ∗|zval, ztrn ∼ f(κ∗|zval, ztrn);

i = Ivalj + 1, . . . , I, j = 1, 2, 3,

where the goal is to predict the validation data Zij at i = Ivalj +1, . . . , I and j = 1, 2, 3.
The distribution f(Y ∗∗

ij |ztrn) is the posterior distribution implied by the HGT model
in (4.6) and f(κ∗|zval, ztrn) is the posterior distribution from (4.7). The model for the
testing data in (4.8) can be implemented through Algorithm 3.

5 Simulations

The goals of this simulation study are to provide a standard demonstration that the
HGT model produces reasonable predictions in a computationally efficient manner.
Another goal is to illustrate the flexibility of the HGT model to specify a data scien-
tist’s preferred model for continuous data. To do this we apply the HGT (4.6) to the
spatio-temporal mixed effects model in Section 3.4 and BART (details in Supplementary
Appendix C.3).

5.1 Simulation Setup

Friedman (1991) introduced a simulation design, which has become a useful benchmark
study (e.g., see Chipman et al., 2010, among others). Let

w(x1,ij , . . . , x10,ij) = 10sin(πx1,ijx2,ij) + 20(x3,i − 0.5)2 + 10x4,ij + 5x5,i;

i = 1, . . . , I, j = 1, 2, 3, (5.1)

which includes two non-linear terms, two linear terms, and a non-linear interaction. We
consider the following specifications of the distributional assumptions associated with
the data:

Zi1
ind∼ Normal(w(x1,i1, . . . , x10,i1), 1), (5.2)

Zk2
ind∼ Binomial

{
300,

exp (w(x1,k2, . . . , x10,k2))

1 + exp (w(x1,k2, . . . , x10,k2))

}
,

Z�3
ind∼ Poisson {exp (w(x1,�3, . . . , x10,�3))} ,
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Figure 1: A violin plot of the RMSE (y-axis) by HGT method (x-axis) over 20 indepen-
dent replicates of the data. The data are simulated as described in Section 5.1. Each
HGT method is implemented using Algorithm 1, except the method “Saturated.”

for i = 1, . . . , I1, k = I1 + 1, . . . , I1 + I2, and � = I1 + I2 + 1, . . . , I1 + I2 + I3. Methods
are compared using the root mean squared error (RMSE),⎛⎜⎝

∑I
i=1

∑3
j=1

[
Ŷij − w(x1,ij , . . . , x10,ij)

]2
3I

⎞⎟⎠
1/2

,

where Ŷij is estimated using Monte-Carlo integration using 2,000 iterations with a

burn-in of 1,000. For each Bayesian method, we let Ŷij be the pointwise posterior mean
of g−1

j (h). We fit the preferred model using covariates x1,ij , x3,ij , x4,ij , . . . , x10,ij , and
hence, we consider the case were an important covariate is not observed (i.e., {x2,ij})
and several unneeded covariates are included (i.e., {x6,ij , . . . , x10,ij} are not present in
(5.1)). The omissions of {x2,ij} when implementing our method is a slight departure
from the original setup in Friedman (1991). However, we feel that it is more realistic
to assume that not all covariates are observed in practice, and will be a helpful choice
for illustration. We specify xk,ij ∼ Uniform(0, 1), where Uniform(0, 1) is a shorthand
for the uniform distribution over the interval [0, 1] and k = 1, . . . , 10. The preferred
models are spatio-temporal mixed effects and BART (and an extension), whose imple-
mentation are described in Supplementary Appendix C.2 and Supplementary Appendix
C.3, respectively. Additionally, the choice of basis functions is described in Supplemen-
tary Appendix C.4. In the implementation of each preferred method, we allow each
response-type to have different regression coefficients.

5.2 Simulations: Joint Analysis of Multiple Response-Types

In this section, we evaluate the predictive performance of our Bayesian model with
unknown transformations in the multiple response-type data setting. In particular, we
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Figure 2: Estimates versus the truth for a single replicate dataset. The data are simulated
as described in Section 5.1. The estimate is labeled on the y-axis. The red line indicates
the line y = x.

set the preferred model equal to BART (Chipman et al., 2010) and a Bayesian version
of the spatio-temporal mixed effects model (Cressie and Johannesson, 2008) using basis
functions introduced by (Hughes and Haran, 2013). The posterior mean of hij (referred
to as the saturated model) is included as a default poor estimator, since it is known to
overfit the data.

The data are simulated according to (5.2), with I = 1000, I1 = 350, I2 = 350,
and I3 = 200. We do not include a validation dataset so that kj ≡ gj . We repeat
this simulation study 20 times, and we provide violin plots of the RMSE over the 20
replicates by method in Figure 1. In Figure 2 we also plot the true function versus the
estimated function for a single replicate dataset. Figures 1 and 2 suggest that the HGT-
based spatio-temporal mixed effects model (and HGT-BART) performs well in terms of
predictive performance. For the replicate in Figure 2 the HGT-based spatio-temporal
mixed effects (and HGT-BART) model had 97% (94%) of the point-wise credible in-
tervals of the elements of δ containing zero. The patterns observed in Figure 1 mimic
the goodness-of-fit diagnostics, which is notable because the goodness-of-fit diagnostics
are data driven (and hence can be used in practice) while Figure 1 is based on the
unknown truth. The posterior predictive p-value is ≈ 1, which suggests that our model
for transformation overfits as desired (see Section 4.1). These results suggest that the
Bayesian transformations can be used to obtain predictions in the non-Gaussian setting
using two standard models, and also has a useful built-in goodness-of-fit diagnostic.

Now, suppose we have observed the values of {x2,ij}, and recall these covariates are
not included in the analysis. In Figure 3, we plot the posterior median of the residuals
versus the covariate {x2,ij} across the indexes i and j for a single replicate of the
dataset. The plot clearly indicates a sinusoidal or possibly quadratic pattern, which
suggests that this behavior is not captured in our model for y. We know this to be
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Figure 3: We simulate a single replicate of {Yij} according to Section 5.1. Then a spatio-
temporal mixed effects model is implemented using the specifications in Section 3.4. This
plot displays the posterior median of {δij} (see Section 4.1) versus x2,ij , which is not
included in our implementation of the spatio-temporal mixed effects model. A systematic
pattern in this plot suggests that including x2,ij would improve our analysis of y.

true because {x2,ij} is not included in our implementation, but the data was generated
using {x2,ij}. This is an illustration of how our approach provides a Bayesian analog
to a graphical technique from classical regression analysis (i.e., systematic patterns in
residuals from a multiple regression versus a covariate suggest that the covariate should
be included in the analysis).

5.3 Simulations: Robustness to Departures from Model
Assumptions

In this simulation study we compare the predictive performance of our HGT approach to
predictions from the preferred model itself. A straightforward way to do this is to restrict
ourselves to the continuous data-only setting, in which both modeling paradigms can
be implemented more readily. The data are simulated according to (5.2), with I1 = 800,
I = 1000, and I2 = I3 = 0. We do not include a validation dataset.

We repeat this simulation study 20 times, and we provide violin plots of the RMSE
over the 20 replicates by method in Figure 4. In this section, we include an additional
predictor: soft BART (SBART; Linero and Yang, 2018, see Supplementary Appendix
C.3 for more details). We again see that the HGT versions of BART and the spatio-
temporal mixed effects model outperform the saturated model, with the spatio-temporal
mixed effects model clearly outperforming BART. Additionally, the HGT version of
BART and spatio-temporal mixed effects model perform only slightly better than or
the same as their non-transformed counterparts. Here we see that SBART performs
worse than the saturated model in terms of RMSE. The HGT version of SBART does
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Figure 4: A violin plot of the RMSE (y-axis) by method (x-axis) over 20 independent
replicates of the data. The data are simulated as described in Section 5.1. Each method is
implemented using Algorithm 1, except the method “Saturated.” The observed dataset
are used as the predicted values for the method “Saturated.” The results for the HGT
method are highlighted in black, the results for the original method are highlighted
white, and the saturated model is highlighted green (these models are also indicated on
the x-axis).

not perform noticeably different than SBART in terms of RMSE. This suggests that in
the continuous only setting, if the preferred model performs well (or poorly) one should
expect the Bayesian transformation approach to perform well (or poorly). Recall that
we can use the goodness-of-fit approach in Section 4.1 to assess when a method performs
poorly in practice. For example, for a single replicate dataset, we found that the percent
of credible intervals of the elements of δ that contain zero (by method) are as follows:
99.8% (spatio-temporal mixed effects model), 77.4% (BART), and 58.1% (SBART).
This produces the same rankings of the method in terms of RMSE. Additionally, the
posterior predictive p-value is ≈ 1, which suggests that our model for transformation
overfits as desired (see Section 4.1).

5.4 Simulations: Computational Considerations

In the continuous-only data setting Algorithm 1 requires more computation, and hence
more computation time. This is because Step 2 in Algorithm 1 is not needed to im-
plement the preferred model without transformation, but is required to implement the
HGT. Thus, in the continuous-only data setting the main motivation for the HGT is
that it allows for the diagnostics in Section 4.1, and the un-transformed preferred model
does not. However, for Poisson-only, binomial-only, and multiple response-type data Al-
gorithm 1 can lead to clear computational speed-ups compared to existing GLMMs. To
demonstrate this, we compare the HGT and the GLMM implementation of the SME
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Figure 5: In the left panel we plot a violin plot of the RMSE (y-axis) by method (x-axis)
over 20 independent replicates of the data, the middle plot replaces the RMSE with Cen-
tral Processing Units (CPU) in seconds, and in right plot we replace the RMSE with the
ESS. The data are simulated as described in Section 5.1. The HGT is implemented using
Algorithm 1, and the GLMM is implemented using a Gibbs sampler with Metropolis
Hastings updates. The results for the HGT method are highlighted in black, and the
results for the GLMM are highlighted white (these models are also indicated on the
x-axis).

model for a Poisson-only dataset (i.e., I1 = 0, I2 = 0, and I3 = 350). The GLMM is
implemented using the same covariates/basis functions as the HGT, and the R package
MCMCglmm, based on Metropolis-Hastings updates, is used (Hadfield, 2010). Algorithm
1 is implemented using 2,000 replicates and a burn-in of 1,000. Trace plots were used to
informally investigate convergence with no lack of convergence detected. The Bayesian
GLMM is implemented with 13,000 replicates, a burn-in of 3,000, and thinning rate of
10. The effective sample size (ESS) of Yij is computed to better compare the computa-
tional performance of HGT and the GLMM (e.g., see Kass et al., 2016, among others).
The ESS is the total MCMC replicates times a ratio of the within chain variance and
between chain variance. We average component-wise ESS instead of implementing a
multivariate version of ESS (Vats et al., 2019), since our goal is to simply compare the
HGT and the GLMM.

In Figure 5, we see that the GLMM took more time (roughly 275 seconds for the
GLMM, and roughly 100 seconds for the HGT) to produce fewer average effective sam-
ples (roughly 800 for the GLMM and roughly 1,300 for the HGT) than the HGT.
Furthermore, the predictive performance of HGT is better than the GLMM, as mea-
sured by RMSE, in this Poisson-only data setting. This is somewhat different from what
is seen in the continuous-only data setting in Section 5.3, where the difference in RMSE
between the HGT and the preferred model was negligible.

There are of course several other methods/computational approaches besides the
GLMM with Metropolis-Hastings updates that are more computationally efficient (e.g.,
LCM or the use of INLA, etc.). Thus, a fair conclusion would be the following: if the
continuous-only preferred model (e.g., the preferred model is proportional to SME) is
considerably more computationally advantageous than the non-Gaussian version of the
preferred model (e.g., the GLMM), then the HGT is a more computationally practical
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Figure 6: We plot the number of reported COVID-19 infections (top left), reported
COVID-19 deaths (top middle), the reported recoveries from COVID-19 (top right),
the DJI adjusted closing price (bottom left), and the Google Trends interest score for
searches of “coronavirus” (bottom right). Note that the DJI price data is not available on
Saturday and Sundays. The black circles are the observed data, and blue lines connecting
these points are added as a reference. The top row represents only a summary of available
data, since we also observe these counts over 184 countries and 82 provinces.

choice in the non-Gaussian response-type setting (as illustrated in the above example).
This is because HGT can use the same implementation of the continuous-only preferred
model in Step 4, and the added computations in Step 2 are “small” as compared to,
say, Metropolis-Hastings updates in a GLMM.

6 Joint Analysis of Reported COVID-19 Occurrences,
the Adjusted Closing Price of the Dow Jones
Industrial, and Google Trends Data

We now present our joint analysis of occurrences of COVID-19, the adjusted closing
price of the DJI, and the Google Trends interest score in searches of “coronavirus” (see
time series displays of this data in Figure 6). The MCMC is implemented according
to Algorithms 1 through 3 with 10,000 replicates and a burn-in of 1,000. Convergence
was assessed visually through the use of trace plots and through Gelman-Rubin diag-
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nostics (Gelman et al., 2013) with no indications of a lack of convergence. All of our
analyses were implemented on Windows 10 with the following specifications: Intel(R)
CORE(TM) i5-8250U CPU with 1.60Gh.

6.1 The Dataset

COVID-19 was first detected in a live animal market in Wuhan City within the Hubei
Province of China (Guarner, 2020). This virus spreads easily from person to person,
and there are cases of this virus where an individual is unsure of how they became
infected (i.e., community transmission, Dowd et al., 2020; Guarner, 2020). As of this
writing, no vaccine has been approved for broad distribution in nearly all countries
(Corum et al., 2020; Wangping et al., 2020). As such, many governmental organizations,
including the Centers for Disease Control and Prevention (CDC), have advised placing
distance between yourself and other individuals (i.e., social distancing, CDC, 2020).
Social distancing is an important public health measure that reduces close contact with
people that may be infected by maintaining physical distance between all individuals
(Wilder-Smith and Freedman, 2020; Zhang et al., 2020; CDC, 2020). However, social
distancing comes as a cost, and can be detrimental to economies and cause psychological
distress (Long, 2020; Park et al., 2020).

The data on reported deaths and cases of COVID-19 were obtained from the Johns
Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coron-
avirus repository (publicly available at https://github.com/CSSEGISandData/

COVID-19), a subset of which, is made available in the R package coronavirus

(Krispin, 2020). Cases, recoveries and mortality counts are available over regions (i.e.,
country or province) and discrete time (daily). In this article, we model these counts
using a Poisson distribution, and our main interest lies in estimating the mean number
of reported deaths and cases of COVID-19, and estimating its dependence with interest
in COVID-19 and DJI data.

The number of Google searches of “coronavirus” is indicative of the high interest
on COVID-19 and can act as a loose proxy for the public interest in COVID-19. This
search information is made available through Google Trends data (Google, 2020). Google
Trends provide daily time series of an “interest” measure of searches on Google. This
interest measure is defined on a scale from zero to one hundred with 100 indicating high
interest and zero indicating low interest. In this article, we model the Google Trends
interest score for the search “coronavirus” as binomial with sample size 100, since this
response is a non-negative, integer-valued response that is bounded above by 100.

The DJI follows 30 publicly owned blue chip (i.e., nationally recognized and finan-
cially secure) companies that trade on the New York Stock Exchange (NYSE) and the
National Association of Securities Dealers Automated Quotations (NASDAQ). It is a
benchmark for blue-chip stocks and is often treated as a measure of the economic health
of the US. This data was obtained through Yahoo Finance (Yahoo, 2020). We model
the adjusted daily closing price with a Gaussian distribution, since it is continuous
valued. Our main interest in DJI is in determining and summarizing the relationship
between the adjusted closing price with both interest in COVID-19 and reported cases
and deaths due to COVID-19.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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Let Zi1 represent the negative adjusted closing price of DJI per $10, 000, Zi2 be
the integer-valued interest score for COVID-19 searches as computed by Google Trends
(with bi ≡ 100), and i indexes the days ranging from January 22, 2020 to April 8,
2020. We analyze Zi1 on the negative scale so that we see an increasing trend over
time among all three response-types. The data Zi3 represents the i-th replicate of the
number of COVID-19 cases, where for each i there is an associated region (e.g., China)
Ai ⊂∈ [−180, 180]× [−90, 90], day ti (between January 22, 2020 to April 8, 2020), and
an indicator di of whether or not the count consists of reported deaths. Let di = 1 if Zi3

represents reported deaths and di = 0 otherwise. Likewise, let ui represent an indicator
of whether or not the count consists of reported recoveries. Also let ti = 1, . . . , T = 78
represent each day between January 22, 2020 to April 8, 2020. In Figure 6, we plot the
number of reported COVID-19 infections, reported COVID-19 deaths, the DJI adjusted
closing price, and the Google Trends interest score for searches of “coronavirus.” This
plot is based on data reported as of this writing, and this data is continually being
monitored and updated.

Our specifications of the basis functions are defined in Supplementary Appendix
C.4, and covariates include an indicator for the region and response-types, di, and ui.
The data from January 22, 2020 to April 6, 2020 are the training data (n = 10, 600),
the data on April 7, 2020 is held-out as a validation dataset (373 observations), and the
data on April 8 is held-out as a testing dataset (374 observations).

6.2 Goodness of Fit

In Figure 7 we plot the posterior mean death, confirmed cases, recovered cases, adjusted
closing price, and Google Trends interest score. Here, we see that the predicted values
are reasonably close to their observed values with the observed data close contained
within a pointwise 95% credible interval. These results suggest that the in-sample error
is small, and that the predicted values reflect the general patterns of the data. Goodness
of fit can be formally investigated according to the approaches in Section 4.1. Roughly
99.4% percent of the credible intervals, as defined in (4.1), contain zero. This provides
additional evidence the model provides a reasonable fit to the data. The posterior pre-
dictive p-value is ≈ 1, which suggests that our model for transformation overfits (see
Section 4.1). In the bottom right panel of Figure 7 we plot the posterior median residual
(i.e., δ) versus the time the observation was recorded. Here we see roughly no pattern
over time, which suggests that our specification of the basis functions were reasonable.

6.3 Estimation and Prediction

We did not include the data on April 8-th, 2020, which was the most current value
available at the time of the analysis. We use the HGT model to predict the number
of deaths, number of confirmed recoveries, and number of confirmed cases according to
Algorithm 3. In Figure 8 we provide the posterior means associated with these values
versus the testing data. The use of Algorithm 2 aided in producing more accurate
forecasts as the posterior means of κ02 and κ12 were roughly equal to 3.5 and 1.5,
respectively. In general, the posterior means from Algorithm 3 trends the testing data,
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Figure 7: Goodness of Fit: We plot the sum (over regions) of log number of reported
COVID-19 infections (top left), sum (over regions) log number of reported COVID-19
deaths (top middle), sum (over regions) log number of reported COVID-19 recoveries
(top right), the DJI adjusted closing price (bottom left), and the logit (log(Yi2/100 −
Yi2)) Google Trends interest score for searches of “coronavirus” (bottom middle). Note
that the DJI price data is not available on Saturday and Sundays. The red lines represent
the predicted values from our model, and the black circles represent the observed values.
The black lines are pointwise 95% credible intervals. The credible intervals are left out
in the bottom panels for visualization purposes (credible intervals are large), and in this
panel each datum falls within their respective credible interval. The posterior median
residuals versus time is given in the bottom right panel.

except for smaller testing values, where there is a tendency to overestimate the log
count. However, the percentage (over the testing data) of pointwise credible intervals
that contain the testing data is 98.4%, which suggest that the uncertainty of these
estimates are captured in the model. This property of the model is also seen in the plot
of the posterior variance versus the posterior mean, also displayed in Figure 8. Here,
smaller predicted values tend to be over-dispersed, and larger predicted values appear
to be equi-dispersed. Thus, we appear to have accurate predictions of the areas with
the largest confirmed cases, recoveries, and deaths. Being able to accurately estimate
large values of (log) occurrences is particularly important. That is, if we know where
there are large occurrences of confirmed cases, then additional testing of individuals
in these regions allows one to isolate all those who test positive in this region, which
ultimately reduces the spread of COVID-19 from this region to others (Ai et al., 2020).
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Figure 8: Forecasting: In the left panel we plot the forecasted testing data using Algo-
rithm 3. Here the testing data represents all confirmed cases, recoveries, and deaths on
April 8, 2020. The right panel plots the posterior variance of the predicted testing data
versus the posterior mean.

Consequently, models such as ours can be useful at stopping the spread of COVID-19.
However, finer-scale regional data would be necessary for this model to be helpful in
narrowing in on potential “hot-spots” in practice.

In Figure 9, we plot the posterior mean of the random effects that is shared across
response-type along with pointwise 95% credible intervals (see Section 4.1). The time
period ti = 1 to ti = 33 (corresponding to January 22, 2020 and February 23, 2020)
was particularly crucial, since this time range saw the strongest direct effects between
COVID-19 cases, the negative adjusted closing price, and Google Trends interest-score
in the Google search “coronavirus.” Furthermore, the fact that zero does not tend to
fall within the credible intervals suggests that our incorporation of dependence across
response-types, spatial regions, and days was reasonable. Time point ti = 33 (cor-
responding to February 23, 2020) marks a time in which the adjusted closing price
initially started to decrease (see Figures 1 and 6), and the Google Trends interest score
increases. After ti = 33 the random effect appears to be negative-valued, which suggests
an indirect relationship among these responses.

7 Discussion

We introduce the HGT model, which is derived from a straightforward combination
of the LCM and the GLMM. This combination is motivated as a means to aid other
researchers to analyze multiple response-type datasets such as the one considered in this
article. In particular, our approach provides several contributions to Bayesian statistics.
First, we have developed a general all-purpose Bayesian model to analyze multiple
responses (e.g., continuous, Binomial counts, and Poisson counts). Our approach allows
one to directly incorporate their preferred Bayesian model to analyze multiple response-
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Figure 9: We plot the posterior mean of
∑

Ti=t S
′
ijη. The red line indicates pointwise

95% credible intervals.

type data without completely abandoning their approach to the implementation of
their preferred model. Second, we developed a general Bayesian analog to the classical
comparison between a saturated model and a reduced model. This results in the use of
classical residual analysis for assessing goodness-of-fit in Bayesian models for multiple
response-type data. Third, we develop an approach to forecasting by introducing new
parameters in a model for validation data. Code and tutorials on how to adapt the HGT
to your preferred model can be found at https://github.com/JonathanBradley28/CM.

We illustrate the HGT on a dataset of COVID-19 and social distancing related vari-
ables. COVID-19 is a global epochal health disaster, and social distancing has become
a necessary public health measure to protect the health of individuals. In particular,
we investigate the relationship between COVID-19 cases, the US economy (specifically
the negative adjusted closing price of DJI), and interest on Google (specifically Google
Trends interest score for the search “coronavirus”). The data and model suggests that
the relationship among these three values had the strongest positive relationship during
a majority of February 2020, which suggests that this was an important time period. Ad-
ditionally, there are clear cross-dependencies among response-types, regions, and days.
It is important to comment that correlation does not imply causation, and to make
explicit causal conclusions one needs to adopt methods among the causal inference lit-
erature (Rubin, 2005). Finally, the HGT model produces reasonable forecasts of the log
frequency of cases, deaths, and recoveries from COVID-19. This suggests that with finer-
scale regional data, this model could potentially be useful for targeting future hot-spots
of COVID-19.

In our simulations, an illustration was given of non-linear functional analysis of
multiple response-types using BART as the preferred model. Additionally, an illustration

https://github.com/JonathanBradley28/CM
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was given of a joint spatial analysis of multiple response-types using a spatio-temporal
mixed effects model as the preferred model. These results suggest that the prediction
error of our approach is small (in terms of RMSE), and we can develop multiple response-
type data versions of two different preferred models seamlessly. Computational benefits
in the non-Gaussian setting was also illustrated. Additionally, data driven goodness-of-
fit diagnostics were able to lead to the same conclusion as the RMSE criterion (based
on the latent process) that is unobserved in practice.

Supplementary Material

Supplementary Materials: Joint Bayesian analysis of multiple response-types using the
hierarchical generalized transformation model (DOI: 10.1214/20-BA1246SUPP; .pdf).
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