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We study the principal components of covariance estimators in multivari-
ate mixed-effects linear models. We show that, in high dimensions, the prin-
cipal eigenvalues and eigenvectors may exhibit bias and aliasing effects that
are not present in low-dimensional settings. We derive the first-order limits
of the principal eigenvalue locations and eigenvector projections in a high-
dimensional asymptotic framework, allowing for general population spectral
distributions for the random effects and extending previous results from a
more restrictive spiked model. Our analysis uses free probability techniques,
and we develop two general tools of independent interest—strong asymptotic
freeness of GOE and deterministic matrices and a free deterministic equiva-
lent approximation for bilinear forms of resolvents.

1. Introduction. Principal components analysis (PCA) is a commonly used technique
for identifying linear low-rank structure in high-dimensional data [35]. For n independent
samples in a comparably large dimension p, it is now well established that the principal com-
ponents of the sample covariance matrix may be inaccurate for their population counterparts
[33]. A body of work has quantified the behavior of PCA in this setting [1–3, 9, 32, 47], con-
necting to the Marcenko–Pastur and Tracy–Widom laws of asymptotic random matrix theory
[41, 54]. We refer readers to the review articles [34, 48] for more discussion and references
to this and related lines of work.

Similar phenomena occur in statistical models where samples are not independent, but
instead exhibit complex dependence structure [16, 38, 57, 60]. However, the behavior of
PCA in many such models is less well understood. In this work, we consider the setting of
mixed effects linear models [51], where dependence across observed samples arises via linear
combinations of independent latent variables. These models are commonly used in statistical
genetics to model quantitative phenotypes in related individuals [39]. We study the behavior
of principal eigenvalues and eigenvectors of MANOVA covariance estimates for the random
effects.

Our main results quantify several spectral bias and aliasing phenomena that may occur in
high-dimensional applications. In particular, we show that large principal eigenvalues in the
covariance of one random effect may bias the principal eigenvectors and also yield spurious
eigenvalues in the estimated covariances of the other effects. These phenomena are unique to
mixed-effects models, and they do not arise in similar spiked models of sample covariance
matrices for independent samples [2, 3, 47]. In [25], such phenomena for mixed models were
first described under an “isotropic noise” assumption, where the population covariance of
each random effect is a low-rank perturbation of the identity. Our work extends these results
to the setting of general population spectral distributions for the random effects. We derive
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generalizations of the first-order limits for eigenvalues and eigenvector projections in [25]
involving quantities appearing in the fixed-point equations for the empirical spectral law in
[24]. We describe these results in Section 2.

Our proofs are very different from the analytic approach of [25]. Instead, they are based
in free probability theory and its connection to random matrices [42, 55]. Our work also
establishes two general results in this area—strong asymptotic freeness of independent GOE
and deterministic matrices and a method of deriving anisotropic resolvent approximations
using free deterministic equivalents [52]. We describe these in Section 4.

The connection between free probability and random matrices was introduced in [55] for
deterministic and GUE matrices and has been extended to many other matrix models [7, 17,
20, 21, 23, 30, 52, 56]. Strong asymptotic freeness extending the approximation from the
trace to the operator norm was first proven in [28] for GUE matrices and extended to other
models in [6, 18, 40, 50]. Free probability techniques have recently been applied to study
outlier eigenvalues in other matrix models [4, 5] and spectral behavior in other statistical
applications, including autocovariance estimates for high-dimensional time series [10–13,
15] and sketching methods for linear regression [22]. The tools we develop may be of broader
interest to the analysis of structured random matrices arising in other applications.

2. Probabilistic results in the linear mixed model. Extending the representation of
[49] to a multivariate setting, we consider the mixed-effects linear model

(1) Y = Xβ + U1α1 + · · · + Ukαk ∈ R
n×p,

where Y contains n dependent observations in dimension p, each a combination of fixed
effects Xβ and random effects constituting the rows of α1, . . . , αk . Here,

• X ∈ R
n×m is an observed design matrix of a small number m of fixed effects, with un-

known regression coefficients β ∈ R
m×p .

• For each r = 1, . . . , k, the matrix αr ∈ R
nr×p is unobserved, its rows constituting nr i.i.d.

realizations of a p-dimensional random effect.
• Each Ur ∈ R

n×nr is a known, deterministic incidence matrix specified by the model design.

We study the behavior of PCA for estimates of the variance components, which are the co-
variance matrices �1, . . . ,�k for the random effects in α1, . . . , αk .

In quantitative genetics, U1, . . . ,Uk may encode a classification design, as commonly used
in twin/sibling studies and breeding experiments. Examples are discussed in [24, 25]. In
genomewide association study designs, U1, . . . ,Uk may contain genotype measurements at
a set of single-nucleotide polymorphisms (SNPs) [37, 59]. It has been recognized since [27,
58] that variance components in these models can provide a decomposition of the total pop-
ulation variance of quantitative phenotypes into constituent genetic and nongenetic effects,
yielding estimates of heritability. In high-dimensional applications, including the analysis
of gene expression traits and other molecular phenotypes, the principal eigenvectors of the
genetic components may indicate phenotypic subspaces near which responses to selection or
random mutational drift are likely to be constrained [14, 19, 31]. Principal eigenvectors of the
nongenetic components may correspond to hidden experimental confounders, to be removed
before performing downstream analyses [36, 53].

As α1, . . . , αk are not individually observed, one cannot construct the usual sample covari-
ance estimator for �1, . . . ,�k . Instead, each �r may be classically estimated by a MANOVA
estimator of the form

�̂r = Y TBrY,

where the symmetric matrix Br is chosen to satisfy the properties

BrX = 0, E
[
Y TBrY

]= �r.



PCA IN LINEAR MIXED MODELS 1491

Such an estimator �̂r is unbiased and equivariant to rotations of coordinates in R
p—these

properties are analogous to those holding for a sample covariance matrix for independent
samples. For example, in a balanced one-way classification design, the within-group covari-
ance matrix �1 is estimated by the MANOVA estimator �̂1 = Y�B1Y where B1 is a scaled
difference of two orthogonal projections, the first onto a subspace of group means and the
second onto its orthogonal complement. See Appendix A.2 in the Supplementary Material
[26] for further details of this example.

Our main results, Theorems 2.5 and 2.6 below, characterize the first-order limiting be-
havior of the principal eigenvalues and eigenvectors of any such matrix �̂ = Y�BY in a
high-dimensional asymptotic framework.

2.1. Model assumptions. We assume that the random effects arise in the following way.

ASSUMPTION 2.1. The matrices α1, . . . , αk are independent. The rows of each αr are
independent, with the ith row given by

�r∑
j=1

γ
(r)
j ξ

(r)
ij + ε

(r)
i .

Here, γ
(r)
1 , . . . , γ

(r)
�r

∈ R
p are �r deterministic vectors, and ξ

(r)
ij ∈ R are independent random

variables satisfying

E
[
ξ

(r)
ij

]= 0, E
[(

ξ
(r)
ij

)2]= 1, E
[∣∣ξ (r)

ij

∣∣k]≤ Ck

for all k ≥ 1 and some constants Ck > 0. For a covariance �̊r ∈ R
p×p , the noise ε

(r)
i ∈ R

p is

Gaussian with distribution ε
(r)
i ∼ N (0, �̊r ).

Stacking γ
(r)
1 , . . . , γ

(r)
�r

as the rows of

(2) 	r =

⎛⎜⎜⎝
– γ

(r)
1 –
...

– γ
(r)
�r

–

⎞⎟⎟⎠ ∈ R
�r×p,

each αr has independent rows with mean 0 and covariance of the spiked form

(3) �r = 	T
r 	r + �̊r .

The leading term 	T
r 	r induces up to �r “signal” eigenvalues that separate from the “noise”

eigenvalues of �̊r . Our results should be interpreted in the setting where the noise covariance
�̊r does not itself have isolated eigenvalues that separate from the bulk of its eigenvalue
distribution.

As a compromise between generality of the model and simplicity of the analysis, Assump-
tion 2.1 follows the approach in [43] and imposes a Gaussian assumption on ε

(r)
i but not

on ξ
(r)
ij . The signal directions γ

(r)
1 , . . . , γ

(r)
�r

are not required to be orthogonal for each r . It
is likely that our theoretical results in Theorems 2.4, 2.5 and 2.6 all remain correct under a
milder moment assumption for this noise ε

(r)
i , and it may be possible to prove such an exten-

sion using cumulant expansions of the remainder terms in the Gaussian integration-by-parts
formula, as done in [6]. However, we will not pursue this direction in the current work.

For the linear mixed model (1), we study an asymptotic framework summarized as follows.

ASSUMPTION 2.2. The dimensions n,p,n1, . . . , nk → ∞, where k is a fixed constant.
There are universal constants C,c > 0 such that for each r = 1, . . . , k:
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• c < p/n < C and c < nr/n < C,
• ‖Ur‖ < C and ‖B‖ < C/n,
• ‖	r‖ < C, ‖�̊r‖ < C and �r < C.

Thus, the number of samples is proportional to the number of realizations of each random
effect (and also to the dimension p). This and the assumption ‖Ur‖ < C are discussed in
greater detail in [24, 25], and hold for many classification and experimental designs. The
scaling ‖B‖ < C/n is usual for MANOVA estimators, to yield �̂r on the same scale as its
estimand �r .

The last statement implies a bounded number of signal eigenvalues in each variance com-
ponent, where each eigenvalue remains bounded in size. It is an important open problem to
extend our results beyond this setting.

2.2. Bulk eigenvalue distribution. Under the above assumptions, a characterization of a
deterministic approximation for the empirical eigenvalue distribution of

(4) �̂ = Y�BY

was derived in [24]. We review this result here.
Consider the setting of no signal, meaning �r = 0 and �r = �̊r for each r = 1, . . . , k. We

introduce the notations n+ = n1 + · · · + nk and

Frs = √
nrnsU

T
r BUs ∈ R

nr×ns , F = (Frs)
k
r,s=1 ∈ R

n+×n+,

diagn(a) = diag(a1 Idn1, . . . , ak Idnk
) ∈ R

n+×n+,(5)

b · �̊ = b1�̊1 + · · · + bk�̊k ∈R
p×p.

Let Trr be the trace of the (r, r) block (of size nr ×nr ) in the k×k matrix block decomposition
corresponding to C

n+ = C
n1 ⊕ · · · ⊕ C

nk . The Stieltjes transform of a measure μ is m(z) =∫
(x − z)−1 dμ(x).

THEOREM 2.3 ([24]). Suppose Assumptions 2.1 and 2.2 hold, and �r = 0 for each r =
1, . . . , k. Let �̂ be as in (4), and let μ̂ = p−1∑p

i=1 δλi(�̂) be the empirical distribution of its
eigenvalues.

For each z ∈ C
+, there exist unique z-dependent values a1, . . . , ak ∈ C

+ ∪ {0} and
b1, . . . , bk ∈C+ that satisfy the equations

ar = −n−1
r Tr

(
(z Id+b · �̊)−1�̊r

)
,(6)

br = −n−1
r Trr

((
Id+F diagn(a)

)−1
F
)
.(7)

The function m0 : C+ →C
+ defined by

(8) m0(z) = −p−1 Tr
(
(z Id+b · �̊)−1)

is the Stieltjes transform of a deterministic probability measure μ0 on R, for which μ̂−μ0 →
0 weakly almost surely.

The distribution μ0 is an n-dependent deterministic equivalent measure [29] for the em-
pirical eigenvalue distribution of �̂. An example is depicted in Figure 1. It is defined by the
noise covariances �̊1, . . . , �̊k and the structure of the linear model (1), via the fixed-point
equations (6)–(8).
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2.3. Noise eigenvalues stick to the support. For any δ > 0, denote the δ-neighborhood of
the support of the above law μ0 as

supp(μ0)δ = {
x ∈ R : dist

(
x, supp(μ0)

)
< δ

}
.

We first strengthen the weak convergence statement of Theorem 2.3 to show that in the same
setting of no signal, all eigenvalues of �̂ belong to supp(μ0)δ for any fixed δ > 0 and large n.

THEOREM 2.4. Suppose Assumptions 2.1 and 2.2 hold, and �r = 0 for each r = 1, . . . , k.
Let �̂ be as in (4). Then for any constant δ > 0, almost surely for all large n,

spec(�̂) ⊂ supp(μ0)δ.

We defer the proof to Appendix E.1. The proof is an application of a strong asymptotic
freeness result for GOE and deterministic matrices, which we describe in Section 4.

2.4. Limits of signal eigenvalues and eigenvectors. We now consider the setting where
�s �= 0 for at least one component s ∈ {1, . . . , k}. This may induce “outlier” eigenvalues of �̂

that separate from the support of μ0—these and their eigenvectors are typically the focus of
analysis in PCA. (The component where �s �= 0 may or may not be the component estimated
by �̂ ≡ �̂r .)

Our main results describe the first-order limits of these eigenvalues and eigenvectors.
This description involves the z-dependent quantities {br}kr=1 from Theorem 2.3. We check
in Proposition E.1 that each br extends as an analytic function in z to all of C \ supp(μ0), and
we denote this extension by br(z). Let us write as shorthand

	 =
⎛⎜⎝	1

...

	k

⎞⎟⎠ ∈ R
�+×p, �+ = �1 + · · · + �k,

where 	r ∈ R
�r×p are as defined in (2). For λ ∈ R \ supp(μ0), let us denote

(9) b · �̊ =
k∑

r=1

br(λ)�̊r , diag�(b) = diag
(
b1(λ) Id�1, . . . , bk(λ) Id�k

)
.

Then, in the asymptotic limit, the outlier eigenvalue locations are approximated by the deter-
ministic multiset

(10) �0 = [
λ ∈R \ supp(μ0) : 0 = detT (λ)

]
where, for λ ∈ R \ supp(μ0), we define

(11) T (λ) = Id+	(λ Id+b · �̊)−1	T diag�(b) ∈ R
�+×�+ .

The roots of the equation 0 = detT (λ) are counted with their analytic multiplicities in this
multiset.

THEOREM 2.5. Suppose Assumptions 2.1 and 2.2 hold, let �̂ be as in (4), and let �0
be defined by (10). Fix any constant δ > 0. Almost surely as n → ∞, there exist �δ ⊆ �0
and �̂δ ⊆ spec(�̂), where �δ and �̂δ , respectively, contain all elements of �0 and spec(�̂)

outside supp(μ0)δ , such that

ordered-dist(�δ, �̂δ) → 0.
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Here, for two finite multisets A,B ⊂ R, we denote

ordered-dist(A,B) =
⎧⎨⎩∞ if |A| �= |B|,

max
i

{|a(i) − b(i)|} if |A| = |B|,
where a(i) and b(i) are the ordered values of A and B counting multiplicity. We state the
result as a matching of spec(�̂) and �0, rather than convergence of spec(�̂) to �0, as �0 is
also n-dependent. A phase-transition phenomenon analogous to that of [2] is implicit in this
result, in that the cardinality of the multiset �0 may transition from 0 to a positive value with
the increase of signal strength in 	.

For the corresponding outlier eigenvectors of �̂, the following characterizes their inner
products with the signal vectors γ

(r)
i that constitute the rows of 	1, . . . ,	k . We denote, in

addition to (9), ∂λ as the derivative in λ, and

diag�

(
b′)= ∂λ diag�(b) = diag

(
b′

1(λ) Id�1, . . . , b
′
k(λ) Id�k

)
.

THEOREM 2.6. In the setting of Theorem 2.5, let λ ∈ �0 be any element of multiplicity
1 such that |λ − λ′| > δ for all other λ′ ∈ �0, and dist(λ, supp(μ0)) > δ. Let u ∈ kerT (λ) ⊂
R

�+ be a unit vector, and let v̂ be the unit eigenvector for the eigenvalue λ̂ of �̂ closest to λ.
Almost surely as n → ∞, for some choice of sign of v̂,

	v̂ − α−1/2u → 0,

where α > 0 is the scalar quantity defined by

(12) α = uT(−diag�(b)	 · ∂λ

[
(λ Id+b · �̊)−1] · 	T diag�(b) + diag�

(
b′))u.

We show in the proof that kerT (λ) has dimension 1, so u ∈ kerT (λ) is unique up to sign.
The above states that the inner products of the sample eigenvector v̂ with the true signal
vectors γ

(r)
i are approximately a scalar multiple of the entries of this vector u.

We verify in Appendix A.3 that if �̊r = σ 2
r Id for each r = 1, . . . , k, then Theorems 2.5

and 2.6 coincide with the first-order results in [25].

3. Implications for principal components analysis. Theorems 2.5 and 2.6 imply sev-
eral qualitative phenomena for the behavior of PCA for classical MANOVA covariance esti-
mators in high-dimensional linear mixed models. They imply that in the asymptotic regime
of Assumption 2.2, the naive sample eigenvalues and eigenvectors are inconsistent for their
population counterparts, and they lead to open questions about how to obtain improved es-
timates in these settings. A full exploration of these questions is outside the scope of this
work, but we provide some discussion of these phenomena and inferential challenges in this
section.

3.1. Qualitative phenomena. To illustrate the phenomena that are implied by Theorems
2.5 and 2.6, we will focus our discussion on a simple example.

Consider any mixed model (1) with k ≥ 2 components. Suppose that �1 and �2 each have
a rank-one signal, and �r has no signals for r ≥ 3; that is, �1 = �2 = 1, and �r = 0 for each
r ≥ 3. Suppose further that �̂ ≡ �̂1 is an unbiased MANOVA estimate of �1. Denote

γ
(1)
1 ≡ √

μ1v1, γ
(2)
1 ≡ √

μ2v2

as the rows of 	1 and 	2, where v1, v2 ∈ R
p are unit vectors. For simplicity of interpretation,

let us assume that �̊rv1 = �̊rv2 = 0 for every r . This implies by (3) that μ1, μ2 are the signal
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eigenvalues in �1, �2, with eigenvectors v1, v2. (Note that our results do not require the
matrices �̊r to be of full rank.) We set

ρ = 〈v1, v2〉, μ = max(μ1,μ2).

We also define two O(1) quantities c1, c2 by

(13) cr =
k∑

t=1

Tr
(
UT

r BUt

)(
UtBUT

r

) · Tr �̊t .

Eigenvalue bias. Theorem 2.5 reveals that principal eigenvalues of �̂1 are biased upwards
for the true eigenvalues of �1. Assuming that μ1 is large and μ2 � μ1, we show in Ap-
pendix A.1 that the largest root of 0 = detT (λ) has the large-μ expansion

(14) λ = μ1 + bias, bias = c1 + c2
μ2ρ

2

μ1
+ oμ(1),

where oμ(1) → 0 as μ1 → ∞. Thus, for large but fixed μ1 and μ2 � μ1, as n,p → ∞, the
sample eigenvalue is upward biased by approximately c1 + c2μ2ρ

2/μ1. Here, the first term
is a constant depending on the model design and level of noise, and the second term arises as
an extra bias if μ2 is also large and the signal eigenvector of �2 is aligned with that of �1.

Eigenvalue aliasing. Theorem 2.5 also reveals that �̂1 can have spurious “aliased” outlier
eigenvalues that are not caused by signal in �1, but rather by signal in �2. Suppose μ1 = 0,
but μ2 is large. We show in Appendix A.1 that 0 = detT (λ) has two roots given by

(15) λ = ±√
c2μ2 + oμ(1),

where oμ(1) → 0 as μ2 → ∞. Thus, �̂1 has two aliased outlier eigenvalues of opposite
signs. For large but fixed μ2, as n,p → ∞, these aliased eigenvalues are of size proportional
to

√
μ2.

Eigenvector bias. Theorem 2.6 implies that the sample eigenvectors of �̂1 may be biased
in the signal direction of �2. Suppose μ1 � μ2 are both large, and ρ is bounded away from
±1. For the sample eigenvector v̂ corresponding to the eigenvalue described by (14), we show
in Appendix A.1 that the deterministic approximation for 	v̂ in Theorem 2.6 is

(16) α−1/2u = 	v1 + Oμ(1/
√

μ).

Here, the Oμ(1/
√

μ) term captures the error between v̂ and the true eigenvector v1. To better
understand this error, let us define a vector w ∈ R

2 so that 	�w is the unit vector parallel to
the component of v2 orthogonal to v1. We show in Appendix A.1 that the approximation for
〈	�w, v̂〉 = w�(	v̂) has the large-μ expansion

(17) w�(α−1/2u
)= c2μ2

μ2
1

ρ

√
1 − ρ2 + oμ(1/μ).

Thus, for large but fixed μ1 � μ2, as n,p → ∞, v̂ is biased in the direction 	�w which is

orthogonal to v1, of size approximately (c2μ2/μ
2
1)ρ

√
1 − ρ2.

Figure 1 and Table 1 illustrate these phenomena in a more complex setting for a balanced
one-way layout design, corresponding for example to a twin study with n = 1600 individuals
in n1 = 800 twin pairs, and p = 3200 traits. We simulate a rank-3 signal component 32e1e

�
1 +

16e2e
�
2 + 8e3e

�
3 in �1 and a rank-2 signal component 32ww� + 64e4e

�
4 in �2, where w =

(e1 + e2 + e3)/
√

3, and we sample all remaining eigenvalues of �1, �2 from Exponential(1).
Additional details are provided in Appendix A.2.

Figure 1 displays sample eigenvalues of the MANOVA estimate �̂1, with numerically
computed roots of 0 = detT (λ). There are 4 positive and 2 negative roots. Of these, the 3rd



1496 Z. FAN, Y. SUN AND Z. WANG

FIG. 1. Left: Histogram of sample eigenvalues of the MANOVA estimate for �1 in a one-way layout design,
averaged across 1000 simulations, with the four largest and two smallest eigenvalues indicated by red arrows.
Six black dots indicate roots of 0 = detT (λ), predicting the asymptotic locations of these eigenvalues. Overlaid
are the densities of the bulk law μ0 (solid black) and of μ0 computed from an isotropic-noise approximation
(dashed black). Right: Inner-product of each of three principal sample eigenvectors (v̂j : j = 1,2,3) with the true
population eigenvector ej (horizontal axis) and an orthogonal direction wj partially aligned with �2 (vertical
axis). Empirical averages across 1000 simulations (red dots/arrows) are overlaid with the predictions of Theorem
2.6 (black dots).

largest and the smallest (negative) root are attributed to aliasing from e4 in �2—their sam-
ple eigenvectors are predicted by Theorem 2.6 to be orthogonal to {e1, e2, e3}. The 1st, 2nd
and 4th largest roots correspond to the true eigenvalues 32, 16 and 8, each observed with
upward bias. For each of the three corresponding sample eigenvectors v̂j , Figure 1 displays
its predicted and simulated alignment with the true direction ej and with the orthogonal di-
rection wj obtained by residualizing ej out of w. The values of these predicted and simulated
eigenvalues and eigenvector alignments are also summarized in Table 1.

3.2. Improved estimation of principal components. The preceding phenomena indicate
that the sample eigenvalues and eigenvectors of classical MANOVA estimates for �1, . . . ,�k

are inconsistent in the regime of Assumption 2.2. The estimated eigenvalues in �̂r may have
upward bias, the estimated eigenvectors may be biased towards eigenvectors of other compo-
nents �s for s �= r , and the number of apparent signal principal eigenvectors in �̂r may even
be incorrect due to aliasing effects from these other components.

The probabilistic results of Theorems 2.5 and 2.6 also suggest a possible route for
improved estimation of the principal eigenvalues and eigenvectors: The observed signal
eigenvalues of a matrix �̂ = Y�BY , while inconsistent for the true signal eigenvalues of
�1, . . . ,�k , do nonetheless provide some information about these matrices. As indicated by

TABLE 1
Three principal eigenvalues λ̂ and eigenvector inner-products v̂�

j ej and v̂�
j wj displayed in Figure 1.

Theoretical predictions are computed from Theorems 2.5 and 2.6, using the true noise covariances (left) and an
isotropic-noise approximation (middle). Observed values (right) are averaged over 1000 simulations

Predicted (true) Predicted (isotropic) Observed

λ̂ v̂�ej v̂�wj λ̂ v̂�ej v̂�wj λ̂ v̂�ej v̂�wj

μ1 = 32 39.35 0.90 0.07 40.22 0.90 0.07 39.51 0.89 0.07
μ2 = 16 24.39 0.78 0.03 25.05 0.81 0.03 24.54 0.77 0.03
μ3 = 8 17.36 0.56 −0.14 17.37 0.71 −0.16 17.26 0.53 −0.13
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Theorem 2.5, they correspond approximately to roots of the equation 0 = detT (λ). This ma-
trix T (λ) in (11) depends on:

1. The spectra of the k noise covariances �̊1, . . . , �̊k , and the alignments of their eigen-
vectors across these k different components.

2. The alignments of the rows of 	 (the true signal vectors) with these noise covariances
�̊1, . . . , �̊k .

3. The sizes of the true signal eigenvalues and the alignments of the signal vectors across
these k components, which are related to the magnitudes and inner-products of the rows of 	.

Under parametric modeling assumptions for the noise covariance matrices �̊1, . . . , �̊k ,
the observed outlier eigenvalues λ̂ for matrices of the form �̂ = Y�BY can yield estimat-
ing equations 0 = detT (̂λ) for the true signal eigenvalues in each component �1, . . . ,�k

(as well as for the cross-component alignments of their corresponding signal eigenvectors).
Furthermore, if an estimation matrix B for �̂ = Y�BY can be chosen such that the vector
u ∈ kerT (̂λ) is proportional to 	v, where λ̂ is the observed eigenvalue of �̂ and v is a true
signal eigenvector of �r . Then Theorem 2.6 indicates that the corresponding sample eigen-
vector v̂ of �̂ approximately satisfies 	v̂ ∝ 	v, so that v̂ is not asymptotically biased toward
the signal direction of a different variance component �s . This debiasing can, for example,
lead to asymptotically consistent estimates of linear functionals of this true eigenvector v.

These ideas were implemented and analyzed in [25] in the simplest parametric setting
where �̊r = σ 2

r Id, for each r = 1, . . . , k and some scalar variance parameters σ 2
1 , . . . , σ 2

k . In
this setting, [25] proposed a specific algorithm to solve the estimating equations 0 = detT (̂λ)

arising from a parametric family of matrices �̂ = Y�B(θ1, . . . , θk)Y to yield estimates of
all sufficiently large signal eigenvalues of �1, . . . ,�k . These estimated eigenvalues were
shown to be asymptotically consistent in the high-dimensional regime of Assumption 2.2,
at a parametric 1/

√
n rate. Furthermore, for each corresponding signal eigenvector v, [25]

demonstrated how to obtain a specific estimation matrix B(θ1, . . . , θk) for which the vector
u ∈ kerT (̂λ) indeed satisfies u ∝ 	v, and thus the algorithm returns a debiased estimate of
this true eigenvector v. We refer readers to [25] for further details.

When �̊1, . . . , �̊k are not isotropic, we believe that nonparametric estimation of their
spectra and eigenvector alignments may be challenging. However, in certain more paramet-
ric contexts—for example, when �̊1, . . . , �̊k capture known autocovariance structure across
temporal variables or known genetic correlation structure across quantitative traits, up to a
small number of unknown parameters—it may be possible to develop an estimation proce-
dure similar to that of [25], which first estimates these parameters that describe the noise
structure in �̊1, . . . , �̊k , and then estimates the principal eigenvalues and eigenvectors of in-
terest, using more general estimating equations that are derived from our results in Theorems
2.5 and 2.6. We leave a more detailed exploration of this possibility to future work.

Isotropic noise is often assumed in practice [46], and our results also provide an under-
standing of the error that may arise in the original method of [25] due to model misspecifi-
cation. Figure 1 displays simulated eigenvalue densities μ0 computed using the true matrices
�̊r , which have exponentially decaying spectra, versus using their isotropic noise approxima-
tions with σ 2

r = p−1 Tr �̊r . Table 1 compares the corresponding eigenvalue and eigenvector
alignment predictions. We observe that the predictions of Theorems 2.5 and 2.6 for large
outliers are very close to those under the isotropic noise approximation. This may also be
understood from the calculations in the preceding section for large μ1, μ2, as the dependence
of c1, c2 in (13) on �̊1, �̊2 is only through their trace. This suggests that the estimation
procedure in [25] may be reasonably accurate for the larger principal eigenvalues and their
associated eigenvectors. For eigenvalues closer to the support of the noise spectrum, the pre-
dictions of Theorems 2.5 and 2.6 using the true noise covariances �̊r are more accurate than
those assuming isotropic noise, suggesting that inference for these principal components may
be improved by better parametric modeling of the noise structure.
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4. Free probability results. Our proofs use the connection between free probability and
random matrices. Introducing representations of Ur , αr , and B detailed in Section 5.1, our
matrix model �̂ may be written as

(18) �̂ = W + P, W =
k∑

r=1

k∑
s=1

H T
r GT

r FrsGsHs,

for deterministic matrices {H1, . . . ,Hk} and {F11,F12, . . . ,Fkk}, independent matrices
{G1, . . . ,Gk} with i.i.d. Gaussian entries, and a fixed-rank perturbation P (depending on
G1, . . . ,Gk). We study the spectrum of W by introducing an asymptotic approximation

w =
k∑

r=1

k∑
s=1

h∗
r g

∗
r frsgshs,

where hr , gr , frs belong to a von Neumann algebra and are conditionally free (i.e., free with
amalgamation) over a diagonal subalgebra [7]. This method was also used in [24] to derive
the fixed-point equations (6)–(8) in Theorem 2.3.

Our analysis develops several new tools and results in free probability theory. In this sec-
tion, we state these results independent of the specific model (1), as they are of general interest
for analyzing structured random matrices in other applications. We defer proofs to Appen-
dices B, C and D.

4.1. Augmented Cauchy and R-transforms. We call (A, τ ) a von Neumann probability
space (W ∗-probability space) if A is a von Neumann algebra and τ : A → C a positive,
faithful, normal trace. For a von Neumann subalgebra B ⊂ A, we denote by

τB : A → B

the (unique) conditional expectation satisfying τ(τB(a)) = τ(a).
We review the following definitions of B-valued Cauchy- and R-transforms: For each

l ≥ 1, let NC(l) be the space of noncrossing partitions of 1, . . . , l. For π ∈ NC(l), denote
by κB

π (a1, . . . , al) the noncrossing cumulant corresponding to π . These satisfy the moment-
cumulant relations

(19) τB(a1a2 . . . al) = ∑
π∈NC(l)

κB
π (a1, a2, . . . , al).

Define the B-valued Cauchy- and R-transform of a ∈ A by

GB
a (b) = τB((b − a)−1)=∑

l≥0

b−1(ab−1)l , RB
a (b) =∑

l≥1

κB
l (a, ba, . . . , ba),

the former for all invertible b ∈ B with ‖b−1‖ sufficiently small and the latter for all b ∈ B
with ‖b‖ sufficiently small.1 The moment-cumulant relations (19) yield the identity

(20) GB
a (b) = (

b −RB
a

(
GB

a (b)
))−1

for invertible b ∈ B with ‖b−1‖ sufficiently small. We refer the reader to [42], Chapter 9, for
additional background and details.

1Note that, following conventions in free probability, we take the opposite sign for GB
a (b) here as for the

Stieltjes transform used in Section 2.2.
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For our computations in Section 5, we will make use of the following “left-augmented”
Cauchy- and R-transforms, defined for a1, a ∈ A and b ∈ B by the mixed moments and mixed
cumulants

GB
a1,a

(b) = τB(a1(b − a)−1)=∑
l≥0

τB(a1b
−1(ab−1)l),(21)

RB
a1,a

(b) =∑
l≥1

κB
l (a1, ba, . . . , ba).(22)

The following identity is then also a consequence of (19), and we provide a short proof in
Appendix B.

LEMMA 4.1. For a1, a ∈ A and all invertible b ∈ B with ‖b−1‖ sufficiently small,

(23) GB
a1,a

(b) = RB
a1,a

(
GB

a (b)
)
GB

a (b).

4.2. Strong asymptotic freeness of GOE and deterministic matrices. We establish a
strong asymptotic freeness result for GOE and deterministic matrices, which is the real ana-
logue of the GUE result in [40]. The proof is provided in Appendix C.

Fix integers p,q ≥ 0. Let X1, . . . ,Xp ∈ R
N×N be independent GOE matrices, with diago-

nal entries distributed as N (0,2/N) and off-diagonal entries as N (0,1/N). Let Y1, . . . , Yq ∈
C

N×N be deterministic matrices. Denote XN = (X1, . . . ,Xp) and YN = (Y1, . . . , Yq). Let
trN = N−1 Tr be the normalized matrix trace on C

N×N .
Consider an N -dependent von Neumann probability space (AN, τN). Suppose AN con-

tains x1, . . . , xp and Y1, . . . , Yq , where x1, . . . , xp are free semicircular elements also free
of Y1, . . . , Yq , and τN ≡ trN restricted to the von Neumann subalgebra 〈Y1, . . . , Yq〉. Denote
x = (x1, . . . , xp).

THEOREM 4.2. Suppose ‖Yj‖ ≤ C for all j = 1, . . . , q and a constant C > 0. Then for
any fixed noncommutative self-adjoint ∗-polynomial Q in p + q variables, and any constant
δ > 0, almost surely for all large N ,

(24) spec
(
Q(XN,YN)

)⊂ spec
(
Q(x,YN)

)
δ.

Here, spec(Q(XN,YN)) are the eigenvalues of the self-adjoint random matrix Q(XN,

YN) ∈ C
N×N , and spec(Q(x,YN))δ is the δ-neighborhood of the spectrum of the operator

Q(x,YN) ∈ AN .
For our application, we will apply strong asymptotic freeness directly in the above form.

However, we may also obtain as a corollary the following more usual statement, by the argu-
ments of [40], Section 7.

THEOREM 4.3. Let x = (x1, . . . , xp) and y = (y1, . . . , yq) be elements of a fixed von
Neumann probability space (A, τ ), such that x1, . . . , xp are free semicircular elements also
free from y. Assume that almost surely as N → ∞, for any fixed self-adjoint ∗-polynomial P

in q variables,

trN
[
P(YN)

]→ τ
(
P(y)

)
and

∥∥P(YN)
∥∥→ ∥∥P(y)

∥∥.
Then, almost surely for any self-adjoint ∗-polynomial Q in p + q variables,

(25) trN
[
Q(XN,YN)

]→ τ
(
Q(x,y)

)
and

∥∥Q(XN,YN)
∥∥→ ∥∥Q(x,y)

∥∥.
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4.3. Resolvent approximation using free deterministic equivalents. We also establish a
method of approximating bilinear forms in resolvents using the free deterministic equivalent
framework of [52].

Fix integers p,q ≥ 0. We study the resolvent R(z) of a random matrix

(26) W = Q(H1, . . . ,Hp,B1, . . . ,Bq) ∈ C
N×N,

where Q is any self-adjoint ∗-polynomial, H1, . . . ,Hp are deterministic, and B1, . . . ,Bq are
random matrices orthogonally invariant in law. For spectral arguments z with constant sepa-
ration from spec(W), and any deterministic unit vectors u, v ∈C

N , we will show an approx-
imation

u∗R(z)v ≈ u∗R0(z)v,

where R0(z) is a deterministic matrix defined by a free deterministic equivalent model.
We consider a setup that will allow us to study rectangular matrices, following [7]: Let

A1 = C
N×N and τ1 = N−1 Tr. Fix k ≥ 1, let N = N1 +· · ·+Nk , and consider the associated

k × k block decomposition of A1. Define mutually orthogonal projections P1, . . . ,Pk ∈ A1
by

Pr = diag(0, . . . ,0, IdNr ,0, . . . ,0)

with IdNr in the r th diagonal block. Then (A1, τ1,P1, . . . ,Pk) is a rectangular probability
space in the sense of [7]. Define the subalgebra D ⊂ A1 generated by P1, . . . ,Pk , given
explicitly by

D = {z1P1 + · · · + zkPk : z1, . . . , zk ∈ C}.
Define also the space of block-diagonal orthogonal matrices

O = {
diag(O1, . . . ,Ok) : Or ∈ R

Nr×Nr ,OT
r Or = Id for each r

}
.

Consider H1, . . . ,Hp,B1, . . . ,Bq ∈ A1, where H1, . . . ,Hp are deterministic, and (B1, . . . ,

Bq) is random and equal in joint law to (OB1O
T, . . . ,OBqO

T) for all O ∈ O. For a self-
adjoint ∗-polynomial Q in p + q arguments with coefficients in D, define W by (26), and
define its resolvent

R(z) = (W − z Id)−1.

To define the approximation R0(z), we construct a free deterministic equivalent model: Let
(A2, τ2) be a second von Neumann probability space, where D ⊂ A2 and τ1 ≡ τ2 restricted
to D. Let A2 have elements b1, . . . , bq satisfying

(27) N−1 Tr
(
P(B1, . . . ,Bq)

)− τ2
(
P(b1, . . . , bq)

)→ 0

almost surely as N → ∞, for any fixed ∗-polynomial P with coefficients in D. Define the
von Neumann amalgamated free product over D,

(A, τ ) = (A1, τ1) ∗D (A2, τ2),

so that (H1, . . . ,Hp) is free of (b1, . . . , bq) with amalgamation over D. Define the free de-
terministic equivalent approximation to W by

w = Q(H1, . . . ,Hp, b1, . . . , bq) ∈ A.

Finally, let H = 〈H1, . . . ,Hp,D〉 be the generated von Neumann subalgebra of A, and let
τH : A → H be the conditional expectation onto H that satisfies τ(τH(a)) = τ(a). Impor-
tantly, note that for any a ∈ A,

τH(a) ∈H ⊂ A1 ≡ C
N×N,
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so that τH(a) is an N × N matrix. We define the free deterministic approximation R0(z) of
R(z) by

(28) R0(z) = τH((w − z)−1).
We now state our approximation result, whose proof is in Appendix D.

THEOREM 4.4 (Resolvent approximation). For some constants C,c > 0, suppose c <

Nr/N < C, ‖Hi‖ < C and ‖Bj‖ < C for all r , i, j , almost surely for all large N . Fix any
constant δ > 0 and set

D= {
z ∈C : dist

(
z, spec(w)

)≥ δ and dist
(
z, spec(W)

)≥ δ
}
.

Then for any (sequence of) deterministic unit vectors u, v ∈ C
N , almost surely as N → ∞,

(29) sup
z∈D

∣∣u∗R(z)v − u∗R0(z)v
∣∣→ 0.

Taking k = 1 yields a result for square orthogonally invariant matrices, where (A, τ ) is the
von Neumann free product over D ≡ C. We consider k ≥ 2 to encompass applications with
rectangular matrices, where each Hi , Bj typically has a single off-diagonal block which is
nonzero. We are then interested in ∗-polynomials Q that are (1,1)-simple, that is, W and w

satisfy

W = P1WP1, w = P1wP1.

Denote by W11 ∈ C
N1×N1 the (1,1)-block of W . Corresponding to C

N1×N1 is a “compressed
algebra” Ac = {P1aP1 : a ∈ A} with unit P1 [52]. Denote by w11 ∈Ac and spec(w11) the ele-
ment w and its spectrum, viewed as a self-adjoint operator in Ac. We then have the following
corollary.

COROLLARY 4.5. In the setting of Theorem 4.4, suppose in addition that W = P1WP1
and w = P1wP1, and let W11 and w11 be as above. Let (R0(z))11 ∈ C

N1×N1 be the (1,1)-
block of R0(z) = τH((w − z)−1), and set

D1 = {
z ∈ C : dist

(
z, spec(w11)

)≥ δ and dist
(
z, spec(W11)

)≥ δ
}
.

Then for any (sequence of) deterministic unit vectors u1, v1 ∈ C
N1 , almost surely as N → ∞,

(30) sup
z∈D1

∣∣u∗
1(W11 − z Id)−1v1 − u∗

1
(
R0(z)

)
11v1

∣∣→ 0.

5. Analysis of the linear mixed model. In this section, we give a high-level outline of
the proofs of Theorems 2.5 and 2.6, which follow the perturbative approach of [8]. We present
the main steps of the computations, deferring technical details to Appendix E.

We assume implicitly throughout that Assumptions 2.1 and 2.2 hold. We denote by C,c >

0 constants which may change from instance to instance. We fix a constant δ > 0, and define

Uδ = {
z ∈ C : dist

(
z, supp(μ0)

)
> δ

}
.

We denote ‖X‖∞ = maxi,j |Xi,j |. For n-dependent matrices X1(z), X2(z) of the same
(bounded) dimension, we write

X1(z) ∼ X2(z)

if almost surely as n → ∞, we have

sup
z∈Uδ

∥∥X1(z) − X2(z)
∥∥∞ → 0.
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5.1. Model and deterministic equivalent measure. We first clarify the form of �̂ and
the free probability interpretation of the measure μ0. Introducing 	r ∈ R

�r×p as in (2), and
defining

�r = 1√
nr

(
ξ

(r)
ij

)
i,j ∈ R

nr×�r , Er =

⎛⎜⎜⎝
– ε

(r)
1 –
...

– ε(r)
n –

⎞⎟⎟⎠ ∈ R
nr×p,

the random effect matrix αr is written concisely as

(31) αr = √
nr�r	r + Er.

Write further

(32) Er = √
nrGrHr,

where Gr ∈ R
nr×p has i.i.d. N (0,1/nr) entries and Hr = �̊1/2 ∈ R

p×p . Then, when �r = 0
and αr = Er for all r , we obtain

�̂ = W ≡
k∑

r,s=1

H T
r GT

r FrsGsHs,

where {Frs : r, s = 1, . . . , k} are defined in (5). More generally, we have

(33) �̂ =
k∑

r,s=1

(�r	r + GrHr)
TFrs(�s	s + GsHs) = W + P

for W as above, and for the low-rank perturbation

(34) P =
k∑

r,s=1

(
	T

r �T
r FrsGsHs + H T

r GT
r Frs�s	s + 	T

r �T
r Frs�s	s

)
.

The proof of Theorem 2.3 in [24] used a free probability approach. As the matrices Gr and
Frs in this model are rectangular, asymptotic freeness was formally expressed using the ideas
of [7], by embedding these matrices in a larger square matrix, and establishing asymptotic
freeness with amalgamation over a subalgebra generated by block-identity matrices along the
diagonal.

More specifically, the proof in [24], Section 4, illustrates that μ0 is a spectral measure
in the following model: Set N = (k + 1)p + n1 + · · · + nk . Embed {Frs,Gr,Hr : r, s =
1, . . . , k} into C

N×N by zero-padding, in the following blocks of the (2k + 1) × (2k + 1)

block decomposition for CN = C
p ⊕ · · · ⊕C

p ⊕C
n1 · · · ⊕C

nk :

(35)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H ∗
1 · · · H ∗

k

H1 G∗
1

...
. . .

Hk G∗
k

G1 F11 · · · F1k

. . .
...

. . .
...

Gk Fk1 · · · Fkk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Denote by F̃rs , G̃r and H̃r ∈ C

N×N these embedded matrices. Consider the mutually orthog-
onal projections

P0 = diag(Idp,0, . . . ,0), . . . , P2k = diag(0, . . . ,0, Idnk
)
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corresponding to the 2k + 1 diagonal blocks of C
N×N . Then the block structure of this

embedding induces an asymptotic freeness of the families {Frs}, {Hr}, and individual ma-
trices G1, . . . ,Gk with amalgamation over the subalgebra generated by these projections
{P0, . . . ,P2k}.

Let (A, τ ) be a von Neumann probability space containing mutually orthogonal projec-
tions p0,p1, . . . , p2k , which analogously satisfy τ(p0) = · · · = τ(pk) = p/N and τ(pk+r ) =
nr/N for each r = 1, . . . , k. Let (A, τ ) also contain {frs, gr , hr : r, s = 1, . . . , k} such that:

1. pk+rfrspk+s , pk+rgrpr = gr , and prhrp0 = hr .
2. For any noncommutative ∗-polynomial Q of k variables,

τ
(
Q(h1, . . . , hk)

)= N−1 TrQ(H̃1, . . . , H̃k).

Similarly, for any noncommutative ∗-polynomial Q of k2 variables,

τ
(
Q(f11, f12, . . . , fkk)

)= N−1 TrQ(F̃11, F̃12, . . . , F̃kk).

3. For each r ∈ {1, . . . , k} and l ≥ 0,

N

p
τ
((

g∗
r gr

)l)=
∫

xlνp/nr (dx)

where ν is the Marcenko–Pastur law with parameter p/nr .
4. The families {frs : r, s = 1, . . . , k}, {hr : r = 1, . . . , k}, and individual elements

g1, . . . , gk are free with amalgamation over the von Neumann subalgebra D = 〈p0, . . . , p2k〉.
Define a free deterministic equivalent for W by

(36) w =
k∑

r,s=1

h∗
r g

∗
r frsgshs.

Only the (0,0)-block of w is nonzero—this corresponds to W belonging to the (0,0) block
in the embedded space (35). Thus w is an element of the compressed algebra Ac = {a ∈
A : a = p0ap0}, which has unit p0 and trace τ c(a) = (N/p)τ(p0ap0). The analysis of [24],
Section 4, shows that the law μ0 in Theorem 2.3 is the τ c-distribution of w. This means that
for any continuous function f : R→C, we have∫

f (x) dμ0(x) = τ c(f (w)
)

where f (w) is defined by the functional calculus on Ac. Since τ is a faithful trace, so is τ c

as a trace on Ac, and thus (cf. [45], Propositions 3.13 and 3.15)

(37) supp(μ0) = spec(w)

where spec(w) is the spectrum of w as an element of Ac.

5.2. Master equation. Following [8], we first establish a “master equation” characteriz-
ing outlier eigenvalues of �̂.

Recall the form (33) for �̂. Letting � be the rank of 	 (so � ≤ �+), write

	 = 	̃QT,

where Q ∈ R
p×� contains the right singular vectors of 	. We have QTQ = Id� and ‖	̃‖ ≤ C.

Denote the resolvent of W by

R(z) = (W − z Id)−1.
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Define the block-diagonal matrices

� =

⎡⎢⎢⎢⎣
�1

�2
. . .

�k

⎤⎥⎥⎥⎦ ∈ R
n+×�+, G =

⎡⎢⎢⎢⎣
G1

G2
. . .

Gk

⎤⎥⎥⎥⎦ ∈R
n+×kp.

Finally, define H ∈ R
kp×p as the vertical stacking of {Hr}kr=1, and set

S(z) = �TFGHR(z)Q.

In Appendix E.2, we write the low-rank perturbation matrix P in (34) as P = P1P2
for two rectangular matrices P1 and P2. We then apply the identity det(Id+R(z)P1P2) =
det(Id+P2R(z)P1) to obtain the following result.

LEMMA 5.1. The eigenvalues of �̂ which are not eigenvalues of W are the roots of
det K̂(z) = 0, where

(38) K̂(z) = Id+
[

S(z) · 	̃T �TFGHR(z)H TGTF� · 	̃ + S(z) · 	̃T�TF�	̃

QTR(z)Q · 	̃T S(z)T · 	̃ + QTR(z)Q · 	̃T�TF�	̃

]
.

Denote the four blocks of this matrix as K̂11, K̂12, K̂21, K̂22. When K̂11 is invertible, the
condition det K̂(z) = 0 is equivalent to det T̂ (z) = 0 for the Schur complement

(39) T̂ (z) = K̂22(z) − K̂21(z)K̂11(z)
−1K̂12(z).

Observe that each matrix ��(. . .)� in the definition of K̂ has bounded dimension �+ × �+,
each matrix ��(. . .)Q has bounded dimension �+ × �, and � is independent of G and R(z).
Then, conditioning on G and R(z) and applying concentration inequalities for linear and
bilinear forms in �, we obtain that T̂ (z) is approximated by a matrix

(40) Ť (z) = Id+QTR(z)Q · 	̃T

(
k∑

r=1

n−1
r Trr

[
F − FGHR(z)H TGTF

]
Id�r

)
	̃.

This is formalized in the following result, proven in Appendix E.2.

LEMMA 5.2. We have that S(z) ∼ 0, K̂11(z) ∼ Id�+ , and T̂ (z) ∼ Ť (z).

The outlier eigenvalues of �̂ will be approximate roots of 0 = det Ť (z), where this matrix
Ť (z) no longer depends on the randomness in �.

5.3. Approximation by deterministic equivalents. The main step of the proof is to ap-
proximate the G- and R(z)-dependent terms appearing in (40) by deterministic quantities.
We do this using a free deterministic equivalent approach. Define

T̃ (z) = Id+QT(z Id+b · �̊)−1Q · 	̃T diag�(b)	̃,

with notation as in Theorem 2.5. Our goal is to show the following lemma.

LEMMA 5.3. We have Ť (z) ∼ T̃ (z).

This requires approximating the two terms in Ť by those in T̃ . For approximating the
first term, as perhaps can be guessed from the form of the Stieltjes transform (8), the matrix
−(z Id+b · �̊)−1 is a deterministic equivalent for the resolvent R(z). We verify this in the
following result, using the resolvent approximation techniques in Section 4.3 and Theorem
4.4.
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PROPOSITION 5.4. We have QTR(z)Q ∼ −QT(z Id+b · �̊)−1Q.

PROOF. The von Neumann probability space (A, τ ) in Section 5.1 may be constructed
as follows: Let (A1, τ1) = (CN×N,N−1 Tr), containing the embeddings of the matrices
H1, . . . ,Hk and P0, . . . ,P2k . Denote these elements of A1 also by hr and pr . Construct a
von Neumann probability space (A2, τ2) also containing p0, . . . , p2k and elements {frs, gr :
r, s = 1, . . . , k} satisfying all required conditions on their joint law under τ2. Let (A, τ ) be
the von Neumann amalgamated free product over 〈p0, . . . , p2k〉.

Let w = ∑
r,s h∗

r g
∗
r frsgshs ∈ A. By Corollary 4.5 applied to each pair of columns of Q,

we find that

QTR(z)Q ∼ QTP0τ
H((w − z)−1)P0Q,

where P0τ
H((w − z)−1)P0 is identified with its (0,0)-block as an element of Cp×p . This τH

trace was computed in [24], equation (4.12), to be

τH((w − z)−1)= −
(
z +

k∑
r=1

h∗
r hrbr(z)

)−1

,

using the identification βr(z) = −br(z) at the conclusion of the proof of [24], Lemma 4.4.
The (0,0)-block of this matrix is exactly

−
(
z +

k∑
r=1

H T
r Hrbr(z)

)−1

= −(z + b · �̊)−1.
�

Lemma 5.3 now follows by applying Proposition 5.4 and the following approximation for
the second term of Ť (z).

PROPOSITION 5.5. For each t ∈ {1, . . . , k}, we have

n−1
t Trt

[
F − FGHR(z)H TGTF

]∼ −bt (z).

In the remainder of this section, we prove Proposition 5.5. We apply a computation using
the augmented Cauchy- and R-transforms of Section 4.1. In the von Neumann probability
space (A, τ ) of Section 5.1, let H = 〈h1, . . . , hk〉, G = 〈g1, . . . , gk〉, F = 〈f11, f12, . . . , fkk〉
and D = 〈p0, . . . , p2k〉 be the generated von Neumann subalgebras of A. Define the elements

(41) w =
k∑

r,s=1

h∗
r g

∗
r frsgshs, v =

k∑
r,s=1

g∗
r frsgs, u =

k∑
r,s=1

frs.

For any r, s, t ∈ {1, . . . , k} define

arts = h∗
r g

∗
r frtftsgshs, brts = g∗

r frtftsgs, crts = frtfts .

Our goal is to compute

k∑
r,s=1

τ
(
ftsgshs(w − z)−1h∗

r g
∗
r frt

)=
k∑

s,t=1

τ
(
arts(w − z)−1),

which is the free approximation for Trt FGHR(z)H TGTF .
For a ∈ A and h ∈ H, define the H-valued conditional expectation τH(a), Cauchy-

transform GH
a (h), and R-transform RH

a (h), and similarly for G and D. For each i ∈
{0, . . . ,2k}, denote

τi(a) = τ(pi)
−1τ(piapi)
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and note that τD(a) =∑
i τi(a)pi . For a sufficiently large constant C > 0, define

D = {
z ∈ C : |z| > C

}
.

We define the following analytic functions {αi}2k
i=0, {βi}2k

i=0, {di}2k
i=0, {γj }2k

j=0, {δj }2k
j=0, and

{ej }2k
j=0 on D, also used in [24]: For i = 1, . . . , k, define

(42) αi = τi

(
hiG

H
w (z)h∗

i

)
, βi = τi

(
RD

v

(
k∑

i=1

αipi

))
.

Set α0 = αk+1 = · · · = α2k = |z|−1 and β0 = βk+1 = · · · = β2k = 0, and

di = α−1
i + βi, d =

2k∑
i=0

dipi.

Now, for j = 1, . . . , k, define

(43) γj+k = τj+k

(
gjG

G
v (d)g∗

j

)
, δj+k = τj+k

(
RD

u

( 2k∑
j=k+1

γjpj

))
.

Set γ0 = γ1 = · · · = γk = |z|−1 and δ0 = δ1 = · · · = δk = 0, and

ej = γ −1
j + δj , e =

2k∑
j=0

ejpj .

The following identities are shown in [24].

PROPOSITION 5.6. For all z ∈ D,

(a)
∑2k

i=0 αipi = GD
v (d).

(b)
∑2k

j=0 γjpj = GD
u (e).

(c) The quantities ar = −pαr

nr
and br = −βr satisfy the relations (6)–(7).

(d) For r = 1, . . . , k, we have er+k = −a−1
r .

PROOF. (a) follows from [24], equation (4.15), (b) follows from [24], equation (4.21),
(c) is shown at the end of the proof of [24], Lemma 4.4, and (d) follows from [24], equation
(4.28). �

The following identities are similar to [24], Lemma 4.3.

PROPOSITION 5.7. We have

RH
arts ,w

(
GH

w (z)
)= h∗

r hrτr

[
RD

brts ,v

(
GD

v (d)
)]

,

RG
brts ,v

(
GG

v (d)
)= g∗

r grτr+k

[
RD

crts ,u

(
GD

u (e)
)]

.

PROOF. For the first equality, notice that for c = GH
w (z), we have

κH
l (arts, cw, . . . , cw)

=
k∑

r2,...,rl=1
s2,...,sl=1

κH
l

(
h∗

r g
∗
r frtftsgshs, ch

∗
r2

g∗
r2

fr2s2gs2hs2, . . . , ch
∗
rl
g∗

rl
frlsl gslhsl

)
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=
k∑

r2,...,rl=1
s2,...,sl=1

h∗
r κ

H
l

(
g∗

r frtftsgs, hsch
∗
r2

g∗
r2

fr2s2gs2, . . . , hsl−1ch
∗
rl
g∗

rl
frlsl gsl

)
hsl

=
k∑

r2,...,rl=1
s2,...,sl=1

h∗
r κ

D
l

(
g∗

r frtftsgs, τ
D(hsch

∗
r2

)
g∗

r2
fr2s2gs2, . . . , τ

D(hsl−1ch
∗
rl

)
g∗

rl
frlsl gsl

)
hsl ,

where we apply [44], Theorem 3.6, and D-freeness of {F,G} and H in the last step. Notice
now that τD(hsch

∗
r ) = 0 unless s = r , that for any d ′ ∈ D we have h∗

r d
′hr = h∗

r hrτr(d
′), and

that

τD(hrch
∗
r

)
g∗

r = τr

(
hrch

∗
r

)
prg

∗
r =

( 2k∑
i=0

αipi

)
g∗

r .

Therefore, applying Proposition 5.6(a) and defining c′ = GD
v (d), the above is equal to

h∗
r hr

k∑
r3,...,rl=1

τr

(
κD
l

(
g∗

r frtftsgs, c
′g∗

s fsr3gr3, c
′g∗

r3
fr3r4gr4, . . . , c

′g∗
rl
frlrgr

))
.

On the other hand, using gs = gsps and psc
′pr = 0 unless s = r , we have

κD
l

(
brts, c

′v, . . . , c′v
)

=
k∑

r2,...,rl=1
s2,...,sl=1

κD
l

(
g∗

r frtftsgs, c
′g∗

r2
fr2s2gs2, . . . , c

′g∗
rl
frlsl gsl

)

=
k∑

r2,...,rl=1
s2,...,sl=1

κD
l

(
g∗

r frtftsgs,psc
′pr2g

∗
r2

fr2s2gs2, . . . , psl−1c
′prlg

∗
rl
frlsl gsl

)

=
k∑

r3,...,rl=1

κD
l

(
g∗

r frtftsgs, c
′g∗

s fsr3gr3, c
′g∗

r3
fr3r4gr4, . . . , c

′g∗
rl
frlrgr

)
.

Comparing with the above,

κH
l (arts, cw, . . . , cw) = h∗

r hrτr

(
κD
l

(
brts, c

′v, . . . , c′v
))

.

Summing over l ≥ 1 yields the first identity. The proof of the second identity is exactly
parallel, using Proposition 5.6(b) in place of Proposition 5.6(a). �

PROPOSITION 5.8. We have

τ
(
arts(z − w)−1)= τ

(
crts(e − u)−1).

PROOF. Note first that

τ
(
arts(z − w)−1)= τ

(
GH

arts,w
(z)

)= τ(p0)τ0
(
GH

arts,w
(z)

)
.

Substituting the expression of Proposition 5.7 into the identity

GH
arts ,w

(z) = RH
arts ,w

(
GH

w (z)
)
GH

w (z)

of Lemma 4.1, we find that

GH
arts ,w

(z) = h∗
r hr · GH

w (z)τr

[
RD

brts ,v

(
GD

v (d)
)]

,
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from which we obtain

τ0
[
GH

arts ,w
(z)

]= τ0
[
h∗

r hrG
H
w (z)

]
τr

[
RD

brts ,v

(
GD

v (d)
)]

.

Noting that τ0[h∗
r hrG

H
w (z)] = τ(pr )

τ (p0)
αr , we obtain

τ0
[
GH

arts ,w
(z)

]= τ(pr)

τ (p0)
τr

[
RD

brts ,v

(
GD

v (d)
)
αr

]
= τ(pr)

τ (p0)
τr

[
RD

brts ,v

(
GD

v (d)
)
GD

v (d)
]

= τ(pr)

τ (p0)
τr

[
GD

brts ,v
(d)

]= τ(pr)

τ (p0)
τr

[
GG

brts ,v
(d)

]
,

where in the second equality we replace αr by GD
v (d) =∑2k

i=0 αipi . Substituting Proposition
5.7 into the identity

GG
brts ,v

(d) = RG
brts ,v

(
GG

v (d)
)
GG

v (d),

we find that

GG
brts ,v

(d) = g∗
r grG

G
v (d)τr+k

[
RD

crts ,u

(
GD

u (e)
)]

.

Noting that τr(g
∗
r grG

G
v (d)) = τ(pr+k)

τ (pr )
γr+k , we find similarly that

τr

[
GG

brts ,v
(d)

]= τ(pr+k)

τ (pr)
τr+k

[
RD

crts ,u

(
GD

u (e)
)
γr+k

]
= τ(pr+k)

τ (pr)
τr+k

[
RD

crts ,u

(
GD

u (e)
)
GD

u (e)
]= τ(pr+k)

τ (pr)
τr+k

[
GD

crts ,u
(e)

]
.

Putting everything together, we conclude that

τ
(
arts(z − w)−1)= τ(pr+k)τr+k

[
GD

crts ,u
(e)

]= τ
(
crts(e − u)−1). �

Applying the definitions of arts and crts , the asymptotic freeness result in [25], Theorem
3.9, and Proposition 5.6(d), the above implies

1

nt

Trt
[
FGHR(z)H TGTF

]∼ 1

nt

Trt
(
F
(
diagn

(
a−1)+ F

)−1
F
)
,

and Proposition 5.5 now follows from the Woodbury matrix identity. We defer these details
to Appendix E.2.

5.4. Outlier eigenvectors and eigenvectors. Combining Lemmas 5.2 and 5.3, we have
shown that T̂ ∼ T̃ . Recalling 	 = 	̃Q� and using det(Id+AB) = det(Id+BA), we see that
the roots of 0 = det T̃ (z) are the same as those of 0 = detT (z). Then Theorem 2.5 follows
from an application of Hurwitz’s theorem. We defer the technical details of this argument to
Appendix E.3.

The proof of Theorem 2.6 uses the following two results, whose proofs are deferred to
Appendix E.4.

PROPOSITION 5.9. In the setting of Theorem 2.6, ker T̃ (λ) has dimension exactly 1, and
each other singular value of T̃ (λ) is at least a constant c ≡ c(δ) > 0.
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PROPOSITION 5.10. Denote by S′(z) and R′(z) the derivatives of S(z) and R(z) with
respect to z. Then

S′(z) ∼ 0, QTR′(z)Q ∼ −QT∂z

[
(z Id+b · �̊)−1]Q,

n−1
t Trt

[
FGHR′(z)H TGTF

]∼ b′
t (z).

PROOF OF THEOREM 2.6. Since (̂λ, v̂) is an eigenvalue-eigenvector pair, we have that
λ̂v̂ = �̂v̂ = Wv̂ + P v̂, which implies that

(44) 0 = (
Id+R(̂λ)P

)
v̂.

Define

v̂1 = �TFGHv̂ and v̂2 = QTv̂.

Multiplying (44) on the left by
[�TFGH

QT

]
and recalling (38), we obtain

(45) 0 = K̂(̂λ)

(
v̂1
v̂2

)
.

Eliminating v̂1 in this system of equations, we get 0 = T̂ (̂λ)v̂2 for the Schur complement T̂

from (39). We show in Proposition E.6 that T̃ (z) is bounded over Uδ . Then so is T̃ ′(z), by the
Cauchy integral formula. Applying a Taylor expansion and the results λ̂ − λ → 0 and T̂ ∼ T̃

from Theorem 2.5 and Lemmas 5.2 and 5.3, almost surely ‖T̂ (̂λ) − T̃ (λ)‖ → 0. So also∥∥T̂ (̂λ)TT̂ (̂λ) − T̃ (λ)TT̃ (λ)
∥∥→ 0.

Applying this to v̂2, we find that ‖T̃ (λ)TT̃ (λ)v̂2‖ → 0, which implies by Proposition 5.9 and
the Davis–Kahan theorem that

(46) v̂2 − ‖v̂2‖v2 → 0,

where v2 is a unit vector in ker T̃ (λ) with an appropriate choice of sign.
We now compute the limit of ‖v̂2‖. By (44) and the definition of P , we see that

(47) −v̂ = R(̂λ)
(
Q	̃Tv̂1 + (

H TGTF�	̃ + Q	̃T�TF�	̃
)
v̂2
)
.

On the other hand, in equation (45), we may solve for v̂1 to obtain v̂1 = −K̂11(̂λ)−1K̂12(̂λ)v̂2
when K̂11(̂λ) is invertible. Substituting into (47),

(48) v̂ = R(̂λ)
(
M1(̂λ) + M2(̂λ)

)
v̂2

for the matrices

M1(̂λ) = Q	̃TK̂11(̂λ)−1K̂12(̂λ) − Q	̃T�TF�	̃, M2(̂λ) = −H TGTF�	̃.

Note that M ′
1(z), M ′

2(z), R′(z) are also bounded over Uδ , on a high-probability event when
spec(W) ⊂ supp(μ0)δ/2 and ‖�‖,‖G‖ < C. Taking the squared norm of (48) on both sides
and applying λ̂ − λ → 0 and a Taylor expansion,

(49) 1 =
2∑

i,j=1

v̂T
2Mi(̂λ)TR(̂λ)2Mj (̂λ)v̂2 =

2∑
i,j=1

v̂T
2Mi(λ)TR(λ)2Mj(λ)v̂2 + o(1).

Applying Lemma 5.2 and Propositions E.3 and 5.5, we find that

QTM1(z) ∼ 	̃T�TFGHR(z)H TGTF�	̃ − 	̃T�TF�	̃ ∼ 	̃T diag�

(
b(z)

)
	̃.

Also, noting that R(z)2 = R′(z) and applying Proposition 5.10,

QTR(z)2Q ∼ QTR′(z)Q ∼ −QT∂z

[(
z Id+b(z) · �̊)−1]

Q.
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Combining these, applying 	 = 	̃QT, and setting û = 	̃v̂2 = 	v̂, we get

v̂T
2M1(λ)TR(λ)2M1(λ)v̂2

= −ûT diag�(b)	 · ∂λ

[
(λ Id+b · �̊)−1] · 	T diag�(b)û + o(1),

(50)

where we write as shorthand b ≡ b(λ). Applying R(z)2 = R′(z) and Propositions E.3 and
5.10, we also get �TFGHR(z)2H TGTF� ∼ diag�(b

′(z)), and hence

(51) v̂T
2M2(λ)TR(λ)2M2(λ)v̂2 = ûT diag�

(
b′)û + o(1).

Finally, applying S′(z) ∼ 0 from Proposition 5.10, we get QTR(z)2H TGTF� ∼ 0, and hence

(52) v̂T
2M1(λ)TR(λ)2M2(λ)v̂2 → 0.

Then substituting (50), (51) and (52) into (49),

(53) 1 = ûT(−diag�(b)	 · ∂λ

[
(λ Id+b · �̊)−1] · 	T diag�(b) + diag�

(
b′))û + o(1).

Multiplying (46) on the left by 	̃, we find that

(54) û − ‖v̂2‖	̃v2 → 0.

Define ũ = 	̃v2, and note that ũ is a nonzero vector in kerT (λ) because v2 is a unit vector
in ker T̃ (λ). Then u = ũ/‖ũ‖ is a unit vector in kerT (λ), which is unique up to sign by
Proposition 5.9. Substituting (54) into (53) and recalling the definition of α in Theorem 2.6,
we find that

1 = ‖v̂2‖2‖ũ‖2 · α + o(1).

Writing (54) as û − ‖v̂2‖‖ũ‖u → 0 and substituting α−1/2 for ‖v̂2‖‖ũ‖ concludes the proof.
�
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SUPPLEMENTARY MATERIAL

Supplementary Appendices (DOI: 10.1214/20-AOS2010SUPP; .pdf). The Appendices
contain additional details for Sections 3.1 and 3.2, proofs of the free probability results in
Section 4, a proof of Theorem 2.4 and details of the proofs of Theorems 2.5 and 2.6 omitted
from Section 5.
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