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A Bayesian Approach to Modeling Multivariate
Multilevel Insurance Claims in the Presence of

Unsettled Claims

Marie-Pier Côté∗, Christian Genest†,§, and David A. Stephens‡

Abstract. A Bayesian model for individual insurance claims is proposed which
accounts for the multivariate multilevel features of the claims, including multiple
claimants for the same event, each of whom may receive benefits under different
coverages. A Bayesian approach makes it possible to account for missing values
in the covariates and partial information contained in open files, thereby avoiding
sampling bias induced when unsettled claims are ignored. For a given claim, the
combination of coverages under which payments are made is modeled as a type
with multinomial regression. The presence of legal and expert fees follows a logistic
regression given the type. The non-zero claim amounts are then modeled with log
skewed normal regressions linked by a Student t copula. The Bayesian framework
yields a predictive distribution for the amounts paid, including parameter risk
and process risk, while handling missing covariates and open files. The approach is
illustrated with Accident Benefits car insurance claims from a Canadian company.

Keywords: Bayesian model, censored data, copula, correlation, Fernández–Steel
skewed normal, imputation, insurance claim, multinomial and logistic regression.
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1 Introduction

General insurance companies are increasingly interested in statistical methods that take
advantage of their detailed databases. One such application is the statistical modeling of
paid amounts at the policyholder or claim level. With greater granularity come broader
applicability and many challenges that can be overcome using a Bayesian perspective.

A claim amount can be viewed as a sum of losses relating to the various coverages
in the insurance policy. A typical example is a car insurance product which may cover
vehicle damage, medical and rehabilitation expenses, income replacement benefits, etc.
A car accident can trigger payments under more than one coverage and for multiple
claimants (e.g., the driver, passengers, pedestrians). As the total claim amounts are
heterogeneous, it is natural to model the detailed components jointly before they are
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aggregated. Both the probability of a payment for a component and its amount can
depend on characteristics of the accident or the claimant. Dependence between the
claim components naturally arises as they all relate to the same event.

A convenient way to construct multivariate distributions is to model the marginal
behavior and the dependence structure separately through copulas. The usefulness of
copulas in actuarial science and risk management is well documented; see, e.g., McNeil
et al. (2005) or Denuit et al. (2006). This approach was adopted, for instance, in the
multivariate claims model of Frees and Valdez (2008) and Frees et al. (2009), where the
severity was split into two parts: the claim type, identifying the coverages with strictly
positive payments, and the amounts given the type. The introduction of the claim type
effectively takes care of the point mass at zero, due to the claims for which no payment is
made. It also allows to model jointly the amounts that are strictly positive, conditionally
on the claim type, in a copula model with margins that depend on covariates.

As an alternative, Shi et al. (2016) account for the mass at zero using Tweedie
margins in a Gaussian copula model for policies involving more than one vehicle and
multiple coverages. In this case, the copula describes the dependence in occurrences
and amounts, thereby being somewhat less flexible than the claim type approach of
Frees and Valdez (2008). In Yang et al. (2011), a copula links the components of bodily
injury car insurance claims. In these papers, maximum likelihood, pairwise composite
likelihood, or inference for margins are used for estimation. Thus, the resulting predictive
distributions of claim amounts, approximated by simulation, do not incorporate the
uncertainty relating to the large number of parameters.

We propose here a Bayesian model for multivariate multilevel claim amounts. As
discussed in Shi et al. (2016), this data structure is frequent in insurance. Detailed car
insurance claims, workers compensation insurance, group health insurance, and com-
mercial auto insurance exhibit an unbalanced multilevel structure. Micro-level Accident
Benefits insurance claims data from a large Canadian insurance company serve as justi-
fication for our approach. The proposed model has many applications; it could be used,
e.g., to get the predictive distribution of the paid amount given the claim characteris-
tics when a new claim gets reported. Such a model can complement (and maybe even
replace in the long run) the costly initial assessment by a claims expert.

The dataset, described in Section 2, is complex: each claim may involve one or more
claimants, and the payments for each claimant are broken down into four parts. Recent
claims are the most relevant for the predictions, but because the settlement of Accident
Benefits claims may take a few years, most of them are not yet settled and their total
paid amount is unknown. Using only settled files for estimation causes sampling bias:
the simpler cases close faster than the major ones. Ignoring the fact that open claims
are censored also understates the paid amounts. To solve this problem, we propose an
innovative Bayesian procedure that includes the open claims partial information.

The basic model setup, described in Section 3, is adapted from the hierarchical in-
surance claims model of Frees and Valdez (2008) and accounts for covariates known at
the time of reporting. Claims are classified into five types depending on the combina-
tion of components with a strictly positive payment. These types are modeled with a
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multinomial regression. The presence of expenses in the form of subcontracted legal and
claims expert fees is modeled conditionally on the type via logistic regression. Given
the type and presence of expenses for each claimant in an accident, the strictly positive
amounts are log skewed normal regression models linked by a Student t copula.

The Bayesian framework facilitates the handling of missing covariates and partial
information contained in open claims. Imputation models for the censored types, pres-
ence of expenses, and amounts are developed in Section 4 and are estimated using the
settled claim development data. MCMC methods with a Metropolis-within-Gibbs al-
gorithm can be set up, as explained in the Supplement (Côté et al., 2020), to obtain
the posterior distribution of the parameters and the posterior predictive distribution of
the multivariate claim, including parameter uncertainty. The good performance of the
approach is illustrated in Section 5, where the posterior predictive distribution based
on the proposed model and the data available in 2008 is compared to the posterior
distribution based on the complete 2015 data. Predictive distributions and predictive
intervals on paid amounts for individual claims or portfolios from the holdout sample
are shown in Section 6. The paper ends with a short conclusion in Section 7.

2 A glimpse at the data

The dataset consists of claim characteristics and the associated inflation-adjusted paid
amounts for an Accident Benefits car insurance product sold in the province of Ontario,
Canada. In total, 54,281 accidents were reported between January 1, 2004 and Decem-
ber 31, 2015. The payments are known up to the latter date, at which point 15% of the
claim files are open. A random sample of 60% of the claims is used for estimation; the
remainder forms a holdout validation sample and is not discussed in this section.

Most claims involve one (81.6%) or two (13.9%) claimants, but in one case there were
as many as eight claimants. For each claimant, the payment is broken down into four
components: three insurance coverages and the legal and claims expert fees (Expenses).
The coverages are medical and rehabilitation benefits (Medical), income replacement
benefits (Income) and caregiver benefits (Caregiver). Each of these components has a
mass at zero. To model them jointly, the claimant files were classified into the five types
listed in Table 1; 0.4% of the files matched none of these categories and were discarded
as they were deemed highly unlikely to occur ever again.

Type Coverages With Payment Exceeding $100 % of Claimants

1 None 42.3%
2 Medical 36.4%
3 Medical and Income 6.9%
4 Medical and Caregiver 9.4%
5 Medical, Income and Caregiver 5.0%

Table 1: Definition of types and distribution in (open and closed) claimant files.
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Figure 1: Breakdown of open and closed claimant files by accident year.

Figure 2: Distribution of type by claim status (left) and kernel density estimates (right)
for after-reform log Medical amounts for closed (solid line) and open cases (dashed line).

As claim amounts below $100 can be regarded as immaterial for bodily injury claim
modeling, they were treated as zeros when choosing the type. Such amounts hardly
contain any information about types and their modeling would yield little benefit. Also,
a claimant who receives income replacement or caregiver benefits must also incur medical
expenses. Expenses were present in 28% of the files but were more likely for types 2–5.

Effective September 1, 2010, a reform of the Ontario Insurance Act (FSCO, 2010)
affected the Accident Benefits product by modifying the allowed paid amounts depend-
ing on the claim gravity, especially for the caregiver benefits. Côté and Genest (2015)
documented the impact of this reform in a higher-level model for multiple business lines
including the aggregate version of the claim portfolio studied here. Figure 1 shows the
number of claimants per accident year and by status. The recent accident years, which
are post-reform and the most relevant for future predictions, contain many open files:
the final settlement amount is unknown at evaluation date, i.e., December 31, 2015.

The left panel of Figure 2 contrasts the type distributions for closed and open files.
These distributions clearly differ, and dropping the open claims would bias the type
analysis towards minor claims such as those that close at zero. As will be seen in
Section 4.2, the type of open claims can actually change until settlement.

The right panel of Figure 2 compares kernel density estimates of the strictly positive
Medical paid amounts, on the log scale, for unsettled (dashed line) and closed (solid
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Component 1: Medical 2: Income 3: Caregiver 4: Expenses

Minimum 4.605 4.611 4.619 4.608
Median 8.283 8.654 8.556 7.863
Maximum 14.058 13.122 13.805 12.681
Mean 8.361 8.562 8.420 7.731
Standard deviation 1.496 1.466 1.337 1.375

Table 2: Summary statistics of (non-zero) amounts paid by component, on the log scale.

line) claims incurred after the reform. It transpires from it that large claims are more
likely to be unsettled at evaluation date: even though these amounts are censored, their
distribution is shifted to the right compared to that of the settled claims amounts.

Therefore, the information conveyed in the open files ought to be exploited in the
estimation procedure for the amounts. This issue was not relevant to the micro-level
claim analyses of Frees and Valdez (2008) or Frees et al. (2009) as the claim status was
unavailable and all claims were assumed to be settled.

Table 2 shows descriptive statistics of the log of the strictly positive paid amounts
by component. At this stage, the dependence between amounts is not analyzed, as part
of it is caused by common covariates. At the claim level, the covariates on the policy are:
whether the vehicle is a motorcycle or a scooter, the number of years insured with the
company (grouped), whether the policyholder also has property insurance, and whether
there is optional income coverage. Two categories of covariates are given by claimant:

(a) Claimant’s demographics: Age, income indemnity level (categorical), marital sta-
tus (single, married, divorced or other), and rating score.

(b) Claim characteristics: Whether it occurred after the 2010 reform, gravity (minor,
major, or catastrophic), number of injuries, pain level (scale of 1 to 10), presence
of a legal counsellor, and initial case reserve (in thousands) for the three coverages.

Income indemnity level is used only in the Income paid amounts model and is missing
in 8.1% of the type 3 and 5 cases. Age, which will be used in all the marginal amounts
models, is missing in 8.9% of cases. Even though 47.8% of the pain levels are missing,
this feature still improves both the type and amounts models.

3 Multivariate multilevel claims model

The basic setup of the proposed model is inspired by Frees and Valdez (2008). Given the
covariates for each claimant involved in the claim, the type for each claimant, i.e., the
combination of coverages with positive payment, is modeled by a multinomial regression.
Conditional on the type, the presence of Expenses follows a logistic regression model,
for each claimant. These two components take care of the masses at zero, and the log
of the strictly positive amounts are modeled with skewed normal regressions linked in
a Student t copula of appropriate dimension, with a suitable correlation structure.
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Figure 3: Bayesian multivariate micro-level model for one claim i involving ni claimants.

Given covariates and parameters, different claims are assumed to be mutually inde-
pendent but amounts paid in relation to the same claim are related. This association
may result from unmeasured covariates or the duration of the rehabilitation, which
affects simultaneously the claimant’s medical, income replacement and caregiver bene-
fits, if any. The model is multivariate due to the joint distribution of the amounts for
a claimant, and multilevel because of the dependence between amounts for different
claimants involved in the same claim.

See Figure 3 for a schematic view of the model. Details on each submodel, the
notation and the priors are given in this section and, for ease of understanding, are
illustrated with the following running example.

Example. Claim i = 5123 involves two claimants: the first received $2122.74 in Medical
benefit; the second had a Medical benefit of $9399.86 and a Caregiver benefit of $3306.82.
There were no Expenses for Claimant 1 but a $6600.47 fee was allocated to Claimant 2.

3.1 Multinomial model for type

For each claim i ∈ {1, . . . , N} and claimant j ∈ {1, . . . , ni}, where ni is the number of
claimant files relating to claim i, we model the type Si,j , as defined in Table 1, using
a multinomial logistic regression. Let xS

i,j be the row vector of relevant explanatory

variables for claimant j in claim i. In the present case, the components of xS
i,j were the

policy age and accident year if prior to the reform, the claimant’s marital status, number
of injuries, gravity, pain level, and two interactions involving the reform indicator.
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Denote by βS = (βS
1 , . . . , β

S
5 )

� the complete parameter vector for the type model,
where βS

1 = 0. Then, for each s ∈ {1, . . . , 5},

Pr(Si,j = s | xS
i,j , β

S) =
exp(xS

i,jβ
S
s )∑5

t=1 exp(x
S
i,jβ

S
t )

.

As there is little prior information on the covariate impacts on the types, the parameters
are assumed a priori independent with a diffuse prior βS ∼ N (0, σ2

SI), where σ
2
S is large.

Example (cont’d). Types are si1 = 2 (Medical) and si2 = 4 (Medical and Caregiver).

3.2 Binomial model for presence of Expenses

The indicator Wi,j of the presence of Expenses takes value 1 whenever the amount for
that component exceeds $100. Given Si,j , Wi,j is modeled by a logistic regression with

Pr(Wi,j = 1 | Si,j = s, xW
i,j , β

W , αW
s ) =

exp(xW
i,jβ

W + αW
s )

1 + exp(xW
i,jβ

W + αW
s )

,

where xW
i,j are the relevant covariates, βW is the vector of coefficients, and αW

s is the

effect of type s with αW
1 = 0. In the present case, the components of xW

i,j were policy age,
a reform indicator, and gravity, as well as two interactions involving the reform indicator.
The parameters are again assumed to have independent Gaussian priors centered around
0 and with large variance σ2

W .

For notational simplicity, set αW = (αW
1 , . . . , αW

5 ) and define Mijk as the indica-
tor that the payment for component k (Medical, Income, Caregiver and Expenses are
numbered from 1 to 4) and claimant j in claim i is positive, i.e.,

Mij1 = 1(Si,j > 1), Mij2 = 1(Si,j ∈ {3, 5}), Mij3 = 1(Si,j ∈ {4, 5}), Mij4 = Wi,j ,

and set the component vector for claim i asMi =(Mi11, . . . ,Mi14, . . . ,Mini1, . . . ,Mini4).
For claim i, let vi be the index set of the claimant number and component with positive
paid amounts, i.e.,

vi =
{
(j, k) : Mijk = 1, j ∈ {1, . . . , ni}, k ∈ {1, . . . , 4}

}
and let ṽi = {k + 4(j − 1) : (j, k) ∈ vi} be the index set of the position of the 1s in the
vector Mi. If vi = ṽi = ∅, the total amount for claim i is 0.

Example (cont’d). As there were Expenses for Claimant 2 only, we have wi1 = 0 and
wi2 = 1. Recall that si1 = 2 and si2 = 4, so we have mi = (1, 0, 0, 0, 1, 0, 1, 1) and the
index set of positive amounts is vi = {(1, 1), (2, 1), (2, 3), (2, 4)} while ṽi = {1, 5, 7, 8}.

3.3 Skewed normal regression models for the marginal amounts

Given the component vectorMi, the amounts that are exactly 0 are known, so it remains
to model the strictly positive paid amounts. When Mijk = 1, denote by Yijk the natural
logarithm of the payment made under component k ∈ {1, . . . , 4} (i.e., Medical, Income,
Caregiver or Expenses) for the jth claimant in claim i.
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Example (cont’d). One has Yi11 = ln(2122.74), Yi21 = ln(9399.86), Yi23 = ln(3306.82)
and Yi24 = ln(6600.47). The other Y s are undefined.

A preliminary analysis showed that the log amounts distribution is skewed but not
heavy-tailed. Fernández and Steel (1998) showed how to build skewed versions of sym-
metric distributions and how a Metropolis-within-Gibbs algorithm can be used to esti-
mate the parameters. Inspired by this work, we assume that

Yijk | Mijk = 1 ∼ SN (xY
i,jβ

Y
k , σk, ξk),

where xY
i,j stands for the vector of covariates listed in Tables 9–10 in the Supplement.

Adapting the parametrization in Trottier and Ardia (2016), the density of the
Fernández–Steel skewed normal can be written, for y ∈ R, as

f(y | μ, σ, ξ) = 2σ∗

ξ + 1/ξ
φ

{
yσ∗ + μ∗

ξsign(yσ∗+μ∗)

}
,

where φ is the N (0, 1) density, ξ ∈ (0,∞) is a skewness parameter, μ ∈ R, σ ∈ (0,∞),

σ∗ =
√

(1− 2/π)(ξ2 + 1/ξ2) + 4/π − 1/σ and μ∗ = (ξ − 1/ξ)
√

2/π − μσ∗.

In this parametrization, we have E(Yijk) = xY
i,jβ

Y
k and var(Yijk) = σ2

k. The skewed
normal with ξ = 1 reduces to the symmetric normal. The moment generating function
obtained in the Supplement guarantees the existence of the mean and variance of the
paid amounts on the original scale. Risk measures such as the Tail Value-at-Risk of the
paid amounts can be expressed in terms of the distribution function Φ of the N (0, 1) and
its inverse, as can be derived with similar calculations as in Section 2 of the Supplement.

3.4 Student t copula for the dependence between the paid amounts

To account for the residual dependence once covariates have been factored in, a copula
links the marginal regressions. For example, for mi = (1, 0, 0, 1), i.e., one claimant with
Type 2 and Expenses, the joint distribution of the amounts can be expressed in terms
of a bivariate copula C : [0, 1]2 → [0, 1] as

F (yi11, yi14) = C
{
F (yi11 | xY

i,1β
Y
1 , σ1, ξ1), F (yi14 | xY

i,1β
Y
4 , σ4, ξ4)

}
,

where C is assumed to be the same across all values of the covariates. This flexible
representation is widely used in multivariate analysis; see, e.g., Genest and Favre (2007)
or Genest and Nešlehová (2012) for details on copulas and copula models.

The dimension of the copula for claim i is the number of 1s in the component
vector Mi, or

∑ni

j=1

∑4
k=1 Mijk. We expect the shape of the dependence between two

components to remain unchanged when another component is present. As the claimant
labels convey no information, the within-claimant dependence should be the same for
all claimants. We also expect the between-claimant association to be weaker than the
within-claimant association.
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These constraints can be embodied into a Student t copula with correlation matrix
Σi built such that, for components k1, k2 ∈ {1, . . . , 4} and claimants j1, j2 ∈ {1, . . . , ni},

corr(Yi,j1,k1 , Yi,j2,k2) =

{
ρk1,k2 if j1 = j2,

γρk1,k2 if j1 �= j2,

where ρk1,k2 = ρk2,k1 , γ ∈ [−1, 1] and ρk1,k2 = 1 when k1 = k2. With the parameter γ,
the dependence structure can be written using only seven parameters. This is particu-
larly appealing as there are few cases of multiple claimants who all receive Income or
Caregiver benefits, which would affect the estimation of between-claimant correlations.
Let nmax = max(n1, . . . , nN ) and define the positive definite matrices

Γ =

⎛⎜⎜⎜⎜⎝
1 γ · · · γ

γ 1
...

...
. . .

γ · · · γ 1

⎞⎟⎟⎟⎟⎠
nmax×nmax

and Λ =

⎛⎜⎜⎝
1 ρ1,2 ρ1,3 ρ1,4

ρ1,2 1 ρ2,3 ρ2,4
ρ1,3 ρ2,3 1 ρ3,4
ρ1,4 ρ2,4 ρ3,4 1

⎞⎟⎟⎠ .

For claim i, the largest possible correlation matrix necessary is the Kronecker product
Σ = Γ⊗Λ, which is necessarily positive definite. The actual copula parameter for claim
i is the submatrix Σ[ṽi, ṽi] corresponding to rows and columns of the coverages with
positive amount paid for each claimant. The joint density of the log positive amounts is

cν{ui; Σ[ṽi, ṽi]} ×
∏

(j,k)∈vi

f(yijk | xY
ijβ

Y
k , σk, ξk),

where cν{·; Σ} is the Student t copula density with ν degrees of freedom and corre-
lation Σ, and ui = (F (yijk | xY

ijβ
Y
k , σk, ξk) : (j, k) ∈ vi) is the vector of transformed

positive amounts.

Example (cont’d). Recall that ṽi = {1, 5, 7, 8}, so the correlation matrix is

Σ[{1, 5, 7, 8}, {1, 5, 7, 8}] =

⎛⎜⎜⎝
1 γ γρ1,3 γρ1,4
γ 1 ρ1,3 ρ1,4

γρ1,3 ρ1,3 1 ρ3,4
γρ1,4 ρ1,4 ρ3,4 1

⎞⎟⎟⎠ .

To lighten notation, denote the conditional distribution function F (· | xY
ijβ

Y
k , σk, ξk) by

Fijk. In this example, the joint density of the positive amounts is given by

cν {Fi11(yi11), Fi21(yi21), Fi23(yi23), Fi24(yi24); Σ[ṽi, ṽi]}
× f(yi11 | xY

i1β
Y
1 , σ1, ξ1)f(yi21 | xY

i2β
Y
1 , σ1, ξ1)

× f(yi23 | xY
i2β

Y
3 , σ3, ξ3)f(yi24 | xY

i2β
Y
4 , σ4, ξ4).
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3.5 Prior specification in the model for the amounts

In such a large model, it is preferable to use proper priors for all parameters. For the
marginal amounts model, the priors are given, with λk = 1/σ2

k, by

βY
k ∼ N (0, σ2

βI), λk ∼ G(αλ, βλ), ξk ∼ G(αξ, βξ),

where G denotes the Gamma distribution. The covariate effects are taken to be indepen-
dent a priori, and due to the different scales of the covariates, we use the diffuse variance
σ2
β = 100. Weakly informative Gamma priors are used for the variance and skewness

parameters, which are both positive. For the precision parameters λk, we choose αλ = 4
and βλ = 4.5, so that E(λk) = 4/4.5. Setting αξ = βξ implies that E(ξk) = 1, so the prior
expectation is that the normal is symmetric. It is known a priori that the skewness is
moderate, so a reasonable range for ξk is (0.5, 2), as seen in Figure 1 of the Supplement.
Using αξ = βξ = 10 leads to Pr(ξk ≤ 1) = 0.54 and Pr(0.5 < ξk ≤ 2) = 0.96.

We detail below the choice of priors for the parameters of the Student t copula.

Prior for the correlation matrix parameters

The between-claimant correlation parameter γ and within-claimant correlations are
assumed independent a priori. Because of the size of the dataset, the prior settings for
both Λ and γ are not the primary drivers of the posterior dependence structure, but
it is interesting to show how to set informative priors for these parameters. For the
between-claimant parameter, many options exist: we assume (γ +1)/2 ∼ B(8, 4), i.e., a
Beta distribution with shape parameters 8 and 4, so that the prior expected correlation
between claimants is 1/3.

Few distributions allowing for informative inputs exist for random correlation ma-
trices. As explained in Smith (2013) and references therein, authors use priors based on
Cholesky factorization, partial correlations, or restricted independent normals (Liechty
et al., 2004). In many applications, the large dimension of the matrix motivates the
use of shrinkage priors, as in Pitt et al. (2006), where the off-diagonal elements of the
matrix may equal 0. Barnard et al. (2000) propose two priors, the marginally uniform
prior derived from the Inverse Wishart distribution on the covariance, and the jointly
uniform prior. These distributions are either non-informative or shrink the correlations
towards 0. When higher correlations are riskier, shrinkage priors are inappropriate.

It is unintuitive to set prior expectations on a Cholesky decomposition, so we extend
the marginally uniform prior of Barnard et al. (2000) to be informative on Λ. This prior
exploits the Inverse Wishart distribution for symmetric positive definite matrices and
the relationship between covariance and correlation matrices. Suppose W is a k × k
Inverse Wishart random covariance matrix with positive definite scale matrix Ψ and
degrees of freedom ν > k. Then one can write W = ARA, where A is a diagonal matrix
with ith diagonal element ai > 0, and R is a correlation matrix. The distribution of
R when W has a standard Inverse Wishart distribution can be used as a prior. The
derivation is shown in the Supplement, along with our choice of parameters.
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Choice of degrees of freedom

Given the correlation matrix, the parameter ν ∈ (1,∞) influences the tendency of
variables to vary together in high quantiles, as measured by the Tail Dependence Coef-
ficient (TDC): low values of ν imply strong tail dependence and beyond 12–15 degrees
of freedom, the difference between the Student t and the Gaussian copula (which has
no asymptotic dependence) becomes practically negligible. Furthermore, it is common
to use a degenerate prior for the parameter ν to avoid convergence issues due to the
flatness of the t likelihood.

Pair MI MC ME IC IE CE

ν̂ 9.1 12.6 17.1 8.0 12.8 18.5

TDC(ν̂) 0.09 0.07 0.01 0.08 0.03 0.01
TDC(7) 0.14 0.17 0.09 0.10 0.10 0.08
TDC(10) 0.08 0.11 0.05 0.06 0.05 0.04
TDC(13) 0.05 0.07 0.02 0.03 0.05 0.02

Table 3: Pairwise Student t copula maximum pseudo-likelihood fit based on residuals
from closed claims; in the table, TDC(ν) refers to the fitted value of the tail depen-
dence coefficient when the degrees of freedom are set to ν. The letters M, I, C, and E
respectively stand for the Medical, Income, Caregiver, and Expenses component.

To inform the choice of ν, we explored the dependence structure in the closed claims
with rank-based inference tools for copula regression developed in Côté et al. (2019).
Bivariate Student t copulas were fitted by maximum pseudo-likelihood based on the
ranks of the residuals from each of the within-claimant pair. The results are shown
in Table 3. For the Student t copula, a single value of the parameter ν must be used
for all pairs. As the sampling bias may reduce the tail dependence strength in this
preliminary analysis, and considering that stronger tail dependence is more conservative
(thus preferable) in insurance applications, we set ν = 10. Other values of ν near 10
would yield very similar posterior distributions for the other parameters (not shown).

4 Estimation with open claims and missing covariates

In the model described in Section 3, the full likelihood factorizes into two parts, namely

a) the likelihood relating to the types s ≡ (s1,1, . . . , sN,nN
) and presence of Expenses

w ≡ (w1,1, . . . , wN,nN
):

p(s, w |βS , βW , αW , x) =

N∏
i=1

ni∏
j=1

exp(xS
i,jβ

S
si,j )∑5

t=1 exp(x
S
i,jβ

S
t )

{exp(xW
i,jβ

W + αW
si,j )}1(wi,j=1)

1 + exp(xW
i,jβ

W + αW
si,j )

;

b) the likelihood for y ≡ (yijk : i ∈ {1, . . . , N} and (j, k) ∈ vi) given the types
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m ≡ (m1, . . . ,mN ):

p(y | βY , σ, ξ, γ,Λ, x,m) =

N∏
i=1

cν{ui; Σ[ṽi, ṽi]}
∏

(j,k)∈vi

f(yijk | xY
ijβ

Y
k , σk, ξk).

Posterior distributions for the vectors of parameters (βS , βW , αW ) and (βY , σ, ξ, γ,Λ)
can thus be computed separately in parallel, because it is assumed that the parameters
for the type and presence of Expenses are a priori independent of those for the amounts.

In a case where all covariates are observed and all claims are settled, inference
proceeds with classical MCMC techniques. The posterior distribution of the type pa-
rameters is simply

π(βS | s, x) ∝ p(s | βS , x)π0(β
S),

where π0(β
S) =

∏
� φ(β

S
� ; 0, σS), and the posterior for the parameters (βW , αW ) is

π(βW , αW | s, w, x) ∝ p(w | βW , αW , s, x)π0(β
W , αW ),

where π0 is again the independent Gaussian prior. The posterior distribution of the
amounts parameters given the component vectors m is

π(βY , σ, ξ, γ,Λ | y, x,m) ∝
∫

p(y | βY , σ, ξ, γ,Λ, x,m)π0(β
Y , σ, ξ, γ)π0(a,Λ)da,

where

π0(β
Y , σ, ξ, γ) =

∏
�

φ(βY
� ; 0, σβ)

4∏
k=1

π0(σk)π0(ξk)π0(γk),

as specified in Section 3.5 and π0(a,Λ) is given in (1) in the Supplement.

In the present case and in many actuarial applications, however, these posteriors
cannot be used directly because claim information is incomplete at evaluation date.
This section describes how to handle these issues by integrating into the fully Bayesian
model the fact that some covariates may be missing and unsettled claims are censored.

In Section 4.1, we detail how the missing covariates xmis can be treated as any other
parameter in the Bayesian procedure. In Section 4.2, we handle the type and presence
of Expenses for the open claims. Both are censored in an unconventional way due to
the fact that open claims may change type before settlement. We model the transition
probabilities before settlement conditional on the gravity and the time elapsed since
claim occurrence.

In Section 4.3, we model the multivariate amounts given the information known at
evaluation date. In the dataset, we observed that many claims are classified as open for
multiple development periods before they close without further payments. Therefore,
the settlement amounts for open claims are modeled with a continuous component and
a point mass at the current paid amounts. The probability associated with this point
mass depends on the number of consecutive periods without payment, gravity, and the
time between claim occurrence and evaluation date.
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Details on the MCMC algorithm based on the procedure described in this section
are provided in the Supplement, along with the resulting posterior mean and standard
errors of the model parameters.

4.1 Treatment of missing covariates

The pain level is a covariate in the type model and is missing whenever the claimant
did not answer the question “Rate your pain on a scale of 1 to 10.” This may happen,
e.g., when the reporting delay is long and the question is no longer relevant, or when
the claimant is unable to answer questions.

As the pain level is missing in a variety of claims ranging from simple to extreme,
missingness is assumed to happen at random. In that case, and in view of the relatively
low percentage of missingness, the analysis can still be performed without modeling the
inclusion mechanism (Gelman et al., 2004). For the type model, the posterior distribu-
tion of the parameters, given the observed covariates xobs, is

π(βS | s, xobs) =

∫
π(βS , xmis | s, xobs) dxmis

∝
∫

p(s | βS , xobs, xmis)π0(β
S)π0(xmis | xobs) dxmis, (1)

where xmis is the vector of missing covariates. The prior distribution of the missing values
is taken to be a multinomial proportional odds model fitted with the complete open and
closed records. It was designed to yield a reasonable distribution of generated pain levels
given the relevant covariate values (number of injuries, reform indicator, claim gravity,
civil status, and policy age). Details are given in Section 5 of the Supplement.

Although integral (1) is high-dimensional, it can be computed with data augmenta-
tion in a Gibbs sampler; see the Supplement. The conditional posterior of the missing
covariate xmis,ij for claimant j in claim i is

π(xmis,ij | βS , sij , xobs) ∝ p(sij | βS , xobs,ij , xmis,ij)π0(xmis,ij | xobs).

The claimant’s age, income indemnity and pain levels appear in the amounts model,
and they may be missing. Assuming that they are missing at random, the posterior dis-
tribution of the amounts parameters (βY , σ, ξ, γ,Λ) given the observables (y, xobs,m) is

π(βY , σ, ξ, γ,Λ | y, xobs,m) ∝
∫ ∫

p(y | βY , σ, ξ, γ,Λ, xobs, xmis,m)

× π0(β
Y , σ, ξ, γ)π0(a,Λ)π0(xmis | xobs,m) da dxmis, (2)

where the nuisance parameter a is integrated out; see the Supplement. The pain level was
found to be unrelated to age or income, so a multinomial proportional odds model was
used again as a prior, but this time only the records with strictly positive paid amounts
were used to fit the parameters and the claim type was included as a covariate. As pain
level is involved in both the type and amounts models, the updates could in principle
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Figure 4: Distribution of ultimate type for open files in Type 2 (M) at end of period,
for minor (left) or non-minor (right) claims.

be done once for both parts. However, doing so would prevent one from running the
two chains in parallel and would complicate the programming with little added value.

The income indemnity level is also a multinomial proportional odds model involving
the reform indicator, the number of initial injuries, the policy age, the claim type,
whether the policyholder has home insurance, and the rating score. Given the income
level, age is modeled by a linear regression model truncated from below at 15 and from
above at 85. Details are provided in Section 5 of the Supplement.

4.2 Treatment of types and presence of Expenses for open files

At evaluation date, 15% of the claimant files are unsettled, and their type may change
before they close. To study the behavior of the type from claim reporting to settlement,
we use the development data for closed claims, available by quarter (3-month period).
These data contain the history of the total payment made (thus the type) in each
quarter. The period of claim occurrence is called the first development period (DP), the
quarter following this is the second DP, and so on. The DP at evaluation date is the
number of periods since the occurrence of the claim.

Figure 4 shows the distribution of the type at settlement for files that were open and
in Type 2 (Medical) at the end of DPs 1–20. The left panel is for minor injuries, and
the right one combines major and catastrophic injuries. These graphs illustrate that an
open file may change type, and the probability of moving to another category depends
on the gravity and the DP. Also, there are a few reimbursements (moves from 2 to 1).

Therefore, the types for open files are censored, although in an unusual way due to
the reimbursement possibility and the low probability of transition to another type. This
feature can be incorporated into the inference by imputation of the ultimate types for
open files, given the censoring point. Let sop and scl be the sets of ultimate types for files
that are respectively open or closed at evaluation date. If the complete set s = scl ∪ sop
of types at settlement were known, the posterior for βS would be as in (1). As sop is
unknown at evaluation date, however, one can only rely on the set s�op of current types

for open files, yielding the following posterior for βS :

π(βS | scl, s�op, xobs) =

∫
π(βS | s, xobs)p(sop | s�op, scl, xobs) dsop.
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Figure 5: Transition probabilities for open types: solid lines represent fixed probabilities
while dashed lines are proportional to the multinomial model probabilities.

With this posterior, we can then use data augmentation (Tanner and Wong, 1987) to
simplify the estimation by imputing the possible values of sop.

Here, the censoring is very informative and we must design an imputation model
to describe the probabilities of transition from s�op to categories {1, . . . , 5}, considering
gravity and the development period at evaluation. This model is constructed separately
from the multinomial model on the ultimate claim type, because the fact that the type
is s�op after t DPs contains more information on sop than the covariates known at the
time of file opening. That the type changes after DP t and before settlement is also
plausibly unrelated to any reporting-time covariate xobs other than gravity. Details
on the estimation of the transition probabilities are given in the Supplement. In the
imputation procedure, these probabilities were treated as deterministic.

A schematic representation of the transition probabilities is depicted in Figure 5.
The solid lines represent fixed probabilities, while the dashed lines are those that vary
proportionately with the multinomial probabilities in the outer Bayesian model. This
helps to retain the covariate effects. There are no lines when the probability is null, such
as for going from type 3 (MI) to 4 (MC).

A similar analysis is performed for the presence of Expenses. In this case, there is no
possibility of reimbursement, so w�

op,ij = 1 implies wop,ij = 1 almost surely. However,
if there are no Expenses at evaluation for an open file, the probability of transitioning
to 1 before settlement is non-zero and is estimated using the development data, varying
by DP and gravity. Estimated values are given in the Supplement.
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Let w = wop ∪ wcl be the union of the sets of ultimate Expenses indicators for files
that are respectively open or closed at evaluation date. Let also x = xobs ∪ xmis denote
the completed covariate information. Then the posterior distribution of the type and
expense parameters π(βS , βW , αW | scl, s

�
op, wcl, w

�
op, xobs) is proportional to∫ ∫

π(βS , βW , αW | s, w, xobs)p(sop | scl, s�op, xobs)p(wop | wcl, w
�
op, xobs) dsop dwop

∝
∫ ∫ ∫

p(s | βS , xmis, xobs)p(w | s, βW , αW , xmis, xobs)π0(β
S , βW , αW )

× π0(xmis | xobs)p(sop | scl, s�op, xobs)p(wop | wcl, w
�
op, xobs)dxmis dwop dsop.

To compute this integral, we update the missing covariates xmis and the ultimate re-
sponses for open claims wop and sop sequentially in a Gibbs sampler using the impu-
tation models. For details about the algorithm and the posterior means and standard
errors of the parameters, consult the Supplement.

4.3 Treatment of the amounts for open files

Let yop and ycl be the sets of ultimate log amounts for files that are respectively open or
closed at evaluation date. Conditional on the complete response data y = ycl ∪ yop, the
posterior for the amounts parameters would be as given in (2). As yop is unknown at
evaluation date, however, one can only rely on the set y�op of log amounts for open files
at evaluation date, which are treated as censored observations because other payments
relating to these files can be made before settlement. We can then compute the posterior
π(βY , σ, ξ, γ,Λ | ycl, y�op, xobs,m) with the integral∫

π(βY , σ, ξ, γ,Λ | y, xobs,m)p(yop | y�op, x,m) dyop.

Note that if the type aggravates before settlement, then the paid amount for that
component would be non-zero, but that does not inform on the amounts parameters.
Accordingly, the analysis is performed conditional on m, and only the amounts that are
strictly positive at the evaluation date are allowed to aggravate before settlement.

Many open files actually close later on without further payments, so for these claims
the censored value is in fact equal to the settlement amount. It is thus necessary to
account for the probability of settling at current value; otherwise the unknown settle-
ment amounts will be overstated. The imputation model for the censored amounts has
two parts: a mass at yop,i = y�op,i representing the probability of closing without other
payments, and a continuous component left truncated at y�op,i.

As in Section 4.2, the development data for settled claims are used to assess the
probability of closing without more payments. Let tnow be the evaluation date and Pt

be the payment made in DP t. Further, let Tc be the file closure time, i.e., the period at
the end of which the company releases the reserves for that file and closes it. If Tc > tnow,
then the file is open at evaluation date and the amount is censored. If Tc ≤ tnow, then
the file is closed and the complete development is known.
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Define Tf as the time of financial closure, i.e., the period in which the last positive
payment was made for a claim. We have Tf = sup{t : t ≤ Tc, Pt > 0}. This is different
from Tc and in general, Tf ≤ Tc. For all claims that are open, i.e., for which Tc > tnow,
the focus lies in whether the financial closure already occurred, i.e., whether Tf ≤ tnow.
For example, consider the time line:

t1 t2 t3 t4 t5 t6DP

Payment 1000 0 0 0 0

Tf

3000

Last payment
↓

Tc

File closed
↓

This sketch represents the cash flows of a claim that closed after six development
periods, so Tc = t6, but for which the time of financial closure is Tf = t3, as the last
payment was made in Period 3. At the end of DPs 3, 4 and 5, the file was open, but the
financial closure had already happened. If Tlast is the last period, before and including
tnow, where there was a strictly positive payment, i.e., Tlast = sup{t : t ≤ tnow, Pt > 0},
the probability of interest is

Pr(Tf ≤ tnow | Tlast, Tc ≥ tnow) = Pr(Tf = Tlast | Tlast, Tc ≥ tnow).

This probability is modeled by a Bernoulli GLM with logistic link depending on three
covariates: the development year di, the number of periods since last positive payment
tnow − Tlast, and the gravity. Using the development period instead of the development
year yields very similar results.

There are more than one observation per claimant, and for the current estimation
purpose, all observations for which the file was open at end of period, but ultimately
closed before evaluation, are considered. For example, in the previous time line, the
useful observations are the periods t1, . . . , t5 for which the claim is still open at end of
period, i.e., t < Tc. For period t, the response variable is the indicator 1(Tf ≤ t).

Based on the development data for all claims that were settled as of December
31, 2015, the following model, selected with AIC, BIC and the optimal ROC curve,
is used to simulate whether an open claim closes without other payments. The linear
predictor is

η̂i = −0.5677+ 0.3512 zi − 0.3444 di +0.0384 d2i − 0.5749× 1maj,i − 0.7675× 1cat,i, (3)

where zi = ti − Tlast,i is the number of consecutive periods without payment, di is
the development year, and 1maj,i and 1cat,i indicate whether the gravity is major or
catastrophic, respectively. The fitted probabilities are

P̂r(Tf ≤ t | Tc ≥ t, Tlast) = eη̂i/(1 + eη̂i).
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Finally, the imputation distribution is the full conditional posterior, so that

p(yop | y�op, x,m, βY , σ, ξ, γ, R, Tf )

∝
{
1(yop = y�op)

}1(Tf≤tnow) {
1(yop > y�op)p(yop | βY , σ, ξ, γ, R, x,m)

}1(Tf>tnow)
.

For each open file, 1(Tf ≤ tnow) can be simulated from the logistic model defined
in (3). If it is 1, then yop is set equal to the current value y�op, and if it is zero, yop is
simulated using the full conditional Bayesian copula model for the amounts, truncated
from below at the censoring values. This model preserves the covariate effects and the
dependence. Pitfalls of this approach are the assumptions that the censoring point and
the development year are uninformative on the levels of the future payments.

Details of the MCMC algorithms, starting values, proposal distributions and pos-
terior distributions for the marginal parameters are given in the Supplement and the
posterior distribution of the dependence parameters is discussed in Section 6.3.

5 Comparison of the proposed procedure with others
using closed claims or ignoring the claim status

A good posterior predictive distribution based on the available data should resemble
one that would be obtained if the complete response data were known, say the “target”
posterior distribution. In this section, we illustrate how our Bayesian procedure performs
better in this regard than simpler strategies. We compare three approaches:

Closed only: The estimation is based solely on the data for files that were settled at
the evaluation date. There is no imputation model as the complete data (t, w, y)
are known for this sample.

No censoring: The estimation is based on the data for all claims that were reported at
the evaluation date. We assume (rather optimistically) that all files are settled, as
in Frees and Valdez (2008) or Frees et al. (2009) when the claim status information
is not available. There is no imputation model as the complete data (t, w, y) are
assumed to be known.

Imputation: The estimation is performed using our proposed method based on all
claims that were reported at the evaluation date. The open claims are treated as
censored and the imputation models presented in Sections 4.2–4.3 are used.

At the evaluation date of December 31, 2008, there are 5306 open files and sufficient
data available (25,473 claimants) for a comparison. For this section, all the claims prior
to December 2008 are used and the holdout sample is formed by those occurring after
this point. Restricting attention to this subset of the claims allows us to obtain a nearly
perfect target posterior distribution, based on the data view in December 2015. At that
date, only 91 of these files were still unsettled, which represents 0.4% of the files and 3%
of the total paid in 2015. As there are at least seven development years observed, the
estimation of the target distribution is performed as if all claims were closed in 2015.
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Figure 6: Posterior predictive distributions of paid amount for claims incurred in the
period from 2004 to 2008 (left) and in the first quarter of 2009 (right), under the four
estimation procedures.

Figure 6 shows the posterior predictive distributions of the total amount for all
claims incurred from 2004 to 2008 (left), and for those incurred in the first quarter of
2009 (right). The solid (black) line is the target posterior, obtained using the data known
as of 2015, and the dotted vertical line is the actual observation. These graphs illustrate
the gross risk understatement arising from using only closed claims (blue curves) or
including open claims but ignoring their status (green curves). These methods also
produce inconsistencies in the posterior distribution of types (not shown).

As shown in Figure 6, the imputation of open claims (red curves) leads to more
realistic distributions. In both cases, the observed amount falls close to the median of
the red curve, but in the right tail of the (unachievable) target distribution. Indeed,
while the Accident Benefits claims were known to spiral up before the legal reform, the
extent of this effect had yet to be observed in the censored data as of 2008. In contrast,
the black curve takes into account the (future) claim development until 2015. For the
first quarter of 2009, the observed amount falls close to the median of both posterior
distributions. The distribution with imputation overstates the risk slightly compared to
the target distribution, as any conservative approach should.

6 Applications of the model and predictions

There are various actuarial applications for a claim amounts model. An insurance com-
pany may use the predictive distribution of the multivariate insurance claims for setting
the initial reserves and capital, instead of basing them exclusively on the claims expert’s
assessment. The insurer can then decide to closely monitor claims that seem particularly
risky at reporting. The posterior distributions of parameters relating to explanatory
variables may be interpreted to identify the major risk factors (and maybe establish a
prevention campaign) or to understand their impact, such as the effectiveness of the
2010 legislative reform. The model can also be used to determine reserves for individual
claims that are “reported but not paid,” i.e., those for which the insurer knows the
claim characteristics but hasn’t made any payments yet.
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None E M ME MI

Observed 15 0 6 1 0
Predicted 12.6 0.8 5.7 1.1 0.6
95% CI on Mean (12.0, 13.2) (0.7, 0.9) (5.2, 6.1) (1.0, 1.3) (0.5, 0.7)

MIE MC MCE MIC MICE

Observed 0 1 1 0 0
Predicted 0.3 1.0 1.0 0.3 0.5
95% CI on Mean (0.3, 0.4) (0.9, 1.2) (0.9, 1.2) (0.2, 0.4) (0.4, 0.6)

Table 4: Observed count, mean of posterior predictive count and 95% credible interval
on mean count for a given covariate vector for which all claims are closed.

6.1 Posterior distribution for types and presence of expenses

The multinomial regression for type, together with the binomial model for presence of
expenses given the type, fits the holdout-sample data well. To confirm this, predicted and
observed counts in each category can be compared, given a combination of covariates.
For each unique combination xS of covariates in the multinomial model, the predicted
counts are obtained as follows:

(i) Count the number N of observations with this combination of covariates.

(ii) Sample (βS , βW , αW ) from their joint posterior distribution.

(iii) For each s ∈ {1, . . . , 5}, compute p(s | xS , βS) and p(w = 1 | s, xW , βW , αW ).

(iv) For type s, the mean counts are Np(s | xS , βS)p(w = 1 | s, xW , βW , αW ) with
Expenses and Np(s | xS , βS){1− p(w = 1 | s, xW , βW , αW )} without.

The predicted counts are the mean of the posterior distribution of the counts, estimated
by the average of the counts obtained when repeating the steps (i)–(iv) many times.

For example, the following covariate combination appeared 24 times in the sample,
and all files were closed: major claim in 2005, policy in force since more than five years,
claimant is married, has two injuries and pain level is 4/10. In that case, the predicted
mean and the 95% credible interval on the mean count are shown in Table 4; the fit
seems adequate. For all combinations of covariates where N > 10, the predicted versus
observed counts in the different categories are plotted in Figure 7 for holdout-sample
observations. On average, the observed counts are greater than predicted counts for
types 1-None and 2-Medical. This is expected as open claims can aggravate.

6.2 Posterior predictive distribution of the multivariate paid amount

To approximate the posterior predictive distribution of the multivariate paid amount
for a claim or a portfolio of claims, perform the following steps many times:
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Figure 7: Predicted (posterior mean) versus observed counts in categories for holdout-
sample data. A dot represents a unique level of the covariates involved in the multinomial
model for which there were more than 10 (open or closed) observations.

1. Simulate (βS , βW , αW , βY , σ, ξ,Λ, γ) from their joint posterior distribution.

2. If there are missing covariates, simulate xmis from π0(xmis | xobs).

3. For each i ∈ {1, . . . , N} and j ∈ {1, . . . , ni}, generate the types Si,j from the
multinomial model.

4. Generate Wi,j from the binomial model and compute Mi. Let Δi be the number
of 1s in Mi.

5. If Δi = 0, set the amount for claim i to 0. If Δi = 1, generate the log amount for
claim i using the relevant univariate skewed normal distribution.
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# Claimants Amount 50% Interval 80% Interval 99% Interval

1 0 (0, 1355) (0, 6465) (0, 103,492)
1 0 (0, 0) (0, 0) (0, 8681)
1 0 (0, 19,793) (0, 56,307) (0, 358,904)
1 ≥ 0 (1333, 9613) (455, 26,656) (0, 238,922)
1 ≥ 0 (0, 0) (0, 668) (0, 16,581)
1 ≥ 367 (1932, 19,845) (534, 53,564) (0, 404,716)
1 1897 (0, 2450) (0, 5723) (0, 60,443)
2 2209 (2181, 32,268) (0, 76,083) (0, 383,238)
1 3566 (0, 7578) (0, 27,530) (0, 227,052)
1 ≥ 11,499 (1553, 11,027) (483, 29,542) (0, 247,822)
1 ≥ 13,183 (1789, 14,323) (527, 38,176) (0, 307,987)
1 13,491 (11,503, 83,571) (3642, 162,987) (0, 721,433)
2 48,040 (411, 18,890) (0, 50,073) (0, 325,278)
2 54,247 (9274, 58,466) (4163, 128,325) (608, 651,732)
1 65,270 (0, 14,766) (0, 50,264) (0, 354,095)

Table 5: Number of claimants, paid amount and corresponding predictive intervals for 15
randomly selected claims in the holdout set.

If Δi > 1, first simulate from the Student t copula with correlation matrix Σ[ṽi, ṽi],
then use the probability inverse transform of the skewed normal to get observations
of the log payments. The total amount for claim i is

∑
(j,k)∈vi

exp(Yijk).

A predictive interval for the paid amount at level 1 − α spans from the empirical
quantiles α/2 to 1 − α/2 of the generated sample. Examples are shown in Table 5,
where the first column is the number of claimants in the claim, the second column is
the observed amount, where the sign ≥ designates the claims that are still open in the
dataset. In this table, 80% of the closed claims fall in the 50% intervals, but 67% of all
the claims fall in this range (which can change with the development of open files).

Checking model fit with censored data is a challenge: when using only settled claims,
the sampling bias causes an overstatement of the paid amount on average but when the
open files are included, amounts are then censored. Many 50% intervals include the case
where the claim closes at 0. Note that when the upper bound of the 50% interval is 0,
the posterior predictive probability of a null paid amount is in fact at least 75%.

Figure 8 shows the predictive distribution for three portfolios of 25 randomly se-
lected claims from the holdout sample; the dashed vertical line is the censored observed
paid amount. Figure 9 shows the predictive distribution of a portfolio of 500 randomly
selected claims from the holdout sample. These claims comprise 607 claimant files, 70 of
which are still open at evaluation. As it aggregates many claims, the posterior is closer
to, but more heavy-tailed than, the normal.

For the entire holdout sample, consisting of 21,589 independent claims, the Central
Limit Theorem kicks in and the predictive distribution is nearly Gaussian, as shown in
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Figure 8: Predictive distributions of total paid for three portfolios of 25 randomly se-
lected claims from the holdout sample, comprising (from left to right) 31, 37 and 34
claimants, from which 1, 3 and 6 are open, respectively.

Figure 9: Predictive distribution of total paid for 500 randomly selected claims from the
holdout sample, comprising 607 claimants, from which 70 are open.

Figure 10: Predictive distribution of total paid for all (left), open (middle) and closed
(right) claims in the holdout sample.

Figure 10. In the left panel, the censored total paid amount is 343M and 4063 claimant

files are open. In the right panel, the observation for the closed claims falls in the middle

of the predictive distribution. A 50% range for the paid amount is (388M, 407M), which

translates in the interval (46M, 64M) for the outstanding amount to be paid after

December 31, 2015 for the claims represented in the middle panel.
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Figure 11: Prior (dashed line) versus posterior (solid line) distributions of the depen-
dence parameters in Λ (left) and of the between claimant correlation γ (right).

6.3 Posterior distributions of the correlation parameters

The marginal posterior distributions of the correlation parameters are shown in the left
panel of Figure 11, along with the common diffuse marginal prior (dashed line). The
within-claimant dependence is clearly significant. Modeling of the between-claimant
dependence is also justified, as the posterior distribution of γ is narrow around 0.364,
as shown in the right panel of Figure 11.

6.4 Joint posterior distribution of claim components

Finally, to visualize the joint predictive distribution of the components of a given claim,
10,000 realizations were drawn from the posterior distribution of Claim 5123 described
in the running example. Approximately 41% of these realizations closed at 0. Figure 12
shows scatter plots of the non-negative payments (on the log scale) for the components
that were ultimately observed for that claim. The points where the red lines cross
correspond to the actual observation. The posterior association between the Medical
and Caregiver payments for Claimant 2 is large, with the observed value of Kendall’s
tau equal to 39%.

7 Conclusion

In this article, we develop a sophisticated Bayesian model for multivariate insurance
claim amounts. Major advantages of the Bayesian approach in this context are (i) the
availability of the posterior predictive distribution of the paid amount, including process
risk and parameter risk; (ii) the opportunity to account for expert opinion in the priors;
and (iii) the possibility of taking advantage of the information in open claims and
in records with missing covariates. It is crucial to appropriately include the unsettled
claims in the inference, as extreme claims are more likely to be open at evaluation date.

Direct extensions of our approach include modeling the severity dispersion with
covariates and using an asymmetric copula to account for the fact that high Income
payments often imply high Medical payments, but not conversely. The ultimate goal
is to construct a reserving model for the joint development of multivariate individual



M.-P. Côté, C. Genest, and D. A. Stephens 91

Figure 12: Realizations of the positive payments (log scale) for the claim in Example 1.

claims. While challenging, it would be advantageous to use a Bayesian approach for this
task: it is ideally suited to the quantification of reserve variability.

Supplementary Material

Supplement to “A Bayesian approach to modeling multivariate multilevel insurance
claims in the presence of unsettled claims.” (DOI: 10.1214/20-BA1243SUPP; .pdf).
Contents: Expression for the moment generating function of the Fernández–Steel skewed
normal; derivation of an informative prior on the correlation matrix and a prior specifi-
cation; transition probabilities between types; regression models for missing covariates;
MCMC algorithms; summary of the posterior distributions for model parameters.
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