
The Annals of Statistics
2021, Vol. 49, No. 4, 2231–2249
https://doi.org/10.1214/20-AOS2034
© Institute of Mathematical Statistics, 2021

ON THE RATE OF CONVERGENCE OF FULLY CONNECTED DEEP
NEURAL NETWORK REGRESSION ESTIMATES

BY MICHAEL KOHLER* AND SOPHIE LANGER†

Fachbereich Mathematik, Technische Universität Darmstadt, *kohler@mathematik.tu-darmstadt.de;
†langer@mathematik.tu-darmstadt.de

Recent results in nonparametric regression show that deep learning, that
is, neural network estimates with many hidden layers, are able to circum-
vent the so-called curse of dimensionality in case that suitable restrictions on
the structure of the regression function hold. One key feature of the neural
networks used in these results is that their network architecture has a fur-
ther constraint, namely the network sparsity. In this paper, we show that we
can get similar results also for least squares estimates based on simple fully
connected neural networks with ReLU activation functions. Here, either the
number of neurons per hidden layer is fixed and the number of hidden layers
tends to infinity suitably fast for sample size tending to infinity, or the number
of hidden layers is bounded by some logarithmic factor in the sample size and
the number of neurons per hidden layer tends to infinity suitably fast for sam-
ple size tending to infinity. The proof is based on new approximation results
concerning deep neural networks.

1. Introduction. Neural networks belong since many years to the most promising ap-
proaches in nonparametric statistics in view of multivariate statistical applications, in partic-
ular, in pattern recognition and in nonparametric regression (see, e.g., the monographs [1, 6,
12, 15, 16, 29]). In recent years, the focus in applications is on what is called deep learning,
where multilayer feedforward neural networks with many hidden layers are fitted to observed
data (see, e.g., [30] and the literature cited therein). Motivated by this practical success, there
is also an increasing interest in the literature in showing good theoretical properties of these
neural networks; see, for example, [8, 11, 24, 26, 36, 37] and the literature cited therein for
the analysis of corresponding approximation properties of neural networks.

1.1. Nonparametric regression. In this paper, we study these kind of estimates in con-
nection with nonparametric regression. Here, (X, Y) is an R

d × R–valued random vector
satisfying E{Y 2} < ∞, and given a sample of size n of (X, Y), that is, given a data set

Dn = {
(X1, Y1), . . . , (Xn, Yn)

}
,

where (X, Y), (X1, Y1), . . . , (Xn, Yn) are i.i.d., the aim is to construct an estimator

mn(·) = mn(·,Dn) :Rd →R

of the so-called regression function m :Rd →R, m(x) = E{Y | X = x} such that the so-called
L2-error ∫ ∣∣mn(x) − m(x)

∣∣2PX(dx)

is “small” (cf., e.g., [12] for a systematic introduction to nonparametric regression and a
motivation for the L2-error).

Received August 2020; revised October 2020.
MSC2020 subject classifications. Primary 62G08; secondary 41A25, 82C32.
Key words and phrases. Curse of dimensionality, deep learning, neural networks, nonparametric regression,

rate of convergence.

2231

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/20-AOS2034
http://www.imstat.org
mailto:kohler@mathematik.tu-darmstadt.de
mailto:langer@mathematik.tu-darmstadt.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

2232 M. KOHLER AND S. LANGER

1.2. Neural networks. In order to construct such regression estimates with neural net-
works, the first step is to define a suitable space of functions f : Rd → R by using neural
networks. The starting point here is the choice of an activation function σ : R → R. Tradi-
tionally, so-called squashing functions are chosen as activation function σ : R → R, which
are nondecreasing and satisfy limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1, for example, the
so-called sigmoidal or logistic squasher

σ(x) = 1

1 + exp(−x)
, x ∈ R.

Recently, also unbounded activation functions are used, for example, the ReLU activation
function

σ(x) = max{x,0}.
The network architecture (L,k) depends on a positive integer L called the number of

hidden layers and a width vector k = (k1, . . . , kL) ∈ N
L that describes the number of neurons

in the first, second, . . . , Lth hidden layer. A multilayer feedforward neural network with
network architecture (L,k) and ReLU activation function σ is a real-valued function defined
on R

d of the form

(1) f (x) =
kL∑
i=1

c
(L)
1,i f

(L)
i (x) + c

(L)
1,0

for some c
(L)
1,0 , . . . , c

(L)
1,kL

∈R and for f
(L)
i ’s recursively defined by

f
(s)
i (x) = σ

(ks−1∑
j=1

c
(s−1)
i,j f

(s−1)
j (x) + c

(s−1)
i,0

)

for some c
(s−1)
i,0 , . . . , c

(s−1)
i,ks−1

∈ R, s ∈ {2, . . . ,L}, and

f
(1)
i (x) = σ

(
d∑

j=1

c
(0)
i,j x(j) + c

(0)
i,0

)

for some c
(0)
i,0 , . . . , c

(0)
i,d ∈ R. The space of neural networks with L hidden layers and r neurons

per layer is defined by

F(L, r) = {f : f is of the form (1) with k1 = k2 = · · · = kL = r}.(2)

As there is no further restriction on the network architecture (e.g., no sparsity restriction as in
[31]) and as two neurons are only connected if and only if they belong to neighboring layers,
we refer to the networks of the class F(L, r), similar as [37], as fully connected feedfoward
neural networks. The representation of this kind of network as a directed acyclic graph is
shown in Figure 1. Here, we get an impression of how such a network looks like and why we
call those networks fully connected. Remark that this network class also contains networks
with some weights chosen as zero.

In the sequel, the number L = Ln of hidden layers and number r = rn of neurons per hid-
den layer of the above function space are properly chosen. Then we define the corresponding
neural network regression estimator as the minimizer of the so-called empirical L2-risk over
the function space F(Ln, rn), that is, we define our estimator by

m̃n(·) = arg min
f ∈F(Ln,rn)

1

n

n∑
i=1

∣∣f (Xi) − Yi

∣∣2.(3)

For simplicity, we assume here and in the sequel that the minimum above indeed exists.
When this is not the case, our theoretical results also hold for any estimate which minimizes
the above empirical L2-risk up to a small additional term.

FULLY CONNECTED DEEP NEURAL NETWORKS 2233

x(1)

x(2)

x(3)

x(4)

f (x)

Hidden layers

Input Output

σ(ctx + c0)

FIG. 1. A fully connected network of the class F(2,5).

1.3. Curse of dimensionality. In order to judge the quality of such estimates theoretically,
usually the rate of convergence of the L2-error is considered. It is well known that smoothness
assumptions on the regression function are necessary in order to derive nontrivial results on
the rate of convergence (see, e.g., Theorem 7.2 and Problem 7.2 in [6] and Section 3 in [7]).
For that purpose, we introduce the following definition of (p,C)-smoothness.

DEFINITION 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R

is called (p,C)-smooth, if for every α = (α1, . . . , αd) ∈ N
d
0 with

∑d
j=1 αj = q the partial

derivative ∂qm/(∂x
α1
1 . . . ∂x

αd

d) exists and satisfies∣∣∣∣ ∂qm

∂x
α1
1 . . . ∂x

αd

d

(x) − ∂qm

∂x
α1
1 . . . ∂x

αd

d

(z)
∣∣∣∣ ≤ C‖x − z‖s

for all x, z ∈ R
d , where ‖ · ‖ denotes the Euclidean norm.

Stone [32] showed that the optimal minimax rate of convergence in nonparametric re-
gression for (p,C)-smooth functions is n−2p/(2p+d). This rate suffers from a characteristic
feature in case of high-dimensional functions: If d is relatively large compared to p, then
this rate of convergence can be extremely slow (so-called curse of dimensionality). As was
shown in [33, 34], it is possible to circumvent this curse of dimensionality by imposing struc-
tural assumptions like additivity on the regression function. This is also used, for example, in
so-called single index models, in which

m(x) = g
(
a�x

)
, x ∈ R

d

is assumed to hold, where g : R → R is a univariate function and a ∈ R
d is a d-dimensional

vector (see, e.g., [13, 14, 22, 38]). Related to this is the so-called projection pursuit, where
the regression function is assumed to be a sum of functions of the above form, that is,

m(x) =
K∑

k=1

gk

(
a�
k x

)
, x ∈ R

d

for K ∈ N, gk : R → R and ak ∈ R
d (see, e.g., [10]). If we assume that the univariate func-

tions in these postulated structures are (p,C)-smooth, adequately chosen regression esti-
mates can achieve the above univariate rates of convergence up to some logarithmic factor
(cf., e.g., Chapter 22 in [12]).

Horowitz and Mammen [17] studied the case of a regression function, which satisfies

m(x) = g

(
L1∑

l1=1

gl1

(
L2∑

l2=1

gl1,l2

(
. . .

Lr∑
lr=1

gl1,...,lr

(
xl1,...,lr

))))
,

2234 M. KOHLER AND S. LANGER

where g,gl1, . . . , gl1,...,lr : R → R are (p,C)-smooth univariate functions and xl1,...,lr are
single components of x ∈ R

d (not necessarily different for two different indices (l1, . . . , lr)).
With the use of a penalized least squares estimate, they proved that in this setting the rate
n−2p/(2p+1) can be achieved.

The rate of convergence of neural network regression estimates has been analyzed by [2–
5, 18–20, 25, 27, 28, 31, 35]. For the L2-error of a single hidden layer neural network, [4]
proves a dimensionless rate of n−1/2 (up to some logarithmic factor), provided the Fourier
transform has a finite first moment (which basically requires that the function becomes
smoother with increasing dimension d of X). McCaffrey and Gallant [25] showed a rate
of n(−2p/(2p+d+5))+ε for the L2-error of suitably defined single hidden layer neural network
estimators for (p,C)-smooth functions, but their study was restricted to the use of a certain
cosine squasher as an activation function.

The rate of convergence of neural network regression estimates based on two-layer neural
networks has been analyzed in [19]. Therein, interaction models were studied, where the
regression function satisfies

m(x) = ∑
I⊆{1,...,d},|I |=d∗

mI(xI), x = (
x(1), . . . , x(d))� ∈R

d

for some d∗ ∈ {1, . . . , d} and mI :Rd∗ →R (I ⊆ {1, . . . , d}, |I | ≤ d∗), where

x{i1,...,id∗ } = (
x(i1), . . . , x(id∗)) for 1 ≤ i1 < · · · < id∗ ≤ d,

and in case that all mI are (p,C)-smooth for some p ≤ 1 it was shown that suitable neural
network regression estimators achieve a rate of convergence of n−2p/(2p+d∗) (up to some
logarithmic factor), which is again a convergence rate independent of d . In [20], this result
was extended to so-called (p,C)-smooth generalized hierarchical interaction models of order
d∗, which are defined as follows.

DEFINITION 2. Let d ∈N, d∗ ∈ {1, . . . , d} and m :Rd →R.
(a) We say that m satisfies a generalized hierarchical interaction model of order d∗ and

level 0, if there exist a1, . . . ,ad∗ ∈ R
d and f : Rd∗ →R such that

m(x) = f
(
a�

1 x, . . . ,a�
d∗x

)
for all x ∈ R

d .

(b) We say that m satisfies a generalized hierarchical interaction model of order d∗ and
level l + 1, if there exist K ∈N, gk :Rd∗ →R (k ∈ {1, . . . ,K}) and f1,k, . . . , fd∗,k :Rd →R

(k ∈ {1, . . . ,K}) such that f1,k, . . . , fd∗,k (k ∈ {1, . . . ,K}) satisfy a generalized hierarchical
interaction model of order d∗ and level l and

m(x) =
K∑

k=1

gk

(
f1,k(x), . . . , fd∗,k(x)

)
for all x ∈ R

d .

(c) We say that the generalized hierarchical interaction model defined above is (p,C)-
smooth, if all functions f and gk occurring in its definition are (p,C)-smooth according to
Definition 1.

It was shown that for such models least squares estimators based on suitably defined mul-
tilayer neural networks (in which the number of hidden layers depends on the level of the
generalized interaction model) achieve the rate of convergence n−2p/(2p+d∗) (up to some
logarithmic factor) in case p ≤ 1. Bauer and Kohler [5] showed that this result even holds for
p > 1 provided the squashing function is suitably chosen. Similar rate of convergence results
as in [5] have been shown in [31] for neural network regression estimates using the ReLU ac-
tivation function. Here, slightly more general function spaces, which fulfill some composition

FULLY CONNECTED DEEP NEURAL NETWORKS 2235

assumption, were studied. Related results have been shown in [35] in case of Besov spaces
as a model for the smoothness of the regression function and in [27] in case of non-ReLU
activation functions. Imaizumi and Fukumizu [18] derived results concerning estimation by
neural networks of piecewise polynomial regression functions with partitions having rather
general smooth boundaries. In [28], the rate of convergence of ResNet-type convolutional
neural networks have been analyzed. Here, the convolutional neural networks correspond to
a fully connected deep neural network with constant width and depth converging to infinity
for sample size tending to infinity. The class of neural networks uses the ReLU activation
function and very small bounds on the absolute value of the weights in the hidden layers and
a large bound on the absolute value of the weights in the output layer. In case of a (p,C)-
smooth regression function up to a logarithmic factor, the rate of convergence n−2p/(2p+d) is
shown.

The main results in [5] and [31] are new approximation results for neural networks. Here,
[31] bounds the supremum norm error of the approximation of smooth functions on a cube,
while the corresponding approximation bound in [5] holds only on a subset of the cube of
measure close to one, which is sufficient in order to bound the approximation error of the
neural network in L2. In both papers, a further restriction of the network architecture, in
form of a sparsity constraint, is needed to show their theoretical results. Thus the topology
of the neural network is difficult in view of an implementation of the corresponding least
squares estimate. In particular, in [31] the topology of the neural network was not completely
specified, it was described how many weights are nonzero but not which of the weights are
nonzero.

1.4. Main results in this article. The above results lead to the conjecture that network
sparsity is necessary in order to be able to derive good rates of convergence of neural network
regression estimates. Our main result in this article is that this is not the case. To show this,
we derive similar rate of convergence results as in [5] and in [31] for least squares estimators
based on simple fully connected feedforward neural networks. In these networks, either the
number of neurons per hidden layer is fixed and the number of hidden layers tends to infinity
suitably fast for sample size tending to infinity, or the number of hidden layers is bounded by
some logarithmic factor in the sample size and the number of neurons per hidden layer tends
to infinity suitably fast for sample size tending to infinity. In the first case, the networks will
be much deeper than the class of networks considered for the least squares estimates in [5]
and [31], where the number of hidden layers is either bounded by a constant or by some loga-
rithmic factor in the sample size. From an approximation theoretical point of view, we derive
two new error bounds for the approximation of (p,C)-smooth functions by (very wide or
very deep) neural networks using the ReLU activation function, which are essential to show
our convergence result. In particular, we generalize the approximation result from [36] from
Hölder-smooth to (p,C)-smooth functions. Compared to previous works based on sparse
neural network estimates, our result does not focus on the number of nonzero parameters but
on the overall number of parameters in the network. In particular, we show that in case of
networks with constant width and W weights we can achieve an approximation error of size
W−2p/d instead of W−p/d as stated in [5] and [31]. By bounding the number of parameters
in this sense, the topology of our neural networks is much easier in view of an implementa-
tion of the corresponding least squares estimate. For instance, as shown in Listing 1, using
Python’s packages tensorflow and keras enable us an easy and fast implementation.
Although sparsely connected networks are often preferred in practical applications, there are
some open questions about an efficient implementation of these networks. So-called pruning
methods, for instance, start with large strongly connected neural networks and delete redun-
dant parameters during the training process. The main drawback is that due to the large initial

2236 M. KOHLER AND S. LANGER

model = S e q u e n t i a l ()
model . add (Dense (d , a c t i v a t i o n =" r e l u " , i n p u t _ s h a p e =(d ,)))
f o r i in np . a r a n g e (L) :

model . add (Dense (K, a c t i v a t i o n =" r e l u "))
model . add (Dense (1))
model . compi l e (o p t i m i z e r =" adam " ,

l o s s =" m e a n _ s q u a r e d _ e r r o r ")
model . f i t (x= x _ l e a r n , y= y _ l e a r n)

LISTING 1. Python code for fitting of fully connected neural networks to data xlearn and ylearn.

size of the networks the computational costs of the method are high. That is why the imple-
mentation of sparsely connected networks is critically questioned (see, e.g., [9, 23]). With
regard to our convergence result, we analyze a slightly more general function space, which
includes all the other types of structures of m mentioned earlier.

Independent of us, [37] published a similar result for the approximation of smooth func-
tions by simple fully connected deep neural networks. For a network with width 2d + 10 and
W weights, they also showed an approximation rate of W−2p/d . After the original version
of our paper, a related arXiv article was uploaded by [24]. Therein our approximation result,
where either width or depth are varied, was generalized to ReLU networks where both width
and depth are varied simultaneously.

1.5. Notation. Throughout the paper, the following notation is used: The sets of natu-
ral numbers and real numbers are denoted by N and R, respectively. Furthermore, we set
N0 = N ∪ {0}. For z ∈ R, we denote the smallest integer greater than or equal to z by �z�
and the largest integer smaller or equal to z by z�. We set z+ = max{z,0}. Vectors are de-
noted by bold letters, for example, x = (x(1), . . . , x(d))T . We define 1 = (1, . . . ,1)T and 0 =
(0, . . . ,0)T . A d-dimensional multiindex is a d-dimensional vector j = (j (1), . . . , j (d))T ∈
N

d
0 . As usual, we define ‖j‖1 = j (1) + · · · + j (d), j! = j (1)! · · · j (d)!,

xj = (
x(1))j (1) · · · (x(d))j (d)

and ∂ j = ∂j(1)

∂(x(1))j
(1)

· · · ∂j(d)

∂(x(d))j
(d)

.

Let D ⊆ R
d and let f : Rd → R be a real-valued function defined on R

d . We write x =
arg minz∈D f (z) if minz∈D f (z) exists and if x satisfies x ∈ D and f (x) = minz∈D f (z). The
Euclidean and the supremum norms of x ∈ R

d are denoted by ‖x‖ and ‖x‖∞, respectively.
For f :Rd →R,

‖f ‖∞ = sup
x∈Rd

∣∣f (x)
∣∣

is its supremum norm, and the supremum norm of f on a set A ⊆ R
d is denoted by

‖f ‖∞,A = sup
x∈A

∣∣f (x)
∣∣.

Furthermore, we define the norm ‖ · ‖Cq(A) of the smooth function space Cq(A) by

‖f ‖Cq(A) := max
{∥∥∂ jf

∥∥∞,A : ‖j‖1 ≤ q, j ∈ N
d}

for any f ∈ Cq(A). Let z1, . . . , zn ∈ R
d , set zn

1 := (z1, . . . , zn), let F be a set of functions
f : Rd → R and let ε > 0. We denote by N1(ε,F, zn

1) the ε − ‖ · ‖1-covering number on zn
1,

FULLY CONNECTED DEEP NEURAL NETWORKS 2237

that is, the minimal number N ∈ N such that there exist functions f1, . . . , fN : Rd → R with
the property that for every f ∈ F there is a j = j (f) ∈ {1, . . . ,N} such that

1

n

n∑
i=1

∣∣f (zi) − fj (zi)
∣∣ < ε.

For u ∈ R and β > 0, we define Tβu = max{−β,min{β,u}}. Furthermore, for f : Rd → R

we define Tβf : Rd →R by (Tβf)(x) = Tβ(f (x)). And if F is a set of functions f :Rd →R

we set

TβF = {Tβf : f ∈ F}.

1.6. Outline. The main result and its proof are presented in Section 2. Our new results
concerning the approximation of (p,C)-smooth functions by deep neural networks are de-
scribed in Section 3. Section 4 deals with a result concerning the approximation of hierarchi-
cal composition models (see Definition 3 below) by neural networks.

2. Main result. As already mentioned above, the only possible way to avoid the so-
called curse of dimensionality is to restrict the underlying function class. We therefore con-
sider functions, which fulfill the following definition.

DEFINITION 3. Let d ∈N and m :Rd →R and let P be a subset of (0,∞) ×N.
(a) We say that m satisfies a hierarchical composition model of level 0 with order and

smoothness constraint P , if there exists a K ∈ {1, . . . , d} such that

m(x) = x(K) for all x = (
x(1), . . . , x(d))� ∈R

d .

(b) We say that m satisfies a hierarchical composition model of level l + 1 with order and
smoothness constraint P , if there exist (p,K) ∈ P , C > 0, g : RK → R and f1, . . . , fK :
R

d → R, such that g is (p,C)-smooth, f1, . . . , fK satisfy a hierarchical composition model
of level l with order and smoothness constraint P and

m(x) = g
(
f1(x), . . . , fK(x)

)
for all x ∈ R

d .

For l = 1 and some order and smoothness constraint P ⊆ (0,∞) ×N, our space of hierar-
chical composition models becomes

H(1,P) = {
h :Rd →R : h(x) = g

(
x(π(1)), . . . , x(π(K))), where

g :RK →R is (p,C)-smooth for some (p,K) ∈ P,

C > 0 and π : {1, . . . ,K} → {1, . . . , d}}.
For l > 1, we recursively define

H(l,P) := {
h :Rd →R : h(x) = g

(
f1(x), . . . , fK(x)

)
, where

g : RK →R is (p,C)-smooth for some (p,K) ∈ P,

C > 0 and fi ∈ H(l − 1,P)
}
.

In practice, it is conceivable, that there exist input–output relationships, which can be
described by a regression function contained in H(l,P). Particulary, our assumption is moti-
vated by applications in connection with complex technical systems, which are constructed in
a modular form. Here, each modular part can be again a complex system, which also explains
the recursive construction in Definition 3. It is shown in [5] and in [31] that the function

2238 M. KOHLER AND S. LANGER

classes used therein generalize all other models mentioned in our article. As the function
class of [5] (see Definition 2) forms some special case of H(l,P) in form of an alternation
between summation and composition, this is also true for our more general model. Compared
to the function class studied in [31], our definition forms a slight generalization, since we al-
low different smoothness and order constraints within the same level in the composition. In
particular, also the additional examples mentioned in [31] are contained in our function class.

Our main result is the following theorem.

THEOREM 1. Let (X, Y), (X1, Y1), . . . , (Xn, Yn) be independent and identically dis-
tributed random values such that supp(X) is bounded and

E
{
exp

(
c1 · Y 2)}

< ∞
for some constant c1 > 0. Let the corresponding regression function m be contained in the
class H(l,P) for some l ∈ N and P ⊆ [1,∞) × N. Each function g in the definition of m

can be of different smoothness pg = qg + sg (qg ∈ N0 and sg ∈ (0,1]) and of different input
dimension Kg , where (pg,Kg) ∈ P . Denote by Kmax the maximal input dimension and by
pmax the maximal smoothness of one of the functions g. Assume that for each g all partial
derivatives of order less than or equal to qg are bounded, that is,

‖g‖Cqg (Rd) ≤ c2

for some constant c2 > 0 and that pmax,Kmax < ∞. Let each function g be Lipschitz contin-
uous with Lipschitz constant CLip ≥ 1. Let m̃n be defined as in (3) for some Ln, rn ∈ N, and
define mn = Tc3·log(n)m̃n for some c3 > 0 sufficiently large.

(a) Choose c4, c5 > 0 sufficiently large and set

Ln = �c4 · logn� and rn =
⌈
c5 · max

(p,K)∈P n
K

2(2p+K)

⌉
.

Then

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx) ≤ c6 · (logn)6 · max
(p,K)∈P n

− 2p
2p+K

holds for sufficiently large n.
(b) Choose c7, c8 > 0 sufficiently large and set

Ln =
⌈
c7 · max

(p,K)∈P n
K

2(2p+K) · logn
⌉

and rn = r = �c8�.
Then

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx) ≤ c9 · (logn)6 · max
(p,K)∈P n

− 2p
2p+K

holds for sufficiently large n.

REMARK 1. Theorem 1 shows that in case that the regression function satisfies an hi-
erarchical composition model with smoothness and order constraint P the L2-errors of least
squares neural network regression estimates based on a set of fully connected neural net-
works achieve the rate of convergence max(p,K)∈P n−2p/(2p+K) (up to some logarithmic fac-
tor), which does not depend on d and which does therefore circumvent the so-called curse of
dimensionality.

REMARK 2. In the special case that each hierarchical composition model of some level
i (i ∈ {1, . . . , l}) has some smoothness pi and dimension Ki and that Kl ≤ Kl−1 ≤ · · · ≤
K1 ≤ d , the rate of convergence in Theorem 1 is optimal up to some logarithmic factor (see
Theorem 3 in [31]).

FULLY CONNECTED DEEP NEURAL NETWORKS 2239

REMARK 3. Due to the fact that some parameters in the definition of the estimator in
Theorem 1 are usually unknown in practice, they have to be chosen in a data-dependent way.
Out of a set of different numbers of hidden layers and neurons per layer, the best estimator
is then chosen adaptively. One simple possibility to do this is to use the so-called splitting of
the sample method; cf., for example, Section 2.4 and Chapter 7 in [12]. Here, the sample is
split into a learning sample of size nl and a testing sample of size nt , where nl +nt = n (e.g.,
nl ≈ n/2 ≈ nt); the estimator is computed for several different selections of width and depth
using only the learning sample, the empirical L2-risks of these estimators are then computed
on the testing sample and finally the parameter value is chosen for which the empirical L2-
risk on the testing sample is minimal.

PROOF. (a) Standard bounds of empirical process theory (cf. Lemma 18 in Supple-
ment B, [21]) lead to

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx)

≤ c10 · (logn)2 · (supxn
1∈(Rd)n log(N1(

1
n·c3·logn

, Tc3·log(n)F(Ln, rn),xn
1)) + 1)

n

+ 2 inf
f ∈F(Ln,rn)

∫ ∣∣f (x) − m(x)
∣∣2PX(dx).

Set

(p̄, K̄) ∈ P such that (p̄, K̄) = arg min
(p,K)∈P

p

K
.

The fact that 1/nc11 ≤ 1/(n ·c3 · logn) ≤ c3 ·(logn)/8, Ln ≤ c12 · logn and rn ≤ c13 ·n
1

2(2p̄/K̄+1)

holds for c11, c12, c13 > 0, allows us to apply Lemma 19 in Supplement B, [21], to bound the
first summand by

c10 · (logn)2 · c14 · (logn)3 · log(c14 · (logn) · n 2
(2(2p̄/K̄+1))) · c14 · n 1

(2p̄/K̄+1)

n

≤ c15 · (logn)6 · n 1
2p̄/K̄+1

n
≤ c15 · (logn)6 · n− 2p̄

2p̄+K̄

(4)

for a sufficiently large n. Regarding the second summand, we apply Theorem 3(a) (see be-
low), where we choose

Mj,i = ⌈
n

1

2(2p
(i)
j

+K
(i)
j

) ⌉
(see Section 4 for the definition of p

(i)
j and K

(i)
j). Set

an = (logn)
1

4·(pmax+1) .

W.l.o.g. we assume supp(X) ⊆ [−an, an]d . Theorem 3(a) allows us to bound

inf
f ∈F(Ln,rn)

∫ ∣∣f (x) − m(x)
∣∣2PX(dx)

by

c16 · (
a4(pmax+1)
n

)2 · max
j,i

M
−4p

(i)
j

j,i = c16 · (logn)2 · max
j,i

n
− 2p

(i)
j

2p
(i)
j

+K
(i)
j .

2240 M. KOHLER AND S. LANGER

This together with (4) and the fact that

max
(p,K)∈P n

− 2p
2p+K = n

− 2p̄

2p̄+K̄ ≥ max
j,i

n
− 2p

(i)
j

2p
(i)
j

+K
(i)
j

implies the assertion.
Part (b) follows by a slight modification of the proof of Theorem 1(a), where we use

Theorem 3(b) (see below) instead of (a) to bound the approximation error. �

3. Approximation of smooth functions by fully connected deep neural networks with
ReLU activation function. The aim of this section is to present a new result concerning
the approximation of (p,C)-smooth functions by deep neural networks. This result is later
needed in the proof of Theorem 3 (see below) to approximate hierarchical composition mod-
els by deep neural networks.

THEOREM 2. Let d ∈ N, let f : Rd → R be (p,C)-smooth for some p = q + s, q ∈ N0
and s ∈ (0,1], and C > 0. Let a ≥ 1 and M ∈ N sufficiently large (independent of the size of
a but

M ≥ 2 and M2p ≥ c17 · (
max

{
a,‖f ‖Cq([−a,a]d)

})4(q+1)

must hold for some sufficiently large constant c17 ≥ 1).

(a) Let L, r ∈ N such that

(i) L ≥ 5 + �log4(M
2p)� · (�log2(max{q, d} + 1})� + 1),

(ii) r ≥ 2d · 64 · (d+q
d

) · d2 · (q + 1) · Md

hold. There exists a neural network f̂wide ∈ F(L, r) with the property that

‖f − f̂wide‖∞,[−a,a]d ≤ c18 · (
max

{
a,‖f ‖Cq([−a,a]d)

})4(q+1) · M−2p.(5)

(b) Let L, r ∈ N such that

(i) L ≥ 5Md + �log4(M
2p+4·d·(q+1) · e4·(q+1)·(Md−1))� · �log2(max{q, d} + 1)� +

�log4(M
2p)�,

(ii) r ≥ 132 · 2d · �ed� · (d+q
d

) · max{q + 1, d2}
hold. There exists a neural network f̂deep ∈ F(L, r) such that (5) holds with f̂wide re-
placed by f̂deep.

REMARK 4. The above result focuses on the convergence rate and no attempt has been
made to minimize the constants in the definition of L and r .

The following corollary translates Theorem 2(b) in terms of the number of overall param-
eters versus the approximation accuracy.

COROLLARY 1. Let d ∈ N, let f : Rd →R be (p,C)-smooth for some p = q +s, q ∈ N0
and s ∈ (0,1], and C > 0. Let a ≥ 1 and ε ∈ (0,1). Then there exists a fully connected neural
network f̂ with c19 · ε−d/(2p) parameters, such that

‖f − f̂ ‖∞,[−a,a]d ≤ ε.

FULLY CONNECTED DEEP NEURAL NETWORKS 2241

PROOF. The number of overall weights W in a neural network with L hidden layers and
r neurons per layer can be computed by

W = (d + 1) · r + (L − 1) · (r + 1) · r + (r + 1).

Using Theorem 2(b), where we choose M = �c20 · ε−1/(2p)� for some constant c20 > 0, im-
plies the assertion. �

REMARK 5. Compared with [31] and [5], where the total number of parameters is
c21 · ε−d/p for some constant c21 > 0 in case of an approximation error of ε, Corollary 1
gives a quadratic improvement.

SKETCH OF THE PROOF OF THEOREM 2. The proof is deferred to Supplement A, [21].
The basic idea is to construct deep neural networks which approximate a piecewiece Taylor
polynomial with respect to a partition of [−a, a]d into M2d equivolume cubes. Our approx-
imation starts on a coarse grid with Md equivolume cubes and calculates the position of the
cube C with x ∈ C. This cube is then subpartitioned into Md smaller cubes to finally compute
the values of our Taylor polynomial on the finer grid with M2d cubes. Parts (a) and (b) use a
different approach to achieve this.

In part (a), we exploit the fact that a network with c22 · Md neurons per layer has c23 ·
M2d connections between two consecutive layers. Then each of the c23 · M2d weights in our
network is matched to one of the c23 · M2d possible values of the derivatives of f . To detect
the right values of the derivatives for our Taylor polynomial, we proceed in two steps: In the
first two hidden layers, our network approximates the indicator function for every cube on
the coarse grid. The output layer of those networks is then multiplied by the derivatives of f

on the cube, respectively. And those values are the input of the c24 · Md networks in the next
two hidden layers, which approximate the indicator function multiplied by the values of the
derivatives, respectively, on the Md smaller cubes of the subpartition of C with x ∈ C. Using
this two-step approximation, we finally detect the right values of the derivatives on the M2d

equivolume cubes. In the remaining layers, we compute the Taylor polynomial.
In part (b) in the first c25 · Md layers of the network the values of the derivatives of f

necessary for the computation of a piecewise Taylor polynomial of f with respect to the
partition on the coarse grid are determined. Then additional c26 · Md layers of the network
are used to compute a piecewise Taylor polynomial of f on the subpartition (into Md smaller
cubes) of the cube C with x ∈ C (where C is again one of the cubes of the coarse grid).
Here, the values of the derivatives are computed successively by computing them one after
another by a Taylor approximation using the previously computed values and suitably defined
correction terms. �

4. Approximation of hierarchical composition models by neural networks. In this
section, we show one of the key elements of the proof of Theorem 1, that is, a result con-
cerning the approximation of hierarchical composition models with smoothness and order
constraint P ⊆ [1,∞) × N by deep neural networks. In order to formulate this result, we
observe in a first step, that one has to compute different hierarchical composition models
of some level i (i ∈ {1, . . . , l − 1}) to compute a function h

(l)
1 ∈ H(l,P). Let Ñi denote the

number of hierarchical composition models of level i, needed to compute h
(l)
1 . We denote in

the following by

h
(i)
j : Rd →R(6)

the j th hierarchical composition model of some level i (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , l}) that

applies a (p
(i)
j ,C)-smooth function g

(i)
j : RK

(i)
j → R with p

(i)
j = q

(i)
j + s

(i)
j , q

(i)
j ∈ N0 and

2242 M. KOHLER AND S. LANGER

g
(2)
1

g
(1)
1

x(π(1)) x(π(2))

g
(1)
2

x(π(3)) x(π(4)) x(π(5))

g
(1)
3

x(π(6)) x(π(7))

FIG. 2. Illustration of a hierarchical composition model of the class H(2,P) with the structure

h
(2)
1 (x) = g

(2)
1 (h

(1)
1 (x), h

(1)
2 (x), h

(1)
3 (x)), h

(1)
1 (x) = g

(1)
1 (x(π(1)), x(π(2))), h

(1)
2 (x) = g

(1)
2 (x(π(3)), x(π(4),

x(π(5))) and h
(1)
3 (x) = g

(1)
3 (x(π(6)), x(π(7))), defined as in (7) and (8).

s
(i)
j ∈ (0,1], where (p

(i)
j ,K

(i)
j) ∈ P . The computation of h

(l)
1 (x) can then be recursively de-

scribed as follows:

(7) h
(i)
j (x) = g

(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j

t=1 K
(i)
t

(x)
)

for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , l} and

(8) h
(1)
j (x) = g

(1)
j

(
x(π(

∑j−1
t=1 K

(1)
t +1)), . . . , x(π(

∑j
t=1 K

(1)
t)))

for some function π : {1, . . . , Ñ1} → {1, . . . , d}. Furthermore for i ∈ {1, . . . , l − 1} the recur-
sion

Ñl = 1 and Ñi =
Ñi+1∑
j=1

K
(i+1)
j(9)

holds.
The exemplary structure of a function h

(2)
1 ∈ H(2,P) is illustrated in Figure 2. Here,

one can get a perception of how the hierarchical composition models of different levels are
stacked on top of each other. The approximation result of such a function h

(l)
1 by a neural

network is summarized in the following theorem.

THEOREM 3. Let m : Rd → R be contained in the class H(l,P) for some l ∈ N and
P ⊆ [1,∞) × N. Let Ñi be defined as in (9). Each m consists of different functions h

(i)
j

(j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , l}) defined as in (6), (7) and (8). Assume that the corresponding
functions g

(i)
j are Lipschitz continuous with Lipschitz constant CLip ≥ 1 and satisfy

∥∥g(i)
j

∥∥
C

q
(i)
j (Rd)

≤ c27

for some constant c27 > 0. Denote by Kmax = maxi,j K
(i)
j < ∞ the maximal input dimension

and by pmax = maxi,j p
(i)
j < ∞ the maximal smoothness of the functions g

(i)
j . Let a ≥ 1

and Mj,i ∈ N sufficiently large (each independent of the size of a, but minj,i M
2
j,i > c28 ·

a4(pmax+1)/(2lKmaxCLip)
l must hold for some constant c28 ≥ 1 sufficiently large).

(a) Let L, r ∈ N be such that

(i) L ≥ l · (5 + �log4(maxj,i M
2p

(i)
j

j,i)� · (�log2(max{Kmax,pmax} + 1)� + 1)),

(ii) r ≥ maxi∈{1,...,l}
∑Ñi

j=1 2K
(i)
j · 64 · (K(i)

j +q
(i)
j

K
(i)
j

) · (K(i)
j)2 · (q(i)

j + 1) · MK
(i)
j

j,i

FULLY CONNECTED DEEP NEURAL NETWORKS 2243

hold. Then there exists a neural network t1 of the network class F(L, r) with the property
that

(10) ‖t1 − m‖∞,[−a,a]d ≤ c29 · a4(pmax+1) · max
j,i

M
−2p

(i)
j

j,i .

(b) Let L, r ∈ N such that

(i) L ≥ ∑l
i=1

∑Ñi

j=1(5M
K

(i)
j

j,i + �log4(M
2p

(i)
j +4·K(i)

j ·(q(i)
j +1)

j,i · e
4·(q(i)

j +1)·(MK
(i)
j

j,i −1)
)� ·

�log2(max{K(i)
j , q

(i)
j } + 1)� + �log4(M

2p
(i)
j

j,i)�),
(ii) r ≥ 2

∑l−1
t=1 Ñt +2d +132 ·2Kmax · �eKmax� · (Kmax+�pmax�

Kmax

) ·max{�pmax�+1,K2
max}

hold. Then there exists a neural network t2 of the network class F(L, r) with the property
that (10) holds with t1 replaced by t2.

In the construction of our network, we will compose smaller subnetworks to succes-
sively build the final network. For two networks f ∈ F(Lf , rf) and g ∈ F(Lg, rg) with
Lf ,Lg, rf , rg ∈ N, the composed neural network f ◦ g is contained in the function class
F(Lf + Lg,max{rf , rg}). In the literature (see, e.g., [31]), the composition of two net-
works is often defined by f ◦ σ(g). Thus for every composition an additional layer is
added. We follow a different approach. Instead of using an additional layer, we “melt” the
weights of both networks f and g to define f ◦ g. The following example clarifies our idea:
Let

f (x) = βf · σ(αf · x) and g(x) = βg · σ(αg · x) for αf ,αg,βf ,βg ∈R,

then we have

(f ◦ g)(x) = f
(
g(x)

) = βf · σ (
αf · βg · σ(αg · x)

)
.

Figure 3 illustrates our idea by the network representation as an acyclic graph. This clearly
shows why we do not need an additional layer in our composed network.

PROOF. (a) The computation of the function m(x) = h
(l)
1 (x) can be recursively described

as in (7) and (8). The basic idea of the proof is to define a composed network, which approx-
imately computes the functions h

(1)
1 , . . . , h

(1)

Ñ1
, h

(2)
1 , . . . , h

(2)

Ñ2
, . . . , h

(l)
1 .

x f (x)

network
f

αf βf
x g(x)

network
g

βgαg

x (f ◦ g)(x)

network
f ◦ g

αg βg · αf βf

FIG. 3. Illustration of the composed network f ◦ g.

2244 M. KOHLER AND S. LANGER

For the approximation of g
(i)
j , we will use the networks

f̂
wide,g(i)

j

∈ F
(
L0, r

(i)
j

)
described in Theorem 2(a), where

L0 = 5 +
⌈

log4

(
max
j,i

M
2p

(i)
j

j,i

)⌉
· (⌈

log2
(
max{Kmax,pmax} + 1

)⌉ + 1
)

and

r
(i)
j = 2K

(i)
j · 64 ·

(
K

(i)
j + q

(i)
j

K
(i)
j

)
· (

K
(i)
j

)2 · (
q

(i)
j + 1

) · MK
(i)
j

j,i

for j ∈ {1, . . . , Ñi} and i ∈ {1, . . . , l}.
To compute the values of h

(1)
1 , . . . , h

(1)

Ñ1
, we use the networks

ĥ
(1)
1 (x) = f̂

wide,g(1)
1

(
x(π(1)), . . . , x(π(K

(1)
1)))

...

ĥ
(1)

Ñ1
(x) = f̂

wide,g(1)

Ñ1

(
x(π(

∑Ñ1−1
t=1 K

(1)
t +1)), . . . , x(π(

∑Ñ1
t=1 K

(1)
t))).

To compute the values of h
(i)
1 , . . . , h

(i)

Ñi
(i ∈ {2, . . . , l}). we use the networks

ĥ
(i)
j (x) = f̂

wide,g(i)
j

(
ĥ

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , ĥ
(i−1)∑j

t=1 K
(i)
t

(x)
)

for j ∈ {1, . . . , Ñi}. Finally, we set

t1(x) = ĥ
(l)
1 (x).

Figure 4 illustrates the computation of the network t1. It is easy to see that t1 forms a
composed network, where the networks ĥ

(i)
1 , . . . , ĥ

(i)

Ñi
are computed in parallel (i.e., in the

x(1)

x(2)

.

.

.

x(d)

Input

f̂
wide,g(1)

1

.

.

.

f̂
wide,g(1)

Ñ1

Level 1

f̂
wide,g(2)

1

.

.

.

f̂
wide,g(2)

Ñ2

Level 2

. . .

. . .

. . .

f̂
wide,g(l)

1
t1(x)

Level l

FIG. 4. Illustration of the neural network t1(x).

FULLY CONNECTED DEEP NEURAL NETWORKS 2245

same layers) for i ∈ {1, . . . , l}, respectively. Since each ĥ
(i)
j (j ∈ {1, . . . , Ñi}) needs L0 layers

and r
(i)
j neurons per layer, this network is contained in the class

F
(
l · L0, max

i∈{1,...,l}

Ñi∑
j=1

r
(i)
j

)
⊆ F(L, r).

Here, we use that by successively applying f̂id to the output of the network t1, we can easily
enlarge the number of hidden layers in the network. Using induction on i, it is easy to see
that t1 satisfies

‖t1 − m‖∞,[−a,a]d ≤ c30 · a4·(pmax+1) · max
j,i

M
−2p

(i)
j

j,i .(11)

A complete proof can be found in Supplement A, [21]. This shows the assertion of the theo-
rem.

(b) Denote h
(1)
1 , . . . , h

(1)

Ñ1
, . . . , h

(l−1)
1 , . . . , h

(l−1)

Ñl−1
, h

(l)
1 by h1, h2, . . . , h∑l

t=1 Ñt
, such that

h
(i)
j (x) = h

N
(i)
j

(x),

where

N
(i)
j =

i−1∑
t=1

Ñt + j

for i ∈ {1, . . . , l} and j ∈ {1, . . . , Ñi}. Then we have

(12) hj (x) = g
(1)
j

(
x(π(

∑j−1
t=1 K

(1)
t +1)), . . . , x(π(

∑j
t=1 K

(1)
t)))

for j ∈ {1, . . . , Ñ1} and

(13) h
N

(i)
j

(x) = g
(i)
j

(
h

N
(i−1)∑j−1

t=1 K
(i)
t +1

(x), . . . , h
N

(i−1)∑j
t=1 K

(i)
t

(x)
)

for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , l}.
In our neural network, we will compute h1, h2, . . . , h∑l

t=1 Ñt
successively. In the construc-

tion of the network, each g
(i)
j will be approximated by a network

f̂
deep,g

(i)
j

∈ F
(
L

(i)
j , r0

)
described in Theorem 2(b) where

L
(i)
j = 5M

K
(i)
j

j,i + ⌈
log4

(
M

2p
(i)
j +4·K(i)

j ·(q(i)
j +1)

j,i · e4·(q(i)
j +1)·(MK

(i)
j

j,i −1))⌉

· (⌈
log2

(
max

{
K

(i)
j , q

(i)
j

} + 1
)⌉) + ⌈

log4
(
M

2p
(i)
j

j,i

)⌉
and

r0 = 132 · 2Kmax · ⌈
eKmax

⌉ ·
(
Kmax + �pmax�

Kmax

)
· max

{�pmax� + 1,K2
max

}
with Mj,i ∈N sufficiently large. Furthermore, we use the identity network

f̂id(z) = σ(z) − σ(−z) = z

2246 M. KOHLER AND S. LANGER

x(1)

x(2)

.

.

.

x(d)

Input

f̂
L

(1)
1

id

f̂
deep,g

(1)
1

ĥ1(x)

f̂
L

(1)
2

id

f̂
deep,g

(1)
2

f̂
L

(1)
2

id

ĥ2(x)

f̂
L

(1)
3

id

f̂
L

(1)
3

id

f̂
L

(1)
3

id

f̂
deep,g

(1)
3

ĥ3(x)

. . .

. . .

. . .

. . .

. . .

f̂

L
(1)

Ñ1
id

.

.

.

f̂

L
(1)

Ñ1
id

f̂

L
(1)

Ñ1
id

f̂

L
(1)

Ñ1
id

f̂
g
(1)

Ñ1

ĥ
Ñ1

(x)

FIG. 5. Illustration of the neural network, which computes h1, . . . , h
Ñ1

.

with

f̂ 0
id(z) = z, z ∈R,

f̂ t+1
id (z) = f̂id

(
f̂ t

id(z)
) = z, z ∈ R, t ∈ N0

and

f̂ t
id

(
x(1), . . . , x(d)) = (

f̂ t
id

(
x(1)), . . . , f̂ t

id
(
x(d))) = (

x(1), . . . ,x(d))
for x(1), . . . , x(d) ∈ R to shift some values or vectors in the next hidden layers, respectively.
We set

L̃
N

(i)
j

= L
(i)
j

for i ∈ {1, . . . , l} and j ∈ {1, . . . , Ñi}.
Figure 5 illustrates how the functions h1, . . . , hÑ1

are computed by our network and gives
an idea of how the smaller networks are stacked on top of each other. The main idea is that
we successively apply the network f̂

deep,g
(i)
j

in consecutive layers. Here, we make use of

the identity network f̂id, which enables us to shift the input value as well as every already
computed function in the next hidden layers without an error. As described in (12) and (13),
our network successively computes

ĥi(x) = ĝ
(1)
i (x) := f̂

deep,g
(1)
i

(
x(π(

∑j−1
t=1 K

(1)
t +1)), . . . , x(π(

∑j
t=1 K

(1)
t)))

for i ∈ {1, . . . , Ñ1} and

ĥ
N

(i)
j

(x) = f̂
deep,g

(i)
j

(
ĥ

N
(i−1)∑j−1

t=1 K
(i)
t +1

(x), . . . , ĥ
N

(i−1)∑j
t=1 K

(i)
t

(x)
)

for i ∈ {2, . . . , l} and j ∈ {1, . . . , Ñi} Finally, we set

t2(x) = ĥ
N

(l)
1

(x) = ĥ∑l
t=1 Ñt

(x).

Remark that for notational simplicity we have substituted every network f̂id in the input of
the functions ĥj by the real value (since f̂id computes this value without an error). Since

FULLY CONNECTED DEEP NEURAL NETWORKS 2247

each network ĥj for j ∈ {1, . . . ,
∑l

t=1 Ñt } needs L̃j layers and r0 neurons per layer, and we
further need 2d neurons per layer to successively apply f̂id to the input x and 2 neurons per
layer to apply f̂id to the at most

∑l−1
t=1 Ñt already computed functions in our network the final

network t2 is contained in the class

F
(∑l

t=1 Ñt∑
j=1

L̃j ,2 ·
l−1∑
t=1

Ñt + 2d + r0

)
.

Using induction on i, it is easy to see that t2 satisfies

‖t2 − m‖∞,[−a,a]d ≤ c31 · a4(pmax+1) · max
j,i

M
−2p

(i)
j

j,i .(14)

A complete proof can be found in Supplement A, [21]. As described in part (a), we can easily
enlarge the number of hidden layers by successively apply f̂id to the output of the network
t2. �

Acknowledgments. The authors are grateful to the many comments and suggestions that
were brought up by the Associate Editor and four referees improving an early version of this
manuscript.

SUPPLEMENTARY MATERIAL

Supplement A: Network approximation of smooth functions (DOI: 10.1214/20-
AOS2034SUPPA; .pdf). This supplementary file contains the long and rather technical proof
of Theorem 2 and the induction proofs of Theorem 3 that show the accuracy of the networks.

Supplement B: Auxiliary results and further proofs (DOI: 10.1214/20-
AOS2034SUPPB; .pdf). This supplementary file contains the auxiliary results and further
proofs of all lemmata that follow in a straightforward modification from earlier results.

REFERENCES

[1] ANTHONY, M. and BARTLETT, P. L. (2009). Neural Network Learning: Theoretical Foundations, 1st ed.
Cambridge Univ. Press, New York, NY, USA.

[2] BARRON, A. R. (1991). Complexity regularization with application to artificial neural networks. In Non-
parametric Functional Estimation and Related Topics (Spetses, 1990). NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci. 335 561–576. Kluwer Academic, Dordrecht. MR1154352

[3] BARRON, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Trans. Inf. Theory 39 930–945. MR1237720 https://doi.org/10.1109/18.256500

[4] BARRON, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Mach. Learn.
14 115–133.

[5] BAUER, B. and KOHLER, M. (2019). On deep learning as a remedy for the curse of dimensionality in non-
parametric regression. Ann. Statist. 47 2261–2285. MR3953451 https://doi.org/10.1214/18-AOS1747

[6] DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recognition. Ap-
plications of Mathematics (New York) 31. Springer, New York. MR1383093 https://doi.org/10.1007/
978-1-4612-0711-5

[7] DEVROYE, L. P. and WAGNER, T. J. (1980). Distribution-free consistency results in nonparametric dis-
crimination and regression function estimation. Ann. Statist. 8 231–239. MR0560725

[8] ELDAN, R. and SHAMIR, O. (2016). The power of depth for feedforward neural networks. In 29th Annual
Conference on Learning Theory (V. Feldman, A. Rakhlin and O. Shamir, eds.). Proc. Mach Learn.
Res. (PMLR) 49 907–940. PMLR.

[9] EVCI, U., PEDREGOSA, F., GOMEZ, A. and ELSEN, E. (2019). The difficulty of training sparse neural
networks. CoRR, abs/1906.10732.

[10] FRIEDMAN, J. H. and STUETZLE, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76
817–823. MR0650892

https://doi.org/10.1214/20-AOS2034SUPPA
https://doi.org/10.1214/20-AOS2034SUPPB
http://www.ams.org/mathscinet-getitem?mr=1154352
http://www.ams.org/mathscinet-getitem?mr=1237720
https://doi.org/10.1109/18.256500
http://www.ams.org/mathscinet-getitem?mr=3953451
https://doi.org/10.1214/18-AOS1747
http://www.ams.org/mathscinet-getitem?mr=1383093
https://doi.org/10.1007/978-1-4612-0711-5
http://www.ams.org/mathscinet-getitem?mr=0560725
http://www.ams.org/mathscinet-getitem?mr=0650892
https://doi.org/10.1214/20-AOS2034SUPPA
https://doi.org/10.1214/20-AOS2034SUPPB
https://doi.org/10.1007/978-1-4612-0711-5

2248 M. KOHLER AND S. LANGER

[11] GROHS, P., PEREKRESTENKO, D., ELBRÄCHTER, D. and BÖLCSKEI, H. (2019). Deep neural network
approximation theory. IEEE Trans. Inf. Theory.

[12] GYÖRFI, L., KOHLER, M., KRZYŻAK, A. and WALK, H. (2002). A Distribution-Free Theory of Nonpara-
metric Regression. Springer Series in Statistics. Springer, New York. MR1920390 https://doi.org/10.
1007/b97848

[13] HÄRDLE, W., HALL, P. and ICHIMURA, H. (1993). Optimal smoothing in single-index models. Ann. Statist.
21 157–178. MR1212171 https://doi.org/10.1214/aos/1176349020

[14] HÄRDLE, W. and STOKER, T. M. (1989). Investigating smooth multiple regression by the method of aver-
age derivatives. J. Amer. Statist. Assoc. 84 986–995. MR1134488

[15] HAYKIN, S. (1998). Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

[16] HERTZ, J., KROGH, A. and PALMER, R. G. (1991). Introduction to the Theory of Neural Computation.
Santa Fe Institute Studies in the Sciences of Complexity. Lecture Notes, I. Addison-Wesley, Redwood
City, CA. With forewords by Jack Cowan and Christof Koch. MR1096298

[17] HOROWITZ, J. L. and MAMMEN, E. (2007). Rate-optimal estimation for a general class of nonpara-
metric regression models with unknown link functions. Ann. Statist. 35 2589–2619. MR2382659
https://doi.org/10.1214/009053607000000415

[18] IMAIZUMI, M. and FUKUMIZU, K. (2019). Deep neural networks learn non-smooth functions effectively.
Proc. Mach. Learn. Res. 89 869–878.

[19] KOHLER, M. and KRZYŻAK, A. (2005). Adaptive regression estimation with multilayer feedfor-
ward neural networks. J. Nonparametr. Stat. 17 891–913. MR2192165 https://doi.org/10.1080/
10485250500309608

[20] KOHLER, M. and KRZYŻAK, A. (2017). Nonparametric regression based on hierarchical interaction mod-
els. IEEE Trans. Inf. Theory 63 1620–1630. MR3625984 https://doi.org/10.1109/TIT.2016.2634401

[21] KOHLER, M. and LANGER, S. (2021). Supplement to “On the rate of convergence of fully connected deep
neural network regression estimates.” https://doi.org/10.1214/20-AOS2034SUPPA, https://doi.org/10.
1214/20-AOS2034SUPPB

[22] KONG, E. and XIA, Y. (2007). Variable selection for the single-index model. Biometrika 94 217–229.
MR2367831 https://doi.org/10.1093/biomet/asm008

[23] LIU, Z., SUN, M., ZHOU, T., HUANG, G. and DARRELL, T. (2018). Rethinking the value of network
pruning. CoRR, abs/1810.05270.

[24] LU, J., SHEN, Z., YANG, H. and ZHANG, S. (2020). Deep network approximation for smooth functions.
CoRR, arXiv:2001.03040.

[25] MCCAFFREY, D. F. and GALLANT, A. R. (1994). Convergence rates for single hidden layer feedforward
networks. Neural Netw. 7 147–158. https://doi.org/10.1016/0893-6080(94)90063-9

[26] MHASKAR, H. N. and POGGIO, T. (2016). Deep vs. shallow networks: An approximation theory perspec-
tive. Anal. Appl. (Singap.) 14 829–848. MR3564936 https://doi.org/10.1142/S0219530516400042

[27] OHN, I. and KIM, Y. (2019). Smooth function approximation by deep neural networks with general activa-
tion functions. Entropy 21 Paper No. 627. MR3988437 https://doi.org/10.3390/e21070627

[28] OONO, K. and SUZUKI, T. (2019). Approximation and nonparametric estimation of ResNet-type cpnvo-
lutional neural networks. In Proceedings of the 36th International Conference on Machine Learning
(K. Chaudhuri and R. Salakhutdinov, eds.) 97 4922–4931. Proc. Mach. Learn. Res. (PMLR), Long
Beach, CA, USA.

[29] RIPLEY, B. D. and HJORT, N. L. (1995). Pattern Recognition and Neural Networks, 1st ed. Cambridge
Univ. Press, New York, NY, USA.

[30] SCHMIDHUBER, J. (2015). Deep learning in neural networks: An overview. Neural Netw. 61 85–117.
https://doi.org/10.1016/j.neunet.2014.09.003

[31] SCHMIDT-HIEBER, J. (2020). Nonparametric regression using deep neural networks with ReLU activation
function. Ann. Statist. 48 1875–1897. MR4134774 https://doi.org/10.1214/19-AOS1875

[32] STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10
1040–1053. MR0673642

[33] STONE, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13 689–705.
MR0790566 https://doi.org/10.1214/aos/1176349548

[34] STONE, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function esti-
mation. Ann. Statist. 22 118–184. With discussion by Andreas Buja and Trevor Hastie and a rejoinder
by the author. MR1272079 https://doi.org/10.1214/aos/1176325361

[35] SUZUKI, T. (2019). Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov
spaces: Optimal rate and curse of dimensionality. In International Conference on Learning Represen-
tations.

http://www.ams.org/mathscinet-getitem?mr=1920390
https://doi.org/10.1007/b97848
http://www.ams.org/mathscinet-getitem?mr=1212171
https://doi.org/10.1214/aos/1176349020
http://www.ams.org/mathscinet-getitem?mr=1134488
http://www.ams.org/mathscinet-getitem?mr=1096298
http://www.ams.org/mathscinet-getitem?mr=2382659
https://doi.org/10.1214/009053607000000415
http://www.ams.org/mathscinet-getitem?mr=2192165
https://doi.org/10.1080/10485250500309608
http://www.ams.org/mathscinet-getitem?mr=3625984
https://doi.org/10.1109/TIT.2016.2634401
https://doi.org/10.1214/20-AOS2034SUPPA
https://doi.org/10.1214/20-AOS2034SUPPB
http://www.ams.org/mathscinet-getitem?mr=2367831
https://doi.org/10.1093/biomet/asm008
http://arxiv.org/abs/arXiv:2001.03040
https://doi.org/10.1016/0893-6080(94)90063-9
http://www.ams.org/mathscinet-getitem?mr=3564936
https://doi.org/10.1142/S0219530516400042
http://www.ams.org/mathscinet-getitem?mr=3988437
https://doi.org/10.3390/e21070627
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ams.org/mathscinet-getitem?mr=4134774
https://doi.org/10.1214/19-AOS1875
http://www.ams.org/mathscinet-getitem?mr=0673642
http://www.ams.org/mathscinet-getitem?mr=0790566
https://doi.org/10.1214/aos/1176349548
http://www.ams.org/mathscinet-getitem?mr=1272079
https://doi.org/10.1214/aos/1176325361
https://doi.org/10.1007/b97848
https://doi.org/10.1080/10485250500309608
https://doi.org/10.1214/20-AOS2034SUPPB

FULLY CONNECTED DEEP NEURAL NETWORKS 2249

[36] YAROTSKY, D. (2018). Optimal approximation of continuous functions by very deep ReLU networks. COLT
75 639–649.

[37] YAROTSKY, D. and ZHEVNERCHUK, A. (2019). The phase diagram of approximation rates for deep neural
networks. CoRR, abs/1906.09477.

[38] YU, Y. and RUPPERT, D. (2002). Penalized spline estimation for partially linear single-index models.
J. Amer. Statist. Assoc. 97 1042–1054. MR1951258 https://doi.org/10.1198/016214502388618861

http://www.ams.org/mathscinet-getitem?mr=1951258
https://doi.org/10.1198/016214502388618861

	Introduction
	Nonparametric regression
	Neural networks
	Curse of dimensionality
	Main results in this article
	Notation
	Outline

	Main result
	Approximation of smooth functions by fully connected deep neural networks with ReLU activation function
	Approximation of hierarchical composition models by neural networks
	Acknowledgments
	Supplementary Material
	References

