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ON EXTENDED ADMISSIBLE PROCEDURES AND
THEIR NONSTANDARD BAYES RISK

BY HAOSUI DUANMU AND DANIEL M. ROY

Department of Statistical Sciences, University of Toronto

For finite parameter spaces, among decision procedures with finite risk
functions, a decision procedure is extended admissible if and only if it is
Bayes. Various relaxations of this classical equivalence have been established
for infinite parameter spaces, but these extensions are each subject to techni-
cal conditions that limit their applicability, especially to modern (semi and
nonparametric) statistical problems. Using results in mathematical logic and
nonstandard analysis, we extend this equivalence to arbitrary statistical de-
cision problems: informally, we show that, among decision procedures with
finite risk functions, a decision procedure is extended admissible if and only if
it has infinitesimal excess Bayes risk. In contrast to existing results, our equiv-
alence holds in complete generality, that is, without regularity conditions or
restrictions on the model or loss function. We also derive a nonstandard ana-
logue of Blyth’s method that yields sufficient conditions for admissibility, and
apply the nonstandard theory to derive a purely standard theorem: when risk
functions are continuous on a compact Hausdorff parameter space, a proce-
dure is extended admissible if and only if it is Bayes.

1. Introduction. Among the key contributions of statistical decision theory [3, 6, 7, 19,
23, 26, 28–34] are notions of frequentist and Bayesian optimality and connections between
them. In one direction, under suitable technical conditions, every admissible procedure is
Bayes under a carefully chosen prior, improper prior, or sequence thereof. The resulting
(quasi-)Bayesian interpretation provides insight into the strengths and weaknesses of the
procedure from an average-case perspective. In the other direction, necessary and/or suffi-
cient conditions for admissibility expressed in terms of (generalized) priors point us toward
Bayesian procedures with good frequentist properties.

As the literature stands, connections between frequentist and Bayesian optimality are sub-
ject to technical conditions, and these technical conditions (see Section 3) often rule out
semiparametric problems and regularly rule out nonparametric problems. As a result, the re-
lationship between frequentist and Bayesian optimality in the setting of modern statistical de-
cision problems is often uncharacterized. Indeed, given the plethora of technical conditions,
it would not be unreasonable to presume the connection between frequentist and Bayesian
optimality was, to some extent, fragile and might, in general, fail to hold in nonparametric
settings.

Using results in an area of mathematical logic known as nonstandard analysis, we identify
an equivalence between the frequentist notion of extended admissibility (a necessary condi-
tion of both admissibility and minimaxity) and a novel notion of Bayesian optimality, and
show that this equivalence holds in arbitrary decision problems without technical conditions:
informally, our main result (Theorem 5.18) establishes that, among decision procedures with
finite risk functions, a decision procedure δ is extended admissible if and only if it has in-
finitesimal excess Bayes risk.
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Our main result also yields new (standard) results in statistical decision theory, including
characterizations of the class of Bayes procedures under additional regularity (Section 6), new
insight into the class of finitely additive Bayes procedures (Section 7), and novel sufficient
conditions for admissibility. Our findings suggest that the application of nonstandard analysis
may yield other connections between frequentist and Bayesian optimality.

1.1. Nonstandard analysis. Rather than considering generalized priors or sequences of
priors, we work within the standard Bayesian theory but carry out that work in an unusual
setting. In particular, we rely on results in mathematical logic that establish the existence of
nonstandard models satisfying three principles: extension, which associates every ordinary
mathematical object with a nonstandard counterpart called its extension; transfer, which per-
mits us to use first-order logic to relate standard and nonstandard objects; and saturation,
which gives us a powerful mechanism for proving the existence of nonstandard objects in
terms of finitely satisfiable collections of first-order formulas.

The power of nonstandard models for statistical decision theory comes from two sources:
first, every nonstandard model possesses nonstandard reals numbers, including infinitesimal
/ infinite positive real numbers that are, respectively, smaller than / larger than every standard
positive real number. Nonstandard real numbers have found numerous applications within
probability theory. Halpern [16], for example, uses nonstandard probabilities to define con-
ditional probabilities for null events.

In our setting, we can use nonstandard real numbers to construct a much broader set of
(nonstandard) prior distributions. For example, we can construct uniform probability mea-
sures over infinite intervals that contain the entire standard real line, or construct probability
measures on the positive real line concentrating all their mass on a positive infinitesimal. As
priors, nonstandard probability distributions can express extreme states of uncertainty that
cannot be expressed by any standard prior.

As for the second source of power, in a suitably saturated model of the reals, the set of stan-
dard real numbers is contained within a hyperfinite set, that is, an infinite set that nonetheless
possesses all the first-order properties of a standard finite set. Elementary arguments for finite
problems can often be recast to the hyperfinite setting, yielding new results.

1.2. Our results. Using nonstandard analysis and nonstandard probability theory, we are
able to establish a link between extended admissibility and Bayesian optimality without tech-
nical conditions. In particular, using a separating hyperplane argument in concert with the
three principles outlined above, we show that a standard decision procedure δ is extended
admissible if and only if it is nonstandard Bayes, that is, for some nonstandard prior, the
Bayes risk of its nonstandard extension ∗δ is within an infinitesimal of the minimum Bayes
risk among all extensions.

This result achieves the longstanding goal of identifying a notion of Bayes optimality
equivalent to a notion of frequentist admissibility. Although our notion of Bayes optimality
is defined using nonstandard analysis, we can apply our main result to obtain new (standard)
results in statistical decision theory. For example, Theorem 6.6 improves upon Wald’s results
for compact spaces: we show that, for statistical decision problems with compact Hausdorff
parameter spaces and continuous risk functions, a decision procedure is extended admissible
if and only if it is Bayes. Theorem 6.7 establishes that this result is tight in the sense that
neither condition can be dropped. Another application of our result (Theorem 7.4) recovers
a seminal result by Heath and Sudderth [17]: for statistical decision problems with bounded
risk functions, a decision procedure is extended admissible if and only if it is Bayes under a
finitely additive prior.

Using our nonstandard framework, we also derive novel sufficient conditions for admissi-
bility, and demonstrate their use in two examples. By Theorem 8.1, a decision procedure is
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admissible if it is the only procedure (up to equivalence in risk) that is nonstandard Bayes
under some nonstandard prior. In Example 9.3, we use this technique to establish the admis-
sibility of the empirical distribution function under L2 loss in a nonparametric estimation
problem. We do so using a nonstandard Dirichlet process prior, circumventing technical ob-
stacles raised by Cohen and Kuo [8].

We also develop a nonstandard variant of Blyth’s method, in which admissibility is wit-
nessed by a single nonstandard prior, rather than by a sequence of improper priors. In particu-
lar, by Theorem 8.4, for any Hausdorff topology on the parameter space with respect to which
risk functions are continuous, a procedure is admissible if it is nonstandard Bayes under a
nonstandard prior that assigns “sufficient” mass to every standard open ball. In Example 9.1,
we use this technique to establish the admissibility of the usual estimate of the mean in the
classic normal location model, providing a familiar statistical example for our nonstandard
techniques. We provide several other examples to further illustrate our new framework.

In the final section, we discuss promising directions and open problems, relating to admis-
sibility, minimaxity, and our understanding of the frequentist–Bayesian interface. We note
that a substantial portion of the content in this paper appears also in the first author’s doctoral
dissertation [11]. Appendices A–L can be found in the Supplementary Material [12].

2. Standard preliminaries. A (nonsequential) statistical decision problem is defined
by a parameter space �, each element of which represents a possible state of nature; a set
A of actions available to the statistician; a function � : � × A → R≥0 characterizing the
loss associated with taking action a ∈ A in state θ ∈ �; and finally, a family P = {Pθ :
θ ∈ �} of probability measures on a measurable sample space X. Intuitively, the statistician
observes a random element x of the sample space X such that the probability measure Pθ

is the distribution of this observation when θ is the true (but unknown) state of nature. On
the basis of the observation, x, the statistician takes a (potentially randomized) action a, and
then suffers a loss �(θ, a). Note that we consider only the case where the loss function is
nonnegative. (See [14] for an approach based on integrable loss functions.)

Formally, the action space A is equipped with a σ -algebra with measurable singletons such
that �(θ, ·) is a measurable function from A to R≥0 for every θ ∈ �. Every possible response
by the statistician is captured by a (randomized) decision procedure, that is, a map δ from X

to the space M1(A) of probability measures A. As is customary, we will write δ(x,A) for
(δ(x))(A). The expected loss, or risk, to the statistician in state θ associated with following a
decision procedure δ is

(2.1) rδ(θ) = r(θ, δ) =
∫
X

[∫
A

�(θ, a)δ(x,da)

]
Pθ(dx).

For the risk function to be well-defined, the maps x �→ ∫
A

�(θ, a)δ(x,da), for θ ∈ �, must
be measurable, and so we do not consider those decision procedures not meeting this weak
measurability criterion. We further restrict our attention to decision procedures δ with finite
risk functions, that is, we require rδ(θ) ∈ R≥0 for all θ ∈ �. Fixing a σ -algebra on � with
measurable singletons, we let D denote the set of all randomized decision procedures with
well-defined finite risk functions rδ : � → R≥0 that are moreover measurable with respect
to this σ -algebra.1 Provided D is nonempty, we refer to the tuple (�,A, �,X,P,D) as a

1The σ -algebra on � both (i) constrains the class D of decision procedures and (ii) determines the set of
(countably additive) probability measures on �. There is often a natural σ -algebra on � coming from a problem’s
particular topological structure. Even if there is no natural choice, choosing the power set of �, one obtains (i) the
largest possible class D and (ii) the set of available probability measures containing all purely atomic distributions.
These are the only distributions if and only if certain set-theoretic conjectures hold (see [15], Theorem 1D).
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statistical decision problem. Note that procedures are sometimes called estimators when,
informally speaking, the goal is to recover one or more of the model parameters.

The set D may be viewed as a convex subset of a vector space over R. In particular, for
all δ1, . . . , δn ∈ D and p1, . . . , pn ∈ R≥0 with

∑
i pi = 1, define

∑
i piδi : X → M1(A) by

(
∑

i piδi)(x) = ∑
i piδi(x) for x ∈ X. Then r(θ,

∑
i piδi) = ∑

i pi r(θ, δi) < ∞, and so we
see that

∑
i piδi ∈ D and r(θ, ·) is a linear function on D for every θ ∈ �. For a subset

D ⊆ D, let conv(D) denote the convex hull of D, the set of all finite convex combinations of
decision procedures δ ∈ D. Note that conv(D) is the smallest convex set containing D, and,
writing S[<∞] for the set of all finite subsets of a set S, conv(D) = ⋃

C∈D[<∞] conv(C). This
last characterization plays a key role.

For each a ∈ A, let Dirac(a) denote the probability measure assigning measure 1 to
the singleton {a}. A decision procedure δ ∈ D is nonrandomized if, there is an underly-
ing map x �→ d(x) such that δ(x) = Dirac(d(x)) for every x ∈ X. It follows that r(θ, δ) =∫
X �(θ, d(x))Pθ (dx). Let D0 ⊆ D denote the subset of all nonrandomized decision proce-

dures.

2.1. Admissibility. In general, decision procedures are incomparable, as one procedure
may present greater risk in one state and less risk in another. Some cases, however, are clear
cut: the notion of domination induces a partial order on the space of decision procedures: Let
ε ∈ R≥0 and δ, δ′ ∈ D. Then δ is ε-dominated by δ′ when:

1. (∀θ ∈ �)(r(θ, δ′) ≤ r(θ, δ) − ε), and
2. (∃θ ∈ �)(r(θ, δ′) = r(θ, δ)).

Note that the second condition is redundant when ε > 0. By convention, δ is said to be
dominated by δ′ when δ is 0-dominated by δ′.

If a decision procedure is ε-dominated by another decision procedure, then, computa-
tional issues notwithstanding, the ε-dominated procedure is eliminated from consideration.
Let C ⊆D. More carefully, δ ∈ D is ε-admissible among C when there does not exist δ0 ∈ C
such that δ is ε-dominated by δ0. By convention, δ is said to be admissible among C when
δ is 0-admissible among C. Further, δ is said to be extended admissible among C if δ is
ε-admissible among C for all ε > 0.2

Clearly, admissibility implies extended admissibility. Admissibility gives rise to the notion
of a complete class: Let A ⊆ C. Then A is a complete subclass of C when, for all δ ∈ C \A,
there exists δ0 ∈ A such that δ0 dominates δ. Similarly, A is an essentially complete subclass
of C when, for all δ ∈ C \A, there exists δ0 ∈ A such that r(θ, δ0) ≤ r(θ, δ) for all θ ∈ �. An
essentially complete class is an essentially complete subclass of D.

If a decision procedure δ ∈ C is admissible among C, then every complete subclass of
C must contain δ. Note that the term complete class often refers to a complete subclass of
some essentially complete class (such as D itself or D0 under the conditions described in
Section 2.4).

The next lemma captures a key consequence of essential completeness.

LEMMA 2.1. Suppose A is an essentially complete subclass of C, then extended admis-
sible among A implies extended admissible among C.

2The function s(δ, δ′) = supθ∈�{rδ′(θ)−rδ(θ)}, for δ, δ′ ∈D, provides alternative characterizations: For ε > 0,
we have that δ is ε-admissible among C if and only if, for all δ′ ∈ C, s(δ, δ′) > −ε. In contrast, δ is admissible
among C if and only if, for all δ′ ∈ C, either s(δ, δ′) > 0 or s(·, δ) = s(·, δ′). Finally, δ is extended admissible
among C if and only if, for all δ′ ∈ C, s(δ, δ′) ≥ 0.
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The class of extended admissible procedures plays a central role in this paper. It is not hard,
however, to construct statistical decision problems for which the class is empty, and thus not
a complete class. (See Example F.1.) Thus, in order to obtain a complete class theorem,
one must at least assert that the class of extended admissible procedures is nonempty. The
following result gives conditions under which the class of extended admissible procedures
are a complete class. (See [5], Sections 5.4–5.6 and Theorem 5.6.3, and [14], Section 2.6
Corollary 1, for related results for finite spaces.) The proof can be found in Appendix K.2.2.

THEOREM 2.2. Let C ⊆ D. Suppose that, for all δ ∈ C, {ε ≥ 0 : (∃δ′ ∈ C)(δ is ε-
dominated by δ′)} is closed. Then the class of decision procedures that are extended ad-
missible among C form a complete subclass of C.

2.2. Bayes optimality. Consider now the Bayesian framework, in which one adopts a
prior π , that is, a probability measure defined on the σ -algebra on �. Irrespective of the
interpretation of π , we may define the Bayes risk of δ under π ,

(2.2) r(π, δ) =
∫
�

r(θ, δ)π(dθ),

that is, the expected risk under a parameter chosen at random from π . Note the Bayes risk is
well-defined because r(·, δ) is a nonnegative measurable function.

We may now define several notions of Bayes optimality in terms of the Bayes risk. We
say δ is ε-Bayes among C under π when r(π, δ) < ∞ and, for all δ0 ∈ C, we have r(π, δ) ≤
r(π, δ0) + ε. By convention, δ is (normal-form) Bayes among C under π when δ is 0-Bayes
among C under π . We say δ is ε-Bayes among C (resp., Bayes among C) when there exists a
prior π0 such that δ is ε-Bayes among C under π0 (resp., Bayes among C under π0). Finally,
δ is said to be extended Bayes among C when, for all ε > 0, there exists a prior π0 such that
δ is ε-Bayes among C under π0.

Note that the term Bayes optimality refers informally to any one of the notions of being
Bayes introduced here, as well as those introduced later. Given a prior π , a Bayes solution
(among some class C ⊆ D) for π refers to some procedure that is Bayes among C under π .
Other notions of Bayes solutions are defined analogously. The following well-known result
establishes a basic connection between Bayes optimality and admissibility (see, e.g., [5],
Theorem 5.5.1).

THEOREM 2.3. Bayes among C implies extended Bayes among C implies extended ad-
missible among C.

We give a proof for completeness in Appendix K.2.3. Note that neither extended admissi-
bility nor admissibility imply Bayes optimality, in general.

2.3. Extensive-form Bayes optimality. The definition of a (normal-form) Bayes proce-
dure above is given in terms of expected loss, that is, risk. Although this definition is com-
mon in the statistical decision theory setting, the traditional (Bayesian) definition of a Bayes
procedure is given in terms of posterior expected loss, that is, conditional expected loss given
an observed sample. In particular, an extensive-form Bayes procedure is defined pointwise:
given an observed sample, choose the action (or distribution on actions) that minimizes the
posterior expected loss. (The terminology of normal- and extensive-form Bayes optimality is
due to Raiffa and Schlaifer [25].)

More carefully, let π ⊗ P be the distribution on � × X given by (π ⊗ P)(A × B) =∫
A Pθ(B)π(dθ) for measurable A ⊆ � and B ⊆ X, and let mπ be its projection onto X, that
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is, mπ(B) = (π ⊗ P)(� × B) for measurable B ⊆ X. Then a disintegration of π ⊗ P is a
probability kernel κ from X to � satisfying

∫
B κ(x,A)mπ(dx) = (π ⊗ P)(A × B) for all

measurable A ⊆ � and B ⊆ X.
Let MP

1 (�) denote the set of priors π ′ such that there exists a disintegration of π ′ ⊗ P

that is mπ ′ -almost-everywhere unique, that is, all disintegrations agree on a mπ ′ -measure
one set. (So-called disintegration theorems describe mild regularity conditions that guarantee
MP

1 (�) = M1(�). See Theorem J.1.)
Assume π ∈ MP

1 (�). Then the posterior expected loss of a (randomized) action p ∈
M1(A) having observed x ∈ X is Ex

π [p] = ∫ [∫ �(t, a)p(da)]κ(x,dt).

LEMMA 2.4. For all π ′ ∈ MP
1 (�) and δ0 ∈ D, r(π ′, δ0) = ∫

Ex
π ′ [δ0(x)]mπ ′(dx).

Let B ⊆ X. We say δ is randomized extensive-form Bayes under π on B when Ex
π [δ(x)] ≤

Ex
π [p] for all p ∈ M1(A) and all x ∈ B . We say δ is (nonrandomized) extensive-form Bayes

under π on B when Ex
π [δ(x)] ≤ Ex

π [Dirac(a)] for all a ∈ A and all x ∈ B . These relations
specify a set on which the procedure is (conditionally) optimal. In the literature, extensive-
form Bayes under π means (nonrandomized) extensive-form Bayes under π on B ′, for some
mπ -measure-one set B ′.

Under mild regularity conditions, a procedure is extensive-form Bayes under π if and
only if it is Bayes among D0 under π , and similarly for randomized extensive-form Bayes
under π and Bayes among D under π . This equivalence fails in some settings, including that
of finitely additive priors, which we introduce in Section 3 and study further in Section 7.
We work mainly with normal-form notions, and describe the connection with extensive-form
notions in Appendix J.

2.4. Essential completeness of D0. In many natural statistical decision problems, the
nonrandomized decision procedures, D0, form an essentially complete subclass of their con-
vex hull, which we capture by the following formal condition.

CONDITION RU (Randomization unnecessary). D0 is an essentially complete subclass
of conv(D0).

One broad class of problems for which (RU) holds are those where the action space A

is itself a convex subset of a vector space over the field R and the loss function is convex
with respect to its second parameter (in A). Given the convex structure of A, and the fact
that elements of conv(D0) are finite mixtures of nonrandomized procedures, the mean action∫
A

a δ(x,da) is well-defined for every δ ∈ conv(D0) and x ∈ X. Given the convex loss, it is
well known that the mean action will be no worse on average than the original randomized
one. Besides the possibility of technical measurability obstacles, (RU) holds. See Appendix D
for more details, and [2], Section 8.2.2, for additional conditions leading to (RU).

3. Prior work. In this section, we survey prior work in order to facilitate comparison
with our nonstandard results in the following sections. In this section, we write Bayes as an
abbreviation for Bayes among D.

The first key results linking frequentist and Bayes optimality are due to Abraham Wald,
who laid the foundation of sequential decision theory [30–34]. For finite parameters spaces,
one can use intuitive geometric arguments to establish that every admissible decision proce-
dure is Bayes (see, e.g., [14], Section 2.10, Theorem 1). In the other direction, elementary
arguments show that every procedure that is Bayes under a prior with full support is admissi-
ble (see [14], Section 2.3, Theorems 2 and 3). This close relationship between admissibility
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and Bayes optimality already breaks down when the parameter space is a finite-dimensional
vector space over the reals: Here, admissible decision procedures are, in general, not Bayes
procedures (see, e.g., Stein [28], Section 4). Under some regularity conditions, however, ev-
ery admissible procedure is a limit of Bayes procedures [7, 23, 33], although, limits of Bayes
procedures are in general neither admissible nor Bayes, as famously demonstrated by Stein
[28] in the multivariate normal-location model (see also [19]). Under more stringent condi-
tions, admissible procedures are generalized Bayes [3, 6, 26, 29], that is, procedures derived
from the “formal” (i.e., mechanical) application of Bayes rule to improper priors. In the re-
mainder of this section, we collect together these and other key results. In each case, the proof
establishes the (essential) completeness of some class C and the containment of C within the
class of procedures satisfying (some relaxed notion of) Bayes optimality. Every example re-
quires technical conditions, even to establish the set-theoretic containment.

3.1. Results following from compactness, boundedness and continuity. In order to prove
his early results, Wald introduced tailor-made notions of continuity for risk and loss functions:
A sequence of parameters {θi}i∈N converges in risk to a parameter θ when supδ∈D |r(θi, δ)−
r(θ, δ)| → 0 as i → ∞, and converges in loss when supa∈A |�(θi, a) − �(θ, a)| → 0 as
i → ∞. Similarly, a sequence of decision procedures {δi}i∈N in D converges in risk to a
decision procedure δ when supθ∈� |r(θ, δi) − r(θ, δ)| → 0 as i → ∞. A sequence of actions
{ai}i∈N converges in loss to an action a ∈ A when supθ∈� |�(θ, ai)− �(θ, a)| → 0 as i → ∞.
Topologies on �, A, and D are generated by these notions of convergence.

In the following result and elsewhere, a model P is said to admit (a measurable family of)
densities (fθ )θ∈� (with respect to a σ -finite measure ν) when Pθ(A) = ∫

A fθ (x) ν(dx) for
every θ ∈ � and measurable A ⊆ X. In terms of these densities, there is a unique (extensive-
form) Bayes solution under a prior π on � when, for ν-almost every x ∈ X, there exists
exactly one action a∗ ∈A for which the expression

∫
� �(θ, a)fθ (x)π(dθ) takes its minimum

value with respect to a ∈ A. (Another notion of uniqueness used in the literature simply
demands that the risk functions of two Bayes solutions agree.) The following result is due to
Wald.

THEOREM 3.1 ([32], Theorems 4.11 and 4.14). Suppose that � and D are compact in
risk; that � and A are compact in loss; that P admits densities (fθ )θ∈� with respect to
Lebesgue measure; and that these densities are strictly positive outside a Lebesgue measure-
zero set. Then every extended admissible decision procedure is Bayes. If there is a unique
Bayes solution for every prior π , the class of nonrandomized Bayes procedures form a com-
plete class.

Wald’s regularity conditions are quite strong; he essentially requires equicontinuity in each
variable for both the loss and risk functions. For example, the standard normal-location prob-
lem under squared error does not satisfy these criteria.

Wald gives a similar result with more transparent hypotheses in [31].

THEOREM 3.2 ([31], Theorem 3.1). Suppose that � is a compact subset of a Euclidean
space; that A is compact in loss; that P admits densities (fθ )θ∈�; that the map (x, θ) �→
fθ (x) is jointly continuous; that �(θ, a) is a continuous function of θ for every a; and that
there is a unique Bayes solution for every prior π on �. Then every Bayes procedure is
admissible and the collection of Bayes procedures form an essentially complete class.

Berger [2], Section 8.8, Theorem 12, establishes the following complete class theorem by
assuming the continuity of every risk function with respect to the parameter and restricting
attention to Euclidean parameter spaces.
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THEOREM 3.3. Suppose that A and � are compact subsets of Euclidean spaces; that all
decision procedures have continuous risk functions; that �(θ, a) is a continuous function of a

for every θ ; and that the model P admits densities (fθ )θ∈� w.r.t. either Lebesgue or counting
measure such that the map (x, θ) �→ fθ (x) is jointly continuous; Then the collection of Bayes
procedures form a complete class.

3.2. Results under weaker hypotheses. In the noncompact setting, Bayes procedures gen-
erally do not form a complete class. With a view to generalizing the notion of a Bayes pro-
cedure and recovering a complete class, Wald [33] introduced the notion of extended Bayes,
which he called “Bayes in the wide sense.” The statement of the following theorem is adapted
from [14].

THEOREM 3.4. Suppose that there exists a topology on D such that D is compact and
r(θ, δ) is lower semicontinuous in δ ∈D for all θ ∈ �. Then the set of extended Bayes proce-
dures form an essentially complete class.

Wald also studied the closure (in a suitable sense) of the collection of all Bayes procedures,
and showed that every admissible procedure was contained in this new class. The first result
of this form appears in [33] and is extended later in [23]. Brown [7], Appendix to Chapter 4,
extended these results and gave a modern treatment. The following statement of Brown’s
version is adapted from [24], Section 5, Theorem 7.15.

THEOREM 3.5. Suppose that A is a closed convex subset of Euclidean space; that P

admits strictly positive densities (fθ )θ∈� w.r.t. a σ -finite measure ν; and that �(θ, a) is lower
semicontinuous and strictly convex in a for every θ , and satisfies lim|a|→∞ �(θ, a) = ∞ for
all θ ∈ �. Then every admissible decision procedure δ is an a.e. limit of Bayes procedures,
that is, there exists a sequence πn of priors with finite supports, such that δπn(x) → δ(x) as
n → ∞ for ν-almost all x, where δπn is Bayes under πn.

In the normal-location model under squared error loss, the sample mean, while not a Bayes
estimator in the strict sense, can be seen as a limit of Bayes estimators, for example, under
normal priors of variance K as K → ∞ or uniform priors on [−K,K] as K → ∞. (We
revisit this problem in Example 9.1.) In his seminal paper, Sacks [26] observes that the sam-
ple mean is also the Bayes solution if the notion of prior distribution is relaxed to include
Lebesgue measure on the real line. Sacks [26] raised the natural question: if δ is a limit of
Bayes estimators, is there a measure m on the real line such that δ is “Bayes” under this
measure? A solution in this latter form was termed a generalized Bayes solution by Sacks
[26].

The following definitions are adapted from [29]: Let C ⊆ D and let π be an improper prior,
that is, a σ -finite nonnull measure on �. A decision procedure δ0 is normal-form generalized
Bayes among C under π when r(π, δ0) < ∞ and δ0 minimizes r(π, δ) = ∫

r(θ, δ)π(dθ)

over δ ∈ C. If P admits densities (fθ )θ∈� with respect to a σ -finite measure ν and the map
d : X → A underlying a nonrandomized decision procedure δ0 minimizes the unnormalized
posterior risk

∫
�(θ, d(x)) fθ (x)π(dθ) for ν-a.e. x, then δ0 is (extensive-form) generalized

Bayes under π .
When a model admits densities, Stone [29] showed that every normal-form generalized

Bayes procedure is also extensive-form. (Sacks defined generalized Bayes in extensive form,
but demanded also that

∫
fθ (·)π(dθ) be finite ν-a.e.) More is known for finite-dimensional

exponential families, that is, models parameterized by vectors θ ∈ R
k , k finite, admitting

densities (with respect to ν) of the form fθ (x) = β(θ) exp(θ ′x) for θ ∈ � = {t ∈ R
k :
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∫
exp(t ′x)ν(dx) < ∞}. Under suitable conditions, one can show that every admissible es-

timator is generalized Bayes. The first such result was developed by Sacks [26] in his origi-
nal paper: he proved that, for statistical decision problems where the model admits a density
of the form exθ/Zθ with Zθ = ∫

exθν(dθ), every admissible estimator is generalized Bayes.
Stone [29] extended this result to estimation of the mean in one-dimensional exponential
families under squared error loss. These results were further generalized in similar ways by
Brown [6], Section 3.1, and Berger and Srinivasan [3]. The following theorem is given in [3].
(We adapt the statement from [24].)

THEOREM 3.6 ([24], Section 5, Theorem 7.17). Suppose P is a finite-dimensional expo-
nential family and �(θ, a) is jointly continuous in (θ, a), strictly convex in a for every θ , and
satisfies lim|a|→∞ �(θ, a) = ∞ for all θ . Then every admissible estimator is extensive-form
generalized Bayes.

Finally, we turn to finitely additive priors. (We give a brief introduction to finitely additive
measure theory in Appendix C. For a rigorous treatment, see [4]. Note that we assume the
model, P , remain σ -additive here. See [20] for a discussion of the purely finitely additive
case.) Let δ ∈ D and C ⊆ D, and let π0 be a finitely additive prior. Throughout this paper, we
use the same symbol for finitely additive Bayes risk as the symbol for standard Bayes risk.
The finitely additive Bayes risk under π0 of δ, r(π0, δ) = ∫

� r(θ, δ)π0(dθ), is defined exactly
as in the standard countably additive setting, except that the Lebesgue integral is replaced by
the Daniell integral. Similarly, δ is finitely additive Bayes among C under π0 if r(π0, δ) < ∞
and, for all δ′ ∈ C, we have r(π0, δ) ≤ r(π0, δ

′). Risk functions are well-defined by The-
orem C.5. Heath and Sudderth [17] establish the following equivalence between extended
admissibility and finitely additive Bayes optimality.

THEOREM 3.7 ([17], Theorem 2). Let δ ∈ D and C ⊆ D. If δ is finitely additive Bayes
among C then δ is extended admissible among C. If the loss function is bounded and the
class C is convex, then δ is finitely additive Bayes among C only if δ is extended admissible
among C.

The simplicity of this statement is remarkable. However, the assumption of boundedness
is very strong and rules out many standard estimation problems on unbounded spaces. In
Section 7, we establish Theorem 3.7 as a special case of our main result, Theorem 5.18.

4. Nonstandard admissibility. As we have seen in the previous section, strong regular-
ity appears to be necessary to align Bayes optimality and admissibility. In noncompact pa-
rameter spaces, the statistician must apparently abandon the strict use of probability measures
in order to represent certain extreme states of uncertainty that correspond with admissible
procedures. Even then, strong regularity conditions are required (such as domination of the
model and strict positiveness of densities, ruling out estimation in some infinite-dimensional
contexts). In the remainder of the paper, we describe a new approach using nonstandard anal-
ysis, in which the statistician has access to a much richer collection of real numbers with
which to express their prior beliefs.

Let (�,A, �,X,P,D) be a standard statistical decision problem.
We will assume the reader is familiar with basic concepts in nonstandard analysis. (See

Appendices A and B for a review tailored to this paper.) For a set S, let P(S) be its power
set and V(S) = S ∪ P(S) ∪ P(S ∪ P(S)) ∪ · · · . We assume that we are working within a
nonstandard model ∗ : V(S) →V(∗S) where S ⊇ R∪�∪A∪X, and we assume the model is
as saturated as necessary. We use ∗ to denote the nonstandard extension map taking elements,
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sets, functions, relations, etc., to their nonstandard counterparts. In particular, ∗
R and ∗

N

denote the nonstandard extensions of the reals and natural numbers, respectively. Note that
∗s = s for all s ∈ S. Hence, R ⊆ ∗

R, � ⊆ ∗�, etc. For x, y ∈ ∗
R, write x ≈ y if |x − y| is

infinitesimal and write x � y to mean x < y or x ≈ y. For two internal sets A, B , let I(BA)

denote the collection of all internal functions from A to B .

4.1. Nonstandard extension of a statistical decision problem. Recall that � is a measur-
able space such that all singletons are measurable, and so, all finite subsets of � are measur-
able. By transfer, all hyperfinite subsets of ∗� are ∗measurable.

One should view the statistical model P as a function from � to the space M1(X) of
probability measures on X. Write ∗P y for (∗P)y . For every y ∈ ∗�, the transfer principle
implies that ∗P y is a ∗probability measure on ∗X (defined on the extension of its σ -algebra).
By Lemma B.1, ∗(Pθ ) = ∗P θ for θ ∈ �, as one would expect from the notation.

Recall that standard decision procedures δ ∈ D have finite nonnegative risk functions.
Therefore, the risk map (θ, δ) �→ r(θ, δ) is a function from � ×D to R≥0. By the extension
and transfer principles, the nonstandard extension ∗r is an internal function from ∗� × ∗D
to ∗

R≥0 and ∗δ ∈ ∗D if δ ∈ D. The transfer principle also implies that every � ∈ ∗D is an
internal function from ∗X to ∗M1(A). The ∗risk function of � ∈ ∗D is the function ∗r(·,�)

from ∗� to ∗
R≥0. By the transfer of the equation defining risk, the following statement holds:

(4.1)
(∀θ ∈ ∗�

) (∀� ∈ ∗D
) ∗r(θ,�) =

∗∫
∗X

[ ∗∫
∗A

∗�(θ, a)�(x,da)

]
∗P θ(dx).

As is customary, we will simply write
∫

for ∗∫ , provided the context is clear. (We will also
drop ∗ from the extensions of common functions and relations like addition, multiplication,
less-than-or-equal-to, etc.)

4.2. Nonstandard admissibility. Let δ0, δ ∈ D, let ε ∈ R≥0, and assume δ0 is ε-
dominated by δ. Then there exists θ0 ∈ � such that

(4.2) (∀θ ∈ �)
(
r(θ, δ) ≤ r(θ, δ0) − ε

) ∧ (
r(θ0, δ) = r(θ0, δ0)

)
.

By the transfer principle,

(4.3)
(∀θ ∈ ∗�

) (∗r(
θ, ∗δ

) ≤ ∗r
(
θ, ∗δ0

) − ε
) ∧ (∗r(

θ0,
∗δ

) = ∗r
(
θ0,

∗δ0
))

.

Because ∗r(θ0,
∗δ) = r(θ0, δ) and similarly for ∗r(θ0,

∗δ0), Lemma A.7.1 implies that
∗r(θ0,

∗δ) ≈ ∗r(θ0,
∗δ0). These results motivate the following nonstandard version of domi-

nation.

DEFINITION 4.1. Let �,�′ ∈ ∗D, let ε ∈ R≥0, and let R,S ⊆ ∗�. Then � is ε-
◦dominated in R/S by �′ when:

1. (∀θ ∈ S) (∗r(θ,�′) ≤ ∗r(θ,�) − ε), and
2. (∃θ ∈ R) (∗r(θ,�′) ≈ ∗r(θ,�)).

Write ◦dominated in R/S for 0-◦dominated in R/S, and write ε-◦dominated on S for
ε-◦dominated in S/S.3

In this paper, we are only interested in the following three cases: R = � and S = ∗�; R =
S = �; and R = S = ∗�. These nonstandard notions of domination give rise to nonstandard
notions of admissibility.

3We use the ◦ prefix to highlight that, even when restricted to internal subsets R, S, the relation is not internal
due to its reliance on the ≈ relation.
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DEFINITION 4.2. Let ε ∈R≥0, R,S ⊆ ∗�, C ⊆ ∗D and � ∈ ∗D.

1. � is ε-◦admissible in R/S among C unless � is ε-◦dominated in R/S by some �′ ∈ C.
2. � is ◦admissible in R/S among C if � is 0-◦admissible in R/S among C.
3. � is ε-◦admissible on S among C if � is ε-◦admissible in S/S among C.
4. � is ◦extended admissible on S among C if � is ε-◦admissible on S among C for every

ε ∈ R>0.

Note that � is ◦extended admissible on S among C if and only if, for all �′ ∈ C,
supθ∈S st(∗r(θ,�′) − ∗r(θ,�)) ≥ 0. The following result is immediate upon inspection of
the definitions above.

LEMMA 4.3. Let ε ≤ ε′, R ⊆ R′, S ⊆ S′ and A ⊆ C. Then ε-◦admissible in R′/S among
C implies ε′-◦admissible in R/S′ among A. For ε > 0, ε-◦admissible on S among C implies
ε′-◦admissible on S′ among A.

The analogous results for ◦admissible in R/S among C and ◦extended admissible on S

among C follow directly. The connection between standard and nonstandard admissibility
relies on the notion of the standard-part copy.

DEFINITION 4.4. The standard-part copy of C ⊆D is σC = {∗δ : δ ∈ C}.
Note that σC ⊆ ∗C and σC is an external set unless C is finite. We can now connect standard

and nonstandard admissibility. (See Appendix K.4.5 for the proof.)

THEOREM 4.5. Let ε ∈R≥0, δ0 ∈ D, and C ⊆D. The following are equivalent:

1. δ0 is ε-admissible among C.
2. ∗δ0 is ε-◦admissible in �/∗� among σC.
3. ∗δ0 is ε-◦admissible on � among σC.

If ε > 0, then the following are also equivalent:

4. ∗δ0 is ε-◦admissible on ∗� among σC.
5. ∗δ0 is ε-◦admissible on ∗� among ∗C.

The following consequences for ∗extended admissibility are then immediate.

THEOREM 4.6. Let δ0 ∈ D and C ⊆ D. The following are equivalent:

1. δ0 is extended admissible among C.
2. ∗δ0 is ◦extended admissible on � among σC.
3. ∗δ0 is ◦extended admissible on ∗� among σC.
4. ∗δ0 is ◦extended admissible on ∗� among ∗C.

Finally, we require a nonstandard analogue of essential completeness.

DEFINITION 4.7. Let C ⊆ ∗D. A subset A ⊆ C is an essentially ◦complete subclass of C
when, for all � ∈ C \A, there exists �′ ∈ A such that ∗r(θ,�′)� ∗r(θ,�) for all θ ∈ �.

The following result is the nonstandard analogue of Lemma 2.1. Its proof (Appendix K.4.8)
is nearly identical.

LEMMA 4.8. Suppose A is an essentially ◦complete subclass of C ⊆ ∗D. Then ◦extended
admissible on � among A implies ◦extended admissible on � among C.
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5. Nonstandard Bayes. In this section, we start by defining several nonstandard ana-
logues of Bayes optimality. We establish the equivalence between these notions in Theo-
rem 5.5. By using a nonstandard version of hyperplane separation theorem, we establish the
main result of this paper (Theorem 5.18), showing that a decision procedure δ is extended
admissible if and only if its nonstandard extension ∗δ has infinitesimal excess Bayes risk.

We now define the nonstandard counterparts to Bayes risk and optimality for the class ∗D
of internal decision procedures.

DEFINITION 5.1. Let � ∈ ∗D, ε ∈ ∗
R≥0 and C ⊆ ∗D, and let 0 ∈ ∗M1(�) be a non-

standard prior, that is, a ∗probability measure on (∗�, ∗B�). The internal Bayes risk under
0 of � is ∗r(0,�) = ∫ ∗r(θ,�)0(dθ).

1. � is ε-∗Bayes among C under 0 if ∗r(0,�) is hyperfinite and, for all �′ ∈ C, we
have ∗r(0,�) ≤ ∗r(0,�

′) + ε.
2. � is S-Bayes among C under 0 if ∗r(0,�) is hyperfinite and, for all �′ ∈ C, we have

∗r(0,�)� ∗r(0,�
′).

We will write S-Bayes among C to mean S-Bayes among C under some nonstandard
prior . The same nomenclature will be used for ε-∗Bayes among C. Note that the inter-
nal Bayes risk is precisely the extension of the standard Bayes risk. Similarly, if we con-
sider the relation {(δ, ε,C) ∈ D × R≥0 × P(D) : δ is ε-Bayes among C}, then its extension
is {(�, ε,C) ∈ ∗D× ∗

R≥0 × ∗P(D) : � is ε-∗Bayes among C}. Note, however, that our def-
inition of “ε-∗Bayes among C” allows the set C ⊆ ∗D to be external, and so it is not simply
the transfer of the standard relation. The following lemma, whose proof can be found in
Appendix K.5.2, relates the two nonstandard notions of Bayes optimality: Recall that our
nonstandard model is κ saturated.

LEMMA 5.2. Let C ⊆ ∗D. If ε ≈ 0, then ε-∗Bayes among C under 0 implies S-Bayes
among C under 0. In the other direction, if C is either internal or has a fixed external
cardinality less than κ , then S-Bayes among C under 0 implies ε-∗Bayes among C under
0 for some ε ≈ 0.

For standard decision procedures, we define the following novel notion of Bayes optimal-
ity.

DEFINITION 5.3. Let δ ∈ D, C ⊆ D, and let 0 be a nonstandard prior.

1. δ is nonstandard Bayes among C under 0 if ∗r(0,
∗δ) is hyperfinite and, for all δ′ ∈ C,

we have ∗r(0,
∗δ)� ∗r(0,

∗δ′).
2. δ is nonstandard Bayes among C if δ is nonstandard Bayes among C under some non-

standard prior.

Intuitively, this relation allows for the use of hyperreals to expand the set of allowable
priors, rather than the set of decision procedures. The following result is immediate from
definitions.

LEMMA 5.4. Let δ ∈ D and C ⊆D.

1. If π0 is a standard prior, then δ is Bayes among C under π0 if and only if δ is nonstan-
dard Bayes among C under ∗π0.

2. If 0 is a nonstandard prior, then δ is nonstandard Bayes among C under 0 if and
only if ∗δ is S-Bayes among σC under 0.
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Transfer remains a powerful tool for relating the optimality of standard procedures with
that of their extensions. For example, by transfer, δ is ε-Bayes among C under π if and only
if ∗δ is ε-∗Bayes among ∗C under ∗π . (Recall that ∗ε = ε for a real ε, by extension.) Transfer
also yields the following result, the proof of which can be found in Appendix K.5.5.

THEOREM 5.5. Let δ0 ∈ D and C ⊆ D. The following are equivalent:

1. δ0 is extended Bayes among C.
2. ∗δ0 is ε-∗Bayes among ∗C for all ε ∈ ∗

R>0.
3. ∗δ0 is ε0-∗Bayes among ∗C for some ε0 ≈ 0.
4. ∗δ0 is S-Bayes among ∗C.

In Appendix G, we characterize nonstandard priors witnessing (2)–(4). By Lemma 5.4
and Theorem 5.5, if δ0 is extended Bayes among C, then δ0 is nonstandard Bayes among C.
In general, we would not expect the extension of a standard procedure to be 0-∗Bayes among
C under  for a generic nonstandard prior  and class C ⊆ ∗D. The definition of S-Bayes
provides infinitesimal slack. As in the standard universe, S-Bayes optimality implies nonstan-
dard extended admissibility. The proof, which is similar to that of its standard counterpart,
can be found in Appendix K.5.6.

THEOREM 5.6. Let �0 ∈ ∗D, let C ⊆ ∗D and suppose that �0 is S-Bayes among C. Then
�0 is ◦extended admissible on ∗� among C.

Theorems 4.6 and 5.6 immediately yield the following corollary.

COROLLARY 5.7. Let δ ∈ D and C ⊆ D. If δ is nonstandard Bayes among C, then δ is
extended admissible among C.

The above result raises several questions: Are extended admissible decision procedures
also nonstandard Bayes? What is the relationship with admissibility and its nonstandard coun-
terparts? We establish a converse to Theorem 5.6 in the remainder of this section, and return
to admissibility in Section 8.

5.1. Hyperdiscretized risk set. In a statistical decision problem with a finite parameter
space, one can use a separating-hyperplane argument to show that every admissible decision
procedure is Bayes (see, e.g., [14], Section 2.10, Theorem 1). With the aid of extension, trans-
fer, and saturation, we pursue a similar argument and arrive at our main result, Theorem 5.18,
which gives a precise characterization of extended admissibility.

When relating extended admissibility and Bayes optimality among a subclass C ⊆ D of
decision procedures, the key structure is the risk set (for C), that is, the set of all risk functions
rδ , for δ ∈ C. On a finite parameter space, the risk set for D is a convex subset of a finite-
dimensional vector space over R. When the parameter space is not finite, one must grapple
with infinite-dimensional function spaces. However, in a sufficiently saturated nonstandard
model, there exists an internal set T� ⊆ ∗� that is hyperfinite and contains �. While the risk
at all points in T� does not suffice to characterize an arbitrary element of ∗D, it suffices to
study the optimality of extensions of standard decision procedure relative to other extensions.

Let J� ∈ ∗
N be the internal cardinality of T� and let T� = {t1, . . . , tJ�}. Recall that

I(∗RT�) denotes the set of (internal) functions from T� to ∗
R. For N ∈ ∗

N, we write IV(∗RN)

for I(∗R{0,1,...,N−1}). Note that IV(∗RN) is the set of internal N -dimensional vectors of el-
ements in X. It is easy to see that there exists a natural bijection between I(∗RT�) and
IV(∗RJ�). Hence, every ∗probability measure on T� can be identified with an element in
IV(∗RJ�). For an element x ∈ IV(∗RJ�), we will write xk for x(k).
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DEFINITION 5.8. The hyperdiscretized risk set induced by D ⊆ ∗D is the set

SD = {
x ∈ IV

(∗
R

J�
) : (∃� ∈ D) (∀k ≤ J�) xk = ∗r(tk,�)

} ⊆ IV
(∗
R

J�
)
.

The following result is straightforward. (For completeness, Appendix K.5.9 contains the
proof.)

LEMMA 5.9. Let D ⊆ ∗D be an internal ∗convex set. Then SD is an internal ∗convex
set.

Having defined the (hyperdiscretized) risk set, we now describe a set whose intersection
with the risk set captures the notion of 1

n
-◦domination, for some standard n ∈ N. In that vein,

for � ∈ ∗D and n ∈ N, define the 1
n

-quantant of �,

Q(�)n =
{
x ∈ IV

(∗
R

J�
) : (∀k ≤ J�)

(
xk ≤ ∗r(tk,�) − 1

n

)}
.(5.1)

LEMMA 5.10. Let � ∈ ∗D and n ∈ N. The set Q(�)n is internal and ∗convex and
Q(�)m ⊆ Q(�)n for every m < n.

See Appendix K.5.10 for proof. The following is immediate from definitions.

LEMMA 5.11. Let C ⊆ ∗D and n ∈ N. Then � is 1
n

-◦admissible on T� among C if and
only if Q(�)n ∩ SC = ∅.

We now introduce an external notion of ∗convex hull.

DEFINITION 5.12. For every C ⊆ ∗D, let (C)FC = ⋃
D∈C[<∞] ∗conv(D) be the set of all

finite ∗convex combinations of � ∈ C.

Let C ⊆ D, δ1, δ2 ∈ C and p ∈ ∗[0,1]. Put �′ = p ∗δ1 + (1 − p) ∗δ2. Then �′ ∈ (
σC)FC ,

while �′ ∈ σ conv(C) if p ∈ [0,1]. It is easy to see that (
σ conv(C))FC = (

σC)FC . Thus, σC ⊆
σ
(conv(C)) ⊆ (

σ
(conv(C)))FC = (

σC)FC ⊆ ∗(conv(C)). For C ⊆ ∗D, it is straightforward to
show that (C)FC is a ∗convex set containing C.

The following result is critical to our main theorem, as it allows us to restrict our attention
to a set of fixed external cardinality. Its proof can be found in Appendix K.5.13.

LEMMA 5.13. For every convex set C ⊆ D, σC is an essentially ◦complete subclass of
(

σC)FC .

5.2. Nonstandard Bayes if extended admissible. Recall that the parameter space � is a
measurable space such that all singletons are measurable. Thus every hyperfinite subset of
∗� is a ∗measurable set. We say that a nonstandard prior  concentrates on a ∗measurable
set T when (T ) = 1. For vectors a, b in a (hyper)finite-dimensional Euclidean space, let
〈a, b〉 denote the inner product.

LEMMA 5.14. Fix � ∈ ∗D and nonempty D ⊆ ∗D, and suppose there exists a nonzero
vector ν ∈ IV(∗RJ�) such that 〈ν, x〉 ≤ 〈ν, s〉 for all x ∈ ⋃

n∈N Q(�)n and s ∈ SD . There
exists a nonstandard prior , concentrating on T� and assigning mass νk/‖ν‖1 to tk for all
k ≤ J�, and � is S-Bayes among D under .
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PROOF. We first establish that νk ≥ 0 for all k. Suppose otherwise, that is, νk0 < 0 for
some k0. Then we can pick a point x in

⋃
n∈N Q(�)n whose k0-th coordinate is arbitrar-

ily large and negative, causing 〈ν, x〉 to be arbitrary large, a contradiction because 〈ν, s〉 is
hyperfinite for all s ∈ SD . Hence, all coordinates of ν must be nonnegative.

Define ν̄ ∈ IV(∗RJ�) by ν̄ = ν/‖ν‖1. Because ν = 0 and ν ≥ 0, we have ν̄ ≥ 0 and
‖ν̄‖1 = 1. Therefore, ν̄ induces a ∗probability measure  on (∗�, ∗B�), concentrating on
T�, and assigning probability ν̄k to tk for all k ≤ J�.

Let �′ ∈ D. By hypothesis,
∑

k≤J�
νk (∗r(tk,�) − 1

n
) ≤ ∑

k≤J�
νk

∗r(tk,�′) for all n ∈ N.
Dividing both sides by ‖ν‖1 > 0, we obtain ∗r(,�) − 1

n
≤ ∗r(,�′) for all n ∈ N. Thus,

∗r(,�)� ∗r(,�′). And so, � is S-Bayes among D under . �

The previous result shows that, if a nontrivial hyperplane separates the risk set from every
1
n

-quantant, for n ∈ N, then the corresponding procedure is S-Bayes. In order to prove our
main theorem, we require a nonstandard version of the hyperplane separation theorem, which
we give here. We begin by stating the standard hyperplane separation theorem.

THEOREM 5.15 (hyperplane separation theorem). For any k ∈ N, let S1 and S2 be two
disjoint convex subsets of Rk , then there exists w ∈ R

k \ {0} such that, for all p1 ∈ S1 and
p2 ∈ S2, we have 〈w,p1〉 ≥ 〈w,p2〉.

Using a suitable encoding of this theorem in first-order logic, the transfer principle yields
a hyperfinite version.

THEOREM 5.16. Fix any K ∈ ∗
N. If S1, S2 are two disjoint internal ∗convex subsets of

IV(∗RK), then there exists W ∈ IV(∗RK) \ {0} such that, for all P1 ∈ S1 and P2 ∈ S2, we
have 〈W,P1〉 ≥ 〈W,P2〉.

See Appendix A.2.1 for a proof.
Recall that our nonstandard model is κ-saturated for some infinite κ .

PROPOSITION 5.17. Let C ⊆ ∗D be a (necessarily finite or external) set with cardinality
less than κ , let �0 ∈ ∗D, and suppose �0 is ◦extended admissible on � among (C)FC . Then,
for every hyperfinite set T ⊆ ∗� containing �, �0 is S-Bayes among (C)FC under some
nonstandard prior concentrating on T .

PROOF. Without loss of generality, take T = T�. Let n ∈ N and D ∈ C[<∞].
By Lemma 4.3, �0 is 1

n
-◦admissible on T� among (C)FC . Hence, by Lemma 5.11,

Q(�0)n ∩ S(C)FC = ∅. By the definition of (C)FC , we have Q(�0)n ∩ S∗conv(D) = ∅.
By Lemmas 5.9 and 5.10, S∗conv(D) and Q(�0)n are both internal ∗convex sets, hence, by

Theorem 5.16, there is a nontrivial hyperplane that separates them.
For every n ∈ N and D ∈ C[<∞], let φD

n (ν) be the formula
(
ν ∈ IV

(∗
R

J�
)) ∧ (

ν = 0 ∧ (∀x ∈ Q(�0)n
) (∀s ∈ S∗conv(D)) 〈ν, x〉 ≤ 〈ν, s〉),

and let F = {φD
n (ν) : n ∈ N, D ∈ C[<∞]}. By the above argument and the fact that (i) C[<∞]

is closed under finite unions and (ii) the sets Q(�0)n, for n ∈ N, are nested, F is finitely
satisfiable. Note that F has cardinality no more than κ , yet our nonstandard extension is
κ-saturated by hypothesis. Therefore, by the saturation principle, there exists a nontrivial hy-
perplane ν satisfying every sentence in F simultaneously. That is, there exists ν ∈ IV(∗RJ�)

such that ν = 0 and, for all x ∈ ⋃
n∈N Q(�0)n and for all s ∈ ⋃

D∈C[<∞] S∗conv(D) = S(C)FC ,
we have 〈ν, x〉 ≤ 〈ν, s〉.



2068 H. DUANMU AND D. M. ROY

Hence, by Lemma 5.14, the normalized vector ν/‖ν‖1 is well-defined and induces a non-
standard prior , concentrating on T�, such that �0 is S-Bayes among (C)FC under . �

We are now able to state and prove our main result, identifying extended admissibility with
nonstandard Bayes optimality.

THEOREM 5.18. Let C ⊆D be an essentially complete subclass of conv(C). For δ0 ∈ D,
the following are equivalent:

1. δ0 is extended admissible among C.
2. δ0 is nonstandard Bayes among C.
3. ∗δ0 is S-Bayes among (

σC)FC .

Moreover, statement (2) (resp., (3)) is equivalent to the statement: for all hyperfinite sets
T ⊆ ∗� containing �, there exists a nonstandard prior  concentrating on T such that δ0 is
nonstandard Bayes among C under , (resp., ∗δ0 is S-Bayes among (

σC)FC under ).

Note that a class is an essentially complete subclass of itself. Thus, the equivalence above
holds for all convex subsets C ⊆ D and, in particular, for C = D and C = conv(D0). Under
(RU), the equivalence also holds for C = D0.

PROOF. By (1) and Lemma 2.1, δ0 is extended admissible among conv(C). Then by
Theorem 4.6, ∗δ0 is ◦extended admissible on � among σ conv(C). It follows from Lemma 5.13
and Proposition 5.17 that, for all hyperfinite sets T ⊆ ∗� containing �, ∗δ0 is S-Bayes among
(

σC)FC under  for some nonstandard prior  concentrating on T . Hence (3) holds. Because
σC ⊆ (

σC)FC , (3) implies (2) by Lemma 5.4.
By Lemma 5.4 and Theorem 5.6, (2) implies ∗δ0 is ◦extended admissible on ∗� among

σC. Then (1) follows from Theorem 4.6. �

It follows that the class of procedures that are nonstandard Bayes among C is complete
(resp., essentially complete) if and only if the class of procedures that are extended admissible
among C is complete (resp., essentially complete). Theorem 2.2 provides sufficient conditions
for the latter.

The remainder of the paper considers implications of this general result and the over-
all nonstandard Bayes framework. In Section 6, we apply Theorem 5.18 to decision prob-
lems with compact parameter spaces and continuous risk functions and show that a decision
procedure is extended admissible if and only if it is Bayes. In Section 7, we apply Theo-
rem 5.18 to decision problems with bounded risk functions and show that a decision pro-
cedure is extended admissible if and only if it is finitely additive Bayes. In both cases, we
prove purely standard results by establishing connections between nonstandard Bayes opti-
mality and (finitely additive) Bayes optimality. We establish connections between nonstan-
dard Bayes optimality and other notions of Bayes optimality (extended Bayes, normal-form
generalized Bayes and extensive-form generalized Bayes) in Appendices G to J. We then
turn to admissibility in Section 8. By Theorem 5.18, admissible among C implies nonstan-
dard Bayes among C for any (essentially complete subclass of a) convex class C. We consider
sufficient conditions in the sequel. Finally, we present examples and potential applications in
Sections 9 and 10.

6. Application to compact statistical decision problems. In this section, we apply our
main result to the case where (i) � is a compact Hausdorff space endowed with its Borel
σ -algebra B�, and (ii) all risk functions are continuous (hence, bounded). Under these hy-
potheses, we show that the class of extended admissible procedures is precisely the class of
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Bayes procedures. This result improves on longstanding results by removing technical condi-
tions on the loss and model. The proof associates every nonstandard prior  with a standard
prior p such that the corresponding Bayes risks are within an infinitesimal. The key tool is
Loeb measure theory, which we briefly introduce. See Appendix B for more details.

Given a Hausdorff space (Y, T ) and a subset Z ⊆ ∗Y , let NS(Z) ⊆ Z denote the subset
of its near-standard elements and let st : NS(∗Y) → Y denote the standard part map taking
near-standard elements of ∗Y to their standard parts. The Hausdorff property ensures that the
standard part map is well-defined. In both cases, the notation elides the underlying space Y

and the topology T , because the space and topology will always be clear from context. As
an abbreviation, we will write ◦x for st(x). Note that ◦(∗y) = y for y ∈ Y . Given an internal
(hyperfinitely additive) probability space (�,F,μ), we write (�,Fμ,μ) for the associated
Loeb space, that is, the completion of the (standard) probability space corresponding to the
unique σ -additive extension of μ (viewed as a standard probability measure) to the σ -algebra
generated by F . The Loeb space is well-defined by Theorem B.4.

Every (standard) probability measure π corresponds to a ∗probability measure, namely its
extension ∗π . We may then construct the corresponding Loeb space (∗�, ∗B�∗π , ∗π). The
reverse process is characterized by the following result in Loeb measure theory, which is
immediate from Theorems A.10 and B.8 and [10], page 162, Theorem 4.1.

LEMMA 6.1. Let � be compact Hausdorff, let  be an internal probability measure
defined on (∗�, ∗B�), and let F = {F ⊆ � : st−1(F ) ∈ ∗B�}. Define p : F → [0,1] by
p(F) = (st−1(F )) for F ∈ F . Then B� ⊆ F and (�,F,p) is the completion of a
regular Borel probability space.

We call (�,F,p) the pushdown of (∗�, ∗B�,). (When the underlying spaces are
clear, we may refer directly to p as the pushdown of .) This result links internal probabil-
ity measures to (standard) countably additive ones. (See Examples F.2 and F.3 for intuition.)

The following two lemmas connect (standard) integration under a Loeb measure to
∗integration under the corresponding internal probability measure and (standard) integration
under the pushdown, respectively.

LEMMA 6.2 ([9], page 110, Corollary 6.1). Suppose (�,F,μ) is an internal probability
space, and F : � → ∗

R is an internal μ-∗integrable function such that st(F ) exists every-
where. Then st(F ) is integrable with respect to μ and

∫
F dμ ≈ ∫

st(F )dμ.

LEMMA 6.3 ([1], Proposition 8.4). Let � be compact Hausdorff space, let  be an
internal probability measure on (∗�, ∗B�), let p be the pushdown of , and let f : � →R

be a continuous function. Then
∫

f dp = ∫
f (◦s)(ds).

By Lemma 6.3, taking f to be a standard risk function, the corresponding standard Bayes
risk and nonstandard Bayes risks are infinitely close under a nonstandard prior  and its
pushdown p , if f is continuous. To that end, we introduce the following condition.

CONDITION RC (Risk continuity). rδ is continuous on �, for all δ ∈ D.

Theorems E.1 and E.2 give natural conditions that imply (RC).
The nonstandard implications of continuity can be formalized in terms of S-continuity:

Let Y and Z be topological spaces. A function f : ∗Y → ∗Z is S-continuous at x ∈ ∗Y if
f (y) ≈ f (x) for all y ≈ x. A fundamental result in nonstandard analysis links continuity and
S-continuity.
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LEMMA 6.4. Let Y and Z be Hausdorff spaces, where Z is also locally compact, and let
D ⊆ Y . If a function f : Y → Z is continuous on D, then its extension ∗f is NS(∗Z)-valued
and S-continuous on NS(∗D).

(See Appendix A.2 for a proof of this classical result.)
We are now in place to compare the nonstandard Bayes risk under a nonstandard prior with

the standard Bayes risk under the pushdown of the nonstandard prior.

LEMMA 6.5. Suppose � is compact Hausdorff and (RC) holds. Let  be a nonstandard
prior, let p be its pushdown, and let δ0 ∈ D. Then r(·, δ0) is p-integrable and r(p, δ0) ≈
∗r(, ∗δ0), that is, the Bayes risk of δ0 under p is within an infinitesimal of the internal
Bayes risk ∗δ0 under .

PROOF. Because � is compact Hausdorff, Lemma 6.1 implies that the pushdown p is
a well-defined probability measure on some extension of (�,B�). By (RC) and Lemma 6.4,
for all t ∈ ∗�, we have ∗r(t, ∗δ0) ≈ ∗r(◦t, ∗δ0) = r(◦t, δ0). As � is compact and (RC)
holds, r(·, δ0) is bounded and continuous. Thus, ∗r(·, ∗δ0) is -∗integrable. By Lemma 6.2,
◦(∗r(·, ∗δ0)) is -integrable and

(6.1)
∫

∗r
(
t, ∗δ0

)
(dt) ≈

∫
◦(∗r(

t, ∗δ0
))

(dt) =
∫

∗r
(◦t, ∗δ0

)
(dt).

Finally, by Lemma 6.3,
∫ ∗r(◦t, ∗δ0)(dt) = ∫

r(θ, δ0)p(dθ). �

We now present the main result of this section, which identifies extended admissibility
and standard Bayes optimality under compactness and continuity conditions. The result is
an almost immediate consequence of our general result (Theorem 5.18) and Lemma 6.5.
A detailed proof can be found in Appendix K.6.6.

THEOREM 6.6. Suppose � is compact Hausdorff and (RC) holds. Let C ⊆ D be an
essentially complete subclass of conv(C). For δ0 ∈ D, the following are equivalent:

1. δ0 is extended admissible among C.
2. δ0 is extended Bayes among C.
3. δ0 is Bayes among C.

Again, a class of decision procedures is always an essentially complete class of itself and
so the equivalence above holds for all convex subsets C ⊆ D. If (RU) also holds, then the
equivalence extends to these statements with D0. Clearly, if the parameter space is compact
Hausdorff and the collection C of decision procedures with continuous risk functions form a
complete subclass of D, then every admissible decision procedure is Bayes among D.

The next results demonstrates that Theorem 6.6 is tight.

THEOREM 6.7. The following two statements hold:

1. There is a statistical decision problem on a Hausdorff parameter space satisfying (RC)
where extended admissibility does not imply Bayes.

2. There is a statistical decision problem on a compact Hausdorff parameter space where
extended admissibility does not imply Bayes.

PROOF. Example 9.1 and Example 9.4 provide examples witnessing the truthfulness of
these two statements, respectively. �
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7. Application to decision problems with bounded risk. In this section, we consider
the setting of bounded risk functions, and show that the class of extended admissible deci-
sion procedures are precisely the class of finitely additive Bayes procedures. This yields a
new proof of a well-known result by Heath and Sudderth [17]. Thus every finitely additive
Bayes procedures is also nonstandard Bayes with respect to some nonstandard prior. (See
Appendix C for background on finitely additive probability theory.)

Let C ⊆ D and  be a nonstandard prior on ∗�. Assume δ is nonstandard Bayes among 

under C. In this section, we construct, from , a finitely additive probability measure p in
such a way that the internal risk of ∗δ under  is infinitesimally close to the (finitely additive
Bayes) risk of δ under p . This then implies that δ is finitely additive Bayes among p under
C and yields another standard characterization of extended admissible procedures.

DEFINITION 7.1. Let (�,F) be a measurable space and let ν be an internal probability
measure on (∗�, ∗F). The internal pushdown of ν is the set function νp : F → [0,1] defined
by νp(A) = st(ν(∗A)).

It is straightforward to verify that the internal pushdown νp is a finitely additive probability
measure on (�,F). The pushdown and internal pushdown of an internal probability measure
may differ even when the underlying space is compact Hausdorff (see Example F.4). The
following lemma establishes the key connection between an internal probability measure and
its internal pushdown.

LEMMA 7.2 ([13], Theorem 5.4). Let (�,F) be a measurable space. Let ν be an internal
probability measure on (∗�, ∗F) and let f : � →R be a bounded measurable function. Then
we have

∫
∗�

∗f dν ≈ ∫
� f dνp .

This result motivates the following condition on risk functions.

CONDITION RB (Risk boundedness). rδ is bounded for every δ ∈ D.

(RB) is implied by, for example, loss being bounded. By Theorem C.5, Bayes risk under
finitely additive priors is then well-defined. The following lemma relates nonstandard and
finitely additive Bayes optimality under (RB).

LEMMA 7.3. Suppose (RB) holds. Let C ⊆ D, let  be a nonstandard prior with internal
pushdown p , and let δ0 ∈ D be nonstandard Bayes among C under . Then δ0 is finitely
additive Bayes among C under p .

PROOF. Note that the internal pushdown p is a finitely additive prior on �. Let δ ∈ C.
By Lemma 7.2 and the definition of nonstandard Bayes,

(7.1) r
(
p, δ0

) ≈
∫

∗�
∗r

(
t, ∗δ0

)
(dt)�

∫
∗�

∗r
(
t, ∗δ

)
(dt) ≈ r

(
p, δ

)
.

Thus, δ0 is finitely additive Bayes among C under p . �

We are now in position to establish the main result of this section: The following theorem
generalizes Theorem 3.7, due to Heath and Sudderth [17], Theorem 2, although their proof
can be seen to establish the same result. The proof is essentially immediate from Lemma 7.3
(see Appendix K.7.4).
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THEOREM 7.4. Let C ⊆ D and δ0 ∈ D. If δ0 is finitely additive Bayes among C, then δ0
is extended admissible among C. If (RB) holds and C is an essentially complete subclass of
conv(C), then the following are equivalent:

1. δ0 is extended admissible among C.
2. δ0 is finitely additive Bayes among C.

For compact Hausdorff �, the next result gives an explicit construction of a standard prior
from a finitely additive one in a way that preserves Bayes risk, when risk functions are con-
tinuous. See Appendix K.7.5 for the proof.

THEOREM 7.5. Suppose � is compact Hausdorff and (RC) holds. Let ν be a finitely
additive prior. Then r((∗ν)p, δ) = r(ν, δ) for all δ ∈ D. Hence, letting C ⊆ D, if δ0 is finitely
additive Bayes among C under ν, then δ0 is Bayes among C under (∗ν)p .

8. Admissibility of nonstandard Bayes procedures. Heretofore, we have focused on
the connection between extended admissibility and nonstandard Bayes optimality. We now
provide evidence that nonstandard Bayes optimality may be useful for establishing sufficient
“Bayesian” conditions for admissibility. Recall that, if δ is the unique Bayes decision proce-
dure under some prior, then δ is admissible. This result does not, in general, hold for improper
priors. However, the following nonstandard analogue holds.

THEOREM 8.1. Let  be a nonstandard prior and suppose δ0 is ε-∗Bayes among A ⊆ D
under . If rδ = rδ0 for every δ ∈ A such that δ is ε-∗Bayes among A ⊆ D under , then δ0
is admissible among A.

See Appendix K.8.1 for the proof, and Example 9.3 for an application.
On finite parameter spaces with bounded loss, it is known that procedures that are Bayes

under priors assigning positive mass to every state are admissible. More generally, when risk
functions are continuous, procedures that are Bayes under priors with full support are admis-
sible. In the remainder of this section, we establish a nonstandard analogue of this result. In
order to define the correct notion of support, we must compare infinitesimal numbers. To do
so, for x, y ∈ ∗[0,∞), write x � y when x > 0 and y/x ≈ 0.

DEFINITION 8.2. Suppose � is a Hausdorff space and let ε ∈ ∗
R≥0. A nonstandard

prior  on ∗� is ε-regular if, for every θ0 ∈ � and every open set U containing θ0, we have
(∗U) � ε.

The following result establishes ◦admissibility from ∗Bayes optimality under conditions
analogues to full support and continuity of the risk function. Its proof can be found in Ap-
pendix K.8.3.

LEMMA 8.3. Suppose � is a Hausdorff space, let ε ∈ ∗
R≥0, �0 ∈ ∗D and C ⊆ ∗D, and

assume ∗r(·,�) is S-continuous on NS(∗�) for all � ∈ C ∪ {�0}. If �0 is ε-∗Bayes among C
under an ε-regular nonstandard prior , then �0 is ◦admissible in �/∗� among C.

The following theorem is an immediate consequence of Lemma 8.3 and is a nonstan-
dard analogue of Blyth’s Method [24], Section 5, Theorem 7.13 (see also [24], Section 5,
Theorem 8.7). In Blyth’s method, a sequence of (potentially improper) priors with sufficient
support is used to establish the admissibility of a decision procedure. In contrast, a single
nonstandard prior can witness the admissibility of a procedure that is merely nonstandard
Bayes. The proof of the following theorem can be found in Appendix K.8.3.
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THEOREM 8.4. Suppose � is a Hausdorff space. Let C ⊆ D be the collection of decision
procedures with continuous risk functions. Let δ0 ∈ C, and assume C is a complete subclass
of D. If there exists ε ∈ ∗

R≥0 such that ∗δ0 is ε-∗Bayes among σC under an ε-regular non-
standard prior , then δ0 is admissible among D. In particular, δ0 is admissible among D if
it is Bayes among C under a prior with full support.

It can be shown that Theorem 8.4 is no weaker than the standard Blyth method. In partic-
ular, the ε-regular nonstandard prior  in Theorem 8.4 can be constructed—via truncation
and normalization—from any infinite element in the nonstandard extension of any sequence
of (possibly improper) priors that meets the hypotheses of the standard Blyth method. We
close with an admissibility result requiring no topological structure, the proof of which can
be found in Appendix K.8.5.

THEOREM 8.5. Let δ0 ∈ D and C ⊆ D. If there exists ε ∈ ∗
R≥0 such that ∗δ0 is ε-∗Bayes

among ∗C under a nonstandard prior  satisfying {θ} � ε for all θ ∈ �, then δ0 is admis-
sible among C.

REMARK 8.6. The astute reader may notice that Theorem 8.5 is actually a corollary of
Theorem 8.4 provided we adopt the discrete topology on �. Changing the topology changes
the set of available prior distributions and also changes the set of ε-regular nonstandard priors.

9. Some examples. In this section, we highlight some properties of our nonstandard
theory through examples. We begin with two classical statistical decision problems.

EXAMPLE 9.1 (Infinite-variance normal). Given one sample from a d-dimensional mul-
tivariate normal distribution, consider estimating the mean under squared error loss, assuming
the covariance matrix is known to be the identity matrix. By the strict convexity of the loss,
the nonrandomized procedures D0 are a complete class. We thus focus on this class.

Consider the best shift-invariant (and maximum likelihood) estimator δM(x) = x, which
is minimax (hence, extended admissible) and also (extensive-form) generalized Bayes with
respect to right Haar measure (i.e., Lebesgue measure on R

d , which is also left Haar measure
/ Jeffrey’s prior, in this case). This improper prior is often interpreted as a “flat” or “uniform”
prior on R

d . By Theorem 5.18, extended admissibility and nonstandard Bayes optimality are
equivalent, and so this procedure will be nonstandard Bayes.

Before we consider a nonstandard perspective, we recall some standard facts: First, for
every k > 0, the decision procedure δB

k (x) = k2(k2 + 1)−1x is Bayes under the full-support
prior πk = N (0, k2Id) and its Bayes risk under πk is dk2(k2 +1)−1. Second, the risk function
of δM takes a constant value, d , and so this is also the Bayes risk under every prior.

Let K ∈ ∗
N \ N and let ∗δB and ∗π be the extensions of the sequences δB

1 , δB
2 , . . . and

π1, π2, . . . , respectively. Note that ∗δM(x) ≈ (∗δB)K(x) for all x ∈ NS(∗Rd). The ∗normal
prior (∗π)K is “flat” on R

d in the sense that, at every near-standard real number, the ratio of

its probability density to (2π)− d
2 K−d is within an infinitesimal of 1.

By transfer, the Bayes risk of (∗δB)K under (∗π)K is dK2(K2 + 1)−1, while the Bayes
risk of ∗δM under (∗π)K is d . Thus, ∗δM is εK -∗Bayes among ∗D under (∗π)K for εK =
d (K2 + 1)−1. Since εK ≈ 0 when K is infinite, this implies that ∗δM is nonstandard Bayes
among D. This yields an alternative argument showing δM is extended admissible (and then
minimax, because its risk function is constant).

For d = 1, it is easy to check that the prior (∗π)K is εK -regular. Because risk functions
are continuous [24], Example 7.10, Theorem 8.4 implies that δM is admissible for d = 1. On
the other hand, the prior (∗π)K is not εK -regular for d ≥ 2, and so Theorem 8.4 is silent for
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d ≥ 2. In fact, Stein [28] famously showed that δM is admissible for d = 2 and inadmissible
for d ≥ 3.

EXAMPLE 9.2 (Invariant estimates of scale). Given n i.i.d. samples from a univariate
normal distribution with unknown mean μ and standard deviation σ , consider estimating σ

under relative-entropy loss, that is, �((μ,σ ), σ̂ ) = ψ(σ̂ 2/σ 2), where ψ(r) = r − log r − 1.
Again, strict convexity allows us to restrict our attention to the class D0 of nonrandomized
procedures. Every shift-and-scale invariant decision procedure δ has constant risk and, for
some m > 0, satisfies δ2(x) = δ2

m(x) = m−1 ∑n
i=1(xi − x̄)2, where x = (x1, . . . , xn) ∈ R

n

and x̄ = n−1 ∑n
i=1 xi . Consider δn−1 and δn, which are (extensive-form) generalized Bayes

under right Haar measure (σ−1 dμdσ ) and left Haar measure (σ−2 dμdσ , that is, Jeffrey’s
prior), respectively. The best invariant procedure is δn−1. By general results of Kudō [22],
page 69, and Kiefer [21], δn−1 is minimax and extended Bayes. Indeed, for every k > 0, δn−1
is 2−k-Bayes under some truncation (and normalization) πk of right Haar measure. By sat-
uration, it follows that δn−1 is nonstandard Bayes with respect to (∗π)K , for every infinite
K ∈ ∗

N \N, where ∗π is the extension of the sequence (π1, π2, . . . ). Because δn−1 has con-
stant risk, a direct proof that δn−1 is nonstandard Bayes among D0 would immediately imply
its minimaxity. On the other hand, while δn is generalized Bayes, it is uniformly dominated
by δn−1, hence not extended admissible (and thus not nonstandard Bayes). This highlights
that generalized Bayes optimality does not, in general, imply extended admissibility. (We ex-
plore set-theoretic relationships between generalized Bayes and other classes in Appendix I.)
In contrast, Theorem 5.18 implies that extended admissibility and nonstandard Bayes opti-
mality are equivalent. For more details, see Appendix L.1.

The next example is a special case of a nonparametric distribution estimation problem
studied by Cohen and Kuo [8]. We show how to establish the admissibility of the empiri-
cal cumulative distribution function (c.d.f.) using a nonstandard Dirichlet process prior. In
fact, Cohen and Kuo [8] raise the possibility of establishing admissibility using a (standard)
Dirichlet process prior only to suggest this route is blocked for technical reasons that we are
able to circumvent using infinitesimals and hyperfinite sets. Instead, they establish admis-
sibility by a direct inductive argument, that implicitly uses improper prior distributions on
distributions with finitely many jumps, defined in terms of improper Dirichlet distributions.

EXAMPLE 9.3 (Nonstandard Dirichlet process prior). Given n i.i.d. samples from an
unknown distribution, consider estimating its c.d.f. F under the loss function �(F, F̂ ) =∫
(F − F̂ )2 dW , where W is a nonnull, finite measure on R and F̂ ranges over monotoni-

cally nondecreasing cadlag functions taking values in [0,1]. Note that every risk function is
bounded by W(R).

Consider the decision procedure δn that estimates F by the empirical c.d.f. That is,
δn(x)(t) = 1

n

∑n
i=1 I (xi ≤ t) for every x = (x1, . . . , xn) ∈ R

n and t ∈ R. Then let  be a
∗Dirichlet process prior with “base measure” parameter θF0, where θ ∈ ∗(0,∞) and F0 is
a ∗probability measure concentrating on some hyperfinite set S ⊆ ∗

R. Using the transfer
principle, it is straightforward to show that, if � is ∗Bayes under , then, for all x ∈ Sn,
�(x) = �0(x) W -a.e., where, for all t ∈ ∗

R,

(9.1) �0(x)(t) = θ F0(t) + n ∗δn(x)(t)

θ + n
.

Note that �0(x)(t) ≈ ∗δn(x)(t) if θ ≈ 0. It is straightforward to use this fact to establish that
the excess ∗Bayes risk of ∗δn is infinitesimal, hence δn is nonstandard Bayes among D0 under
, and thus, by Theorem 5.18, extended admissible. Choosing θ ≈ 0 does not, in general,
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suffice to establish admissibility. However, for a careful choice of θ ≈ 0 and F0, we can
establish admissibility. In particular, let S ⊆ ∗

R be a hyperfinite set containing R, let F0 be
the ∗uniform probability measure on S and let θ ∈ ∗(0,∞) satisfies θ2 � |S|−n. By the above
argument, δn is nonstandard Bayes among D0 under . By an inductive argument, however,
one can show that, up to equivalence in risk, no other procedure is. Thus, by Theorem 8.1, δn

is admissible. See Appendix L.2 for details.

The next example demonstrates that extended admissibility and Bayes optimality do not
necessarily align if we drop the risk continuity assumption, even when the parameter space is
compact. We describe a non-Bayes admissible estimator and then identify a nonstandard prior
under which it is nonstandard Bayes. The examples hinges on the fact that, on ∗(0,1], there
are nonstandard priors that concentrate on a point infinitesimally close to zero. Relative to
the model, these nonstandard priors behave as if they concentrate on zero, while no standard
prior can do so. For a detailed analysis of this example, see Appendix L.3.

EXAMPLE 9.4 (Discontinuous risk functions). Let X = {0,1} and � = [0,1], the latter
viewed as a subset of Euclidean space, hence compact Hausdorff. Define g : [0,1] → [0,1]
by g(x) = x for x > 0 and g(0) = 1, and let Pt = Bernoulli(g(t)), for t ∈ [0,1], where
Bernoulli(p) denotes the distribution on {0,1} with mean p ∈ [0,1]. Every nonrandomized
decision procedure δ : {0,1} → [0,1] thus corresponds with a pair (δ(0), δ(1)) ∈ [0,1]2, and
so we will express nonrandomized decision procedures as pairs. Let the loss function be
�(x, y) = (g(x) − y)2. (For every x, the map y �→ �(x, y) is convex but merely lower semi-
continuous on [0,1]. It follows from Lemma D.4 that nonrandomized procedures form an
essentially complete class.) It can be shown that the decision procedure (0,0) is an admissi-
ble non-Bayes estimator. Moreover, (0,0) is nonstandard Bayes among all estimators under
any nonstandard prior concentrating on some positive infinitesimal.

10. Promising directions and open problems.

(i) Our main result identifies extended admissibility with nonstandard Bayes optimality,
without regularity conditions. Extended admissibility, however, is much weaker than admis-
sibility. Can we also identify admissibility with some refinement of nonstandard Bayes opti-
mality, without relying on regularity conditions? If so, this would provide a new perspective
on how Bayes optimality differs from frequentist admissibility. Better understanding may
simplify the process of designing admissible procedures and establishing the admissibility of
procedures, especially in semiparametric and nonparametric problems, where many current
results are inapplicable.

There is a sizable literature on necessary and sufficient conditions for admissibility, but
there is no unifying theory unhindered by regularity conditions. One possible approach would
be to establish a converse of Theorem 8.1 or Theorem 8.5. Several results in the literature may
also point the way to a general result. Among these are necessary and sufficient conditions
for admissibility established by Stein [27] and by Hsuan [18], both of which connect admissi-
bility with Bayes optimality with respect to multiple priors. Stein’s result relies on a notion of
compactness on the space of decision procedures, while Hsuan’s result relies on the finiteness
of the parameter space and convexity. In both cases, we may be able to exploit generic tools
from nonstandard analysis that allow one to extend arguments on finite or compact spaces to
general spaces.

(ii) It is well known that there exist statistical decision problems in which the minimax
equality does not hold or there is no least favorable prior. In some cases where minimax
procedures are not Bayes, they are extended Bayes or generalized Bayes, but there is no
general characterization in these terms. Yet, every minimax procedure is extended admissible,
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and so, our main result already implies that every minimax procedure is nonstandard Bayes.
Can we uncover a simpler characterization of the minimax equality using our nonstandard
framework? If so, this may yield tighter lower bounds on minimax risk, new techniques to
establish minimax optimality and new approaches to design such procedures.

(iii) The class of nonstandard Bayes procedures contains the class of Bayes, extended
Bayes, finitely additive Bayes and normal-form generalized Bayes procedures. Obtaining
necessary and sufficient conditions that separate or collapses these classes is an important
open problem that will shed further light on extended admissibility. Settling the relationship
between the class of extended admissible procedures and finitely additive Bayes procedures is
of particular interest, given the role of finite additivity in axiomatic developments of Bayesian
statistics.

In contrast, the class of nonstandard Bayes procedures is, in general, incomparable to
the class of extensive-form generalized Bayes procedures. Indeed, Heath and Sudderth [17]
show that improper priors could yield decision rules that failed to be extended admissible,
even under bounded loss, while we demonstrate an extended admissible procedure that is not
extensive-form generalized Bayes (Appendix I.1). Given the possibility of improper priors
yielding uniformly inadmissible procedures, a characterization of the subclass of extensive-
form generalized Bayes procedures that are extended admissible would provide confidence
when using this particular form of Bayes optimality. We discuss some existing literature
relating improper and proper priors in Appendix I.2.
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