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A Symmetric Prior for Multinomial Probit
Models

Lane F. Burgette∗, David Puelz†, and P. Richard Hahn‡

Abstract. Fitted probabilities from widely used Bayesian multinomial probit
models can depend strongly on the choice of a base category, which is used to
uniquely identify the parameters of the model. This paper proposes a novel identi-
fication strategy, and associated prior distribution for the model parameters, that
renders the prior symmetric with respect to relabeling the outcome categories.
The new prior permits an efficient Gibbs algorithm that samples rank-deficient
covariance matrices without resorting to Metropolis-Hastings updates.
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1 Introduction

In multinomial probit (MNP) models of discrete choices, parameters are typically iden-
tified by selecting a base category relative to which the choice parameters are defined.
From the point of view of identification, the choice of base category is immaterial. How-
ever, in a Bayesian framework, base category specification affects the prior predictive
choice probabilities, which in turn affects posterior inference — sometimes strongly so.

In this paper, we propose sum-to-zero restrictions on the latent utilities and regres-
sion parameters that define the MNP model. Under this novel identification framework,
we are able to develop a prior which is symmetric with respect to relabeling of the
outcome categories. We show that this new parametrization and the associated prior
preserve the favorable computational aspects of other, recent Bayesian MNP models
(Imai and van Dyk, 2005a; Burgette and Nordheim, 2012; Jiao and van Dyk, 2015).

1.1 Multinomial probit models of discrete choice

Multinomial probit (MNP) models are popular in studies involving discrete choice data
(McFadden, 1974; Train, 2003). They have applications in marketing (Rossi et al., 2005),
politics (Rudolph, 2003), transportation studies (McFadden, 1974; Garrido and Mah-
massani, 2000), and beyond. The MNP is more flexible than standard multinomial logit
models, as it need not make an assumption of independence of irrelevant alternatives
(IIA). This means that the ratio of selection probabilities for two outcome categories
can depend on the characteristics of another category. Further contributing to the pop-
ularity of the MNP is a series of advances in Bayesian computation, starting with Albert
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and Chib (1993), that has made it increasingly computationally manageable (McCulloch
and Rossi, 1994; McCulloch et al., 2000; Imai and van Dyk, 2005a,b).

The MNP requires two normalizations in order to identify the model. These models
can be derived through the assumption that agents construct latent Gaussian utilities
and select the category that corresponds to the largest utility. Since the ordering of
the utilities is maintained by an additive shift or multiplicative rescaling, identifying
assumptions on the scale and location are needed.

In order to set the scale, it has been standard to fix an element on the main diagonal
of the covariance matrix at one. Burgette and Nordheim (2012) demonstrated that
the choice of which element one fixed could have a meaningful impact on posterior
predictions, when using the popular prior of Imai and van Dyk (2005a). To avoid this
problem, they proposed a model that identifies the scale of the model by fixing the
trace of the covariance matrix, which makes the prior covariance invariant to joint
permutations of the rows and columns. This paper will employ a modified version of
such a trace-restricted prior.

To resolve location indeterminacy, previous MNP models have specified a base (or
reference) category for the model. The base category’s utility is then subtracted from
all of the other utilities for each observation. However, Burgette and Nordheim (2012)
noted that Bayesian MNP predictions can be sensitive to the specification of the base
category, though they did not provide a satisfactory solution for this issue. This problem
arises because instead of specifying a prior for the original utilities and inducing a prior
on the base-subtracted utilities, it has been standard to specify a prior directly on
base-subtracted utilities.

In this paper, a prior is developed which does not require specifying a base category.
Rather than selecting a reference category whose utility is assumed to be equal to zero,
we enforce a sum-to-zero restriction on the latent utilities. If respondents choose from
p categories, other MNP methods transform the utilities to (p − 1)-space. Instead, we
constrain our utilities to exist in a (p− 1)-dimensional hyperplane in p-space.

We apply our new prior to two consumer choice datasets, as well as a series of
simulated datasets based on the consumer choice studies. In doing so, we see that
the symmetric MNP (sMNP) model defines a more sensible model, produces better
predictions, and has favorable computational properties compared to previous MNP
models.

1.2 Preliminaries

Assume that agent i = 1, . . . , n is choosing among pmutually exclusive alternatives. The
MNP can be derived by assuming that there exist vectors of latent Gaussian utilities
Wi = {wij} of length p, and that each agent selects the alternative with the highest
utility, so that we observe Yi = argmaxj wij .

It is standard to assume that the utilities take the form

Wi = Xiβ + εi. (1)
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Xi is a matrix of covariates, β is a vector of regression parameters, and εi
iid∼ normal(0,Σ)

capture variations in taste across agents. We will assume Xi contains intercept terms, kd
covariates that vary by decision-maker (e.g., a buyer’s age), and ka alternative-specific
covariates (e.g., product prices). We assume the covariates are arranged in that order
(from left to right) so that

Xi =
[
Ip (xd

i )
� ⊗ Ip xa

i

]
. (2)

The kd-vector xd
i is the collection of covariates that vary by individual; xa

i is a p × ka
matrix whose columns contain the values of the variables that vary by alternative. In
more detail,

wij = ηj + (xd
i )

�ξj + xa
ijδ + εij ,

so that βT = (η1, . . . ηp, ξ
T
1 , . . . ξ

T
p , δ

T ), making β a length p+ (p× kd) + ka vector.

A standard identifying approach (cf. Rossi et al., 2005, section 4.2) is to transform
Wi to W ∗

i = TbcWi where
Tbc =

[
−Jp−1 Ip−1

]
(3)

with Jp−1 a column vector of ones with length p− 1. This amounts to choosing the first
category as the base category (without loss of generality) and subtracting it from the
other utilities. For j > 1, this gives

w∗
ij = wij − wi1,

= ηj + (xd
i )

�ξj + xa
ijδ + εij − (η1 + (xd

i )
�ξ1 + xa

i δ + εi1)

= ηj − η1 + (xd
i )

�(ξj − ξ1) + (xij − xi1)δ + (εij − εi1).

(4)

It follows that W ∗
i = X∗

i β
∗ + ε∗i where

X∗
i =

[
Ip−1 (xd

i )
� ⊗ Ip−1 Tbcxi,a

]
, (5)

β∗ = (η2 − η1, . . . , ηp − η1, (ξ2 − ξ1)
� . . . (ξp − ξ1)

�, δ), (6)

and ε∗i
iid∼ normal(0,Σ∗ = TbcΣT

�
bc). Under this parametrization, Yi = argmaxj w

∗
ij + 1

if w∗
ij > 0 and Yi = 1 if maxj w

∗
ij < 0. (This follows because argmaxj w

∗
ij + 1 =

argmaxj wij , by construction.)

Albert and Chib (1993) had the key insight that data augmentation (Tanner and
Wong, 1987) would greatly ease the estimation of the MNP. If we treat the latent W ∗

i

as parameters to be updated in the MCMC algorithm, then under a normal prior, the
full conditional distribution of β∗ is normal. Further, the full conditional distribution
of each W ∗

i is truncated multivariate normal, which can be updated one component at
a time as univariate truncated normals (McCulloch and Rossi, 1994).

It then remains to sample Σ∗, the (p − 1)-dimensional covariance over the base-
subtracted utilities. Up to a constraint and the normalizing constant, the priors for
both the Imai and van Dyk and the Burgette and Nordheim models are the same:

p(Σ∗) ∝ |Σ∗|−(ν+p)/2[tr(SΣ∗−1)]−ν(p−1)/21{cond}, (7)
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where 1{cond} is equal to one if {cond} is a true statement, and zero otherwise. For

Imai and van Dyk, this condition is {σ∗
11 = 1}; for Burgette and Nordheim the condition

is {tr(Σ∗) = (p − 1)}. Further, Burgette and Nordheim (2012) introduce the so-called

working parameter, α, defining an unconstrained covariance Σ̃ = α2Σ∗. The parameter

pair (α,Σ∗) is given a joint prior

p(Σ∗, α2) ∝ |Σ∗|−(ν+p)/2 exp{−1/(2α2) tr(SΣ∗−1)}(α2)−[ν(p−1)/2+1]1{cond}, (8)

where S is a prior parameter, and under which posterior draws of Σ∗ can be obtained

via a Gibbs sample of Σ̃.

Fong et al. (2016) handle the scale identification problem by assuming a correlation

matrix for the latent utilities, which yields a covariance matrix for the relative utilities.

In their sampler, they use a Metropolis-Hastings step to first generate a covariance

and then accept the implied correlation matrix with a specified acceptance probability.

However, as in previously mentioned approaches, the base category must be chosen first,

and this choice can impact materially posterior inferences. The focus of this paper is to

document prior asymmetries that result from the choice of base category and to propose

a new model that does not require that such a choice be made.

1.3 Asymmetries of commonly-used MNP priors

Later in this paper, we will demonstrate empirically that switching from one base cate-

gory to another can result in substantial differences in posterior purchase probabilities

in marketing applications that appear elsewhere in the literature. In this section, we

highlight how such differences arise in the prior purchase probabilities under different

base category specifications, conditional on a range of values of the structural portion

of the utilities, X∗
i β

∗. The base category standardization imposes an inherently asym-

metric mapping from the utility space to probabilities, as depicted in Figure 1. As such,

standard priors on Σ∗ will generally correspond to asymmetric distributions over choice

probabilities, which we demonstrate now.

Consider a simple case with p = 3 categories and focus on one of the three outcome

categories, which we will refer to as the “category of interest” (which is fixed). First,

we consider a specification where the category of interest is the base category (denoted

by Yi = 1). Then, we consider a specification where the category of interest is the first

non-base category (denoted by Yi = 2).

Our experience indicates that sensitivity to the base category primarily comes from

the prior on Σ∗ (rather than β∗), so we will condition on β∗ in order to clarify the

issue. Specifically, consider Xiβ = (v, 0, 0) for an arbitrary value of v and let the first

category be the category of interest. Then, if category 1 is the base category, we have

X∗
i β

∗ = (−v,−v) corresponding to categories 2 and 3; and when category 2 is the base

category we have X∗
i β

∗ = (v, 0) corresponding to categories 1 and 3.
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Figure 1: A depiction of the multivariate normal contours corresponding to the base-
subtracted utility space for p − 1 = 2. The base category standardization entails that
the area in utility space allocated to the base category is a different shape than the
regions allocated to non-base categories, meaning that standard priors over Σ∗ (which
govern the contours) will result in asymmetric priors on the implied choice probabilities,
which correspond to the probability, according to the prescribed multivariate normal
distribution, of being in the various sectors associated with each category.

Our interest is in the quantities

ϕ1(v; Σ
∗) = Pr(Yi = 1 | X∗

i β
∗ = (−v,−v)�,Σ∗), (9)

ϕ2(v; Σ
∗) = Pr(Yi = 2 | X∗

i β
∗ = (v, 0)�,Σ∗), (10)

ψj(v) =

∫
ϕj(v; Σ

∗)p(Σ∗)dΣ∗ for j = 1, 2. (11)

Note that (9) and (10) both denote the probability that the category of interest is
selected, but under different specification of the base category. In (11), p(Σ∗) refers to
the trace-restricted variant of the Imai and van Dyk prior for Σ∗ with ν = 2 degrees of
freedom, and centered at S = .5J2J

�
2 + .5I2 ∝ TbcT

�
bc , with ones on the diagonal.

Figure 2 compares ϕj and ψj for j = 1, 2. From the left-hand panel, note that there
are strong differences in the range of probabilities for the outcome of interest that are
supported by the prior for Σ∗, after conditioning on β∗. In particular, the distribution
probabilities for the base category (solid curve) have a very sharp mode, and are less
diffuse in general relative to distribution for the nonbase category (dotted curve). On the
other hand, the curves in the right-hand figure nearly coincide with one another. This
indicates that differences between the two parametrizations in the prior are obscured by
marginalizing over the distribution of Σ∗. However, we note that these curves oftentimes
do not coincide after conditioning on observed data, as will be shown in Figures 3 and 7.
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Figure 2: The left-hand panel displays prior densities of the probability for the “outcome
of interest” when it is coded as the base category (solid) and not the base category
(dashed) for a particular value of β. More precisely, it is the prior density of ϕj(1; Σ

∗)
for j = 1, 2, where j = 1 corresponds to the solid curve, and j = 2 corresponds to the
dashed curve. See expressions (9) – (11) in the main text. The right-hand panel plots
ψj(v) across a range of v. That is to say, the average values of the distributions in the
left-hand panel correspond to the values in the right-hand panel at v = 1.

Because the differences in probabilities appear primarily to be of second and higher
moments, an ad-hoc solution to the problem of base category dependence (such as spec-
ifying alternative values of the hyperparameters, or by specifying a different p(β∗|Σ∗)
to compensate) may be difficult. Although we expect the impact of the prior to fade
as the sample size increases, information in multinomial models accrues slowly relative
to standard models of a continuous outcome, which means that asymmetries in the
prior for an MNP model may persist in the posterior for sample sizes that are typical
in business and economics applications. Hence, we pursue a prior that is invariant to
relabeling the outcome categories.

2 A symmetric prior for MNP regressions

We now propose a symmetric MNP (sMNP) model that is invariant under relabeling or
reordering of the outcome categories. Rather than identifying the locations of the latent
utilities by subtracting one from the others, we instead require that they sum to zero.
(This assumes that the choice-specific covariates have mean zero for each observation,
which is a convenient but inessential standardization.) Further, we assume that the
regression parameters that correspond to each agent-specific covariate sum to zero,
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which gives the same degrees of freedom as the standard MNP, where (in a sense) the
regression parameters related to the base category are set equal to zero.

With this sum-to-zero restriction on the utilities, we require a covariance for Wi that
is symmetric and positive-semidefinite with p− 1 positive eigenvalues, and constrained
in some way in order to set the scale of the model. Rather than directly specifying a
distribution on p×p matrices, we build it up with a mixture of trace-restricted positive-
definite matrices. Conditionally, we assume that a positive-definite matrix of dimension
p−1 describes the covariance of all but one of the dimensions of Wi. We denote the left-
out category with the parameter b, and refer to it as the faux base category indicator.
In contrast to previous MNP models, b is learned according to Bayes rule.

The proposed model is as follows:

b ∼ unif({1, . . . , p}), (12)

Σb ∼ pTR(Sb, νb), (13)

Rb = [chol(Σb)]
�, (14)

R =

⎡
⎣R1:(b−1)

R∗
b

Rb:p

⎤
⎦ , (15)

βb ∼ normal(0, A), (16)

β = f(βb), (17)

Wi
ind∼ normal(Xiβ,RR�), (18)

Yi = argmax
j

Wi. (19)

Here, pTR refers to the trace-restricted variant of the Imai and van Dyk (2005a)
prior in (7) with {tr(Σb) = (p − 1)}. Its hyperparameters Sb and νb may change
with b but we recommend using common hyperparameters in most cases, since Sb =
diag{(1+c, . . . , 1+c)}−cJp−1J

�
p−1 for all b and a common νb will yield a prior covariance

structure that is symmetric with respect to the outcome categories. Burgette and Nord-
heim (2012) discuss tradeoffs for different hyperparameter choices in the trace-restricted
prior. Following their guidance, we choose a default value of νb = p + 1. This choice
provides sufficient regularization without being too informative. This corresponds to the
first p−1 rows and columns of a symmetric p×p covariance matrix P with p−1 positive
eigenvectors that is symmetric with respect to relabeling the rows and columns. This
matrix has the property that vectors drawn from the normal(0, P ) distribution sum to
zero almost surely, making it a natural center for our relabeling invariant, sum-to-zero
MNP. Using c = 0 means roughly that we expect p− 1 of the dimensions of the utilities
to be independent, with the remaining dimension strongly anti-correlated. We recom-
mend using c = 1/(p − 1) since it is a more neutral prior and seems to lead to better
mixing in the MCMC.

Rb is the transposed Cholesky decomposition of Σb such that RbR
�
b = Σb. R

∗
b is a

row vector inserted into Rb at the bth row such that the sum of each column of R is
zero. In this formulation, βb has dimension (p−1)(kd+1)+ka (assuming that intercept
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terms are included in the matrix of covariates as stated in Section 1.2). The function f
acts on βb such that for each sub-vector of length p − 1 that corresponds to an agent-
specific covariate (or the intercepts), β is equal to βb with an extra dimension inserted
at the bth position in the sub-vector. This inserted element is chosen so that the sub-
vector sums to zero. With this model specification, we induce a prior distribution on
the set of positive-semidefinite matrices of dimension p that have exactly p− 1 positive
eigenvalues.1

To make the motivation of this new set of identifying restrictions explicit, we note
that they result from transforming the unnormalized utilities not by Tbc as in (3), but
rather multiplying them by a p-dimensional square matrix Ts that is defined to have
ones on the main diagonal, and entries of −1/(p−1) elsewhere. Note that argmaxWi =
argmaxTsWi, while the elements of TsWi sum to zero. This transformation also in-
duces the proposed identifying restrictions on β. If we partition β = (βd, βa), where βa

corresponds to the covariates that vary by outcome category, we have

TsXiβ = Xi

[
(I ⊗ Ts)βd

βa

]
. (20)

This transformed version of β (i.e., the second factor on the right-hand side of the
above equation) conforms to the proposed identifying restrictions. Similarly, a normal
distribution with mean zero and covariance TsΣT

�
s results in draws that sum to zero

almost surely. (Note that Ts is almost idempotent in the sense that TsTs = cTs for some
scalar c. The first p−1 rows and columns of Ts therefore serve as our default for Sb since
this corresponds to the transformed variance of εi if its variance in the unnormalized
scale is proportional to the identity.)

We emphasize that there is nothing inherently wrong with using the asymmetric
identifying transformation Tbc. If we do not wish for our inferences to depend on the base
category, however, the prior must compensate for the asymmetries in the transformation.
This seems quite difficult to achieve, especially if we hope to have a computationally
tractable model. Using Ts, however, we can decouple prior specification and model
identification, all while preserving the favorable computational characteristics of existing
MNP models.

2.1 Model estimation

We propose a Gibbs sampler to estimate the model by constructing a Markov chain
on a transformed space: (α,Σb, b,W, βb) �→ (α,Σb, b, W̃ = αW, β̃b = αβb). By explicitly
working in the (α,Σb, b, W̃ , β̃b) parametrization in specifying the Gibbs sampler we
avoid the mistakes discussed in Jiao and van Dyk (2015), although our algorithm is
different than theirs.

1It would also be possible to work with a matrix decomposition like Σ = ADA′, where A is a
p× (p− 1) orthogonal matrix and D is diagonal. One could then define a prior on the Stiefel manifold
that contains A (Hoff, 2009). This would be a more direct prior specification over positive semidefinite
matrices, but inducing a prior in the manner implied by our model is conceptually simple and guarantees
favorable computational properties.
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Remark 1. Note that at every iteration in the Markov chain, Σb is restricted to satisfy
the identifying trace restriction.

Remark 2. For brevity, the notation Σ̃b and β̃b (respectively Σb and βb) obscures
the fact that there are in fact p entities in our parameter space, one for each possible
value of b = 1, . . . , p. However, given b (the “working base category”), this collection of
parameters only appears in the likelihood via Σ = g(Σ1, . . . ,Σp, b) = RRT as defined in
(14) and (15) and β = f(β1, . . . , βp, b) = f(βb) as in (17). As such, it does little harm

to consider only the element of (Σ̃1, . . . , Σ̃p) and (β̃1, . . . , β̃p), respectively, (Σ1, . . . ,Σp)
and (β1, . . . , βp), corresponding to the current value of b in the Markov chain.

Let Xi,b indicate Xi with the bth row and the columns specific to the bth category re-
moved. We initialize the latent utilities Wi by sampling a standard normally-distributed
vector of length p and centering it at zero. We then permute its elements so that the
maximum of each Wi coincides with the observed Yi.

The sampler proceeds in three steps:

1. Draw W̃ | Y, β̃b, b,Σb, α.

2. Draw β̃b | Y, b,Σb, W̃ , α.

3. Draw α,Σb, b | Y, β̃b, W̃ .

Note that all variables referenced in these Gibbs steps are from the same parameter-
ization: (α,Σb, b, W̃ , β̃b). We give detailed expressions for each conditional distribution
in the appendix (Burgette et al., 2020). For the draw of the latent utilities W̃ , we note
that in the original parametrization we have

p(W,α | Σb, βb, Y, b) ∝ I(W,Y )p(W ;βb,Σb)pTR(α | Σb, b).

By definition, W̃ = αW and I(W,Y ) is the indicator that the utilities and data match
correctly, so with α known at this stage of the Gibbs sampler, we write the conditional
distribution as:

p(W̃ | Σb, β̃b, Y, b, α) ∝ I(W̃/α, Y )p(W̃ ; β̃b, α
2Σb).

To sample W̃ , we iterate one-by-one through the elements of W̃i,b. Note that w̃i,b is

known given b and W̃i,b. After dropping the bth element of W̃i and the corresponding

elements in Xi and β, the full conditionals of elements of W̃i,b are truncated univariate
normal. The conditional means and variances can be calculated as described by McCul-
loch and Rossi (1994), using β̃b as the coefficient vector and α2Σb as the covariance.
These truncations are given in the appendix.

The second draw of the transformed coefficients β̃b is from a normal distribution
whose conditional mean and variance are provided in the appendix. The third step is a
draw of the triplet of parameters (α,Σb, b). This is divided into a multinomial draw for
b (with the variance integrated out) followed by a draw of an intermediate quantity for
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the variance, Σ̃b. Finally, α and Σb are obtained by first setting α =
√
tr(Σ̃b)/(p− 1),

followed by Σb = Σ̃b/α
2. In this way, tr(Σb) = p − 1 at each iteration as in Burgette

and Nordheim (2012).

Having obtained samples from the Markov chain defined over (α,Σb, b, W̃ , β̃b), one
can transform, per-iteration, back to the original space to obtain samples of W =
W̃/α and βb = β̃b/α. In the following section, we demonstrate this methodology on
two consumer choice data sets as well as investigate its properties with a simulation
study.

3 Demonstrations

3.1 Clothes detergent purchases

Imai and van Dyk (2005a,b) apply their methods to a consumer choice model of cloth-
ing detergent purchases. The data are available in their MNP package in R. We have
records of purchasing decisions along with available log-prices for shoppers choosing
between All, Era Plus, Solo, Surf, Tide, and Wisk brand detergents. There are
2657 observations and only six regression parameters, so we typically do not see large
differences in estimated purchase probabilities based on the various base category fits.
However, specifying the base category to be All — which is rarely purchased despite
its low price — does give somewhat different predictions for All when its price is
low. We see this in Figure 3, where we set the prices for all other brands at their
brand-specific average, and consider predicted purchase probabilities across a range of
low prices for All. The predictions from five of the base categories (solid curves) are
very similar. The predictions when All is the base category (dashed curve) are no-
tably higher. When we apply the sMNP to the data, we see that its predictions are
intermediate to those of the various base category fits (dotted curve). In each case,
the estimated purchase probability is routinely computed from the posterior predictive
distribution.

To interpret the β parameters, we know — by the sum-to-zero property of the
intercept terms — that a brand with an intercept coefficient that is persistently neg-
ative (All) is less desirable than average, in a sense (Figure 4). EraPlus and Tide

are estimated to be more desirable. However, note that these intercepts do not reflect
marginal purchase probabilities, as less desirable brands may also have lower prices.
As economic theory would suggest, the price coefficient is strongly negative (Figure 5),
which indicates that raising a detergent’s price (relative to the competitors) will lower
its estimated purchase probability.

Although these interpretations of the β parameters are accurate, we would argue that
summaries of MNP results are best phrased in terms of changes in posterior predicted
selection probabilities. For example, one might consider the effect of a proposed price
increase on the current purchase probabilities. We advocate this because predictions
take into account both β and Σ parameters, and the Σ parameters can be very difficult
to interpret on their own. If only the β parameters are of interest in an application, we
would argue that a model that assumes IIA may be more appropriate.
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Figure 3: Estimated purchase probabilities for All brand detergent, with all other
brands’ prices fixed at the brand-specific mean observed price. The dashed curve uses
All as the base category; the solid curves use all of the other possible base categories.
The dotted curve results from an sMNP fit. Although the model is fit as a function of
log-price, we display results as a function of dollars.

We also highlight the mixing behavior of the sMNP algorithm. For example, the
faux base parameter b mixes extremely well, as indicated by the near constant switching
between its six possible values (Figure 6). Further, the mixing of the price parameter
in the symmetric MNP algorithm compares favorably to the base category MNP in fits
of these data (Figure 5). Imai and van Dyk (2005a) used these data to demonstrate
improved mixing performance of their model relative to earlier MNP models, so these
results are a comparison against the state of the art.

Here, the posterior of b remains relatively flat. However, the extent that the data are
informative about b is precisely because the prior, for any fixed b, remains asymmetric.
Consequently, in any finite data set, one of the base categories will look slightly “better”
in light of the prior predictive distribution for some particular base category. The fact
that the data can inform us about b is precisely why including b in the model is necessary.
Fixing b at some arbitrary value, rather than moving the posterior probability of the
“faux bases”, would instead influence posterior inferences concerning the parameters of
interest, such as choice probabilities themselves. Consequently, as a practical matter we
do not recommend reporting posterior inferences on b, as they are a mere device for
specifying a symmetric prior.

3.2 Margarine purchases

We also consider a similar analysis of consumer purchases of margarine that are available
in the bayesm package in R. Again, our model only has intercepts and a price coefficient.
Following McCulloch and Rossi (1994), we limit our analysis to purchases of Parkay,
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Figure 4: Trace plots of samples from the posterior distributions of the intercept terms
for an sMNP fit of the detergent data.

Blue Bonnet, Fleischmann’s, House brand, Generic, and Shedd Spread tub
margarines. And, following Burgette and Nordheim (2012), we limit the analysis to the
first purchase of one of these brands for each household. This results in a dataset with
507 observations. With the smaller sample size, there are larger differences in posterior
estimated purchase probabilities when one switches from one base category to another
in standard MNP fits.

In Figure 7, we see that sMNP predictions again tend to be between those of standard
MNP models when we consider all possible base categories, as was the case in Figure 3.
The observed House brand prices are between $0.19 and $0.64, so there is significant
disagreement across nearly the entire range of observed prices for that brand. (With
the larger sample size in the detergent data, we only saw meaningful differences when
we extrapolated out of the observed price range.) Although there is some Monte Carlo
error in the estimates, it is insignificant compared to the 19% difference between the
low and high estimates of House’s selection probability when it is priced at $0.20.

Thus, in both of these examples, we see that the sMNP gives predictions that are
between those of the standard MNP models that are fit alternately with each base. This
is compatible with the heuristic interpretation of the sMNP as a model that averages
across base categories in standard MNP models.
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Figure 5: Trace plots of samples from the posterior distributions of the price coefficients
for sMNP and standard MNP fits of the detergent data.

Figure 6: Trace plot and histogram of samples from the posterior distribution of faux
base parameters b for the detergent data. In the upper panel, points are plotted with
2% intensity. The numbers 1 through 6 correspond to All, EraPlus, Solo, Surf,
Tide, and Wisk, respectively.
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Figure 7: Estimated purchase probabilities for House brand margarine over a range of
prices for that brand, with other prices fixed. The solid curves are posterior predictions
from standard MNP models, and the dashed curve is from the sMNP. The gray curve
uses House brand as the base category.

An alternative approach to handling dependence on the base category would be to fit
an Imai and van Dyk-style MNP model using each base category separately, and perform
a post-hoc average of the fitted probabilities. We find this to be unappealing from several
perspectives. First, the computation load is p times as large as it would be for a single,
standard MNP fit; the sMNP is only slightly more expensive than a single base category
MNP. More importantly, the sMNP constitutes a proper Bayesian procedure, which
automatically incorporates posterior uncertainty about the base category and uses a
likelihood-weighted average of the possible models (bottom panel of Figure 6).

3.3 A simulation study

Here we compare the fitted probabilities of MNP models that use each of the possible
base categories and the fitted probabilities that result from the base category-free sMNP.
We simulate 50 datasets that are loosely based on the consumer choice examples above.
We assume that n = 750 consumers are choosing from p = 6 products. The simulated
product-specific intercepts and mean prices have correlation 0.9 so that more desirable
products are more expensive, as one would expect. The price coefficient was drawn
uniformly from [−1.25,−.75] so that if a product is relatively less expensive, it will
be more popular. Finally, a p × p covariance matrix with expectation I is drawn from
an inverse-Wishart distribution with 50 degrees of freedom. The simulation parameters
were chosen so that each “brand” is chosen with high probability. Note that the data
parameters were chosen without regard to any set of identifying restrictions.

We measure performance via the total variation between the estimated and true
purchase probabilities, averaged over the first 10 sets of prices in each simulated dataset.
We expect that the sMNP will be less prone to making “extreme” predictions in the
sense of Figure 7. The results are summarized in Figure 8, and are consistent with this
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Figure 8: Simulation results. Points give the average percent total variation between true
and estimated purchase probabilities. Solid black circles are from the sMNP. Hollow gray
circles are from MNP models that use each of the six possible base category identifying
restrictions. The sMNP is almost never worse than every base category model, only 1
out of 50 cases, and in 41 out of 50 cases it beats the median performing base category.

notion. The plot gives the average total variation from the true purchase probabilities
for each of the base category MNP models (hollow circles) and the sMNP (solid circles).
Note that the sMNP is never the worst among the various base category models. In 18
of the 50 simulated cases, sMNP outperformed all of the base category models. In 41
out of 50 of the simulations, the sMNP performed better than the median base category
performance.

4 Identification

A potential downside to our model is that it is not formally identified. In particular,
the model would be identified if we were able to restrict the trace of Σ, rather than the
trace of Σb. If one of the diagonal elements of Σ is estimated to be substantially larger
than 1, then the scale of β will depend on b. Although a fully identified model may be
preferable, we argue that little is lost in this case.

First — from the perspective of prior specification/elicitiation — the model is iden-
tified conditional on the discrete parameter b. If the analyst wishes to specify an infor-
mative prior, this can be done conditionally for each b = 1, . . . , p. If the model were
only identified conditional on a continuous working parameter, this process becomes
more difficult. Second — on the side of interpretation — we would argue that β param-
eters should be interpreted while taking Σ into account, and vice versa. Since marginal
summaries do not do this, we feel that the best model summaries are changes of fitted
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probabilities as a function of key outcome variables such as in Figure 7, which are not
impacted by this identification issue. If the analyst truly is interested in features of the
marginal posterior distribution of β or Σ, it is possible to post-process the results into a
single, identified scale by re-scaling the sampled values at each iteration of the MCMC
such that, for example, the trace of Σ is equal to p. However, the signs of the estimated
β parameters are not impacted by the under-identification of our model.

Post-processing in order to identify Bayesian MNP models was popularized by Mc-
Culloch et al. (2000), in the context of specifying a prior for Σ̃∗, rather than the identi-
fied Σ∗. As an aside, we note that a related idea for solving the base category problem
would be to specify a full-rank inverse-Wishart prior for Σ, without worrying about the
conditional identifying restriction on the location of the Wi. However, this approach
proves to be numerically unusable. The p-dimensional inverse-Wishart prior pushes the
sampled values of Σ toward the edge of the parameter space, which quickly results in
numerical problems that result from sampling poorly-conditioned covariance matrices.

5 Conclusion

The analyses in this paper demonstrate that careful handling of the prior is necessary
in order to obtain reliable predictions from the Bayesian MNP. As with any proper
Bayesian model, our estimates are biased, but they are not biased against any particular
outcome category in the prior. The same can not be said of previous MNP models that
estimate the covariance of the utilities.

With the prior for the regression coefficients centered on zero, the sMNP estimates
should be pulled toward more moderate estimates. Since multinomial data are quite
coarse (in the sense that each observation contributes little information compared to
a multivariate normal regression where the utilities are observed) we would argue that
this prior-induced regularization toward moderate predictions is highly desirable.

When building more advanced MNP models, symmetry may take on even greater
importance. For example, Cripps et al. (2010) proposed an MNP model that allows
for a sparse representation of the precision matrix of the latent utilities. However, they
induce sparsity in the precision of the base-subtracted utilities, not in the precision of the
original utilities. This seems very likely to exacerbate the problem of posterior estimates
changing across different specifications of the base category. Further, it is unclear that
sparsity in the base-subtracted precision corresponds to a meaningful data-generating
process. That said, it is likely that favorable bias/variance tradeoffs can be made by
specifying a prior that pulls the precision toward a well-chosen, sparse structure.

More broadly, the regularizing effect of a Bayesian prior distribution is at its most
powerful when the likelihood is poorly behaved in some way: when it is flat or spiky;
when identification is weak; when the number of parameters is large relative to the
sample size. However, in each of these situations, we should be worried that if our prior
has undesirable features, they may be preserved in the posterior. For example, MNP
likelihoods can be quite flat, and therefore the asymmetry of previously-proposed priors
can propagate to the posterior. Data analysts may hope that such undesirable features
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of the prior would be overwhelmed by the likelihood. This research suggests that while
we cannot always count on the data to cover flaws of our priors, we may be able to design
priors that lack the flaw in the first place, without giving up computational tractability.

Supplementary Material

A symmetric prior for multinomial probit models (DOI: 10.1214/20-BA1233SUPP;
.pdf).
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