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A Bayesian Factor Model for Spatial Panel
Data with a Separable Covariance Approach

Samantha Leorato∗ and Maura Mezzetti†,‡

Abstract. A hierarchical Bayesian factor model for multivariate spatially and
temporally correlated data is proposed. This method searches factor scores in-
corporating a dependence within observations due to both a geographical and a
temporal structure and it is an extension of a model proposed by Mezzetti (2012)
using the results of a separable covariance matrix for the spatial panel data as in
Leorato and Mezzetti (2016). A Gibbs sampling algorithm is implemented to sam-
ple from the posterior distributions. We illustrate the benefit and the performance
of our model by analyzing death rates for different diseases together with some
socio-economical and behavioural indicators and by analyzing simulated data.

Keywords: Bayesian inference, correlated factor loadings, factor analysis,
autoregressive model, spatial data.

1 Introduction

Factor models are often used to reduce the complexity of data and effectively extract
relevant information. The typical assumption of such models is that the observed values
of a set of multivariate variables is the result of the action of some unobservable latent
variables, or factors, that can also be used to reduce a large number of observables into
a smaller number of latent factors. In its original definition, a factor model identifies a
set of common factors that are able to reduce the dimension of the response vector for
all cross-sectional or time units. A thorough review can be found in Bartholomew et al.
(2011).

The first formal definition of a Bayesian approach to factor analysis can be traced
back at least to Press (1972) and Kaufman and Press (1973), although a few earlier
works did account for subjective information, limitedly to specific problems (see also
Martin and McDonald (1975), Press and Shigemasu (1989) and Press and Shigemasu
(1997)). These first models were rather restricted, with the same limitations as the
classical factor model.

The introduction of iterative Markov chain Monte Carlo (MCMC) tools paved the
way to the development of fully Bayesian approaches to factor analysis such as, for
example, in Polasek (1997), Arminger and Muthén (1998), Aguilar and West (2000),
Lopes and West (2004) and Rowe (2003). These new models allowed for heterogeneities
across time of either the latent factors or the factor loadings.
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The application of factor models to spatial data, soon led to the introduction of
further generalizations, that allowed the so called spatial factor models to cope with
specific characteristics of spatial data in terms of heterogeneity and autocorrelation.
Wang and Wall (2003) use a common spatial factor model to study cancer risk across
counties in Minnesota; Hogan and Tchernis (2004) use a hierarchical Bayesian factor
model to account for spatial correlation between locations, where the spatial correlation
is introduced on the latent scale variable and can be specified either marginally or
conditionally; Lopes and West (2004) and Lopes et al. (2008) consider spatio-temporal
models, where temporal and spatial dependence are modeled by latent factors and factor
loadings respectively; Mezzetti (2012) generalizes the model by Rowe (2003) and Rowe
and Press (1998) by proposing a hierarchical Bayesian factor model for multivariate
spatially correlated data. Ren and Banerjee (2013) define a low-rank spatial factor
model, to deal with large vectors of outcomes for a large number of locations.

Most of these generalized Bayesian factor models exploit the flexibility of hierarchi-
cal Bayesian modeling, that allows to take into account both heterogeneities in factors
(loadings and/or latent) and possible correlation between observations. The latter is ob-
tained through the use of proper prior information to simplify the covariance structure.

In this paper we propose a hierarchical Bayesian factor model for multidimensional
spatio-temporal data that is able to take into account heterogeneity in latent factors
(both in time and space dimensions). This is obtained through a separable covariance
structure, assuming a multiplicative effect of the covariance among variables and among
regions, combined with a Vector Autoregression (VAR) specification for the latent vec-
tors at every location. Similarly to Lawson et al. (2012), Leorato and Mezzetti (2016) or
Chan (2020), the separability of the covariance structure is obtained by the introduction
of a Kronecker product. Here the separability is assumed between the N -dimensional
spatial covariance matrix and the covariance matrix of the K response variables. Both
matrices are given an arbitrary form, thus avoiding one of the major problems with
specifications of the covariance structure, which is a sore point in spatial data modeling
(see the discussion in Leorato and Mezzetti (2016) and references therein). Further, as
noted by Chan (2020), the definition of a Kronecker error covariance structure is also
compatible to various commonly used non-Gaussian models.

Most of the literature dealing with factor models for spatio-temporal data does not
allow the dynamic factors to be location-specific or does not consider multivariate obser-
vations repeated in time on several locations. One of the lines of research where there has
been a growing interest in the investigation of the determinants of simultaneous space–
time variations of multiple outcomes is health and medicine. For example, Tzala and
Best (2008) use a Bayesian hierarchical latent factor model for spatially and temporally
correlated multivariate epidemiological data. Their idea is to exploit factor analysis to
provide a flexible framework to map the space–time evolution of disease-specific trends
in cancer risks. Because of the nature of data, the Poisson model is used to describe
the distribution of the observed deaths in all types of cancer analyzed. In these types of
applications, the identification of spatio-temporal patterns in a small number of factors
that are able to synthesize the variations of a vector of several variables, potentially
correlated in a complex way, provides important information and insight on the mech-
anisms playing a role in the evolution of one or more diseases, reinforcing the evidence
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of common underlying risk factors. As pointed out by Tzala and Best (2008), account-
ing for spatio-temporal heterogeneity in a multivariate factor analysis, is likely to “lead
to improved precision for the estimation of the underlying disease risks by borrowing
strength from other diseases as well as close areas or time points”.

Factor models for multivariate space–time data are also suitable to cope with envi-
ronmental and ecological applications. For example, Calder (2007) propose a dynamic
factor process convolution model. The approach of our paper shares some similarities
with the work of Calder (2007), such as the Bayesian estimation approach and the dy-
namic feature of the factors. However, there are important differences: first, we don’t
rely on the convolution of an underlying process through a kernel smoother K, because
the main purpose of our approach is the reduction of the dimension of the “types of
variables” only, allowing for location and time specific factors. Therefore we don’t need
to address the delicate problem of the choice of tuning parameters such as the reso-
lution of the grid, kernel and bandwidth selection. A second difference consists in the
covariance matrix of the factors: our factor component F (t) plays a similar role to Kxt

in Calder (2007), but while the variance of the first include both a spatial (Φ) and a
“type-of-variable” component (Ψ), the variance of the latter only accounts for possible
heteroskedasticity in the types of variables, through var(V ec(εt)) = IN ⊗ diag(λε).

Despite the potential application of multivariate factor models for space–time data
in other areas of research, such as, for example, in multivariate macroeconomic time
series, to the best of our knowledge, limited attention has been drawn to this kind
of generalization aside from the aforementioned work by Tzala and Best (2008) and
Calder (2007). Few models pay close attention to the spatio-temporal structure of the
error terms, typically assuming a strict diagonal structure for the error covariance (as
in Fan et al. (2008)).

Therefore, a first motivation of our work is to fill this gap in the literature, by
proposing a hierarchical Gaussian-type model, which has the appealing feature of be-
ing suitable to a broader range of applications compared to Tzala and Best (2008).
Moreover, the use of a Kronecker product in the definition of the covariance between
variables and between locations has strong computational advantages, besides those al-
ready mentioned relative to the flexibility of the model, and appears to be fairly little
used in this framework. A further novelty in our approach is the way we cope with
the identification of the factors, which is slightly different from the standard arguments
following by Geweke and Zhou (1996): instead of setting a fully informative prior for a
subset of the factor loading matrix, we allow for a diffuse conjugate prior and impose
the necessary restrictions on the posterior density.

As in Tzala and Best (2008), our motivating application aims at detecting possible
common sources that might have a hidden impact on one or more diseases and their
eventual dynamics in space and time as well as their mutual interaction. Section 2
describes in more detail the motivating application and the data.

In Section 3, after a brief review of Bayesian factor analysis, we present our frame-
work, we discuss the prior distributions and the identification strategy. Section 4 is
dedicated to the computation of the posterior distributions, while Section 5 is dedi-
cated to the estimation of the number of factors. In Section 6 some simulations are
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presented to investigate the performance of the proposed model. Section 7 presents the
results of the application, with a Subsection 7.1 on sensitivity analysis. Finally, Section 8
concludes.

2 Data

Several authors have tried to use factor analysis to capture hidden relationships between
a disease and possible risk factors (Das et al., 2010). Analysis of local variations of disease
rates helps identifying latent sources of heterogeneity and uncovers the existence of risk
factors that contribute to formulate etiological hypotheses. Considering several diseases
simultaneously permits to detect common determinants (Yanai et al., 1978). Moreover,
taking advantage of the extra information obtained from different diseases, it allows
to improve the precision of the estimates. On the other hand, socio-economical as well
as behavioral features tend to have a geographical pattern in Europe: as for example,
Scandinavian countries evidence a low unemployment rate and adopt similar welfare
programs, while Mediterranean countries share similar dietary intakes. These and other
characteristics are potential determinants of one or more diseases but their interrelation
is unclear as well as the potential existence of dynamic behaviors such as, for example,
local persistence in time or global convergence (Flood et al., 2008).

Following this idea, we perform a factor analysis on the death rates for different
diseases, on one hand, and, on the other hand, some socio-economical and behavioural
indicators. We aim at highlighting the existence of common spatial patterns in the
determinants of morbidity, and its eventual variations through time.

We took the data from the Demographic and Health Surveys (DHS) Program,
ICF International and European Health for All databases, World Health Organization
(WHO). Data collected refer to the period 1970− 2015 and to the following countries:
Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bul-
garia, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Kyrgyzstan, Latvia, Lithuania,
Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slove-
nia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom and
Uzbekistan.

Socio economic variables such as: average income measured in dollars and unem-
ployment rate are recorded. For each country few behavioral variables are recorded,
in particular: intake of energy from fat, intake of energy from protein and adult per
capita consumption of recorded alcohol. Fertility rate is observed for each country. Dif-
ferent health status indicators are also recorded, age standardized death rates (SDR) for
100000 inhabitants for the following diseases: smoking related, alcohol related, malig-
nant neoplastic, female breast cancer, tuberculosis, infection disease, circulatory system
disease, ischaemic heart disease, liver disease and all causes mortality rate. Finally coun-
try specific life expectancy is recorded.

Due to the high number of missing values, 16 countries and 25 years are dropped
and the final dataset regards 27 countries observed during the 10-years period (2000–
2009). The remaining number of missing values is quite negligible, being about 0.4%
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Figure 1: Adult per capita consumption of alcohol (litres per year): Distribution across
countries and years.

of the observations; in order to avoid complicated structure, the missing values are
just filled with a plausible one, as suggested in Pigott (2001). Both mean for the cases
of the observed variable, or the value relative to the previous year provide the same
results.

Figures 1–5 show the distribution over time and space of five variables among the
seventeen variables considered: alcohol consumption, fertility rate, all cause mortal-
ity, annually average income and unemployment rate. A temporal pattern appears to
be very strong. Spatial pattern seems to be more difficult to capture. Distribution of
standardized mortality rate for all cause of mortality looks like signing a contrast be-
tween Western and Eastern countries. On the other hand, a higher value of fertility
rate is observed in Northerner countries and France, while France is closer to neighbor-
ing countries regarding alcohol consumption distribution. Average income distribution
determines three main areas: North, South and Eastern Europe. Unemployment rate
shows a weaker spatial pattern with respect to the other variables mapped.

The following variables: fat intake, alcohol related disease SDR, all causes SDR,
breast cancer SDR, all cancer SDR, circulatory system SDR, infection disease SDR,
ischaemic SDR, liver related disease SDR, smoking related disease SDR, tuberculosis
SDR, average income and unemployment rate are considered on a logarithm scale to
better be approximated by a Gaussian distribution.
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Figure 2: Fertility Rate, as the average number of lives births per 1,000 of the population:
Distribution across countries and years.

We can observe three levels of correlation in the data: between time points, between
countries and between variables, displayed in Figures 6–8. The three types of correlation
are all very strong. We model parametrically only the first one. Overall, all variables
show evidence of temporal correlation within variables and countries (see Figure 6).
Among the variables considered, the spatial structure assumes different forms, even
though some common spatial pattern emerges and some correlation between countries
results quite strong (see Figure 7).

Since variables are highly correlated (see Figure 8), it may be interesting to identify
a small number of common factors that are able to explain the majority of information
within the sample covariance matrix. Each factor will result related to a particular subset
of variables, and therefore the definition of factors itself suggests their interpretation.
To accomplish this task, the estimation of a factor model is a natural choice. Due to the
noticeable heterogeneity of the variables in space and time, it is however necessary to
allow factors to vary in both dimensions. Moreover, to take into account for the evident
temporal autocorrelation among almost all variables as well as for the possibility that
some of the spatial structure is induced by spatial spillovers, we want to allow the
country-year-specific factors to be spatially and serially correlated. Further, in the model
illustrated in Section 3, the correlation within and between regions are assumed to have
a multiplicative effect and separability in the covariance is modelled, while temporal
effect on factor scores is assumed additively.
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Figure 3: Age-standardized all causes death rate, per 100 000 population: Distribution
across countries and years.

3 Model

3.1 Model Proposed

Let X(t) be a matrix (N × K) of observations on K variables over N countries, at
time t and let X = [X(1)′, X(2)′, · · · , X(T )′]′ be the NT ×K dimensional matrix of K
observed variables, for the N countries at T time periods. Following Rowe (2003), we
write the model for the K observed variables at time t for location n, as

(K×1)

xn(t) |μ,Λ, fn,m =
(K×1)

μ(t) +
(K×m) (m×1)

Λ fn(t) +
(K×1)

εn(t), (3.1)

where μ(t) is a K-dimensional unobserved population mean vector at time t, Λ the
K ×m matrix of factor loadings, fn(t) is the m-dimensional vector of common factor
scores for the n-th region at time t, and εn(t) is a vector of disturbance terms of the n-th
region on the K variables at time t. The parameters (μ(t),Λ, f(t), t ≥ 1) in the model
are unknown and have to be estimated. Usually, the estimation of μ(t) does not present
problems, as typically coincides with the sample mean (see Lawley (1940)), therefore,
without lack of generality, we can assume μ(t) = 0. While factor scores are allowed
to vary across time and countries, the loadings have dimension K ×m. The approach
of keeping the loadings fixed across time and regions, also followed in Tzala and Best
(2008) or Calder (2007), favors the description of latent factors and their interpretation
as well as the identification of local trends or country-specific evolution of the scores.
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Figure 4: Annually average income measured in dollars: Distribution across countries
and years.

In a classical factor analysis model the errors εn(t) are assumed to be normally
distributed and independent, conditional on the common factors: thus the common
factors are the only source of dependence among the K variables.

Classical and Bayesian factor models assume independent rows of the observation
matrix. This assumption turns out to be not reasonable for spatially correlated data. In
order to show our proposal to account for possible spatial correlation, let us rewrite the
classical factor model as illustrated in (3.1) by rearranging the N × K terms in X(t)
in a NK × 1 vector (where the first K elements are the K-observations relative to first
region at time t etc.). We denote by vec(X(t)) the vector obtained by this operation,
and get

(NK×1)

vec(X(t)) |μ,Λ, F,m =

(
(N×N)

IN ⊗
(K×m)

Λ

)
(Nm×1)

vec(F (t)) +
(NK×1)

vec(ε(t)), (3.2)

where ⊗ indicates the Kronecker product between two matrices. By our specification,
the residuals are correlated between countries and variables:

vec(ε(t)) ∼ N(0,Ω),

Ω = σ2
ε(Φ⊗Ψ), (3.3)

where the two positive definite matrices Φ and Ψ have sizes,N×N andK×K and induce
spatial correlation and correlation among variables, respectively. Traces are constrained
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Figure 5: Unemployment rate, computed as the number of unemployed people as a
percentage of the labour force: Distribution across countries and years.

to be fixed and proportional to the matrix size, for identification (see also Leorato and
Mezzetti (2016)).

The n-th row xn(t) of the matrixX(t) contains theK observations of variables on re-
gion n at time t. Under the separable structure defined by (3.2) and (3.3), var(xn(t)|Φ,Ψ,
m, F,Λ) = σ2

εφnnΨ and the covariance between rows n and n′ of X is σ2
εφnn′Ψ, while

the covariance between columns k and l of X(t) (representing observations of variables
k and l on all the N regions at time t) is σ2

εψklΦ.

We rewrite (3.2) and (3.3) as:

p(X(t)|F (t),Λ,Ψ,Φ,m) ∝

σ−Np
ε |Φ|−p/2|Ψ|−N/2 exp

(
−σ−2

ε

2 tr
(
Ψ−1(X(t)− F (t)Λ′)′Φ−1(X(t)− F (t)Λ′)

))
,

t = 1, . . . , T, (3.4)

showing that the distribution of the observations conditional on the factors admits
autocorrelation on space and between variables.

Besides that, we want to allow for both a time autocorrelation and a spatial depen-
dence on factors scores F . Specifically, the factor scores F (t) follow an autoregressive
model, while we allow spatial autocorrelation in the columns of F (t) (for computational
convenience we assume the spatial correlation matrix to be equal to Φ, although in
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Figure 6: Total correlation of variables between time points, corresponding to years from
2000 and 2009.

Figure 7: Total correlation of variables between countries. Countries are ordered from
North to South and to East.
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Figure 8: Correlation between variables.

Supplementary Material (Leorato and Mezzetti, 2020) we compute the posterior dis-
tribution using an arbitrary positive definite matrix). Further, we permit correlation
between factor loadings of different variables through proper definition of prior distri-
butions. Appropriate prior distributions, presented in Section 3.3, are used to account
for all these dependencies.

3.2 Identification Strategy

The model in (3.1) presents a well known problem of identification of the parameters.
The question of identifiability of factor models has been widely discussed in the litera-
ture, and several different proposals have been suggested, each with its specific strengths
and drawbacks. This problem is generally solved through the introduction of different
sets of constraints on the parameters.

Identification restrictions are necessary due to rotation invariance of factor mod-
els: model (3.2) cannot be distinguished from a model where both factor loadings and
common factors are subject to a rotation. In fact, given a nonsingular m × m ma-
trix B, transforming F (t) into F (t)B and Λ to ΛB gives the same model as (3.2), for
every B:

X(t) = F (t)BB′Λ′ + ε(t).

Practically, this amounts to m2 redundant parameters (the dimension of B) and
the main strategy proposed in the literature has traditionally been the introduction of
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the exact same number of restrictions on the parameters. There are several ways to
impose those restrictions, and it is not our purpose here to cover all of them (see Bai
and Li (2012), Bai (2003) and references therein for a detailed review on this topic).
Sometimes all m2 restrictions are imposed on the factor loadings matrix, leaving the
common factors unrestricted. Another possibility is to share the constraints among the
sample covariances of the factor loadings and of the common factors.

The question of which one of the set of restrictions is to be chosen is far from
being settled. In a Bayesian estimation approach, whenever the computation of the
posterior distribution relies on some MCMC tool, the use of one or another identification
restriction is more likely to produce relevant differences.

One quite popular choice is to assume the factor loading matrix to be lower triangular
(with or without all ones in the main diagonal) and to add the remaining restrictions
on the covariance matrix of the factor scores.

One of the main drawbacks with this identification strategy is that the posterior
distributions, and therefore the interpretation of the results, in general depend heavily
on the ordering of the observations. Several authors (see for instance Aßmann et al.
(2016), Frühwirth-Schnatter and Lopes (2018) and Conti et al. (2014)) have proposed
alternative methods to overcome these liabilities. Nonetheless, this remains one of the
most used identification strategies, one of the reasons being the fact that the structure
of the loading matrix itself can ease the interpretation of factors.

For this reason, we follow the approach based on a lower triangular structure of Λ:

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
λ2,1 1 0 . . . 0
λ3,1 λ3,2 1 0 . . .
. . . . . . . . . . . . 0
λm,1 λm,2 λm,3 . . . 1

λm+1,1 λm+1,2 λm+1,3 . . . λm+1,m

. . . . . . . . . . . . . . .
λK,1 λK,2 λK,3 . . . λK,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.5)

However, we distinguish from the standard arguments on one respect: to the best of our
knowledge, most of the authors imposing identification restrictions of this form, follow
the same ex-ante argument, proposed by Geweke and Zhou (1996) (see for example
Aguilar andWest (2000), Calder (2007) or Bai andWang (2015)). This approach consists
in the definition of a prior distribution only on the unconstrained elements of the factor
loadings, while, for the others, a Dirac distribution (either concentrated in 0 or 1) is
assumed. In order to take advantage of the separability of covariance matrices also
in the computation of the posterior of Λ, we implement the constraint in a different
way. In fact, we impose the constraints by conditioning on the unrestricted posterior
distribution of the whole Λ. In this way, we can avoid to resort to a fully informative
(deterministic) prior distributions for a subset of the components of Λ. The computation
of the constrained posterior distribution of Λ is given in detail in Section 4. In the
Supplementary Material we show that the posterior distributions obtained by using our
method and the approach by Geweke and Zhou (1996) do not coincide even for very
simple factor models.
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3.3 Prior Distributions

Following Leorato and Mezzetti (2016), we will use natural conjugate families of prior
distributions for the parameters ρ, F , Λ, σ2

ε , Ψ and Φ. Thus for σ2
ε , we set an inverse-

gamma prior distribution:

p(σ2
ε) ∝ σ−2κ−2

ε exp

(
− θ

σ2
ε

)
. (3.6)

As stated in Section 3.1, the factor scores F (t) follow a multivariate autoregressive
model of order h ≥ 1. Let Rj = diag(ρj1, ρj2, . . . , ρjm), j ≤ h and let us define the
matrix Fh(t) = (F (t− 1), . . . , F (t− h)). Then,

F (t) = Fh(t)R+ ν(t), (3.7)

R = (R1, . . . , Rh),

ν(t) = (ν1(t), ν2(t), . . . , νm(t)).

The errors νi(t), νj(t) are independent for all i �= j and are not serially correlated, but
they are spatially correlated, through the matrix Φ. In Supplementary Material, we
compute the posterior distribution of F , allowing for an arbitrary matrix Γ to govern
the spatial correlation matrix, in the particular case when R = ρIm. However, in the
application of the general model, we use Γ = Φ to exploit the computational gain due to
simplification of the posterior distribution. A similar remark holds for the prior variance
of Λ, given below.

The prior distribution for F (t) is then defined as:

p (F (t) | Fh(t), R,Φ,m) ∝ |Φ|−m/2 exp

{
−1

2
tr (F (t)− Fh(t)R)′Φ−1(F (t)− Fh(t)R)

}
,

(3.8)

where we assume the initial conditions F (−h+ 1) = . . . = F (0) = 0.

We can write the variance of the vector obtained from the matrix F as a T ×T block
matrix ΣF , whose (t, s)− th block is

ΣF (t, s) = Φ⊗ C|t−s|(R),

where C|t−s|(R) is a diagonal matrix whose j-th element is the |t− s|-th order autocor-
relation of an AR(h) process with coefficients (ρ1j , . . . , ρhj), j = 1, . . . ,m.

For example, if h = 1, R = R1 and

C|t−s|(R) =
[
(I −R2

1)
−1R

|t−s|
1

]
.

As for F , we use a normal prior for Λ, with

p(Λ|Ψ,m) ∝ |Ψ|−m/2 exp

{
−1

2
tr
(
Ψ−1(Λ− Λ0)H(Λ− Λ0)

′)} . (3.9)
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Therefore, by defining the vectorization λ = vec(Λ), the prior distribution of λ is Gaus-
sian, with mean λ0 = vec(Λ0) and variance H⊗Ψ. The hyperparameter H is fixed, while
the matrix Ψ, that allows for correlation between the loadings of different variables, is
estimated.

Prior distribution of F reflects our hypothesis of factors with a temporal and a
spatial dependence. Note that with our approach to identification, we don’t need to
specify separate Gaussian prior distributions for all non null terms of the rows of Λ,
but we can specify Λ, conditionally on Ψ, as a unique Gaussian random matrix with
parameters Λ0 and H.

Both Ψ and Φ follow from a priori inverted Wishart distributions with scale matrices
A and G respectively:

p(Ψ̃) ∝ |Ψ̃|−(ν+2K+2)/2 exp
{
−ν

2
tr
(
Ψ̃−1A

)}
, (3.10)

p(Φ̃) ∝ |Φ̃|−(γ+2N+2)/2 exp
{
−γ

2
tr
(
Φ̃−1G

)}
. (3.11)

Both A and G are symmetric and positive definite matrices, while γ and ν are two
scalars. We adopt the following parametrization: E(Ψ̃) = A/ν and E(Φ̃) = G/γ.

Since the shape parameters (ν and γ) determine also the level of information of
the prior distributions, we add parameters κν and κγ such that: A = κννIK and G =
κγγIn. Thus, the lower the parameters (κν and κγ), the less informative the distribution.
Furthermore we fix the trace of the two matrices respectively as:

Ψ = K × Ψ̃

tr(Ψ̃)
,

Φ = N × Φ̃

tr(Φ)
.

The prior distribution for each ρij is a uniform distribution as p(ρij) ∝ 1 for ρij ∈
(−1, 1), i = 1, . . . , h, j = 1, . . . ,m.

4 Posterior Distributions

In order to compute the posterior distributions, we rewrite (3.4) as:

p(X|F,Λ, ρ, σ2
ε ,Φ,Ψ) ∝ σ−TNK

ε |Φ|−KT/2|Ψ|−TN/2 (4.1)

× exp

{
−
tr
(
Ψ−1

∑
t(X(t)− F (t)Λ′)′Φ−1(X(t)− F (t)Λ′)

)
2σ2

ε

}
,

which can be equivalently written as

p(X|F,Λ, ρ, σ2
ε ,Φ,Ψ) ∝ σ−TNK

ε |Φ|−KT/2|Ψ|−TN/2 (4.2)

× exp

{
−
tr
(∑

t(X(t)− F (t)Λ′)Ψ−1(X(t)− F (t)Λ′)′Φ−1
)

2σ−2
ε

}
,

where X ′ = (X(1)′, . . . , X(T )′) and F ′ = (F (1)′, . . . , F (T )′).
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Using the definitions of the likelihood function in (4.1)–(4.2) and the set of prior
distributions in (3.6)–(3.11), it is then easy to write down all the conditional posteriors.

The conditional posterior density of the disturbance covariance matrix given the
factor scores, the factor loadings and the data, is again an invertedWishart with updated
parameters as:

p(Ψ̃|F,Λ,Φ, X,m) ∝ |Ψ̃|−(TN+m+ν+2K+2)/2 exp

(
−1

2
tr
(
Ψ̃−1U

))
,

where

U = σ−2
ε

∑
t

(X(t)− F (t)Λ′)′Φ−1(X(t)− F (t)Λ′) + (Λ− Λ0)H(Λ− Λ0)
′ +A,

E(Ψ̃|F,Λ,Φ, σ2
ε , X,m) =

NT

NT +m+ ν

σ−2
ε

∑
t(X(t)− F (t)Λ′)′Φ−1(X(t)− F (t)Λ′)

NT
+

+
m

NT +m+ ν

(Λ− Λ0)H(Λ− Λ0)
′

m
+

ν

NT +m+ ν
A.

Similarly, the posterior distribution for Φ̃ is an inverted Wishart distribution with up-
dated parameters. The expected value is a weighted sum of empirical covariance, factor
scores covariance and prior hypotheses about covariance between observations, more
precisely:

E(Φ̃|F,Λ,Ψ, σ2
ε , X,m) =

KT

KT +mT + γ

σ−2
ε

∑
t(X(t)− F (t)Λ′)Ψ−1(X(t)− F (t)Λ′)′

KT
+

+
mT

KT +mT + γ

∑
t F (t)F (t)′

mT
+

γ

KT +mT + γ
G.

The posterior distribution for σ2
ε is an inverse Gamma, with updated parameters:

κ∗ = κ+ TNK
2 and

θ∗ = θ +
1

2
tr

(
Ψ−1

∑
t

(X(t)− F (t)Λ′)′Φ−1(X(t)− F (t)Λ′)

)
.

To compute the posterior distribution of R only (3.8) contributes, as:

p(R|X,F,Ψ,Φ,Λ) ∝ exp

{
−1

2
tr
∑
t

(F (t)− Fh(t)R)Φ−1(F (t)− Fh(t)R)′

}
.

The conditional posterior distribution for the factor scores given the correlation ma-
trix, the disturbance covariance matrix, the factor loadings and the data is multivariate
normal as shown in Supplementary Material, and it results as follows:

vec (F (1), . . . , F (T )) | X,Φ,Ψ, R, . . . ∼ N(μ̃F , Σ̃F,m),
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Σ̃F,m = Φ⊗
[(
M−1

m (R) + σ−2
ε IT ⊗ Λ′Ψ−1Λ

)−1
]
,

μ̃F = Σ̃F,m(Φ−1 ⊗ σ2
εIT ⊗Ψ−1Λ)vec (X(1), . . . , X(T )) .

We underline that to compute the posterior distribution of factors in the VAR case,
it is convenient to consider vec (F (1), . . . , F (T )), that is the vectorization of a N × Tm
matrix, rather than the vectorization of the matrix F defined above, that has dimension
NT ×m.

In the particular case when all factor scores have the same autocorrelation coefficient,
namely when R = ρIm, we have instead

vec(F ) | X,Λ, . . . ∼ N(μ̃F , Σ̃F ),

μ̃F = Σ̃F (IT ⊗ Φ−1 ⊗ Im)vec(XΨ−1Λ),

Σ̃F =
[(
IT ⊗ Φ−1 ⊗ Λ′Ψ−1Λ

)
σ−2
ε +M(ρ)−1 ⊗ Φ−1 ⊗ Im

]−1
.

Where M(ρ) is defined as:

M(ρ) = (1− ρ2)−1

⎛
⎜⎜⎜⎝

1 ρ · · · ρT−1

ρ 1 · · · ρT−2

...
. . .

ρT−1 ρT−2 · · · 1

⎞
⎟⎟⎟⎠ .

Computational details for the posterior distribution of the factors (under these and
more general assumptions) are shown in Supplementary Material.

The (unconstrained) posterior distribution of Λ is the following:

p(Λ|F,Ψ,Φ, X,m) ∝ exp

{
−1

2
tr

(
Ψ−1(Λ− Λ̃)(H +

∑
t

F (t)′Φ−1F (t))(Λ− Λ̃)′

)}

Λ̃ =

(∑
t

X(t)′Φ−1F (t) + Λ0H

)(
H +

∑
t

F (t)′Φ−1F (t)

)−1

. (4.3)

Differently to the standard Bayesian approach, that uses completely informative
priors for the elements λkj subject to the constraints, we impose ex-post the restriction
by conditioning the posterior distribution. In this way, the whole posterior distribution
of Λ, which enters in all terms of the constrained distribution, is informed by the data.

We consider the m ×K dimensional vector vec(Λ), and define the two sub-vectors
λu, corresponding to the unconstrained elements in Λ and λc, that instead contains the
m(m+1)/2 terms of Λ that are constrained in (3.5). Then, let λc,0 be their corresponding
constrained values (either 0 or 1).

Let us denote by

Σ̃λ =

(
H +

∑
t

F (t)′Φ−1F (t)

)−1

⊗Ψ, (4.4)
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and λ̃ = vec(Λ̃), namely, the posterior variance matrix and mean vector of vec(Λ). Then,
by appropriately reordering the elements of Σ̃λ and λ̃, we can write Σ̃λ and λ̃ in blocks,
corresponding to λu and λc respectively:

Σ̃λ =

(
Σ̃uu Σ̃uc

Σ̃cu Σ̃cc

)
(4.5)

and λ̃′ = (λ̃′
u, λ̃

′
c).

Imposing constraints on the posterior distribution of Λ is equivalent to computing
the posterior distribution of λu, conditional to λc = λc,0. This distribution is readily
computed, from the well known properties of a multivariate Gaussian distribution:

λu | X,F,Φ,Ψ,m, λc = λc,0 ∼ N
(
λ̃u + Σ̃ucΣ̃

−1
cc (λ̃c,0 − λ̃c), Σ̃uu − Σ̃ucΣ̃

−1
cc Σ̃cu

)
.

5 Number of Factors

An important issue to be faced is the choice of the number of factors. In the previous
sections, likelihood, prior and posterior distributions are defined or computed by as-
suming a fixed number of factors. In this Section we illustrate how their number can be
determined. Bayesian and non-Bayesian references that tackle the estimation/choice of
the number of common factors are, among many others, Lawley and Maxwell (1962);
Bartholomew et al. (2011); Martin and McDonald (1975); Press and Shigemasu (1989);
Rowe (2003). The book by Bartholomew (1987) is an excellent overview of the field
right before MCMC tools became available.

According to Rowe (2003) the posterior probability of m is given by

p(m | μ,Λ, F,Ψ,Φ, σ2
ε , X) ∼ p(m)p(μ)p(Λ|F,Ψ,m)p(F |Φ,m)p(Ψ)p(Φ)p(σ2

ε )

× p(X|Λ, F,Φ,Ψ, μ,m),

p(m) indicates the prior distribution of m. Since different methods for model selection
tend to favour high number of factors, we choose a prior distribution inversely propor-
tional to m.

Due to the computation difficulties to sample from the previous posterior distri-
bution, to choose the optimal number of factors we propose the following algorithm.
The main idea is to sample a value m	 from the prior distribution of m. Given m	, we
estimate all the components of the model according to the method previously exposed:
F̂ (t), Λ̂, Ψ̂ and Φ̂ as defined in (3.2) and (3.3). Knowing all the components, we can
sample a dataset X	 from the estimated model. We then compute a measure of proxim-
ity between observed data and each data set sampled from the estimated distribution,
based on either the correlation or a distance. The optimal number of factors is estimated
according to one of the following criteria:

• we take the average of the values m	 weighted by the correlation or the inverse
distance,
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• all sampled values such that the distance between the observed and sampled data
is greater than the 90− th percentile of the computed distances are discarded, and
then the sample mean of the observed value is the estimated value for m.

6 Simulations

The aims of the simulations are basically twofold: to investigate the ability to reconstruct
the data with a reduction of the dimension of the variables and the ability to correctly
identify the latent structure.

We need to simulate a data set where the variables are generated by a lower number
of factors and investigate whether the method is able to correctly catch the underlying
structure. To reach this aim, we first follow the mechanism generating data explained in
Ghosh and Dunson (2009), adding an AR(1) structure for the factor scores. By assuming
K = 10, N = 20, T = 10 and m0 = 3 we simulate the following three factors model:

X = F0Λ
′
0 + ε, (6.1)

εn,t ∼ N(0,Σ0), (6.2)

diag(Σ0) = (0, 2079, 0.1, 0.1525, 0.2, 0.36, 0.1875, 0.1875, 1, 0.2, 0.27), (6.3)

Λ′
0 =

⎡
⎣ 0.89 0 0.25 0 0.8 0 0.5 0.1 0 0

0 0.9 0.25 0.4 0 0.5 0 0 −0.3 −0.3
0 0 0.85 0.8 0 0.75 0.75 0 0.80 0.80

⎤
⎦ , (6.4)

F0(t0) ∼ N(0, Im), (6.5)

F0(t) ∼ N(ρ0F0(t− 1), 0.1× Im), (6.6)

ρ0 = 0.4. (6.7)

We simulate a data set with ten variables generated assuming the structure in (6.1)–
(6.7). From each data set simulated, we estimate the factor scores and the factor load-
ings, with different values of m and, then, reconstruct the data set with F̂ Λ̂′. The
number of factors is determined slightly differently from the algorithm illustrated in
Subsection 5, because here for each iteration the values of m from 2 to 9 are considered.
We are not sampling using the prior distribution of m, since the aim is investigating the
ability of the method to reconstruct the simulated data varying the value of m. Once
we have estimated the reduced model, we measure the distance between simulated and
estimated data through the following three measures: (i) the correlation between the
data generated X and the data reconstructed F̂ Λ̂′ (ii) the distance between the mean
μ0 = F0Λ

′
0 and (iii) the estimated mean μ̂ = F̂ Λ̂′ and the log condition number of

Σ−1
0 Σ̂. We repeated these steps 100 times.

In Table 1 we report the results of the simulation. For each value m the tables shows
the mean value for the three measures of distance between true and reconstructed data.

From 100 simulations, the number of factors, m̂, is estimated to be equal to 3.67
versus the real value of 3. This result again confirms the performance of our method.
The average correlation between simulated data and reconstructed data is 0.863.
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m log(cond(Σ−1
0 Σ̂)) ||μ0 − μ̂||2 ρ(X, μ̂)

2 17.56 400.34 0.635
3 16.09 226.01 0.75
4 16.289 735.59 0.697
5 17.28 > 104 0.578
6 18.08 > 104 0.421
7 19.07 > 104 0.274
8 20.92 > 104 0.259
9 23.83 > 104 0.123

Table 1: Results for the simulation according to generating mechanism as in (6.1)–(6.7).
For each number of factors extracted, the average log condition number of Σ−1

0 Σ̂, the
average distance between the mean μ0 = F0Λ

′
0 and the estimated one and the average

correlation between the data generated and the data reconstructed.

Moreover, we simulate data sets with a random generating structure: p, number of
variables, is fixed to be equal to 15, T = 10 and ρ0 is fixed to be equal 0.4. The first
step is the random generation of the quantities m0, F0, Σ0 and Λ0.

m0 ∼ UniformDiscrete[2, 11],

F0(t0) ∼ N(0, Im),

F0(t) ∼ N(ρ0F0(t− 1), 0.1× Im),

Σ0 ∼ InverseWishart(Ip, 2 + p).

Elements of Λ0 are randomly sampled from the same elements that appear in the matrix
of factor loadings defined in (6.4). At the second step, we simulate a data set X with
the sampled generating structure. From matrix X, we extract factor loading and factor
scores with number of factors from 2 to 11, and we choose the model that minimize the
distance between simulated and reconstructed data. The correlation between the data
generated and the model reconstructed has an average of 0.83, ranging from 0.705 and
0.893. Moreover, the correlation between the real value of m and the chosen one is 0.683.

Furthermore, to test the ability of the method proposed to guess the underlying
structure, besides reconstructing the data, we simulate data sets with p, number of
variables equal to 8, T = 5, and n = 20. The matrix of factor loading is a 0/1 matrix:

Λ′
0 =

[
1 0 1 1 1 0 0 0
0 1 0 0 0 1 1 1

]
.

The rest of the structure remains unchanged:

X = F0Λ
′
0 + ε,

εn,t ∼ N(0,Σ0),

F0(t0) ∼ N(0, Im),

F0(t) ∼ N(ρ0F0(t− 1), 0.1× Im),

Σ0 ∼ InverseWishart(Ip, 2 + p).
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We simulate 500 dataset following the assumptions above and assuming ρ = 0, that
corresponds to assume absence of temporal structure. For each dataset, we compute the
correlation between matrix Λ0, factor loadings used to generate the data, and matrix Λ̂,
mean of the samples from the posterior distribution. The average correlation is 0.859,
the median is 0.959, with 95% credible interval equal to [0.277, 0.99]. Furthermore, the
average correlation between matrix F0, generating the data, and the matrix F̂ is 0.821,
the median is 0.923, with 95% credible interval equal to [0.129, 0.975].

Finally, we simulate 500 dataset assuming ρ = 0.4. For each dataset, we compute
the correlation between Λ0 and Λ̂, mean of the samples from the posterior distribu-
tion, the average value is 0.922, the median is 0.976, with 95% credible interval equal
to [0.212, 0.99]. Furthermore, the average correlation between F0 generating the data
and the matrix F̂ is 0.781, the median is 0.854, with 95% credible interval equal to
[0.067, 0.908].

7 Results

The results reported are based on two chains of posterior samples of 200000 iterations
per MCMC, with a burn-in iterations of 100000. Convergence for each parameter was
checked by visual examination of trace plots and by the calculation of the Brooks and
Gelman diagnostic (Brooks and Gelman, 1998). Convergence of matrices was checked
through convergence of eigenvalues. In terms of real time, the run took about 5 hours.
All of our computations performed in Matlab (version 2019b) on a PC with a processor
Intel Core i7− 6700T and 16Gb of RAM. Note that the estimates are rather stable and
the number of iterations can be reduced to 20000 without significant changes.

Applying the method described in Section 5, 1500 values were sampled from the
distribution of m, and we obtain a posterior mean of the number of factors equal to 5.
In this Section, results obtained by calculating five factors are therefore presented. As
illustrated in Section 5, different criteria are suggested to chose the optimal number of
factors, all of them leading to the estimate m̂ = 5:

• the average of the sampled values of m weighted by the correlations between real
data and reconstructed data provide 5.45 as the chosen value for the number of
factors,

• the average of the sampled values ofm weighted by the inverse of distances between
real data and reconstructed data provide 5.57 as the chosen value for the number
of factors,

• discarding any samples that provide a distance between real data and recon-
structed data greater than the 90− th percentile, m̂ results 5.41.

The choice of hyper-parameters is a fundamental aspect of the analysis and will be
discussed in Subsection 7.1. Concerning hyperparameters in the prior distribution of Ψ̃
and Φ̃, indicated in (3.10) and in (3.11), we assume that the scale parameters, ν and γ,
are equal to 1, while κν and κγ are fixed to be equal to 0.1.
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Matrix H, prior covariance matrix for the distribution of Λ, is assumed to be a
diagonal matrix with 0.01 in each cell of the diagonal, and Λ0 is defined as explained
in Section 7.1. The prior distribution for each component ρj is a uniform distribution
between −1 and 1. Moreover, the parameter σ2

ε in (3.3) is assumed to be equal to 1, by
standardization of the matrix X(t).

In Figure 9 posterior estimate of matrix Λ is shown. For the first loading, constrained
to be correlated with alcohol consumption, infection disease is the only variable with a
negligible association. The first factor loading results highly correlated with unemploy-
ment rate and with SDR of most of the diseases: alcohol and smoking related diseases,
all causes disease, circulatory system and ischaemic diseases, tuberculosis and liver dis-
ease. Furthermore first factor loading is negatively correlated with protein intake, life
expectancy, fertility rate, fat intake and average income, and has a weaker negative
association with SDR for breast and all cancer.

Figure 9: Factor Loadings.

As Figure 10 shows, by plotting the first factor score over Europe, in the years
2000, 2003, 2006 and 2009, it is marked a geographical contrast between Mitteleuropean
countries and the rest of Europe. The first factor score clearly marks a contrast between
richer versus poorer countries, with the exception of Germany and Austria, whose scores
are nearer to those of East European countries. The evolution of the scores through the
decade is minimal, and shows a slight divergence in the extreme values of the score.
This factor marks differences in lifestyle, that is mostly attributable to heterogeneity in
financial resources and impacts on (almost) all health outcomes.
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Figure 10: 1st Factor Score.

The second factor loading, constrained to be correlated with fat intake, has a high
positive association with life expectancy and average income. At the same time it results
negatively correlated with unemployment rate, SDRs for tuberculosis, circulatory sys-
tem and ischaemic diseases, infection disease, all causes disease, smoking related disease
and protein intake, and appears also a weaker negative association with liver disease
and alcohol related diseases SDR. Among the SDRs, the only positive association is
with cancer (all and breast).

As shown in Figure 11, that maps the second factor score over Europe in 2000,
2003, 2006 and 2009, the second factor score signs a contrast between Northern and
other countries, but it shows a higher variability in time relative to the first factor.
The second factor seems to mark some differences in cancer mortality rates related to
heterogeneities both in calories intakes (correlated with income) and dietary habits.

The third factor loading is constrained to be correlated with fertility rate and results
highly positively correlated to life expectancy and average income. It is worth noting
that both the second and third factors have high positive correlation with income and
life expectancy, and are negatively correlated with most of the SDRs, but while the
second factor shows a positive correlation with cancer SDR, the third factor has a
strong negative correlation with all cancer SDRs. In Figure 12, the third factor score
over Europe is shown, in 2000, 2003, 2006 and 2009, identifying an evident contrast
between eastern and western countries. France is dominating the maps of the third
factor scores, probably due to the higher fertility rate compared to other countries with
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Figure 11: 2nd Factor Score.

similar socio-economic conditions. Here the opposition of richer vs poorer countries is
stronger than in the first factor and captures the diffusion of primary prevention and
the quality of health care systems.

The fourth factor (maps for the last two factor scores in 2000, 2003, 2006 and 2009
are available upon request), constrained to be correlated with life expectancy, has strong
correlation with income (positive) and unemployment rate (negative) and is strongly
positively correlated with breast cancer SDR only. It marks a contrast between Mediter-
ranean vs other European countries. This factor is difficult to interpret, it could pattern
some hidden social or cultural unobserved variables affecting women participation to
prevention programs in rich countries.

The fifth factor is the only one that shows no correlation with the economic variables.
It is constrained to be correlated with protein intakes and shows positive correlations
with (in descending order) breast cancer, all cancer SDR, infection, liver disease and
alcohol related SDR. The lack of correlation with economic variables reflects in the
geographical pattern of scores, which does not evidence clusters similar to those of
the previous factors (that could be roughly summarized as a South-West/North-East
contrast). This factor juxtaposes France and the Baltic states, that dominate the maps
in all years, in contrast to Southern-Mediterranean and Scandinavian countries, with
highly negative scores. A common feature of the latter group is wide coastal area and
the development of fishing industry: this affects the availability of fish protein and might
suggest the fifth factor to mark differences in quality of protein intakes.



512 Spatial Bayesian Factor Model

Figure 12: 3rd Factor Score.

Finally, concerning posterior estimates of R we obtained different estimation of
auto-correlation coefficients for the different scores, with a final estimate of diag(R) =
(0.313, 0.399, 0.466, 0.445, 0.321).

The posterior distributions of each component have a wide area of overlapping, we
cannot identify different behaviours regarding temporal dependence of the factors. We
then consider the model with R = ρIm. In Figure 13 the posterior distribution of ρ is
shown, posterior estimates of ρ results 0.42 indicating a rather strong temporal corre-
lation between the factor scores. It also results higher than the average autocorrelation
of each score.

Overall, the factor analysis seems to suggest the existence of two main geographical
blocks: Eastern vs Western countries. Depending on the factor, the latter can be further
decomposed into Scandinavian, Mediterranean and Mittel-European countries. These
blocks appear to be stable through time, with some slight differences among factors.
Occasionally, some countries are associated to different groups: Spain and France, for
example, in some cases show factor scores not in line with those of their neighbors.

With the aim of comparing our analysis with the results form a different approach,
we implemented, in the WinBugs software, the algorithm proposed by Tzala and Best
(2008). The comparison is not straightforward: Tzala and Best (2008) model is applica-
ble to Poisson distributed data, and can extract only one factor. To apply their model
to our data, we then limited the attention to variables representing counts of deaths,
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Figure 13: Posterior distribution of parameter ρ.

that lend themselves to be modeled by a Poisson distribution, leaving out the other
socio-economical and behavioural variables.

We extracted one factor from a matrix with 10 columns, containing the observed
counts of deaths for all the diseases indicated. The results obtained with the WinBugs
software are in line with our results, the factor loading estimated contrasts breast and all
cancer deaths versus all the other diseases, with again a differentiation between Eastern
and Western European countries, quite stable in time. In terms of computing time, the
two procedures are pretty similar, with our procedure only slightly faster than Tzala
and Best (2008)’s.

7.1 Sensitivity Analysis

Lee and Press (1998) study robustness in Bayesian factor analysis with respect to the
choice of hyperparameters. Coherently with their findings, our model confirms that
estimation of Λ is very sensitive to the choice of Λ0. As a consequence, also posterior
estimates of F depends heavily on the choice of the elements in Λ0.

To attenuate the lack of robustness, we use a two-step procedure to model Λ0. First,
we randomly generate elements of a matrix Λ00 from a uniform distribution between
−2 and 2, according to structure in (3.5). Running the model for 1000 iterations we
keep the posterior estimates of Λ as a value of Λ0 for the next MCMC iterations. The
estimates for Λ0 obtained in the first-step procedure is the prior expected value for the
factor loadings and will influence the posterior estimates as shown in (4.3). The two
step procedure aims at reducing the dependence on our prior choice for Λ00.
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By definition, H is any positive definite matrix, it is assumed here that H is either
a diagonal matrix or proportional to the identity. Assuming H scalar matrix with mag-
nitude comparable with the inverse of the sample size looks a reasonable choice. There
is no reason to assume a prior correlation between elements in Λ. From (4.4), the pos-
terior estimates of ΣΛ, covariance matrix of Λ, is the combination of the prior precision
matrix, H, and the variance covariance matrix of the column of factor scores F . The
posterior estimates of variance covariance matrix of Λ can result far from a diagonal
matrix as the covariance matrix of factor scores indicates.

Identifiability of the factors is the most delicate aspect of the factor model. Since we
choose a lower triangular structure for Λ, a critical comment to be aware of is that the
order of variables impacts the interpretation of factors and might influence the model
fit. We investigate whether the posterior estimates of factor loadings and factor scores
depend on the order of the variables. We randomly change the order of the variables and
compare the posterior estimates of the factor scores and the factor loadings obtained
conditionally on the order. The posterior estimates of factor loadings are different, (since
posterior estimates are also strongly dependent on Λ0), but the interpretation of factor
scores remains unchanged varying the order of the variables, and furthermore it has no
impact on forecasting.

Considering the application to real data illustrated in Section 2, we compare the
first three factors extracted from different models, obtained by varying the parameter
m, from three to eleven factors. We compute the correlation between the factor extracted
and we obtain that the correlation among the first factors in all different models is always
greater, in absolute value, than 0.84. Further, all absolute correlations among second
factors are greater than 0.73 while the absolute correlation among the third factors is
always greater than 0.62.

The choice of the shape hyperparameters in inverse Wishart prior distributions has
always been critical, especially when it is desired to achieve arbitrarily high noninforma-
tivity (Gelman (2006)). One of the main drawbacks of the inverse Wishart distribution
is that the uncertainty of the matrix is determined by the single scalar parameter (ν or
γ). The introduction of the parameters (κν , κγ) helps to better control for the uncer-
tainty without changing prior expectation. This limitation of the Wishart prior induced
some authors to consider generalizations such as, for instance, the Generalized inverted
Wishart distribution (see f.i. Brown et al. (1994)). The less informative choice for γ
and ν guaranteeing stability of the estimates, that is γ = 1, ν = 1, proves to work
reasonably well even when sizes N and K are (moderately) unbalanced. However, when
the difference between the number of variables and the space dimension increases, the
prior precision parameters may differ substantially. In particular, prior precision relative
to the covariance matrix with the highest dimension tends to increase and, as a con-
sequence, the weight of the prior expected value on the posterior expected value tends
to increase. The introduction of the hyperparameters κν and κγ , fixed to 0.1, doesn’t
appear to impact the posterior distributions of Ψ and Φ: they seem, in fact, to be more
sensitive to the order of magnitude of the shape parameters than to the form of the
matrices A and G.
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8 Conclusion

This paper develops and applies a new hierarchical Bayesian method for factor analysis
for multivariate spatially and temporally correlated data. Our method advances the tra-
ditional literature on factor analysis in its computational feasibility and interpretation.
The main hypothesis underlying the proposed model is that the latent factors share the
same between-locations dependence as the observed variables. The underlying structure
reflects on one hand our idea of a vector autoregressive pattern in the latent variables
relative to adjacent time periods and on the other hand the presence of high correlation
between two regions, (or census tracts), that are close to each other.

The main novelty of this work is the development of the factor model for spatially
and temporally correlated data motivated by Burkitt (1969) and Burkitt (1970), who
stated that the variation in the geographic and temporal pattern of a disease may be
related to its cause. This paper applies an innovative approach in trying to analyze the
mutual relationship among the geographical distributions of different diseases together
with some well known risk factors, both behavioural and socio-economic.

In analyzing high-dimensional, or even moderate-dimensional, multivariate data, one
is faced with the problem of estimating a large number of covariance parameters. The
method proposed results particularly useful for datasets with a large number of variables
where the interest is not in any single variable measured, but in uncovering meaningful
common patterns underlying the data.

Assuming an inverted Wishart distribution for matrix Φ, the model proposed does
not force the correlation within variables to be necessarily determined by geographic
distance, but lets the data suggest the nature of the dependence. Our method borrows
information either across geographical areas and different times. Indeed, the resulting
multivariate spatio-temporal analysis may also lead to improved precision for the es-
timation and forecasting of the underlying factors by acquiring strength from other
variables as well as close areas or time points.

The flexibility of a separable approach through a Kronecker product can be adapted
to specify parametric structures for Φ. For example, the exponential matrix specification
is considered in Strauss et al. (2017) and Leorato and Mezzetti (2016), as a way to reduce
the number of parameters to be estimated.

A real data example illustrates the relevance of the methodology offering empirical
evidence of the model proposed. The application highlights a geographic pattern in the
risk factors that mirrors economic differences between Eastern and Western European
countries. Furthermore, a simulation study is carried out and provides very encourag-
ing results. The aim of this type of empirical analysis is to verify whether the results
contribute to strengthening the hypothesis that environmental and local characteristics
can act as a common risk factors for many types of cancers and of other diseases. These
environmental factors, are very likely to be shared by adjacent regions, due to spatial
spillovers or correlations, thus causing risk factors to show a geographical pattern. The
simultaneous variation of factor scores through time and space helps to identify the pres-
ence of convergence phenomena in one or more factors or progressive concentrations of
some factors in different areas. This may further add evidence to common sources of
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influence that reflect underlying shared risk factors, and proves to be particularly useful
for diseases with less clear aetiology or rare diseases. In our application, the spatial risk
pattern appears to be stable through time, thus rather than reinforcing the hypothesis
of spatial convergence of risks, our analysis highlights the existence of persistent re-
gional specific factors. Once the factors are extracted, they can be used for forecasting
the variables of interest, by augmenting an observation driven model by the estimated
factors.

Supplementary Material

Supplementary Material to “A Bayesian Factor Model for Spatial Panel Data with a
Separable Covariance Approach” (DOI: 10.1214/20-BA1215SUPP; .pdf).
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