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Consider a critical Erd6s—Rényi random graph: » is the number of ver-
tices, each one of the (g) possible edges is kept in the graph independently
from the others with probability n~lpan=4/3 being a fixed real number.
When n goes to infinity, Addario-Berry, Broutin and Goldschmidt (Probab.
Theory Related Fields 152 (2012) 367-406) have shown that the collection
of connected components, viewed as suitably normalized measured compact
metric spaces, converges in distribution to a continuous limit G, made of
random real graphs. In this paper, we consider notably the dynamical per-
colation on critical Erd6s—Rényi random graphs. To each pair of vertices
is attached a Poisson process of intensity n~1/3 and every time it rings,
one resamples the corresponding edge. Under this process, the collection of
connected components undergoes coalescence and fragmentation. We prove
that this process converges in distribution, as n goes to infinity, toward a
fragmentation-coalescence process on the continuous limit G, . We also prove
convergence of discrete coalescence and fragmentation processes and provide
general Feller-type properties associated to fragmentation and coalescence.
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1. Introduction. Starting with the complete graph with n vertices, K,,, the Erd6s—Rényi
random graph G(n, p) is the graph obtained from K, by deleting its edges independently
with probability 1 — p. A well-known phase transition occurs around p, = ,ll: when p =
with ¢ < 1, the largest connected component is of order logn, as n goes to infinity, while if
p =5, with ¢ > 1, the largest component is of order n. This is the so-called appearance of the
giant component; cf. [12], Section 6. A even more precise critical window was discovered,
as early as in the seminal work of ErdSs and Rényi [20]: when p(A,n) :=n~! 4+ An=%/3, the
largest components are of order n>/3, and their diameter is of order n'/3. Then, when A goes
to infinity with #, a single component starts to dominate the others, and swallows them step
by step. Inside this scaling window, that is, for fixed A and large n, there is a clean procedure,
due to [3], to capture the metric structure of those components: if one assigns mass n~2>/3 to
each vertex and length n~!/3 to each edge, the largest components, seen as measured metric
spaces, converge to a collection of random R-graphs G, (see Theorem 2.26 below, or [3],
Theorem 24, for a more precise statement). Let us mention that we are particularly interested
in the large components because in some sense, they contain all the complexity of the graph:
small components are with high probability either trees or unicyclic components; cf. [12],
Sections 4-6. Subsequently, the last decade has seen similar results for critical percolation on
other random graphs of mean-field type (see notably [8, 11, 18, 19] and Section 8 for further
references). Despite being interesting on its own, this phase transition is also related to the
study of the minimal spanning tree on the graph on which percolation is performed; cf. [4,
13].

In this article, we shall be interested in dynamical versions of the scaling limits just de-
scribed. To be more precise, put the following dynamic on G(n, p(A, n)): each pair of vertices
is equipped with an independent Poisson process with rate y, and every time it rings, one re-
freshes the corresponding edge, meaning that one replaces its state by a new independent
state: present with probability p(A, n), absent with probability 1 — p(A, n). This procedure
corresponds to dynamical percolation on the complete graph with n vertices, at rate y,,. A nat-
ural question now is “At which rate should we refresh the edges in order to see a nontrivial
process in the large n limit?” In this question, it is understood that one remains interested
in the same scaling as before concerning masses and lengths: each vertex is assigned mass
n~2/3 and each edge is assigned length n~!/3.

A moment of thought suggests that a good choice should be y, = n~!'/3. Indeed, since
large components are of size @ (n%/?), in a pair of components there are @ (n*/?) pairs of ver-
tices which after refreshment lead to © (n*/3 p(h,n)) = On!/3) edges added. Thus, choosing
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Vi = O (n~1/3) will lead large components to coalesce at rate ®(1). Furthermore, the main
result of [3] implies that those large components can be seen, once the graph metric has
been divided by n'/3, as compact continuous trees with a finite number of additional cycles.
Furthermore, on this limit, typical distances between two (random) vertices inside a large
component are of order one, which translates thus to a geodesic of length © (n'/3) in the dis-
crete graph. An edge will be destroyed at rate y,,(1 — p(A, n)) so the geometry inside such a
component (at least between typical vertices or even in the sense of the diameter) will be af-
fected at rate @ (n'/3y,, (1 — p(x, n))), which is again of order ® (1) when y, = ©(n~'/3). Of
course, instead of refreshing the edges, one may decide to only add edges, or to only destroy
edges. In the first case, one will observe coalescence of components and in the second case,
fragmentation. Once again, one may ask the same question as before: what is the right rate in
order to obtain a nontrivial process in the large n limit, and what is this limit process? One of
the main purposes of this article is to give an answer to these questions for the three cases that
we just defined informally: dynamical percolation, coalescence and fragmentation. The limit
processes will be dynamical percolation, coalescence and fragmentation processes acting on
the limit G, obtained in [3]. Furthermore, we will show that coalescence is the time-reversal
of fragmentation on this limit. Our approach is to provide Feller-type properties for coales-
cence and fragmentation, which we hope will be useful in the future to study scaling limits
of similar dynamics on other critical random graphs. Notice that the study of coalescence of
graphs is a central tool in the work of [7] to show convergence of a number of critical random
graphs to G, (configuration models, inhomogeneous random graphs, etc.).

Since a large amount of notation is needed in order to make such statements precise, we
will switch to the presentation of notation in Section 2 and then announce the main results
and outline the plan of the rest of the article in Section 3. We finish this section by describing
informally some works related to coalescence or dynamical percolation.

Background. The most important work for the present study is that of Aldous [5]. First,
note that there is a natural coupling of {G(n, p(A, n)), A € R} obtained by assigning i.i.d. ran-
dom variables (U,) to the edges of the complete graph on n vertices and putting edge e in
G(n, p(A,n)) if and only if U, < p(X, n). Studying the coalescence of G(n, p(A, n)) at rate
n=1/3 or the coupled collection (G(n, p(A, n))),>o is essentially equivalent for our purposes.
To describe the first major contribution of [5], let us introduce the surplus of a connected
graph, which is the minimal number of edges which need to be deleted in order to get a tree.
When A is fixed, Aldous proved convergence in distribution of the rescaled masses of the
largest components of G(n, p(A, n)), jointly with their surplus. Aldous’ approach consists in
studying the Lukasiewicz walk associated to an exploration process of the graph—a sequen-
tial revealment of the states of the edges following the graph structure—and to show conver-
gence in distribution of this walk to a Brownian motion with parabolic drift. The second main
contribution of [5] deals with the dynamics when X increases. Noting that connected compo-
nents merge at rate proportional to the product of their (rescaled) sizes when A grows, Aldous
defined an abstract version of this process, which he called the multiplicative coalescent:
weighted points merge two by two at a rate proportional to the product of their weights. He
managed to define this process when the weights are in £2, and proved that the process then
satisfies the Feller property for the ¢£2-topology. Together with his first main contribution, this
implies the convergence of the finite dimensional marginals of the process of rescaled sizes of
G(n, p(X,n)), when X increases. Aldous’ work had a large legacy. We shall only mention two
works which go in the direction of tracking the dynamics of the structure of the graph during
coalescence, in that they track the dynamics of the surplus (but not of the whole graph struc-
ture). Indeed, between the two contributions described above, Aldous has lost the dynamics
of the surplus. In [8], the authors enrich Aldous’ multiplicative coalescent by taking into ac-
count the dynamics of the surplus of the connected components. This leads to what they call
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the augmented coalescent, which they prove to satisfy the Feller property for a topology that
we will not use in this paper (see however Section 8 for more comments). This allows them
to show convergence of the finite dimensional distributions of the processes of rescaled sizes
and surplus of {G(n, p(A,n)), A > 0}, and even of other random graphs, namely Achlioptas
processes with a bounded-size rule. Finally, in [15], the authors manage to prove the conver-
gence of a sequence of two-parameter processes, where the first parameter is the exploration
parameter of G(n, p(A, n)) and the second is 1. This allows them to obtain the convergence
of the process (in 1) of rescaled sizes of G(n, p(A, n)) together with their surplus, this time
in the Skorokhod sense (not only in the sense of finite dimensional marginals). In order to
get this convergence, they define the exploration process using the Prim order on vertices of
the complete graph. This order is consistent in A, in the sense that connected components are
always intervals of the Prim order, and when A increases, only adjacent intervals coalesce.
Unfortunately, the Prim order seems to be inconsistent with the internal structure of the graph
(see [15], Section 4.1, and notably the remarks after Theorem 4). This approach is therefore
not adapted for the purpose of the present article.

Let us finish this short review of related works by focusing on dynamical percolation.
This theme was introduced in [23], and studied in a number of subsequent works by various
authors. In the context of [23], only the edges of some fixed infinite graph are resampled while
in the definition above, we resample the edges of a finite complete graph. The scaling limit of
dynamical percolation for critical percolation on the two-dimensional triangular lattice was
obtained in [22], with techniques quite different from the ones used in the present paper. More
related to the present paper is the work [28], where dynamical percolation on critical Erd6s—
Rényi random graphs, as introduced above, is studied notably at rate 1. The authors show
that the size of the largest connected component that appears during the time interval [0, 1]
is of order n*/31og!/3 n with probability tending to one as n goes to infinity. They also study
“quantitative noise-sensitivity” of the event A, that the largest component of G(n, p(X, n))
is of size at least an®/3 for some fixed a > 0 (see [28], Proposition 2.2). The results in the
present paper can be used to find the precise scaling of quantitative noise-sensitivity for events
concerning the sizes of the largest components (like A, for instance). However, we leave this
question and precise statements for future work.

2. Notation and background.

2.1. General notation. 1If (X, t) is a topological space, we denote by B(X) the Borel
o-field on X.

If ¢ is a measurable map between (E, £) and (F, F), and u is a measure on (E, £), then
we denote by ¥t the push-forward of p by ¥: Yiu(A) = (¥ ~1(A)) forany A € F.

We shall frequently use Poisson processes. Let (E, £, u) be a measurable set with u a
o -finite measure. Denote by Leb(R™) the Lebesgue o -field on R™, lebp+ the Lebesgue mea-
sure on R and let y > 0. If P is a Poisson random set with intensity y on (E x RT, & x
Leb(R™), u x lebg+) (i.e., with intensity measure y 4 ® lebg+) we shall denote by P, the
multiset containing the points of P with birthtime at most ¢, with multiplicity the number of
times they appear before ¢:

Pl‘ ::{{XEE:HSStv(x9S)EP}}’

Notice that P; is in general a multiset, not a set, but is a set if u is diffuse. One can equiva-
lently see P; as a counting measure on E. The disjoint union of two multisets A and B will
be denoted by A LI B.

When (M, d) is a Polish space, let F ([0, c0), M) (resp., D([0, c0), M)) be the set of func-
tions (resp., cadlag functions) from R™ to M. We shall use two topologies on F ([0, c0), M)
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and D([0, 0o), M): the Skorokhod topology and the fopology of compact convergence (also
known as topology of uniform convergence on compact sets) which is finer than Skorokhod’s
topology. Although it is not crucial to use this topology, it turns out that it is more natural, in
our setting, to make approximations with this topology, which has furthermore the advantage
that limits of cadlag functions are cadlag. Convergence in distribution for random processes
will however be obtained for the Skorokhod topology. Everything (very little in fact) needed
for these topologies is gathered in Appendix A. Furthermore, we shall always suppose that
our processes are defined on a complete probability space (€2, F, P) (completing the original
space if necessary). We shall occasionally need IP*, the outer measure associated to IP defined
on P(£2) by

P*(A) :=inf{P(B): A C B and B € F}.

We shall use the notation N for the natural numbers (including 0), N* for the positive natural
numbers and N := N U {+o0}. We shall also adopt the convention that the infimum over an
empty set equals +o00.

Finally, let us define, for p > 1:

= {x € (RJF)N* : le,-|p < oo},

i>1
and

EQ::{xeﬁi:xlzxgz---}.

2.2. Discrete graphs and dynamical percolation. We will talk of a discrete graph to
mean the usual graph-theoretic notion of an unoriented graph, that is, a pair G = (V, E)
with V a finite set and E a subset of (‘2/) = {{u, v} :u # v e V}. Often, E is seen as a point in

{0, 1}(‘2/), where 0 codes for the absence of the corresponding edge and 1 for its membership
of E.

For a positive integer n and p € [0, 1], the Erdds—Rényi random graph (or Gilbert random
graph) G(n, p) is the random graph with vertices [n] := {1, ..., n} such that each edge is
present with probability p, independently from the others. Alternatively, one may see it as
a Bernoulli bond percolation with parameter p on the complete graph with n vertices K, =
(1, (5.

Let ¥4+ and y_ be nonnegative real numbers. If G = ([n], E) is a discrete graph on n
vertices, define a random process Ny, ,, (G,1) = (G, E;), t > 0 as follows on the set of sub-
(n]
2

graphs of the complete graph K,,. To each pair e € (*;'), we attach two Poisson processes on

R*: P of intensity ¥4+ and P, of intensity y—. We suppose that all the 2([;]) Poisson pro-
cesses are independent. Each time P rings, we replace E,- by E,- U {e} (nothing changes
if e already belongs to E;-), and each time P, rings, we replace E;- by E;- \ {e} (nothing
changes if e does not belong to E;-). The letter N is intended to be mnemonic for “noise.”
If we want to emphasize the Poisson processes, we shall write N(G, (P*, P7),) instead of
Ny, ,_(G,t), with an implicit definition for the map N.

One may take only P+ or only P~ into account: write N+ (G, P;") for N(G, (P, @),)
and N~ (G, P;) for N(G, (@, P7);). Then N*(G, P;") will be referred as the discrete co-
alescent process of intensity y T started at G and N~ (G, P,”) as the discrete fragmentation
process of intensity y~ started at G.

Now, dynamical percolation of parameter p and intensity y, as described in the Introduc-
tion, corresponds to the process Ny, (1—p), and is in its stationary state when started with
G(n, p) (independently of the Poisson processes used to define the dynamical percolation).

All these processes will have continuous counterparts, which will be defined in Sec-
tions 2.5 and 2.7.
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2.3. Measured semimetric spaces. The main characters in this article are the connected
components of Erd6s—Rényi random graphs and their continuum limit, each one undergo-
ing the updates due to dynamical percolation. One task is therefore to define a proper space
where those characters can live, and first to state precisely what we mean by “the connected
components of a graph” seen as a single object. One option is to order the components by de-
creasing order of size,! as in [3], or in a size-biased way, as in [5], and thus see the collected
components of a graph as a sequence of graphs. However, this order is not preserved under
the process of dynamical percolation. Also, looking only at the mass to impose which graphs
are pairwise compared between two collections of graphs might lead to a larger distance than
what one would expect. Indeed, suppose that (G1, G2) and (G, G) are two pairs of graphs,
with G (resp., G) having slightly larger mass than G, (resp., G5). One might have G close
to G, and G close to G| in some topology (the Gromov—Hausdorff-Prokhorov topology to
be defined later), but G far from G in this topology. For all these reasons, I found it some-
what uncomfortable to work with such a topology in the dynamical context. The topology we
will use will be defined in Section 2.4, and the story begins with the definition of a semimetric
space.

One way to present the connected components of a graph is to consider the graph as a met-
ric space using the usual graph distance, allowing the metric to take the value 4-co between
points which are not in the same connected component, as in [16], page 1. In addition, the
main difficulty in defining dynamical percolation on the continuum limit will be in defining
coalescence. In this process some points will be identified, and one clear way to present this
is to modify the metric and allow it to be equal to zero between different points rather than
performing the corresponding quotient operation. This type of space is called a semimetric
space in [16], Definition 1.1.4, and we shall stick to this terminology.

DEFINITION 2.1. A semimetric space is a pair (X, d) where X is a nonempty set and d
is a function from X x X to R™ U {400} such that for all x, y and z in X:

o d(x,z) <d(x,y)+d(y,z),
o d(x,x)=0,
o d(x,y)=d(y,x).

A semimetric space (X, d) is a metric space if in addition
e dx,y)=0=>x=1y.

A metric or semimetric space (X, d) is said to be finite if d is finite.

Of course, when thinking about a semimetric space (X, d), one may visualize the quotient
metric space (X/d,d) where points at null distance are identified. X and X/d are at zero
Gromov-Hausdorff distance (we shall use a version of Gromov—Hausdorff distance extended
to semimetric spaces, defined in Section 2.4 below). Notice that (X, d) is not necessarily a
Hausdorff space (different points cannot always be separated by disjoint neighborhoods), but
(X/d, d) always is. Furthermore, (X, d) is separable if and only if (X/d, d) is separable.

DEFINITION 2.2. If (X, d) is a semimetric space, the relation R defined by

xRy <& d(x,y)<oo

Iyt requires some device to break ties, but those disappear in the continuum limit, for the Erd6s—Rényi random
graphs at least.



328 R. ROSSIGNOL

is an equivalence relation. Each equivalence class is called a component of (X,d) and
comp(X, d) denotes the set of components. We denote by diam(X) the diameter of (X, d):

diam(X) = sup d(x,y)
x,yeX

and by supdiam(X) the supremum of the diameters of its components:

supdiam(X) = sup diam(m).
mecomp(X,d)

DEFINITION 2.3. A measured semimetric space (m.s-m.s) is a triple X = (X,d, n)
where (X, d) is a semimetric space and p is a measure on X defined on a o -field containing
the Borel o-field for the topology induced by d.

An m.s-m.s (X, d, u) is said to be finite if (X, d) is a finite totally bounded semimetric
space and w is a finite measure.

Finally, we define comp(X) := comp(X, d) and

masses(X) := (u(m))

mecomp(X)*

Notice that a finite m.s-m.s has only one component.

REMARK 2.4.

(i) The reason why we allow u to be defined on a larger field than the Borel o-field is
the following. We want to keep X and u unchanged during coalescence, only the semimetric
will change, say to a new semimetric d’, by performing various identifications. When one
performs identifications, the topology shrinks: there are fewer and fewer open sets. Thus, the
Borel o -field shrinks too, and the original measure w, defined on the original Borel o -field
associated to d, is now defined on a o-field which is larger than the Borel o-field associated
tod'.

(ii)) One might feel more comfortable after realizing the following. Let & denote the pro-
jection from (X, d) to X' := X/d, B’ the Borel o-field on X’ and B the Borel o-field on X.
Then 7~ (') = B and the image measure iy on X’ is a Borel measure.

2.4. The Gromov-Hausdorff-Prokhorov distance. In the Introduction, we mentioned
that G(n, p(A,n)) converges in distribution, but we did not mention precisely the underly-
ing topology. The main topological ingredient in [4] is the Gromov—Hausdorff—Prokhorov
distance between two components of the graph, and we shall use this repeatedly. To define it,
we need to recall some definitions from [4].

If X =(X,d,n) and X' = (X', d’, u') are two measured semimetric spaces a correspon-
dence R between X and X' is a measurable subset of X x X’ such that

VxeX,Ix'eX': (x,x)eR
and
Vx'eX',IxeX: (x,x')eR.

We let C(X, X') denote the set of correspondences between X and X'. The distortion of a
correspondence R is defined as

dix,y)<d'(x',y)+e¢
dis(R) :=inf{e >0:V(x,x’), (y,)) € R, and )
dx',y)<dx,y)+e¢
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The Gromov—Hausdorff distance between two semimetric spaces (X,d) and (X', d’) is
defined as

1
dou((X,d), (X',d"):= inf =dis(R).
ReC(X,X") 2
We denote by M (X, X') the set of finite Borel measures on X x X’. For 7 in M (X, X’),
we denote by 7 (resp., 7p) the first (resp., the second) marginal of . Forany & € M (X, X’),
and any finite measures 1 on X and ' on X’ one defines

D(m; pu, ') = llmy — pl| + [r2 —

’

where ||v|| is the total variation of a signed measure v.
The Gromov—Hausdorff—Prokhorov distance is defined as follows in [4].

DEFINITION 2.5. If X =(X,d, ) and X' = (X', d’, u') are two m.s-m.s, the Gromov—
Hausdorff-Prokhorov distance between them is defined as

1
dowr(X.X) = _inf X/){D(yr; o i)V 5 dis(R) v n(RC)}.
ReC(X.X')

It is not difficult to show that dggp satisfies the axioms of a semimetric. Let us give a bit
more intuition to what the Gromov—Hausdorff—Prokhorov distance measures. On a semimet-
ric space (X, d), let us denote by §y the Hausdorff distance and by §; p the Lévy—Prokhorov
distance. Let us recall their definition. For B C X and ¢ > 0, let

B®:={xeX:3yeB,d(x,y) <¢}.
Now, for A and B subsets of X,
8u(A,B):=inf{le >0: A C B® and B C A®}
and for finite measures ¢ and v on X,

1(B) <v(Bf) +e
2.1 Sdp(u,v) :=inf{e >0:VB e B(X), and .
v(B) < u(Bf) +¢

The following lemma shows that the Gromov—Hausdorff—Prokhorov distance measures
how well two measured semimetric spaces can be put in the same ambient space so that
simultaneously their measures are close in Prokhorov distance and their geometries are close
in Hausdorff distance. It shows that the definitions of [4] and [1] are equivalent. Its proof is
a small variation on the proof of [26], Proposition 6, where only probability measures were
considered, so we leave it to the reader.

LEMMA 2.6. If X = (X,d, ) and X' = (X', d’, u') be two measured separable semi-
metric spaces, let

doup(X. X') == inf{8y (X, X') v ae(u, 1)},
where the infimum is over all semimetric d” on the disjoint union X U X' extending d and d'.

Then

1- -
EdGHP(X7 X') <dgup(X, X') <dgur(X, X').
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It is easy to see that two finite m.s-m.s X and X' are at zero dgpp-distance if and only if
there are two distance and measure preserving maps ¢ and ¢’ such that ¢ is a map from X to
X’ and ¢’ a map from X’ to X. Let C denote the class of finite measured semimetric spaces
and R the equivalence relation on C defined by XRX’ < dgup(X, X’) = 0. The quotient
C/R can be seen as a set (cf. Appendix B), and we denote this set by the letter M, which
stands thus for the set of isometry classes of finite measured semimetric spaces. The following
is shown in [1].

THEOREM 2.7. (M, dgup) is a complete separable metric space.

Now, the Gromov—Hausdorff—Prokhorov distance in Definition 2.5 is too strong for our
purposes when applied to m.s-m.s which have an infinite number of components: it essen-
tially amounts to a uniform control of the dggp-distance between paired components. We are
interested in a weaker distance which localizes around the largest components. We shall re-
strict to countable unions of finite semimetric spaces with the additional property that for any
€ > 0, there are only a finite number of components whose size exceeds €. To formulate the
distance, it will be convenient to view those semimetric spaces as a set of counting measures

on M.

DEFINITION 2.8. For any ¢ > 0, let
M- ={[(X,d, p)] e M s.t. u(X) > ¢}.

For any counting measure v on M, denote by v~ the restriction of v to M. Denote by A/
the set of counting measures v on M such that for any € > 0, v~ is a finite measure and such
that v does not have atoms of mass 0, that is,

v({[(X.d, n)] € M s.t. u(X) =0}) =0.

When X is a measured semimetric space whose components are finite, we denote by vy the
counting measure on M defined by

vy 1= Z Sm)-

mecomp(X)

Abusing notation, we shall say that X € A if vy belongs to A/, and we shall denote by X -
(resp. X <¢) the disjoint union of components of X whose masses are larger than ¢ (resp., at
most &).

Notice that X is in N if and only if it has an at most countable number of components,
each one of its components has positive mass and for any ¢ > 0, X, is the disjoint union
of a finite number of components, each one being totally bounded and equipped with a finite
measure.

Essentially, we want to define a metric on N such that a sequence v, converges to v if
and only if for any ¢ > 0, the components of v of mass larger than ¢ are close (for dgup)
to the components of v, of mass larger than ¢, for n large enough. The idea is similar to the
metrization of vague convergence for measures on R, with components of mass zero playing
the role of infinity. In this vein, there is an abstract notion of locally finite measure in [25],
but we shall not use it.

First, let §Lp be the Lévy—Prokhorov distance on the set of finite measures on the metric
space (M, dgup). Recall the definition of this distance in (2.1). Now, for X = [(X,d, n)] €
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M and k > 1, define a function f; by

1 if w(X) Z%
1 1 1
fir(X) == k(k+1)(M(X)— m) fu(X) e [k1+1 k[
0 if u(X) < PERE

The following distance is an analogue of the distance in [25], Lemma 4.6, where it is used
to metrize the vague topology on locally finite measures.

DEFINITION 2.9. If v and V' are counting measures on M, then we define

Laup(v.v') := > 2751 Adip(frv. fiv')}s
=1

where fiv is defined as follows for v =73 ";; 8,;:

fivi=)" filxi)dy,.

iel

We shall prove later, in Proposition 4.6 that (N, Lgyp) is a complete separable metric
space. Notice that any m.s-m.s of V' is at zero Lgyp-distance from a m.s-m.s whose compo-
nents are measured compact metric spaces. In this article, we really are interested in equiva-
lence classes of m.s-m.s for the equivalence relation “being at zero Lgnp-distance,” although
in order to define random processes such as coalescence and fragmentation, it will be conve-
nient to have in mind a particular representative of such a class.

2.5. Gluing and coalescence.

2.5.1. Gluing and §-gluing. Gluing corresponds to identification of points which can
belong to the same semimetric space or to different semimetric spaces. A formal definition is
as follows, for a single semimetric space (see also [16], pages 62—64).

DEFINITION 2.10. Let (X, d) be a semimetric space and R be an equivalence relation
on X. The gluing of (X, d) along R, is the semimetric space (X, dr) with semimetric defined
on X2 by

k
dr(x,y) :=inf} Y "d(pi,qi): po=x,qx =,k € N,
i=0
where the infimum is taken over all choices of {p;}o<;<k and {g; }o<i <« such that (g;, pi+1) €
Rforalli =0,...,k—1.

When performing dynamical percolation on a discrete graph, edges appear, and these are
not of length zero. Thus one needs a definition of gluing which leaves the possibility to add
those edges. We shall define the §-gluing of a semimetric space X along a multiset R with
elements in X as the operation of joining every pair (x, x’) € R by an isometric copy of the
interval [0, 8]. If (X, d) and (X', d’) are two semimetric spaces, let us denote by dx, x’ the
disjoint union semimetric on the disjoint union X LI X', which is the semimetric equal to d on
X x X,tod on X" x X" and to +00 on (X x X") U (X’ x X). This notion extends trivially
to the disjoint union of a collection of metric spaces.
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DEFINITION 2.11. Let (X, d) be a semimetric space, R be a multiset of elements in X2
and § > 0.

e If § =0, let R denote the equivalence relation generated by R and let Xps=X and
d =d.

e If § > 0, for every pair (x, x") € R, let I =lay ', by y] be an isometric copy of [0, §].
Let us denote by X ; the disjoint union of X and all the I ,, for (x, x’)in R and let d’

denote the disjoint union distance on X 5. Let R denote the equivalence relation on X ¢
generated by

U {(x7 ax,x’)v (x/, bx,x/)}-
(x,x’)e?i

Then the §-gluing of (X, d) is the metric space (sz,(s’ dfz,a) which is the gluing of (sz,a’ d)
along R.
When § > 0, let us denote by F the following o-field on X3 :

Fi= {AUB :AeBX),Bc Ix,x/}.
(x,x)eR
We can lift trivially any measure p on B(X) to a measure /& on F by
p(C) == p(CNX).

When X = (X, d, ) is a measured semimetric space, we equip the §-gluing of (X, d) along
R with this lifted measure, but we shall still denote this measure by 1 and denote the resulting
semimetric space by Coals (X, R) = (X R.50 dﬁ’ 5 M-

REMARK 2.12.

(i) Forany (x, y) € X2, if § > 0, one may see that

k

dj 5(x,y) =inf{kd + Zd(pi, qi):po=x,qk =y, k€ N},
i=0

where the infimum is taken over all choices of {p;}o<;<x and {g; }o<i<« such that (g;, pi+1) €

R foralli =0,...,k— 1. Furthermore, the same is true for § = 0 if R is already an equiva-

lence relation.
(ii) The previous expressions allow us to prove that for A, B C X2,

Coaly(X, AU B) = Coaly(Coalp(X, A), B).
Also, for any multisets A, B and for any § > 0,
Coals(X, AU B) = Coals(Coals (X, A), B).

See Appendix C.

(iii) If 6 > 0, one may like to consider the space X with (the restriction of) the metric
87 ¢t 1t can be seen as forgetting the interiors of the intervals I, that have been added in
Xz (while keeping the same metric). If X = (X, d, n) € N,

(2.2) Laup((X. dg 4. 1), Coals(X, R)) <.
Indeed, using the notation of Definition 2.11, one may use the following correspondence on
X x X5,

R,8"

C=Xx*U U {(x,y):yEIx,x/}
(x,x)eR
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which has distortion § when X is equipped with dg ; (because the only distances that get
distorted are those within the intervals of length 8), and then use 7 as the trivial coupling of
pon X and u on X5 s which satisfies

D(m;p, p) =7(C) =0.
This can be done on each component of (X, dﬁ’ s) separately to show that (2.2) holds.
(iv) Itis easy to see that for any X = (X, d, u) and R C X2,

Coalo(X/d, R/d)/d (= Coalo(X, R)/d

thus one may without harm identify the semimetric spaces with their metric quotients before
or after coalescence (in fact the collection of the metric quotients of its components).

2.5.2. The coalescence processes. When (X, d, i) is a measured semimetric space, there
is a natural coalescence process (of mean-field type) which draws pairs of points (x, y) with
intensity w(dx)u(dy) (and unit intensity in time) and identifies points x and y, changing the
metric accordingly. To describe the process of addition of edges during dynamical percolation
on the Erd6s—Rényi random graph, one needs to replace the identification of x and y by the
fact that the distance between x and y drops to n~!/3 (if x 5 y). This leads to the following
definition.

DEFINITION 2.13. Let X = (X, d, 1) be an m.s-m.s with u sigma-finite and 6 > 0. Let
P be a Poisson random set on X% x R of intensity measure % w? x lebg+. The coalescence
process with edge-lengths § started from X, denoted by (Coals (X, #));>0, is the random pro-
cess of m.s-m.s (Coals(X, P,Jr)),zo.

Notice that this process inherits the strong Markov property from the strong Markov prop-
erty of the Poisson process, and the fact that for multisets A and B of elements of X2,
Coals(X, AU B) = Coals(Coals (X, A), B); cf. Remark 2.12(ii).

When § > 0, if one wants to keep the space fixed and change only the metric, Re-
mark 2.12(iii) shows that one can do so at the price of an Lgyp-distance at most §. In this pa-
per, one wants typically to understand scaling limits of N*(G,, P;") as defined in Section 2.2
with P of intensity y, and G, a discrete graph equipped with the distance d,, which is the
graph distance multiplied by some §, > 0 going to zero as n goes to infinity; see, for instance,
Theorem 3.5 below. If one equips G,, and N (G,,, 73t+ ) with their counting measures mul-
tiplied by /Vu, N;,'l (Gn,t) is at Lgpp-distance at most &, from (Coals, (G, dyu, tn), 1))i>0
(under a natural coupling), so the scaling limits will be the same. We shall want to identify
the limit itself as (Coaly(Gy, t)):>0, and part of our work will consist in showing that it is
a nicely behaved process. In order to accomplish this task, we need to define some subsets

of NV.

DEFINITION 2.14.  For p > 0, we define V), to be the set of elements v of N such that
if v is written as ), .; ,, for some countable index set /,

Z uw(m)? < oo.

mel

For v in \V,,, we let masses(v) to be the sequence in Ep\ of masses w(m) listed in decreasing
order and define, for v and v’ in \V/,,,

Lpcup(v,v') = Lup(v, V') V [ masses(v) — masses(v') | .
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Again we shall abuse language, saying that X = (X, d, u) is in V,, when vy € N/, and
write L, gup(X, X') for L, cup(vx, vy:). We let the reader check that (Np, L, cup) is a
complete separable metric space.

It is easy to see that if X = (X,d, u) belongs to N, then almost surely, for every
t >0, Coal; 5(X,d, ) is in Nj. We even have the Feller property on A7, which will
be proved in Section 5.1. A consequence of the Feller property of the multiplicative co-
alescent in ¢2 is that if X = (X,d, u) belongs to N3, then almost surely for every r > 0
>_mecomp(Coals (X,1)) u(m)? < oo. However, one cannot guarantee that components stay to-
tally bounded, and thus that Coals(X, r) or even Coaly(X, t) belongs to N>. One will thus
have to restrict to a subclass of N>, which will fortunately contain G, with probability one.

DEFINITION 2.15. We define S to be the class of m.s-m.s X = (X, d, u) in N> such that

(2.3) Vt >0, supdiam(Coaly(X <y, 1)) i(; 0.

n—

It will be shown in Lemmas 5.9 and 5.11 that if X € S, then almost surely, for any ¢ > 0,
Coalg(X, t) € S. Of course, | suspect that S has a more intrinsic definition, at least when the
components are R-graphs, and that there is a convenient topology which turns it into a Polish
space, however I could not prove this for the moment. Let us mention that there are elements
in M> \ S; see Remark 5.8.

Let us finish this section by a description of the coalescence at the level of components.
When X and P are as in Definition 2.13, one may associate to them a process of multigraphs
with vertices comp(X) which we denote by MG(X, ). It is defined as follows: there is an
edge in MG(X, t) between m and m' if there is a point (a, b, s) of P+ with s <t, a € m and
bem'.

When A is a measurable subset of X, let A := (A, d|axa, m|4). There is an obvious cou-
pling between (Coals (X, t));>0 and (Coals(A, t));>0: just take the restriction of the Poisson
random set P to A2 x R. We shall call it the obvious coupling. We shall use several times the
following easy fact.

LEMMA 2.16. Suppose that A is a union of components of X. Under the obvious cou-
pling, if MG(X, t) is a forest, then for every s <t and every x, y in A, one has the following:

if the distance between x and y in (Coalg(A, s)) is finite,
then it is equal to the distance between x and y in (Coals(X, s)).

2.6. Length spaces and R-graphs. We refer to [4] for background on the definitions and
statements in this section. Let us however recall the definition of a length space and a geodesic
space for semimetric spaces (cf. [16] for general background on length spaces).

(X, d) is a length space if and only if for any x and y in X, the distance between x and y
is the infimum of the lengths of paths y between x and y. The length of a path y from [a, b]
to X being defined as

r—1

sup > d(y (ti), v (ti41)),

i=0
where the supremum is over all a <y < t; <--- <t, = b. We say that a length space (X, d)
is geodesic if for any x and y, there is a path from x to y with length d(x, y).

DEFINITION 2.17. An R-tree is a totally bounded geodesic and acyclic finite metric
space. An R-graph is a totally bounded geodesic finite metric space (G, d) such that there
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exists R > 0 such that for any x € G, (Br(x), d|pg(x)) 1s an R-tree, where Bg(x) is the ball
of radius R and center x.

For a semimetric space (X, d), we shall say that it is a semimetric R-graph if the quotient
metric space (X/d, d) is an R-graph.

REMARK 2.18.

(i) The definition above differs slightly from [4], Definition 2.2, where an R-graph (X, d)
is defined as a compact geodesic metric space such that for any x € G, there exists € = £(x) >
0 such that (Bg(x), d|B,(x)) is an R-tree, where B (x) is the ball of radius ¢ and center x.
When (X, d) is compact, the two definitions agree: one direction is obvious, whereas the
other follows from the arguments at the beginning of [4], Section 6.1. One advantage of
working with precompact spaces instead of compact ones is that one may avoid having to
take the completion in order to recover an R-graph after fragmentation (notice that after
fragmentation, the space is not complete anymore).

(i) A semimetric space (X, d) is a length space (resp., a geodesic space) if and only if its
quotient metric space (X/d, d) is a length space (resp., a geodesic space). Thus, a semi-metric
R-graph is notably a geodesic semimetric space, and thus a length semimetric space.

The degree dg(x) of a point x in an R-graph (G, d) is the number of connected compo-
nents of Bg(x) \ {x}, where R is any positive real number such that (Br(x), d|gg(x)) 1s an
R-tree. A branchpoint x is a point with deg; (x) > 3. A leaf x is a point with degree one. We
denote by leaves(G) the set of leaves of G. An R-tree or an R-graph is said to be finite if it is
compact and has a finite number of leaves.

An R-graph (G, d), and more generally a length space, is naturally equipped with a length
measure, which assigns notably its length to the image of a simple path. Formally, it is defined
as the 1-dimensional Hausdorff measure on (G, d) (see [16], Sections 1.7 and 2.6). We shall
denote it by £g, and when G is an R-graph, it is a o-finite diffuse measure. If (X, d) is a
semimetric length space, the length measure of X /d can be naturally carried over to X, since
Borel sets of X/d are in bijection with Borel sets of X. We shall call this measure the length
measure of X and denote it by £x. For a semimetric space (X, d), we shall say that a Borel
measure £ is diffuse if for any x € X, £({y € X : d(x, y) = 0}) = 0 (or equivalently that its
image on X /d is diffuse). When X is a semimetric length space, £y is thus a diffuse measure.

The structure of an R-graph is explained thoroughly? in [4], Section 6.2. The core of
(G, d), denoted by core(G) is the union of all simple arcs with both endpoints in embedded
cycles of G. It is also the maximal compact subset of G having only points of degree at least 2
(cf. [4], Corollary 2.5, where one needs to replace “closed” by “compact” in our precompact
setting). The core of a tree is empty, that of a unicyclic graph is a cycle. When G is neither
a tree nor unicyclic, there is a finite connected multigraph ker(G) = (k(G), e(G)) called the
kernel of G such that the core of G may be obtained from ker(G) by gluing along each edge
e an isometric copy of the interval [0, [(e)], for some [(e) > 0. The surplus of G is defined as
0 when G is a tree, 1 when G is unicyclic, and otherwise as

surplus(G) = |e(G)| — [k(G)| + 1,

which is then at least two. If (X, d) is a semimetric R-graph, we shall define its surplus as
the surplus of (X/d, d).

Using the existence of the core, one gets the following equivalent definition of an R-graph,
where an R-graph is obtained as a “tree with shortcuts,” to employ the expression of [7].
A sketch of proof is given in Appendix D.

2Although our definition differs slightly, the proof of [4], Proposition 6.2, can be adapted straightforwardly.
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LEMMA 2.19. A metric space (X, d) is an R-graph if and only if there exists an R-tree
(T, d) and a finite set A C T? such that (X,d) is isomorphic to the quotient metric space
obtained from Coaly((T, d), A).

Now, let us introduce a quantity that will be useful to control the diameters of components
during dynamical percolation, notably because it is monotone under fragmentation (contrarily
to the diameter). In a semimetric space (X, d), we say that a path is injective if its projection
on X/d is injective. Then, for a semimetric length space X with length measure ¢, define

suplength(X) :=sup{£(y) : y is a rectifiable injective path in X }.
Notice that

suplength(X) = sup  suplength(m).

mecomp(X)
Now, we can define the various spaces on which we shall study fragmentation and dynamical
percolation.

DEFINITION 2.20. Define S as the class of length semimetric spaces X in N>
whose length measure is o -finite and such that

2.4) Vi >0, suplength(Coalp(X <y, 1)) i(; 0.
n—)

Let M&4Ph denote the set of equivalence classes of R-graphs under dgpp. Define A\/&raph
(resp., N; ;‘fraph) from M2 in the same way that A (resp., V; ») was defined from M.

Define S2PP a5 the class of semimetric spaces X in /\/'5graph such that (2.4) holds.
If X=(X,d,n) and X' = (X', d’, /) are measured semimetric R-graphs, define

d(s}u}rllf,lus(X, X') :=dgnp(X, X') v |surplus(X) — surplus(X")|.

Finally, define Lzlgﬁus and L;urgg; in the same way that Lgpp and L, gup were defined, but

replacing dgpp by dg;-rlll)nlus

Notice that S&2P" is a subclass of S8 A rigorous definition of MM a5 a set is given
in Appendix B. Thanks to Lemma 2.19, it is clear that if X € N&%" and P C X? is finite,
then for any § > 0, Coals(X, P) still belongs to A/&rPh,

Additional notation concerning R-graphs will be introduced when needed, in Section 6.1.

2.77. Cutting, fragmentation and dynamical percolation.

DEFINITION 2.21. Suppose that X = (X, d, n) is an m.s-m.s which is a length space
and P~ is a subset of X. Let P~¢ denote

[xeX:3yeP ,d(x,y) =0}

Then the cut of X along P~, denoted by Frag(X,P™) is the m.s-m.s (X \ P_*d,dgrflg,
Mlx\p—,d) where

dp®(x,y) == inf{£x ()

and the infimum is over all paths y from x to y disjoint from P4,
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REMARK 2.22.

(i) Frag(X, ©) is the same as X precisely because the components of (X, d) are length
spaces. Furthermore, Frag(X, P7) is still a length space; cf. Lemma C.3.

(i1) If (X, d) is complete, Frag((X, d, i), P™) is generally not complete anymore. How-
ever, notice that a measured semimetric space is always at zero Lgyp-distance from its com-
pletion. Indeed, denoting (X, d, &) the completion of (X, d, 1), recall that X is canonically
mapped isometrically to a subset of X and 7z is the image of y under this mapping. Then, for
any ¢ > 0, the following set is a correspondence of distortion at most 2¢:

={x,y)eX x X st.d(x,y) <e}.
(iii) It is easy to see that
Frag(X/d, P~ /d)/dw"® = Frag(X, P~)/dn ¢

Thus, one may without harm identify a semimetric space with its metric quotient before or
after fragmentation (in fact the collection of the metric quotient of its components).

(iv) Itis easy to see that if (X, d) is a length semimetric space, § > 0 and R is a multiset
of elements of X2, then Coals (X, R) is still a length semimetric space; see, for instance, [16],
pages 62—63. Thus cutting Coals (X, R) through Definition 2.21 is well-defined.

(v) One could have defined the cut a bit differently in order to keep the base set un-
changed: one could have defined P~ to be a new component of X, defining distance on
it via an intrinsic formula. In the sequel, P—4 will have JL-measure zero, so these two def-
initions lead to measured semimetric spaces which are at Lgyp-distance zero, and when
coalescence subsequently occurs, it ignores P 4.

DEFINITION 2.23. Let X = (X, d, 1) be an m.s-m.s which is a length space. Let £ be a
diffuse o -finite Borel measure on X. Let P~ be a Poisson random set on X x R™ of intensity
measure ¢ @ lebg+. The fragmentation process started from X, denoted by (Frag(X,t));>0,
is the random process of m.s-m.s (Frag(X, P;"));>0. When X € A€ we shall always take
£ to be £x, the length-measure on X.

REMARK 2.24.

(i) A similar fragmentation on the CRT is considered in [6].
(ii) Since ¢ is a diffuse measure, almost surely @ (P; ) =0 for any ¢+ > 0. Thus we shall
abuse notation and consider that Frag(X, P, ) is still equipped with p, instead of | X\P -
(iii) Notice that this process inherits the strong Markov property from the strong Markov
property of the Poisson process, and the fact that for A, B C X, Frag(X,A U B) =
Frag(Frag(X, A), B); cf. Lemma C.3.

Now, one wants to define dynamical percolation on measured length spaces by perform-
ing independently and simultaneously coalescence and fragmentation. One needs to be a bit
careful here: when (X, d) is a geodesic space, A C X?> and B C X, evenif BN{x e X:3y e
X, (x,y)or (y,x) € A} = &, one cannot guarantee that Coalg(Frag(X, B), A) is the same as
Frag(Coalg(X, A), B). Indeed, let X = [0, 1] with the usual metric, let B = {2%, n > 2} and
A= {(znlﬁ, 2%), n > 0}. Then there are two components in Coalg(Frag(X, B), A): {0} and
10, 1]\ B, whereas there is only one component in Frag(Coalp(X, A), B): [0, 1]\ B. How-
ever, it will be shown in Lemma 5.9 that if X € S&2Ph P+ is as in Definition 2.13, P~ as in
Definition 2.23 then almost surely,

(2.5) Vi >0, Coalo(Frag(X, P, ), P,") = Frag(Coalo(X, P;"), P;").

This will rely on Lemma C.4, proved in Appendix C. Now, let us define dynamical percola-
tion.
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DEFINITION 2.25. Let X = (X, d, ) be an m.s-m.s which is a length space. Let £ be a
diffuse o-finite Borel measure on X. Let P~ be a Poisson random set on X x R of intensity
measure £ ® lebg+ and P* be a Poisson random set on X? x RT of intensity measure % w2 x
lebg+. The dynamical percolation process started from X, denoted by (CoalFrag(X, t));>0,
is the stochastic process (Coalg(Frag(X, P; ), 73,Jr ))i>0-

Property (2.5) (when it holds!) shows that (CoalFrag(X, t)),;>¢ inherits the strong Markov
property from that of the Poisson processes.

2.8. The scaling limit of critical Erdds—Rényi random graphs. The scaling limit of
critical Erd6s—Rényi random graphs was obtained in [3], Theorem 24, for the Gromov-
Hausdorff topology, and the result is extended to Gromov—Hausdorff—Prokhorov topology
in [4], Theorem 4.1. Let CH, ;5 denote the element of Nzgraph obtained by replacing each edge
of G(n, p(x,n)) by an isometric copy of a segment of length n~!/3 (notably, the distance
is the graph distance divided by n'/3) and choosing as measure the counting measure on
vertices divided by n?/3. [4], Theorem 4.1, and [5], Corollary 2, easily imply the following.

THEOREM 2.26 ([3,4]). Let A€ R and p(A,n) = % + ”4%. There is a random element
G of N3P " such that

— d
Gnoa 9D, Gx,
n—oo

where the convergence in distribution is with respect to the L;uapHu; -topology.

We refer to [3] for the precise definition of the limit G, and to [2] for various properties of

G..

3. Main results. We shall distinguish between two types of results: general ones, and
those emphasized in the Introduction, which are applications (usually not trivial ones) of the
general results to Erd6s—Rényi random graphs.

3.1. General results: Feller and almost Feller properties. In the course of proving the
results for Erd6s—Rényi random graphs, I tried to obtain more general results, such that one
could apply the same technology to other sequences of random graphs, for instance those
belonging to the basin of attraction of G, (see [7] for this notion and Section 8 in the present
paper for a more detailed discussion). This is reflected in what I call below Feller or almost
Feller properties for coalescence, fragmentation, and dynamical percolation. Recall that one
says that a Markov process has the Feller property? if the distribution at a fixed time 7 > 0 is
a continuous function of the distribution at time 0, where continuity is with respect to weak
convergence of probability measures. The almost Feller properties below are variations on
the Feller property, some of them weaker than a true Feller property in the sense that I need
to add some condition in order to ensure convergence, but also a bit stronger in the sense that
I added to the results the convergence of the whole process in the sense of the Skorokhod
topology.

THEOREM 3.1 (Almost Feller property for coalescence). Let X" = (X",d", u"*),n >0

be a sequence of random variables in S and (8" ),>0 a sequence of nonnegative real numbers.
Suppose that:

3Not to be confused with being a Feller process.
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(@) (X™) converges in distribution (for Ly gup) to X°° = (X*°,d*>, u®°) as n goes to
infinity,
(b) 8" — 0,
n—oo
(c) Foranya >0and any T > 0,
3.1) lim sup P(supdiam(Coals: (X", T)) > a) — 0.

neN e—0
Then,

(i) (Coalp(X°,1))r>0 is strong Markov with cadlag trajectories in S,
(ii) (Coalsn (X", t));>0 converges in distribution to (Coalg(X°, t));>0 (for L2 gup),
(>iii) if t" —= Coalgn (X", t") converges in distribution to Coaly(X°°, t) (for Ly Ggup).

Let us make two comments. The first is that there is a full Feller property on A/; cf.
Proposition 5.3. The second is that in the case of Erd6s—Rényi random graphs, condition
(3.1) will be handled through a general technical lemma, Lemma 5.13.

THEOREM 3.2 (Feller property for fragmentation). Let (G"),>0 be a sequence of ran-

. . h C . I .
dom variables in ./\f2grap converging in distribution to G in the L;ug}ﬁf metric. Then:

(1) (Frag(G,1));>o is strong Markov with cadlag trajectories (for L;?g;ﬁf ) in Nzgrap h,

(ii) (Frag(G",t));>0 converges in distribution to (Frag(G,t));>o (for L;l’lg;{u;),

(iii) if " —< t, then Frag(G", t") converges in distribution to Frag(G, t) (for L;uép;;).
n b

THEOREM 3.3 (Almost Feller property for dynamical percolation). Let (X"),>0 be a se-
quence of random variables in ST converging in distribution to X* in the L;lg’g; metric.
Suppose also that for any a > 0 and any T > 0,

(3.2) lim lim sup P(suplength(Coalg (X", T)) > a) =0.

e=>0 p— 400

Then,

(i) (CoalFrag(X®°, t));>0 is strong Markov with cadlag trajectories (for Ly gup) in
Slength’
(ii) (CoalFrag(X",1));>0 converges in distribution to (CoalFrag(X°,1));>0 (for
L Gup),
(iii) if " —=2 t, then CoalFrag(X", t") converges in distribution to CoalFrag(X°,t)

for Ly gup.

A caveat is in order here: if X belongs to S&aph Coalg(X, 1) does not necessarily belong
to S&2P! (but it does belong to S'e"™) since a component with an infinite surplus might form.
In order to stay with components which are real graphs, one needs, and it is sufficient, the
total mass of the components with positive surplus to be finite; cf. [8]. See Section 8 for more
details. Consequently, CoalFrag does not define a Markov semigroup on S&Ph,

In the same vein, notice that in Theorem 3.3, the initial convergence is in L;uép;; and the

conclusion is in Ly gyp. This is unavoidable, for the same reason as above: convergence in

surplus . o
L;ug);; does not prevent the sequence X” from having an infinite number of components

with positive surplus whose total mass diverges when n goes to infinity. These components
can at positive time be glued to large components, augmenting their surplus indefinitely. See
Section 8 for more details.
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Finally, we shall prove a structural lemma for the multiplicative coalescent, Lemma 5.5. It
is at the base of Theorems 3.1 and 3.3. Since its statement is too technical, we do not state it
here, but I see it as one of the main results of the article.

3.2. Main results for Erdos—Rényi random graphs. The main results for Erd6s—Rényi
random graphs are the following.

THEOREM 3.4. (Coalp(Gy, 1)):>0, (Frag(G., t));>0 and (CoalFrag(G,., t)),>o are strong
Markov processes with cadlag trajectories (for Lo gup) in SEPh.

THEOREM 3.5. Ler (G™*1(1),t > 0) be the discrete coalescence process of inten-
sity =3, started at G(n, p(k, n)), equipped with the graph distance multiplied by n='/3
and the counting measure on vertices multiplied by n=2/3. Then the sequence of processes
(G (1), t>0) converges to (Coalg(G).,t),t > 0) for Lo gup as n goes to infinity.

THEOREM 3.6. Let (G™*~(1),t > 0) be the discrete fragmentation process of inten-
sity n=\/3 started at G(n, p(7, n)), equipped with the graph distance multiplied by n=1/3

and the counting measure on vertices multiplied by n=>/. Then the sequence of processes
surplus

(G""(t),t > 0) converges to (Frag(Gy, 1),t > 0) for L, Gup as n goes to infinity.

THEOREM 3.7. Let (G™*(1),t > 0) be the dynamical percolation processes of parame-
ter p(7, n) and intensity n='/3 started with G(n, p(\, n)), equipped with the graph distance
multiplied by n='/3 and the counting measure on vertices multiplied by n=2/3. Then the se-
quence of processes (G™*(1),1 > 0) converges to (CoalFrag(G,,t),t > 0) for Lo gap as n
goes to infinity.

The rate n~%/3 for discrete coalescence compared to n~'/3 for discrete fragmentation and
dynamical percolation process might be disturbing. This is due to the fact that when one
performs dynamical percolation, one resamples the state of the edges. Thus, a specific edge
appears at rate n~!/3 p, which is essentially n~*/3, and disappears at rate n~'/3(1 — p), which
is essentially n~=1/3.

The last result we shall mention is the important fact that on (Gy ), cRr, fragmentation is the
time-reversal of coalescence.

PROPOSITION 3.8. Forany A € R and s € R, (G, Coalg(Gy, s)) and (Frag(Gi 1, ),
Gy.+s)) have the same distribution.

3.3. Description of the rest of the article. Section 4 contains some preliminary results:
lemmas from [5] and technical results about the distance Lggp.

Section 5 is devoted to the proofs of the main results for coalescence: Theorem 3.1 (the
almost Feller property) and Theorem 3.5. Probably the most important work lies inside
Lemma 5.5, which is a statement about the structure of a (multi)graph, denoted below by
W(x, t), which is central in Aldous’ study of the multiplicative coalescent. It allows notably
to reduce the proof of the Feller property from N; to N, where it is much easier to prove.

Section 6 is devoted to the main results for fragmentation: Theorem 3.2 (the Feller prop-
erty) and Theorem 3.6. We shall also show that for G, coalescence is the time-reversal of
fragmentation, which is Proposition 3.8.

Section 7 is devoted to the proofs of the main results for dynamical percolation, Theo-
rem 3.3 (the almost Feller property) and Theorem 3.7. We also prove Theorem 3.4 there,
that is, the fact that the coalescence, fragmentation and dynamical percolation on G, define
processes in SaPh,

We finish the article by some perspectives in Section 8, and some technical tools are gath-
ered in the Appendix.
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4. Preliminary results and tools.

4.1. The multiplicative coalescent. The main tool to analyze our coalescent and fragmen-
tation processes will be a refinement of Aldous’ work [5] on the multiplicative coalescent. In
this section, we recall what we will use of his work.

Let (N;, j)i, jen+ be independent Poisson point processes on the real line with intensity 1.
Denote by T; ; , the nth jump-time of N; ;. For x € Ei, let MG(x, t) denote the weighted
multigraph (with loops) with vertex set N*, weight x; on vertex i and edge multiset:

|_| H{{i,j}} st. Tjjn < %xixj”.

n,i,jeN*

If x := masses(X), this multigraph is of course closely related to the multigraph MG (X, )
which was defined in Section 2.5.2, in the sense that collapsing each component of X to a sin-
gle point and enumerating the components in decreasing order of size transforms MG (X, -)
into a process with the same distribution as MG (x, -). Furthermore, if one forgets loops and
transforms any multiple edge into a single edge, MG (x, ¢) becomes W(x, t), the nonuniform
random graph of [5], Section 1.4. Indeed, the graph W(x, ) has set of vertices N* and each
pair {i, j} is an edge with probability 1 — exp(—tx;x;), independently for distinct pairs. The
size, or mass, of a connected component of those (multi-)graphs is defined to be the sum of
weights x; for i in this component. Denoting by X (x, t) the sequence of sizes, listed in de-
creasing order, of the connected components of W (x, t), Aldous proved in [5], Proposition 5,
that {X (x,?) : ¢+ > 0} defines a Markov process on 62\ which possesses the Feller property.
In words, the dynamics is as follows: two distinct connected components ¢ and ¢’ with sizes
m and m’ merge at a rate proportional to mm’, the product of their sizes, whence the term
multiplicative coalescent.

Following Aldous, we denote by S(x, ¢) the sum of squares of the sizes of the components
of MG(x, t). We shall use later the following lemmas.

LEMMA 4.1 ([5], Lemma 20). For x in I3,

tsS(x,0)

RALAAL S(x.0).
s_seo) S7Sw0

P(S(x,1) > s) <

LEMMA 4.2 ([5], Lemma 23). Let (z;, 1 <i < n) be strictly positive vertex weights,
and let 1 <m < n. Consider the bipartite random graph B on vertices {1,2,...,m} U {m +
1, ..., n} defined by: for each pair (i, j) with 1 <i <m < j <n, the edge {i, j} is present
with probability 1 —exp(—tz;z;), independently for different pairs. Write oty = ) i, ziz, oy =

] ziz. Let (Z;) be the sizes of the components of B. Then

SP(Z Z? >y + 8) <(1+1(a1 +&) as, &>0.

i

REMARK 4.3. As noticed in [5], page 842, Lemma 4.2 extends to z € £%. Notice that in
[5], Lemma 23, the upper bound was stated as (2¢ (o1 + ¢€) + (¢ (et + 8))2)a2, but this cannot
be true, as can be seen by taking ¢t = 0. In fact a term z,i 41 1s missing in the right-hand side
of line —3 in [5], page 841, which impacts all subsequent inequalities. Correcting this slight
mistake leads to the bound above.

In [5], this lemma is used in conjunction with the following one.
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LEMMA 4;4 ([5], Lemma 17). Let G bea graph with vertex weights (X;). Let G be a
subgraph of G (i.e., they have the same vertex-sets and each edge of G is an edge of G) with

vertex weights x; < X;. Let a and a be the decreasing orderings of the component sizes of G
and G. Then

la—all <> a2 > a?
i i

provided ; ai2 < 00.

Finally, the following lemma will be useful to prove convergence in the sense of Sko-
rokhod: it will allow us to control the £ distance between X (x,#’) and X (x<¢,t') fort' <t
by the £>-distance at time ¢.

LEMMA 4.5. Let G = (V, E) be a multigraph whose vertices have weights (x;)icy. If
W CV and E' C E, let comp(W, E’) denote the set of connected components of the graph
(W, E'N (VZV)) and define

2
SW.E):= > (2}0.
mecomp(W,E’) “iem
Now, let W C V be such that no point of V. \ W belongs to a cycle in (V, E). Then, for any
E' CE,

S(V,E)—S(W,E)>S(V,E')— S(W, E'),
provided S(W, E) < oo.

PROOF. Foriand jinV and E’ C E, we denote by “i ~ j € E’” the fact that i and j are
distinct and connected by a path in (V, E’) and by “i ~ j ¢ E’” the negation of the previous
statement, that is, that i = j or i and j are not connected by a path in (V, E’). The hypothesis
on W implies that for any E' C E,

i~jeE i~jeE
and and

i~ieen(Y) T lisigen(Y)

Indeed, suppose that i and j satisfy the left-hand side of the implication above. Since E’ C E,
we have i ~ j € E. From the hypothesis on i and j, there is a simple path y from i to j in
E’ with a point z € y N (V' \ W). Denote by i’ the point on y just before z and by j’ the point
on y just after z. Now, suppose that we had i ~ j € EN (‘g) We would have a path ¥’ in

4.1) Vi, jeW,

(W, EN (V;)) from i to j. Concatenating the portion of y from i to i/, the portion of y from
j to j’ and the path y’, we see that there is a path from i’ to j' in (V, E) which avoids z.
From this path, we can extract a simple path in (V, E) connecting i’ to j’, still avoiding z.
Now, z is a neighbor of i" and j’ in (V, E), and this gives a cycle going through z. Since z
is a point of V \ W, this contradicts the hypothesis on W. Thus, i ~ j ¢ EN (VZV) holds and
(4.1) is true.

Now,

S(V, E/) = inz-i- Z XiXj

ieV i,jeVv
i~jeE’
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=S(W, E’)+ Z xl.z-i— Z XiXj— Z XiXj
ieV\W ijev ijew
i~jeE' i~jeen(W)

=S(W.E)+ Y x7+ > XiX;.
ieV\W ijev
i~jeE andi~j¢E'n(Y)

Now, (4.1) shows that the last sum on the right of the last equation is increasing in E’ C E,
and this shows the result. [

4.2. Tools to handle Lgup. The following proposition is analogous to similar results con-
cerning vague convergence of locally finite measures (see [25], Section 4). With this propo-
sition in hand, it is easy to show, for instance, that if v is made of a countable number of
components with strictly distinct positive masses, then v, converges to v is equivalent to the
fact that for every k, the kth largest component of v, converges, for dgpp, to the kth largest
component of v.

PROPOSITION 4.6. (N, Lgup) is a complete separable metric space, and if v,, n > 0
and v are elements of N, (vy)u>0 converges to v if and only if for every ¢ > 0 such that
v({[(X,d, )] e M : p(X) =¢}) =0, sLp(VL,, v>¢) goes to zero as n goes to infinity.

PROOF. The fact that Lgyp is a metric is left to the reader. Let D be a countable set
densein {[(X,d, )] e M :u(X) #0}. Let D:={>7" ,8x, :meN, X1,..., X, € D}. Itis
easy to show that D is dense in (N, Lgyp). This shows separability.

Now, suppose that v" is a Cauchy sequence for Lgpgp. Then, for any & > 1, fiv" is a
Cauchy sequence of finite measures for §pp. From the completeness of the Lévy—Prokhorov
distance on finite measures on a Polish space we get that for each k, there is some measure
Vi such that

n
Sp(fev”, vi) —— 0.

Notice thatif 2 <k <, vy = v; on M>%' Define
—1

so that for any k > 1, fxv = v;. Then, v is an element of A/ and
LGHp(v", v) B 0,
n—oo

showing the completeness of (N, Lgup).
Finally, suppose that Lgyp(v”, v) goes to zero as n goes to infinity and let € > 0 be such
that v({[(X, d, w)] € M : u(X) =¢}) =0. Then, for any o > 0, let k be such that

1
— <8
=
let N be such that
Vn > N,VA e BWM), fiv(A) < fiv"(A%)+a and fiv"(A) < frv(A%) + .
Then, forn > N and B € B(M+;),
Vse(B) <v(BN M>e+a) + V(M- \M>s+a)

= fiv(BN M>e+a) + V(M- \M>s+a)
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=< fkvn((B N M>s+a)a) + o+ 1)(-/\/l>e \M>s+a)
= Vlg((B N M>s+a)a) +o+v(M., \ Mseta)
= VZS(BO[) +a+ v Mg\ Moera),

where we used the fact that (B N M+ .44)* C M., and f; equals 1 on M. .. Also, for
n> N and B € B(M-,),

vl (B) = fiv"(B)
< fiv(B*) +«a
<v(BY) +a
SV(BYNMse) +vMogg \ Mse) +a
=Vop(B*) + v(Mspg \ Msg) + .

To complete the proof, note that since v({[(X, d, )] € M : u(X) =¢}) =0, then
VMo \ Magio) F V(Moo \ M=) a——:(_)) 0. O

We shall always use the following lemmas to bound Lgyp from above.

LEMMA 4.7. Let X = (X,d, ) and X' = (X', d’, u') belong to N and fix ¢ € 10, %].
Suppose there exist two injective maps

o :comp(X-.) — comp(X') and o' :comp(X.,)— comp(X)

such that
Vm € comp(X~,), dgup(m,o(m)) <«
and
vm' € comp(X.,), dgup(m’,o’'(m)) <a.
Then

Lcup(vx, vy’) < 8a#comp(X~._y) + 16,
and if ¢ > «, for p > 0,

Zmecomp(X) wu(m)P

-y + 16e¢.

Lgup(vx, vy) <8«

PROOF. Consider any &y > €. For a component m in comp(X-¢,), the difference be-
tween the masses w(m) and u'(o(m)) is at most «, and the same holds between m’ and

o'(m’) when m’ € comp(X;SO). Thus ¢’ sends comp(X;SO) into comp(X - z,—q) and

#{m € comp(X_, )} <#{m € comp(X=¢y—a)}

>£&0

Now, let k£ > 1 be such that
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Let B € B(M_ . ) Then, for any m in comp(X _ . )N B, o (m) belongs to comp(X’) N BY.
Then notice that fk is k(k + 1)-Lipschitz.

fivx(B) = > fi(m)
mecomp(X>L)ﬂB
k+1
< > fi(o(m)) + ak(k + D#comp(X_ 1)
mecomp(X>L)ﬂB K
k+1

< > fulm) +ok(k+ Di#comp(X_ 1)
m’ecomp(X”) "
m'eBY

= frvy (B%) + ak(k + 1)#comp(X>k1 | )
+
and symmetrically

frvy (B) < frvx (B*) + ak(k + 1)#comp(X’

>ﬁ)

Thus, for any k£ > 1 such that ﬁ > e,

SLp(frvx, fivy) < ak(k + D#comp(X _ X )\/#comp(X>L)
T
< ak(k+ D#comp(Xs.—qy).
Thus,

Lgup(vyx, vy’)

<ottcomp(Xsea) Y. 27%k(k+D+ Y 27F
k<%—1 kzé_l

< 8a#comp(X-._y) + 16¢. |

If X and X’ are two m.s-m.s with a finite number of finite components, one may measure
their distance with dggp (using Definition 2.5), with Lggp (using Definition 2.9) or with

I Ainf  sup  dgup(m,o(m)) =1A8p(vx, vy),
o mecomp(X)

where the infimum is over bijections o between comp(X) and comp(X’). Those three dis-
tances do not necessarily coincide, and the following lemma clarifies the links between them.

LEMMA 4.8. Let X =(X,d, ) and X' = (X', d’, u') be two m.s-m.s in N with a finite
number of components.

(i) If dgup(X, X') < 00, then there is a bijection o from comp(X) to comp(X') such
that:

Vm € comp(X), dcup(m, o (m)) < 2dcup(X, X'),
and thus,

LGHP(X, X/) < 16dGHp(X, X/)#comp(X).
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(i) If there exists a bijection o from comp(X) to comp(X') such that

sup  dgup(m, o (m)) < oo,

mecomp(X)
then
deup(X,X') < sup  dgup(m, o (m))#comp(X),
mecomp(X)
and

Loup(X,X') <8 sup  dgup(m, o (m))#comp(X).

mecomp(X)

PROOF.  Proof of (i). Suppose that dggp(X, X') <& <o00. Let R € C(X, X') and 7 €
M (X, X") be such that
1 )
D(m;pu, ') v 3 dis(R) v 7 (R¢) <e.
Since R has finite distortion,
V(x,x'),(y.))€R, dx,y)=+00 & d'(x',y)=+0c0

which shows that each component m of X (resp., X’) is in correspondence through R with
exactly one component o (m) of X’ (resp., X). o is thus a bijection, and R N m x o (m) €
C(m, o (m)) and has distortion at most 2¢. Furthermore,

Tlmxom (RNm x o(m))) =7 (R Nm x o(m)) <e.
Finally, for any A € B(m),
|7 lmsco (m) (A X 0 (m)) — wlm(A)| < |7 (A x X') — w(A)| + 7 (A x o (m)°)
<&+ n(R°)
<2¢
and similarly, for any A" € B(o (m)),
|7 o my (m X A”) = 15 my (A")| < 2e.
Thus,
Vm € comp(X), dgup(m,o(m)) <2e,

and the consequence on Lgpp(X, X’) comes from Lemma 4.7 applied for any & > 0 small
enough, and letting ¢ go to zero.
Proof of (ii). Suppose that there exists a bijection o from comp(X) to comp(X”) such that

sup  dgup(m,o(m)) <& < oo.
mecomp(X)

Then, for any m, let R,,, € C(m, o (m)) and =, € M (m, o (m)) be such that
1.
D(Trm; Mlms Ml:)‘(m)) Vv 3 dis(R,,) Vv ﬂm(RICn) <e.

Let 7 =} ccomp(x) Tm and R = U,y ccomp(x) Rm- Then R is a correspondence between X
and X',

1 1
—dis(R) < —supdis(R;;) <e,
2 2 m

7(RE) =D 7m(RY,) < #comp(X)e.
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Furthermore, for any A € B(X),
T(AxX)—pn@|< > |7((Anm) x X')—u(Anm)|

mecomp(X)

= Z |7 ((ANm) x o(m)) — pn(ANm)|

mecomp(X)
<#comp(X)e
and symmetrically, for any A" € B(X'),
|7 (X x A") — ' (A")| < #comp(X)e.

Thus

D(m; u, 1') < #comp(X)e,
and we get

deur(X, X') < #comp(X)e.
The statement on Lgyp(X, X') follows from the hypothesis and Lemma 4.7 applied for any

¢ > 0 small enough, and letting &€ go to zero. [J

Let us end this section with two remarks. First, notice that Lgygp makes sense even between
counting measures whose atoms are semimetric spaces. Notice also that §;p(vy, 0) is at most
the number of connected components of X. Thus

Lopp(vx., 0) < 22~ CWPmecompe 10m) ™
One sees thus that if X” is a sequence of m.s-m.s such that

sup uim) ———0
mecomp(X") n—>+00
and whatever the diameters of the components are, then vy» converges to zero for Lgup,
which can be seen as an empty collection of measured metric spaces. Notably, supdiam is not
continuous with respect to the Lgpp-distance.

5. Proofs of the main results for coalescence.

5.1. The coalescent on Ni. On N, coalescence behaves very gently since there is
a finite number of coalescence events in any finite time interval. Notably, for X € N,
(Coals (X, 1)):>0 is clearly cadlag. The aim of this section is to prove Proposition 5.3, which
is essentially a Feller property, together with a variant, Proposition 5.4.

LEMMA 5.1. Lete€]0,1[, X = (X,d, ) and X' = (X', d’, /) be two m.s-m.s with a
finite number of finite components.

Suppose that P = {(x;, y;), 1 <i <k} are pairs of points in X and P' = {(x],y)),1<i <
k} are pairs of points in X'. Suppose that there exists 1 € M(X, X') and R € C(X, X') such
that

1
D(m; u, ') v (RE) v 3 dis(R) <e
and that for any i <k, (x;, x]) € R and (y;, y;) € R. Then, for any 8,8 > 0,
dnp(Coals (X, P), Coaly (X', P')) < (26 + |8 — 8'[) (k + 1).
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PROOF. This is essentially4 Lemma 21 in [3] and Lemma 4.2 in [4], thus we leave the
details to the reader. O

LEMMA 5.2. Lete€]0,1[and § >0, X = (X,d, ) and X' = (X', d’, ') be two m.s-
m.s with a finite number of finite components. If there exists 1 € M(X, X') and R € C(X, X')
such that

) 1
D(m; pu, 1) v (RE) v Edis(R) <e¢

then one may couple two Poisson random sets: ‘P of intensity %u®2 ® lebjo.r) and P’ of
intensity %(,u’)®2 ® lebjo, 11, such that with probability larger than 1 — Te(10 4 8 (X) +
8u' (X)) —2e +16 = &|, foranyt <T,

daup(Coals (X, P;), Coaly (X', P))) < (T(X)* + 1)y/2e + |8 — &'|.

PROOF. Let P(u) denote the distribution of a Poisson random set of intensity measure j.
Using the coupling characterization of total variation distance and the gluing lemma (cf. [29],
page 23), one may construct three Poisson random sets on the same probability space, P, P
and P’ such that:

.....

() P =X}, Y/ t)i=
(i) P=(X;, X}, ¥;, ¥/

i°

.....

.....

and furthermore

.....

1 1
< HP(E;L‘X’Z X leb[o,T]) — P(Enfg’z X leb[o,T]> H
and

..........

Now, for any 7" > 0, using Lemma E.1 in the Appendix,

1 1
HP<§M®2 X leb[(),T]> - P(Eﬂigz X leb[(),T]) H

1 1
< 2” E,u®2 X leb[O,T] —57'[1@)2 X leb[o’T]

=T x|
< 2T (u(X) +m1 (X))l — 1|
<2Te(2pn(X) +¢)

by hypothesis. Similarly,

1 1
HP(E(M/)@ x leb[O,T]) - 73(5”582 X leb[o,T]) H <2Ts(2u/(X') +¢).

4[4], Lemma 4.2, is stated for trees and for § = 0.
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Furthermore, (X;, X/,%)._,
leb[()’]‘]). Thus,

5 and (Yi,l?i/,fi)izl & both have distribution 77(%71 ®

..........

and

P(3i <N, (Y;,Y]) ¢ R) < Te.
Let £ be the event that N = N’ and for any i, (X;, )?;) e R and (Y;, 171-’) € R. Altogether, we
get that £ has probability at least 1 — Te(10 + 8u(X) + 8u/(X)).

Since the distortion of R is at most 2¢, we get using Lemma 5.1 that on the event &, for
anyt <T,

daup(Coals (X, Pr), Coalg: (X', P))) < (N 4+ 1)(2¢ + |5 — 8')).

Since N has distribution P( % w(X)*T), Markov’s inequality implies

T(X)?
IP(N > L) <\ J2e+1]5 -
2 +16 6|
this gives the result. [

In the proposition below, recall from Section 2.1 that convergence of processes uses the
Skorokhod topology (here for the metric space (N1, L1 ggp)), which we shall always prove
using Lemma A.2.

PROPOSITION 5.3. Let X" = (X",d", u"), n > 0 be a sequence of elements in N1 and
(6M)n>0 a sequence of nonnegative real numbers. Suppose that:
(@) (X™")n>0 converges (for L1 gap) to X*° = (X°°,d*°, u®>°) as n goes to infinity,
(b) 8" —— 5.
n—o0
Then

(i) (Coalsn (X", 1));>0 converges in distribution (for L1 gap) to (Coalse (X, 1));>0,
(i) ift" —= 0 Coals (X", t"") converges in distribution (for L1 gup) to Coalsee (X*°, 7).

PROOF. Letus fix ¢ €10, 1[. Let gg € 10, £/2[ be such that gy ¢ masses(X ) and

w(X iogo) €.
Proposition 4.6 shows that dp(XZ, , X, ) goes to zero as n goes to infinity. Let & be a
positive real number to be chosen later, depending only on ¢, g9, ©°°(X°°) and T'. Let n be
large enough so that

5LP( >&0° >€0) 5 5
8" — 8% <

and

|masses(X") — masses(X*°)|, <e.

Let k :=#comp(XZ, ) and notice that

>g0
w(X>)

€0

k <
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Lemma 4.8 shows that
donp(X2,, X2,)) <¢&

Notice also that

W (X!

<gg

) = n*(XE

2,) + |masses(X") — masses(X*°) [, < 2,

and that
w"(X") < u™(X™) + |masses(X") — masses(X )|, < u>(X*) +e.

Thus, using Lemma 5.2, one may couple the coalescence on X2, and X7 in such a way
that there is an event A satisfying the following. On A, forany t < T,

dcup(Coalsn (X", , 1), Coalseo (Xiogo, 1) <a(&, e, T, u> (X))

>£0°

with

o0 XOO
a(8, 60, T, u>°(X)) := (TMOQ(XOQ)2 + 1)\/2§L) +F
€0
and furthermore,
P(A°) < B(E,e0, T, (X))

with

L P (X)

B(E.£0. T. (X)) 1= TE— (10 + 161> (X)) + 2 +2\/25M +8

&0 &0
Using Lemma 4.8, we obtain that on A, forany ¢ < T,
n peXe) 50 (1700
Lgrup(Coalgn (X>80, r), Coals (X2 o 1) < 16?05(8, g0, T, u>°(X*)).

Now, independently from this coupling, let us couple two independent Poisson random
sets on (X")?2 \ (X>80 x [0, T] and (X*°)?2 \ (X>80)2 x [0, T'] (with intensities given by the
restrictions of u” and u°). Let B denote the event that these Poisson random sets are both
empty. Then

P(BY) <1 e T WX (X)) 4 s R XX (X )7

<Tu" (X" (<go)+Tu (X*)u>(XZ,)
< 6Te(u®(X®) + &) = y (e, u® (X, T).

On A N B, we obtain that forany t < T,
o0 o0
M)a(é,so, T, n>°(X)).

LGHP(CoaLsn (Xn, t), Coalg(Xoo, t)) < 2(1 +8
€0

Furthermore,
P((ANB)) < B(& 80, T, (X)) + (e, u™(X*>), T).

Thus, one may choose £ as a function of T, ¢, g9 and % (X°°) such that with probability at
least 1 — Ce,

LGHP(Coal(gn (Xn, t), Coalg (Xoo’ l‘)) <e

for some finite constant C depending only on w(X°°).
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Furthermore, since the multigraphs M(G(X°, t) and MG(X", t) are the same for any ¢ <
T in this coupling,

|masses(Coals» (X", 1)) — masses(Coals (X, 1)) |,
< | masses(Coalsn (X2, , 7)) — masses(Coals(X23 , 7)),
+ [ masses(Coals (X2, , 1)) — masses(Coals (X Z;, , 7))

< [masses(XZ, , 1) —masses(X2% . 1)[, + n(X%,) + n(XZ,)

>g0° >e0
<A4e.
This shows (i). To obtain (ii), notice that for any s and n > 0,
P(3r € [s, s + 1] : Coalse (X, 1) # Coalse (X, 5)) < 1u(X>).

Thus, (if) is a simple consequence of (i). [

We shall need the following variation of Proposition 5.3 when studying simultaneous co-
alescence and fragmentation in Section 7.

PROPOSITION 5.4. Let X" = (X", d", u"), n € N be a sequence of random variables in
N lgraph and (8"),>0 a sequence of non-negative real numbers. Suppose that:

, Lo . 1 . ,
(a) g;)l( "n>0 c(sonverges in distribution for leugp};]}f to X° as n goes to infinity,
% .

Then:

(i) (Coalsn (X", 1));>0 converges in distribution (for the Skorokhod topology associated
1o L'8s) 10 (Coals (X, 1))20,
surplus

(i) ift" —2 t, Coalsn (X", ") converges in distribution to Coals(X°, 1) for L} Gup-
n 9

PROOF. Notice first that when X belongs to /\/’lgraph, then with probability one,

Coals (X", 1) is in N; lgraph for any ¢ > 0. Indeed, since X has finite mass, there is with proba-
bility one a finite number of points in the Poisson process P, on X2 for any 7 > 0.

Now, the proof is essentially the same as the one of Proposition 5.3, except that since
(X™")n>0 converges to X for L?lfépll{l];, one may use délhq[’,lus instead of dgyp. The fact that the
multigraphs M(G (X", s) and MIG(X°, s) are the same for any s < T, and that in the coupling
no point of the Poisson processes touches X2, or XZ; implies that for each component of

Coalsn (X2, 5), its surplus is the same as the surplus of the corresponding component in

Coals(XZ ,s). O

B

5.2. Structural result for Aldous’ multiplicative coalescent. Recall the definition of the
multigraph MG (x, 1) for x € £2 in Section 4.1. We shall use notation analogous to those in
Definition 2.8. For instance, for x € £2+, Xx<¢ denotes the element in €2+ defined by

VieN, x<(i)=x()1i)<e-
Also, fori € N, x \ {i} denotes the element in ¢ defined by
VieN, (x\{i)()=x()1jx-

Notice that at time 0, the components of MG (x, 0) are the singletons {i} for i € N. Let us
fix some ¢ > 0 and say that a component of MG (x, #) is significant if it has weight larger than
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size > €1
size € [e2, €1
size < €9

Heart

FI1G. 1. The structure of a significant component.

¢, that is, the sum of the weights x; of its vertices i is larger than ¢. In Lemma 5.5 below and
its corollary, we shall derive three scales (at time 0), namely, Large, Medium and Small such
that with high probability (as & goes to zero), every significant component of MG(x, t) is
made of a heart® made of Large or Medium components of MG (x, 0) to which are attached
hanging trees of small or medium components of MG(x, 0) such that the component of the
trees attached to the heart are small components (see Figure 1) and the mass contained in
the hanging trees is at most medium. Furthermore, these scales depend on x, ¢ and ¢ through
the functions o — ||x<¢ |2 and K — P(S(x, t) > K). This picture will be fundamental in the
proof of the Feller properties of the coalescent and dynamical percolation processes. Indeed,
it will imply that small components of X € N, have small influence on the geometry of the
large components of Coal(X, ¢). This will allow us to approximate Coal(X, ¢) by a truncated
version, Coal(X s, r) for & small enough, and to reduce the Feller property on N, to the
Feller property on A7, where a finite number of identifications occur on every finite interval
of time.

LEMMA 5.5. Letx e ZZ(N), T >0and0 < ¢ < 1. Suppose that:

(1) K > 1 is such that:

) - = ]00’
(i1) e1 € (0, &) is such that

g2

0) < ,
100(1+ T + KT2)

S(-xfé‘] )

SThis term is not standard, but as will be apparent in the subsequent proofs, the heart of a significant component
of MG(x, t) is uniquely defined when x, ¢ and the weight of a small component are defined. This notion has
nothing to do with the core of a graph.
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(ii1) & € (0, &) is such that
28%82
0) < :
100(1 + T(K +2))?
Then with probability larger than 1 — ¢, the following holds for any t < T

S(xfé‘za

(a) every component of MG (x, t) of size larger than e contains a component of MG (x, 0)
of size larger than €.

(b) no component of MG (x<g,, 0) is contained in a cycle in MG(x, t).

(c) for each component m of MG (x<,,, t) and each component m’ of MG (x~.,, t), there
is at most one edge between m and m' in MG(x, t).

(d) S(x, 1) — S(Xsp,, 1) < 2e7.

(e) for any component {i} of MG(x, 0) of size larger than g1, the difference between the
sizes of the component containing i in MG(x, t) and the one containing i in MG(x-,,t) is
less than €.

We may now state a precise version of the structural decomposition sketched just before
Lemma 5.5. We state it uniformly on a convergent sequence in @2\ because it will be conve-
nient to prove the almost Feller property on S, Theorem 3.1.

When ¢, < &1 < ¢ are three positive real numbers, we shall say that a component is sig-
nificant if it has size larger than e, Large if it has size larger than &1, Medium for a size in
(&2, £1] and Small for a size not larger than &;.

COROLLARY 5.6. Let x" be a sequence in 62\ converging to x*° in €2. Then, for any

e>0andany T > 0, there exist e2 < g1 < ¢ such that for any n € N, with probability at least
1 — e. The following holds for any t € [0, T]:

(a) every significant component of MG (x", t) is made of a connected heart made of Large
or Medium components of MG (x", 0) to which are attached hanging trees (each one attached
by a single edge to the heart) of Small or Medium components of MG (x", 0) such that the
components of the trees attached to the heart are Small components and the mass contained
in the hanging trees is less than &1,

(b) no Medium or Small component of MG (x", 0) belongs to a cycle in MG(x", t),

2

(c) S(x", 1) — S(xﬁez, 1) < 2e7.

The proof of Lemma 5.5 relies essentially on Aldous’ analysis of the multiplicative coa-
lescent.

PROOF OF LEMMA 5.5. If for some ¢t < T, there exists a significant component of
MG (x, t) which does not contain any large component of x, then S(x<¢,,?) > 2 and thus
Sx<g,, T) > g2, since S(x, -) is nondecreasing. Thus Lemma 4.1 shows that the probability
of (a) is larger than 1 — £/4, as soon as hypothesis (ii) of Lemma 5.5 holds.

Let {i} be a component of MG (x, 0) and define the event

A; = {there exist at least two edges of MG(x, T') connecting i
to the same component of MG (x \ {i}, T)}.

Due to the properties of the Poisson process defining MG (x, T'), one sees that conditionally
on MG(x \ {i}, T), the number of edges of MG(x, T') connecting a fixed component m of
MG(x \ {i}, T) to i is a Poisson random variable with parameter »_ jem TXixj. Thus,

P(A[IMG(x \ {i}, T)) < 2. (”" 2 x-")2

m c.c. of MG(x\{i},T) jem

=T2x?S(x\ (i}, T),
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thus,

. P(A; N{S(x, T) = K}) <E[P(A;IMG(x \ {i}, T))Lsc\(i), 1<K ]
' < KT%2.

We thus obtain
IP( U A,-) < KT?S(x<¢,,0) +P(S(x, T) > K),
ieNs.t. xj<e;

which shows that the probability of (b) is at least 1 — &/4 as soon as hypotheses (i) and (ii) of
Lemma 5.5 hold.
The proof of (c) is similar. Let

By := {there exist at least two edges of MG(x, T') connecting a component m of

MG (x<,, T) to a component m’ of MG (x-¢,, T)}.

Then
IP)(BT |MG(X>81 ) T)v MG(x§81 ) T))
2
= ¥ > (ZwxXwr)
m c.c. of MG(XSSI ,TYm’ c.c. of MG(}C>31 ,T) Yiem  jem'
=TS (x<e,. T)S (x5, T).
Thus,

€ €
P(Br) < 5 +B(S(r.T) 2 K) +B(S(ree 1) 2 5KT2>’
which shows using Lemma 4.1 that the probability of (c) is at least 1 — £/4 as soon as hy-
potheses (i) and (ii) of Lemma 5.5 hold (notice that B, C By ift <T).

Now, let Y be the supremum, over Large components {i} of MG(x, 0), of the difference
between the sizes of the component containing i in MG(x, t) and the one containing i in
MG(x~¢,, ). Notice thatif ¥ > o, then S(x, ) > S(x~¢,, 1) +2¢e1a, which implies S(x, T) >
S(xs¢,, T) + 2¢1a when (b) holds, thanks to Lemma 4.5. Thus points (e) and (d) will be
proved if we show that S(x, T) > S(xs¢,, T) + 28% with probability at most & /4.

Define the event

C={S(x,T)> S(x=e,, T) +2¢7}.
Lemma 4.2 shows that
IP’(C and S(x,T) < K and S(x<¢,, T) < ﬂ})
2 B

<(1+T(K +2¢7)" =.
261

Thus,

B

P(C) < (1+T(K + 2))2E
1

+P(S(x<¢,, T) > B) + P(S(x, T) > K),

which is less than ¢ /4 if we take
28%8
B =
100(1 4+ T (K +2))?
and if hypotheses (i), (ii), and (iii) of Lemma 5.5 hold. [
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PROOF OF COROLLARY 5.6. Since x” converges to x> in £2,

sup[xZ, [, —> 0.
neN e—0
Also, the Feller property of the multiplicative coalescent in £, cf. [5] implies that the distri-
butions of the sizes of MG(x", T) for n € N form a compact family of probability measures
on ¢2. Thus,
(5.2) supP(S(x", T) > K) —— 0.
neN K—+o0

This shows that for any T and &, one may find K, &1 and &, such that the three hypotheses of
Lemma 5.5 hold for x” uniformly over n € N.

Now suppose that x, ¢, €, 1 and &7 are such that (a), (b), (e) and (c) of Lemma 5.5 hold. Let
m be a significant component of M(G(x, 7). It contains a large component {i} of MG (x, 0) by
point (a). Let o (m) denote the component of MG (x~,, ) containing {i}. Point (e) implies
that two large components of MG(x, 0) are connected in M(G(x, ¢) if and only if they are
connected in MG(x~,, t), that is, only through Large or Medium components. This shows
that o (m) does not depend on the choice of the large component {i} included in m and that
there cannot be any large component in m \ o (m). Let us define the heart of m as o (m). It is
made of Large or Medium components, and m \ o (m) is a graph of medium or small compo-
nents. Now if a medium component in m \ o (m) was directly connected to some component
of o (m), it would be connected to m in M(G(x~,, t), and thus would belong to o (m). Thus,
the exterior boundary of o (m) in m is made of small components. Point (b) shows that no
Medium or Small component of MG(x, 0) belongs to a cycle in MG(x, ¢), which implies
notably that m \ o (m) is a forest, and point (c) shows that each tree of this forest is attached
by a single edge to o (m). U

A useful by-product of the proof of Lemma 5.5 and Corollary 5.6 is the following simple
lemma.

LEMMA 5.7. Forxet? e>0andT > 0 let A(x, e, T) be the event that for anyt < T:

o MG(x<,,?) is a forest and
e there is at most one edge between any connected component of MG (x<¢, t) and any com-
ponent of MG (x=,, ).

Suppose that x" converges to x> in 62\ as n goes to infinity. Then, for any T > 0,

inf P(A(x",&,T)) —> 1.

neN e—0

REMARK 5.8. Let us give an example of an m.s-m.s which is in A but not in S. Let
I;, i > 1 be disjoint copies of the interval [0, 1], with its usual metric, and equip /; with the
measure %(80 +81). Then X € M> \ S. In fact, thanks to Lemma 5.5, for any ¢ > 0 and t > 0
every component of Coalg((X)-¢, ) is unbounded since it contains a forest of an infinite
number (since the sizes are not in £!) of components of diameter 1.

5.3. The coalescent on S. The aim of this section is to prove Theorem 3.1. We shall first
prove two lemmas.

LEMMA 5.9. Let X be an m.s-m.s.

(i) If X € S then, almost surely, for any t > 0, Coaly(X, t) belongs to N>.
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(ii) If X € N3 and is a length space, then, almost surely, for any t > 0, Coaly(X, 1) is a
length space and the commutation relation (2.5) holds.

(iii) If the components of X are R-graphs then, almost surely, for any t > 0, the compo-
nents of Frag(X , t) are R-graphs. Consequently, if X belongs to S then, almost surely,
for any t > 0, Frag(X, t) belongs to S&",

PROOF.

®

(i)

Suppose that X belongs to S and let us show that with probability one, Coaly(X, t) has
totally bounded components for any ¢ > 0. Let « > 0 and ¢ € ]0, 1[ be fixed and let

B(e) := {supdiam(Coalp(X <, T)) < a}.
Since X satisfies (2.3),
P(B(e)¢) — 0.

e—>0
Now, we perform coalescence and use the obvious coupling between Coalp(X, ¢) and
Coalp(X~,, t). Recall the multigraph MG(X, f) introduced in Section 2.5.2. We let
S(X, t) denote the sum of the squares of the masses of the components in Coaly(X, #)
(or MG(X, 1)). Let &1 and &, be positive numbers to be chosen soon and let A(¢g) be the
event that for any t < T':

(a) every significant component of MG (X, ¢) is made of a connected heart made of
Large or Medium components of MG (X, 0) to which are attached hanging trees (each
one attached by a single edge to the heart) of Small or Medium components of MG (X, 0)
such that the components of the trees attached to the heart are Small components and
the mass contained in the hanging trees is less than ¢,

(b) no Medium or Small component of MG (X, 0) belongs to a cycle in MG (X, t),

(©) S(X,1) — S(Xsgy, 1) <267

Then Corollary 5.6 (with x" = x* = masses(X)) shows that one can choose 1 and &
(as functions of ¢, T and masses(X)) such that

P(A(e)°) 2 0.

Then, on A(e) N B(g), we have that for any ¢ € [0, T'], any component of size larger than
¢ of Coalp(X, t) can be covered with a finite number of balls of radius 2«. Indeed, if m
is such a component, one may first cover the heart with a finite number of balls of radius
« since the heart of m is composed of a finite number of totally bounded components
of X glued together, and then if we increase the radius to 2«, those balls will cover
the whole component m because we are on B(g). Making ¢ go to zero, we see that
with probability one, for any ¢ € [0, T'] every component of Coaly(X, ¢) can be covered
with a finite number of balls of radius 2«. Then, letting & go to zero, we see that with
probability one, for any ¢ € [0, T'] every component of Coaly(X, ¢) is totally bounded,
so Coaly(X, t) e N>.

The fact that Coalp(X,?) is a length space is an immediate consequence of Re-
mark 2.22(iv). If X = (X, d, u) € N3, using the same notation as above, one can still
guarantee that

P(A(e)") — 0.
e—0

On A(e), for any x and y in a component of Coaly(X, ¢) of mass larger than ¢ (i.e.,
a significant component), there is only a finite number of simple paths from x to y,
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and every such simple path takes a finite number of shortcuts of the Poisson process
P;". Letting & go to zero, this holds almost surely for any component of Coal(X, P;").
Furthermore, since £x is diffuse and P~ and P* are independent, almost surely one
has, for any #, and using the notation of Lemma C.4,

Prln{xeX:3yeX, (x,y)or (v,x) eP ) =2.

Thus, Lemma C.4 shows that (ii) holds.

(iii) Using Lemma 2.19, X is isometric to Coalg(X’, A) where X’ is an m.s-m.s whose com-
ponents are real trees, and A C U,pecomp(x”) m? is finite on any m?. Again, since £y is
diffuse, almost surely, for any ¢, and using the notation of Lemma C.4,

Pt_’dﬂ{xEX:EIyeX,(x,y)or(y,x)eA}:@.
Thus, Lemma C.4 shows that
Frag(X, P;”) = Frag(Coaly(X’, A), P;”) = Coaly(Frag(X', P,"), A).

The components of Frag(X’, P, ) are R-trees, thus the components of Coaly(Frag(X’,
P;), A) are R-graphs. The last part of (iii) follows from the fact that SEPh is clearly
stable by fragmentation. [

REMARK 5.10.

(i) If X € N and P is as in Definition 2.21, it may happen that Frag(X, ) has a compo-
nent of mass zero. In this case, Frag(X, P) does not belong to N, strictly speaking. However,
Frag(X, P) is at zero Lgpp-distance from an element of N\, which is Frag(X, P) U0 Moe -
In fact, we could have defined A\ as the quotient of the set of counting measures on M with
respect to the equivalence relation defined by being at zero Lgyp-distance. This space is iso-
metric to N modulo the addition of components of null masses. Then Frag(X, P) would
have always belonged to V. But I feel that it would have obscured the definition of A/. In the
sequel, we shall keep in mind that components of null masses are neglected.

(ii) It is apparent from the proof of point (ii) above that when X belongs to S2PP, then
Coalg(X, r) has components which are precompact R-trees with a countable number of iden-
tifications. Thus, Coalg(X, ¢) is in S&P" if and only if the numbers of identifications on any
component is finite. One consequence of this is that if Coaly (X, #) is in Se&aph for some 1 > 0,
then Coaly(X, s) and CoalFrag(X, s) are in SEPP for every s € [0, 1].

LEMMA 5.11. Let X" = (X",d", u"), n > 0 be a sequence of random variables in S
and (8"),>0 be a sequence of nonnegative real numbers. Suppose that:

(i) (X™) converges in distribution for Ly gup to X = (X°°,d*°, u®>°) as n goes to
infinity,
(i) 8" —= 0,
(iii) Forany o > 0and any T > 0,

lim sup P(supdiam(Coals» (X2, T)) > ) — 0.

neN e—0
Then, with probability 1, Coaly(X*°, t) belongs to S for any t > 0.
PROOF. First, the Feller property of the multiplicative coalescent, [5], Proposition 5,

shows that masses(Coalg: (X", T)) converges in distribution (in 62\) to masses(Coaly(X°,
T)). Together with Skorokhod’s representation theorem and Lemma 5.7, this implies that

(5.3) P[MG(XZ,, T) is not a forest| — 0.
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Notice that under the obvious coupling, when MG(XZ;, ¢ + s) is a forest, Lemma 2.16 im-
plies that

supdiam(Coalg(Coalg(X >, 1) _,, s)) < supdiam(Coalo(XZ;, 7 + 5)).

<e’
Thus, thanks to Lemmas 5.7 and 5.9 it is enough to show that with probability one, X*°
satisfies (2.3) for any ¢ > 0.
Let Py be the distribution of X°°. Then for Py~-almost every X and every ¢ € [0, T']
and o > 0,
lim sup P[supdiam(Coaly(X <, 1)) > ]

e—0

= lim sup P[supdiam(Coalp(X <, 7)) > o and MG(X <, T) is a forest]

e—0

< limsup P[supdiam(Coalp(X <¢, T)) > o and MG(X <, T) is a forest].

e—0

Thus,
Py {X € N3 : sup lim sup P[supdiam(Coaly(X <, 1)) > o] > O}

t<T &—0
a>0
= sup Py [X : lim sup P[supdiam(Coaly(X <¢, 7)) > o] > O]
a>0 e—0

= sup sup lim Py~{X : P[3¢’ € ]0, ¢], supdiam(Coalp(X </, T)) > a] > n}

a>0n>0¢—>

1
< sup sup hm —P[3¢’ € ]0, €] : supdiam(Coalo(X S, T')) > a].
a>0p>0e—07

Thus, using (5.3), and denoting x°° := masses(X°), it is sufficient to prove that for any
T>0,a>0andé >0,

sup supdiam(Coalo(XZ,/, T)) > «
£’€]0,¢]
4 P — 0.
54) and e—0 0
MG(xZ3, T) is a forest

Notice first that there exists a decreasing sequence of positive numbers (¢)) >0 going to
zero and such that

VpeN, Ple, ex®]=0.
Fix £ > ¢ and choose the sequence so that &g < . Then, using the obvious coupling and

Lemma 2.16,

sup supdiam(Coalp(XZ,/, T)) > «
£’'€]0,¢]
and

MG(xZ%, T) is a forest

< P[supdiam(Coalo (X e T)) > o and MG (xZ3 is a forest].

& T)i

Then, we have

hrr}) P(supdiam(Coalg(XZ,, T)) > « and MG(xZ3, T) is a forest)

<g’

= lim P(supdiam(Coalo(XZ; . T)) > c.
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Furthermore, define X, ), := (stm)>ep for m < p. Then

P(supdiam(Coalp(XZ;, , T)) > &) = pli{%o P(supdiam(Coaly(X 57 ,, T)) > ).

m,p?’

Now, Proposition 5.3 implies that (Coalsn (an’ p T) converges in distribution to

(Coalp(X ,‘f p T) for any m < p. Since we are dealing here with finite collections of m.s-
m.s with positive masses, this entails that for any m < p,

P(supdiam(Coaly (X, ,, T)) > @)

m,p>
< lim sup P(supdiam(Coals: (X3, ,, 7)) > @)
n—oo
< linrisolép P(supdiam(Coalsn (X3, ,, T)) > o and MG(X";, T) is a forest)

+ limsup P(MG (X', T) is not a forest))

n—oo

< limsup P(supdiam(Coals: (X", ,T)) > and MG(X".;, T) is a forest)

<g»
n—o00 -

+limsup P(MG(X";, T) is not a forest))

n—oo

< limsup P(supdiam(Coals: (Xg, , T)) > «)

n—oo

+ limsup P(MG (X", T) is not a forest)).
n— oo -
Then, using Lemma 5.7 and the hypothesis on supdiam(Coals» (X%, T')) one sees that the

right-hand side above goes to zero when we make m and then & go to zero. This completes
the proof of (5.4). O

We are now in position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. The fact that the trajectories stay in S has been proved in
Lemma 5.11. The strong Markov property follows from the commutation property for co-
alescence, cf. Remark 2.12(ii). So to prove (i), it remains to prove that the trajectories are
cadlag (almost surely). We shall in fact prove this in the course of proving point (ii).

Let " —! and let 7 = sup,t". Let us fix ¢ € 0, 1] and let (x"),eNujco} :=

(masses(X")),eNujoo}- We know that x™ converges in distribution to x*°. Using Skorokhod’s
representation theorem, Corollary 5.6 and (5.2), we obtain that there exists K (¢) € ]0, 4+o0],
g1 €10, ¢[ and &, € ]0, g1[ such that for every n € N, with probability larger than 1 — ¢ the
event A, holds, where A, is the event that points (a), (b) and (c) of Corollary 5.6 hold for
any t €[0,T]and S(x", T) < K (¢).

Let °° := 0. On this event .A,, the Gromov—Hausdorff-Prokhorov distance® between a
significant component of Coals: (X", ¢) (at any time ¢ < T) and its heart is at most o :=
8" + supdiam(Coalsn (X2, , T)) + ¢1. Let o be the function from comp(Coalsn (X", 1)~ ¢44)
to comp(Coals» (X" &2 1)) which maps a component to its heart, and let o’ denote the func-
tion from comp(Coals» (X" o 1))>e+q to comp(Coals: (X", ¢)) which maps a component to
the (unique, on A,) component of comp(Coals» (X", t)) which contains it. These functions
satisfy the hypotheses of Lemma 4.7, with € replaced by € 4+ «. This shows that on 4,,, we

OIn fact, here we could talk simply of Hausdorff—Prokhorov distance since there is a trivial embedding of one
measured semimetric space into the other.
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have for every time r < T and every ¢ < g;:

LGHP(Coalgn (Xn, t), Coalgn (XZE/Z, t))

<8«

S();n D 4166+ )

8K (¢)
g2

< 17(8" + supdiam(Coals: (X", T)) + &1) + 16¢.

Now, recall from Lemma 5.11 that

P(supdiam(Coals= (XS, T)) > a) — 0.

e—0

Thus, using the hypothesis on supdiam(Coals~(XZ,, T)), one may choose ¢ small enough
(and thus &> small enough) to get that for every n large enough (possibly infinite), with
probability larger than 1 — 2¢, we have for every time r < T and every &) < &;:

Lgup(Coals: (X", 1), Coalsn (X’lg/z, 1)) < 40¢.
Furthermore, since (c) of Corollary 5.6 holds on A,
|masses(Coals: (X", 1)) — masses(Coals: (X2, 7)) ||§
=S 1) = S, 1) <,

where the first inequality comes from Lemma 4.4. This shows that’

(5.5) lim lim sup P* (sup L gup(Coals: (X", 1), Coalsn (X", , 1)) > 8) =0.
£—0 N—>oon>N t<T 2
neN

Let us prove that the trajectories of Coal(X >, -) are almost surely cadlag if X*° belongs
to S. Let Y' =X ZOL . Notice that (Coalp(Y",t));>0 is cadlag: it is right continuous and
piecewise constant, with a finite number of jumps. Then equation (5.5) applied with X" =
X shows that the hypotheses of Lemma A.1 are satisfied with " = Coal(Y", -) and o> =
Coal(X°, -). This shows that the trajectories of Coal(X°, -) are almost surely cadlag, thus
finishing to prove point (i) of the theorem.

Now, let (ap) p>0 be a decreasing sequence of positive numbers going to zero such that

VpeN, Pla,ex®]=0.

For any p, X" , , converges to X2, in distribution for L1 gup. Proposition 5.3 implies that

(Coalsn (X" > t)),<T converges to (Coalo (X% Sy t)):<r for the Skorokhod topology associ-

ated to Ly gup. Together with (5.5), Lemma A. 2 and inequality (A.1), this proves (ii).
Furthermore, Proposition 5.3 implies that Coalg: (X" Sa, , ") converges in distribution to

Coalp(X2° ~ap t) as n goes to infinity for L| gup, and thus for L gup. Together with (5.5) we

obtain that Coalgn (X", t") converges to Coalp(X°, ) in distribution for L, gup. This proves
(ii)). O

REMARK 5.12. Notice that if §, > 0 and X" € N \ Ny, Coals, (X", 1) is not in N, for
t > 0 since the components are not totally bounded. Thus, the terms “convergence in distribu-

7 At this stage, since we did not proved yet the cadlag property, it is not guaranteed that the event in the proba-
bility is measurable, due to the uncountable supremum. This is why we use the outer measure P*. However, once
the cadlag property is proved, one may remove the star.
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tion for Ly gup” in Theorem 3.1 should be understood in a larger space, where components
are allowed not to be totally bounded.

However, we do not insist on this because when §” > 0, we shall always use Theorem 3.1
with X" € NV for any n € N, in which case Coal, (X", 1) is in N for any 7.

Finally, we finish this section by exhibiting a sufficient condition for (3.1) which will
be useful in Section 5.4. In words, it says that when the diameter of a component of
Coals, (X", T') goes to zero when its size goes to zero, uniformly in 7z, then one may restrict
in (3.1) to components which are attached to a significant component by at most one edge
of the multigraph MG (X", T'). In Lemma 5.13, we consider the obvious coupling between
Coals, (X", T), Coals, (X%, , T), MG(XZ, ,T) and MG(X", T).

LEMMA 5.13. Let X" = (X",d", i), n > 0 be a sequence of random variables in N,
and (8")n>0 a sequence of nonnegative real numbers. For T, ¢ and g1 > 0, let C, (¢, €1, T)
denote the set of components m of Coals, (X2, , T) which are included in a component of
Coals, (X", T) of size at least ¢ and such that there is exactly one edge between m and
MG(X>81, T) in MG(X",T). Let d,(e,e1,T) denote the supremum of the diameters of
elements of C,, (e, €1, T). Suppose that:

(i) (masses(X")),eN converges in distribution, in 02 to a random variable x> as n goes

to infinity,
(i1) forany a >0

lim sup lim sup P(supdiam(Coals, (X", T) _,) > «) =0,
e—>0 n—>©
(iii) for any a > 0 and ¢ > 0,
limsuplimsupP(dy (e, &1, T) > o) =0.
g1—>0 n—>o©
Then
lim sup P(supdiam(Coals» (X", T)) > a) — 0.

neN - e—0

PROOF. Let A,(e, g1) denote the event that there is a component of Coals, (X" Zeps T)
which is included in a component of Coals, (X", T) of size at least ¢ and such that there
is more than one edge between m and MG(X” ep» I) in MG(X", T). Using the Skorokhod
representation theorem, Corollary 5.6 and (5.2), one sees that for any ¢ > 0,

limsupP(A,(e, 1)) —> 0.
n— 00 e1—0
Recall also Lemma 5.7. Letting B, (¢1) denote the event that there is more than one edge be-

tween a connected component of Coalgn (X" Zes T) and Coalg: (X" ., T), Lemma 5.7 shows
that

>e1?

limsupP(B, (1)) —O> 0.

n—oo

On B, (&1)¢, the diameter of a component of Coals: (X" Lo T) is at most the diameter of the
component of Coalg: (X", T) which contains it. Thus, for any €1 and ¢,

P(supdiam(Coals (X', , T)) > a)
<P(du(e, €1, T) > ) + P(supdiam(Coals, (X", T) _,) > «)
+P(An(e, 1)) + P(Bu(er)),
this gives the result. [J
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5.4. Convergence of the coalescent on Erdés—Rényi random graphs. In this section, we
prove Theorem 3.5. Recall that ?n, » 18 the element of ./\/'2graph obtained from G(n, p(i, n))
by assigning to each edge a length n~1/3 and to each vertex a mass n~2/3. We know by
Theorem 2.26 that G, . converges in distribution (for Ly gup) to Gy. In view of Theorem 3.1,
it is sufficient to prove that for any 7" and « > O:

(5.6) lim sup P(supdiam(Coal,,-13((Gn.2)<e, T)) > @) —2 0.
n—

o0
To this end, we shall use Lemma 5.13. The notion of depth-first exploration process on a
finite graph G = (V, E), as defined in [3], Sections 1 and 2, will be useful. This depth-
first exploration process defines an order o on V (a bijection from V to {0, ...,n — 1} with
n = |V|), a height process A (from {1, ..., |V} to N) and, for each connected component C, a
rooted tree (pc, Tc) such that pc is the first vertex visited in C and 7¢ spans C. Furthermore,
denoting by d7;. the graph metric on 7¢, one has, for any connected component C of G:

VieC, h(o@))=dr(pc,i).
We shall need the following lemma.

LEMMA 5.14. Let G be a finite graph with vertex set V. Let h be the height process
associated to the depth-first exploration process on G and denote by o the order induced by
the depth-first exploration on V. Let I denote a subset of V such that the subgraph induced by
I in G is connected and such that, denoting by C the connected component of G containing
1, either C = I or there is exactly one edge connecting I to C \ I. Then

diam(/) <2+3 max h(o (@) —h(o(j
0 i,jeC:la(i)—a(j)\§|1|| ( ()) ( (J))

where the diameter is computed either for the distance dy_. or for the graph distance on G.

PRrROOF. If C =1, the result is trivial, so let us suppose that / # C and let x denote the
unique vertex of / connected to C \ /. We consider two cases.

1. Suppose that pc € C \ I. In this case, the vertices of I are explored consecutively, that is,
o (I) is an interval of length | 7], and the first vertex explored in [ is x. Thus, forany z € I,

d7-(z, pc) = d7.(z, x) + d7. (x, pC)-
Thus, if z and 7z’ denote two vertices of I,
d7c(2,7) <dge(z,x) +d7e (7, x)
= d7.(2, pc) — d7e(x, pc) +d7: (2, pc) — d7e (x, pc)
=h(0(2)) = h(o(x)) + h(o () — h(o ()
<2 max h(o(@)) —h(o(j
- iJGC:IU(i)—U(j)IEIII} ( ( )) ( (])){
since o (/) is an interval of length |7].
2. Suppose that pc € I. Then, the vertices of C \ I are explored consecutively. Let J denote
the subset of / composed of the vertices of / which are explored before those of C \ I.
J contains pc and x (which might be the same vertex). Notice that the vertices of J are
explored consecutively (i.e., o (J) is an interval of length |J|), and those of I \ J also (i.e.,
o (I'\ J) is an interval of length |7| — |J|). Notice also that J forms a subtree of 7¢. When
z and 7’ belong to C, we shall denote by [z, z'] the unique path from z to z’ in 7¢ and by

T (z) the subtree above z, that is, the set of vertices u such that z € [pc, u]. Notice that if
ze€l\ J,then T(z) is included in I \ J, and that if u € T (z),

(5.7) d7.(z,u) = h(o () — h(o (2)).
Now, let z and 7’ belong to I and consider the following cases:
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(a) If z and 7’ belong to J, then
d1e(2,7) <d7. (2, pc) +d7: (2, pc)
=h(o(z)) —h(o(pc)) +h(o(z) — k(o (pc))

<2 max h(o () —h(o(j
- i,jeC:|r,r(i)—g(j)‘S|J|| ( ()) ( (]))|

since pc belongs to J.

(b) Ifze Jand ' € I \ J, let y denote the vertex of [pc, z'] N J closest (for d7..) to
7/ and y’ the vertex of [pc,z/1N 1\ J closest to pc. Since J is explored consecutively
and 7¢ is the depth-search tree, y and y’ are neighbors in T¢, [o¢, y] is included in J and
7/ € T(y'). We already proved in point (a) above that

dr.(z,y) <2 max hioc()) —h(o()))].
r@ws2 o J(e0) = he ()]

Thus, using (5.7):
d7c(2,7) < d1e(z, 9) +d7e (v, Y) +d7e (v, 2)

<2 max o) — hio(i
B i’j€C1|0(i)—U(j)\§|J|| ( ()) ( (J))|

+14+h(o(Z) —h(o(y))
o(

<2 max o) = hio(i
B i’jECI|0(i)—o(j)\§|J|| (0®) ()]

+1+ |h(o (D)) — k(o (j))].

o ~max
i,jeC:lo()—a (NI |—1J]

(c) If z and 7’ belong to I \ J, the arguments are similar: one finds y and y’" in I \ J, ¢
and " in J such that z € T(y), 7/ € T(y'), t is a neighbor of y and ¢’ is a neighbor of y’.
Notice that we already proved that

dr.(t,1') <2 |h(o () — h(o()))]-

max
i,jeCilo(i)—a(HI=|J|
Then, using (5.7),
dyc(2,2) <dge (2, y) +dye (v, 1) + d7e (1, 1)
+dre (1Y) +d7e (v, 2)
<h(@@)—hlo(»)+1+dr(t.1')+1
+h(o(2) —h(e(y))

<2+3 [h(o (D) = h(o ())]- 0

max
i,j€C:lo(H)—o (jHI=I]

Let us denote by A, ; the height process associated to the depth-first exploration process
on G, », and let &, be its rescaled version:

_ 1
Fin 3 (0) = s (xn ).

Now let us consider the depth-first exploration process of Coal,-1/3(Gy.1, T). When 73;' has
intensity y, N (G(n, p), P;r ) is equal in distribution to G(n, p’) with

P=p+U—-p(1—eT).
When y =n=%3, p’ = p(A,, n) with
Ay ——A+T

n—oo
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and Coal, -1/3 @n, 1, T') is equal, in distribution, to ?n, AL The difference between A), and A, +

T is unimportant for us (for instance using Lemma 5.7, supdiam(Coal, -1 /3(@”, V=<er 1))
is essentially nondecreasing in 7'), so we shall continue as if A), = A + T'. Under this ap-
proximation, the rescaled version of the height process associated to the exploration of

Coal,~1/3(Gp 5, T) has the same distribution as Rt
tion to keep things simple.

Now, we shall use Lemma 5.13 to prove (5.6). Let us use the notation of Lemma 5.13,
with X" =G, ; and 8" = n~1/3. Hypothesis (i) of Lemma 5.13 is satisfied, so we only need
to prove hypotheses (ii) and (iii). Lemma 5.14 ensures that

, and we shall adopt the same nota-

2 _ _
du(e 1) < ——+3 sup BT ) -7
nl/3 +
x,yeR

l[x—yl<e

)

’

where the supremum is restricted to pairs (x, y) such that x and y belong to a same excursion

of I above zero, of length at least . Thus, we see that hypotheses (ii) and (iii) of

Lemma 5.13 will be established if we can prove that for any o > 0,

(5.8) lim sup ]P’( sup |EH’A+T(x) — E”’A+T(y)| > a) — 0,
n—o0 x,yeR+ £1—>0
lx—yl<e

with the supremum restricted to pairs (x, y) such that x and y belong to the same excursion

—n, AT
of h above zero.

) . . . . 2,
Let B* be a Brownian motion with quadratic drift, defined by B} = B; + At — % with B a
standard Brownian motion. Let W* be B* reflected above its current minimum:

WtA = th — min BSX.
O<s<t
Then (5.8) is a consequence of the fact that EH’HT converges in distribution to 2W* for the
sup norm on R, It seems however that this convergence is not written in the literature, so
in order to use only available sources, one may rely on the work done in [3] as follows. One
may separate the analysis of the supremum on the N largest excursions and on the others. Let
By .»(e) be the event that the maximal height of the ith largest component in G, 1 exceeds
¢ for some i > N. The equation page 402 below equation (24) in [3] shows that for any € > 0,
(5.9) lim limsupP(By ,(¢)) =0.

N—-o0 n—o0
Then, for a fixed N, one may argue as in the proof of [3], Theorem 24, page 398: conditionally
on the sizes, the rescaled height processes associated to those components are independent
and each one converges in distribution (for the uniform topology) to a continuous excursion
(a tilted Brownian excursion). Together with the convergence of the sizes and Skorokhod’s

. . . —n,+T
representation theorem, this proves that the N largest excursions of nt converges as a
vector in C ([0, +00[)" to a random vector of continuous functions with bounded support.
This implies that (5.8) holds when the supremum is restricted to pairs (x, y) such that x and

y belong to one of the N largest components of T Together with (5.9), this shows (5.8)
and this completes the proof of Theorem 3.5.

6. Proofs of the results for fragmentation. The main goal of this section is to prove

the Feller property for fragmentation on ./\/'Zgrap h, Theorem 3.2 and to apply it to prove Theo-
rem 3.6. It is very close to the work performed in [4], which proves a continuity result for a
fragmentation restricted to the core of a graph (and stopped when you get a tree). The main
difference is that we want in addition to perform fragmentation on the tree part of the graphs.
Another technical difference will be detailed at the beginning of Section 6.4. Unfortunately,
those differences force us to make substantial modifications to the arguments of [4].
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6.1. Notation. We need to introduce a few more definitions to deal with fragmentation
of R-graphs. For more details, we refer to [4].

A multigraph with edge-lengths is a triple (V, E, (£(e))ecg) Where (V, E) is a finite con-
nected multigraph and for every e € E, £(e) is a strictly positive number. One may associate
to such a multigraph with edge-lengths a compact R-graph with a finite number of leaves by
performing on V (seen as a metric space as the disjoint union of its elements) the £(e)-gluing
along e for each edge e € E.

Until the end of the article, we shall say that an R-graph is finite if it is compact and has a
finite number of leaves. Equivalently, it can be associated to a multigraph with edge-lengths
as above. This terminology, applied to trees, comes from [21].

Let G be an R-graph. When there is only one geodesic between x and y in G, we denote
by [x, y] its image. Recall the notion of the core of G defined in Section 2.6. If § is a closed
connected subset of G containing core(G), then for any x € G, there is a unique shortest path
¥y going from x to S. We denote by ps(x) the unique point belonging to yx N'S. When G is
not a tree and S = core(G), we let ag(x) := ps(x).

For any > 0 and any R-graph G which is not a tree, let

R, (G):=core(G)U{x € Gs.t.y:x €[y, ag(y)] and d(y, x) > n}.

In words, seeing G as rooted at the core, in R,(G) we keep the root (i.e., the core) and
all the points whose subtree has height at least n. When (7', p) is a rooted R-tree, we let
Ry(T) := Ry(T, p) be defined as above, with ag(y) replaced by the root p and core(G)
replaced by {p}. Thus the definition of R, (G) extends the definition of R,(T) for a rooted
R-tree (T, p) in [21]. Notably, [21], Lemma 2.6(i), shows that for any n > 0, R,(G) is a
finite R-graph. For a (nonrooted) measured tree (7, i), with u a positive finite measure, we
let R, (T') denote R, (T, p) where p is a random root, sampled according to SO Finally, if

N w(T)-
G belongs to NFP", we let

RyG):= |J Ry(m),

mecomp(G)

where the random roots of components which are trees are sampled independently.
The g-enlargement of a correspondence R € C(X, X') is defined as

R :={(x,x") e X x X":3(y,y) e R,d(x,y) vd(x',y) <&}

It is a correspondence containing R with distortion at most dis(R) + 4e.

If R e C(X,X’), two Borel subsets A C X and B C X’ are said to be in correspondence
through R if RN (A x B) e C(A, B).

Let ¢ > 0. If X and X’ are R-graphs with surplus at least 2, an g-overlay is a corre-
spondence R € C(X, X') with distortion less than & and such that there exists a multigraph
isomorphism x between the kernels ker(X) and ker(X') satisfying:

1. Yv e k(X), (v, x(v)) € R.
2. For every e € e(X), e and x(e) are in correspondence through R and |[£x(e) —
Cx(x(e)| <e.

If X and X’ have surplus one, an g-overlay is a correspondence with distortion less than &
such that the unique cycles of X and X’ are in correspondence and the difference of their
lengths is at most ¢. If X and X’ are trees, an g-overlay is simply a correspondence with
distortion less than ¢.

We let N3¢ be the set of elements X € ./\/'z‘c’vraph whose components are trees.
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6.2. Reduction to finite R-graphs. The following lemmas will be useful to reduce the
proof of the Feller property to finite R-graphs, notably to adapt the arguments of [21].

LEMMA 6.1. Letne (0,11 and T > 0. Let G belong to ./\fzgraph. Let S be a closed con-
nected subset of G such that R, (G) C § C G. Suppose that for each component H of G,
S N H is a connected R-graph. Let S := (S, d|sxs, pstun). Then, with probability at least
1-— Tn1/7,f0r any t € [0, T, under the obvious coupling,

2
L@ (Frag(G, 1), Frag(S, 1)) < 347"/ 7(1 sy M(H>2) .
Hecomp(G)

PROOF. Let P be a Poisson random set of intensity measure £ ® lebi on G x R* and
let us use it to perform the fragmentation on S and G. Define

G/ :={xeG\Sst.IyeP,N(G\S)N[x,acx)]}.

Notice that a component m of Frag(S, ¢) is endowed with the distance d |, x,, and the measure
(psfii)|m, while a component m of Frag(G, ¢) is endowed with the distance d|,;, x,, and the
measure [L|y,.

If m is a component of Frag(G, P,) such that m NS = @ then m C G, . Notably, if ¢ €
[0, T], H € comp(G), m is a component of Frag(G, P;) included in H and u(m) > M(G'} N
H), then m must intersect S. Furthermore, if m N S £ & then m N S is a component of
Frag(S, P:).

Let H € comp(G). For any component m of Frag(H, P;) such that m N S # &, we claim
that

6.1) doup(m,mNS) <nv u(Gr N H).

Indeed, let R := {(x, ps(x)) : x € m}, which has distortion at most 25, and define 7 :=
(Ud, ps)8L) mxmns- Then (R¢) =0 and

D(c; il (pstit)m) = ) ;?pﬂs)u(p;(m \ m)

= w(pg' (m) \ m)

<u(G/ NH)

<u(G}NH).
This shows (6.1). Furthermore,

| masses(Frag(G, 1)) — masses(Frag(S, 1)) |3
(6.2) < > oulpstem\mP+ 3 pm)’

meFrag(G,t) meFrag(G,t)
mNS#J mNS=g

<2 Y w(GInH)
Hecomp(G)

(6.3) <2 Y wGinH)
Hecomp(G)

Using Fubini’s theorem,

E[u(G) N H)*] < w(H)*(1 — &™) < u(H)*nT.
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Thus,

2
P( > wGrnH) =" M(H)2> <Tn'"
Hecomp(G) Hecomp(G)
Now, let us place ourselves on the event

5:{ > wulGrnH)? <7 Y “(H)Z}

Hecomp(G) Hecomp(G)

and define o« = ;73/7\/1 + 2 Hecomp(G) W(H)?. Notice that on £, we have for any H €
comp(G):

wGrLnH)< | Y wGinH)Y <a
Hecomp(G)

Let o assign to each component of Frag(S, ¢) the component of Frag(G, ) which contains
it, and let ¢’ assign to a component m of comp((Frag(G, 1))=ql1/31q) the component m N S
of comp(Frag(S, ¢)). From (6.1), we deduce that for any component m of Frag(S, t),

deup(m, o (m)) <«
and notice that m and o (m) have the same surplus. Also, for any component m’ of Frag(G, 1),
doup(m’, o'(m')) < a,

and m’ and o’(m’) have the same surplus. According to Lemma 4.7, this shows that on the
event &:

L™ (Frag(G, 1), Frag(S, 1)

Zm ecomp(Frag(G,t)) /L(m)z
8a 3
a?/3

< 16a + a1/3<16 +8 > u(H)Z).
Hecomp(G)

< +16(a'? + @)

And, thanks to (6.3),

|masses(Frag(G, t)) — masses(Frag(S, t)”% <% Z w(H)?
Hecomp(G)

which shows the result. [

We shall need a slight variation of the preceding lemma at time zero for rooted trees. When
(X, p) and (X', p’) are two rooted m.s-m.s, rooted respectively at p and p’, we define

. 1.
dip((X.p). (X' p) = inf {D(’““’“/) vy dsR) vwzc)}’
ReC, (X, X')

where C,, (X, X') is the set of correspondences between X and X’ which contain (p, p’).
Using natural correspondences and couplings, one may see that R,(7T) approximates
nicely a rooted tree.

LEMMA 6.2. Let T =(T,d, j1) be a measured real tree and p € T a root. Let R, (T) be
the measured real tree Ry(T) equipped with the measure pr, (r)gi. Then

déip (T, p), (Ry(T), p)) <.
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PROOF. Let p := pg, (7). Take
R:={(x,p(x)) eT x Ry(T):x €T}
which is a correspondence containing (p, p) of distortion at most 21. Then take

7= (ld, p)in
thatis, 7(C) =u({x € T : (x, p(x)) € C}), which verifies

D(m; u, pin) =0
and 7(R¢) =0. O

6.3. The Feller property for trees. 1f x and y belong to a rooted tree (7, p), we denote
by [x, y] the unique geodesic between x and y, and we say that x <y if x belongs to [p, y].
The subtree above x is then defined as

{yeT:x =<y}

The following lemma is a slight extension of [21], Lemma 6.3, designed to take measures
into account.

LEMMA 6.3. Let T = (T,d, 1) be a measured real tree, p € T and ¢ > 0. There
exists n > 0 (depending only on ¢), and § > 0 (depending on T, p and &) such that if
T'=(T',d', i) is a measured R-tree rooted at p and di3p((T, p), (T', p)) < 8, then there
exist finite subtrees S C Ry (T) and S' C T' such that p € S, p' € §" and:

1) (S, T)<eanddy(S',T) <e¢,

(ii) there is a bijective measurable map  : S — S’ that preserves length measure and has
distortion at most ¢,

(i) ¥ (p) = p’,

(iv) the length measure of the set of points a € S such that (b€ S:y(a) <b}#¢y({beS:
a < b}) (that is, the set of points a such that the subtree above r(a) is not the image
under r of the subtree above a) is less than ¢,

(V) there is a correspondence R € C(S, S') and a measure w € M (S, S’) such that:

(@ Vxes (x,¥x)) eR,
(b) m(R) <e,

(¢c) D(m; pstip, psrip’) <e,
(d) dis(R) < 2e.

PROOF. Notice that in [21], Lemma 6.3, T and T are supposed to be finite trees, but we
shall soon be back to this case.

Suppose that n > 0 and dg’ﬁ{)((T, p), (T, p')) <& (8 and n will be chosen small enough
later). Define, to lighten notation:

T,:=R,(T) and T;7 = R,(T").
Using Lemma 6.2,
Then there exists a correspondence R € C (T}, T,;) and a measure 7o € M(T, T') such that:

@) (p,p") € Ro,
(b) mo(Rg) <34,



DYNAMICAL PERCOLATION ON CRITICAL RANDOM GRAPHS 369

(©) D(wo; pr, i, prjit’) <36,
(d) dis(R) <23.

Now, we perform the proof of [21], Lemma 6.3, and we shall use their notation. We intro-
duce a function f from T, to T,; . First, let f(p) := p’ and then for each x € T;, one chooses
fx)e T,; such that (x, f(x)) € Ro (notice that this can be done in a measurable way). Then,
letting x1, ..., x, to be the leaves of T', one defines x] = f(x;), and let T” be the subtree
of T, spanned by p’, x{, ..., x,. Finally, f(x) is defined to be the closest point to f(x) on
T". Notice that x| = f(x;). [21], Lemma 6.3, shows that T” has leaves X{,...,x; (and root
o' = f(p)), that 85 (T, T") < 38 and that the function f from T, to T” has distortion at
most 83. It is easy to see that

(6.4) VxeT, d(f(x),f(x)) <45

In the proof of [21], Lemma 6.3, they then take y; € [p, x1] and y] € [p’, x{] such that
d(p,y1) =d'(p’, y)) =d(p,x1) Ad'(p’, x|) and define  from Sy := [p, y1]to S| :=[p’, ¥|]
in the obvious way. The proof then proceeds inductively, defining zx41 (resp., z; ;) as the
closest point to xx4+1 on Sk (resp., to x;,; on S), letting ye41 € 1zk+1, Xk 1] and y o €
12) 415 X411 be such that

d(zk+1s Yea1) = d'(Zhqeys Yieyr) = d @t X 1) Ad (G Xy )

defining v from Jzg41, Ye+1] t0 12 1, ¥4, in the obvious way and gluing Jzx+1, Yk+1] to
Sk to get Sg41 (resp., 12j 1, Vi i1 to Sy to get Sp ;). Finally, let S := S, and S’ := S,,. They
prove then that

dis(¥) <2805,  84(S.Ty) <565 and 8y(S',T)) < 58.

They also prove in [21], page 113, that the length measure of the set of points mentioned in

(iv) is at most 2245n where n is the number of leaves of R, (T). Notice that n depends only

on T and n, let us call it n(n, T). This shows that ¥, S and S’ satisfy (i) — (iv) above if § and

n are chosen small enough: first fix a positive n < £/2000, and then, choose § < Wm.
Also, it is shown in [21], inequality (6.28), that for any k, d (xi, yi) vV d'(x;, ;) < 126.
Now, let us show that:

(6.5) VxeS, d(f(x),¥(x))<S568.

Let x € lzx, ykl, then d'(y (x), y;) = d(x, yx) (recall that ¥ (yx) = y;). Then |d(x, yr) —
d(x,xg)| <128 and |d' (Y (x), y;) — d'(¥(x), x})| < 128. Since f has distortion at most 85,
d(x, xp) —d'(f(x), x])| <85. We get

ld' (¥ (x), x) — d'(F(x), xp)| < 326.

Let 7 be the closest point to f(x) on [p’, x;]. Then

d'(f(x),z) = z[d'(fx), p") +d'(f(x), ;) —d' (0, x1)]

IA

N W N —

— 1
dis(f) + E[d(x,p) +d(x, x) —d(p, xi)]

A
—_
[\

O
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since x € [p, x]. Finally, since ¥ (x) € [p/, x;],

d'(f), ¥ (x0) =d'(f(x),2) +d'(z, ¥ (x))
=d'(f(x).2) +|d"(xp, ¥ (1) — d'(x;. 2)|
<2d'(f(x),2) + |d' (xp, ¥ (x)) — d'(x;, f(x))]
< 248 + 326.

This shows (6.5).
Now, let R be defined by

d(x,y) <1008
R:={(x,x)eS xS :3(y,y) € Ro, and ,
d'(x',y") <1008
and define 7 := (ps ® ps/)timo. It remains to prove point (v). First, recall that (x, f(x)) € Ro
for any x € T;. Thus (v)(a) is satisfied thanks to (6.5) and (6.4). This shows also that R is a

correspondence on S x S’.
Then

dis(R) < dis(Ro) + 4008
Yvhich is less th~an ¢ and shows (v)(d) if § is chosen small enough. Since § (S, Ty v
S (S, Tn/) < 588, we see that forany x € 7)) and x" € T},
d(x, ps(x)) <585 and d(x', ps(x)) < 583.
Thus, if (x, x") € Ry, then (ps(x), ps(x’)) € R and this gives
7 (RY) < 70(RG) <3,

which shows (v)(b) if 8 is chosen small enough. Finally, since 7 = (ps ® ps/)timo one sees
that

D(m; pstu, psu') < D(mo, v, 1) <38.
This completes the proof. [

Now, let us prove the Feller property for trees.

PROPOSITION 6.4. Let (X"),>0 be a sequence in Nﬁree converging to X (in the Ly gup
metric). Then:

(i) (Frag(X,1));>0 is strong Markov with cadlag trajectories (for Lo gup) in N3,
(ii) (Frag(X",1));>0 converges in distribution to (Frag(X,t));>o (for the Skorokhod
topology associated to Ly Gup),
>iii) ift" — then Frag(X",t") converges in distribution to Frag(X, t) (for L2 gup).

PROOF. First, we argue that one may without loss of generality suppose that X” and X
contain a single component. Indeed, fix & > 0. Since masses(X") converges to masses(X) in
€2, one may choose &’ ¢ masses(X) such that

|masses(X <o) |3 v sug”masses(X'ég/) |5 <e.
ne

Then, since X" , converges to X .,/ as n goes to infinity, they have the same number of com-
ponents for n large enough. Call this number K. One may list them as follows: let 7}" (resp.,
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T;),i=1,..., K be the components of X" (resp., of X) such that for any i, T/" converges to
T". Fix t > 0. Then, for any coupling between (Frag(X, s))se(o,;] and (Frag(X",s))sc0.1],
one has

|masses(Frag(X, s)) — masses(Frag(X", s")) H%

K
< ZHmasses(Frag(Ti, s)) — masses(Frag(7}/", s")) ”%
i=1

+ [ masses(X <o) |3 + [masses(X™,) |5

and

K
Leup(Frag(X, s), Frag(X",s")) < Laup(Frag(T;, s), Frag(T}", s)) + 16e.
i=1
This shows that to prove (i) and (iii); one may suppose that X" has a single component. Also,
to prove (ii), it is sufficient to prove that for any fixed i and n, one may find a coupling such
that
sup L Frag(T", s), Frag(T;, s .o
se[OI,)t] cup(Frag(T}", s), Frag(7;, 5)) ——
In the sequel, we suppose that X" =: T" (resp. X =: T') contains a single component.

Let us first prove (). The strong Markov property was already noticed (see Remark 2.24)
so let us prove that the trajectories are almost surely cadlag. Then, for any 5 > 0,
Frag(R,(X), -) clearly has cadlag trajectories: it is right continuous and piecewise con-
stant with a finite number of jumps, since R,(X) has finite length. Then, Lemma 6.1 and
Lemma A.1 show that Frag(X, -) also has cadlag trajectories.

Now, let us prove (ii). Let us fix ¢ > 0. We know (cf. [4], Proposition 2.1) that we can take
p (resp. p") arootin T (resp., T") such that eroﬁi,((T, 0), (T", p™)) goes to zero as n goes to
infinity: it can be done by taking the roots sampled from the respective measures (normalized
to be probability measures). For n large enough, dg)ﬁtp((T ,p), (T", p™)) is small enough so
that one may apply Lemma 6.3.

Let us call (T’, p') = (T", p") for such a large n, in order to lighten the notation. Notice
that one may suppose that u/'(T') < u(T)+¢.Letd,n, S, S’, ¥, R and 7 be as in Lemma 6.3.
Define

S:=(S,d|sxs, psii)
and
S = (8 dlsxs, psin).
Let r > 0. Lemma 6.1 ensures that with probability at least 1 — 2¢¢!/7, for any s € [0, ¢],
L» Gup(Frag(T, s), Frag(S, 5)) < 7"/ (1 + w(T))*,
and
(6.6)  Lo.up(Frag(T’, s), Frag(8', s)) <767 (1 4+ 1/ (T)* <77 (1 4+ u(T) + &)".
For any z € § (resp., 7' € §') we let S; (resp., S),) be the subtree above z (resp., above z'):
S;:={xeS:zep,xl}.
Let us define
Bad:={a €S : Syw) # V¥(Sa)}
so that Lemma 6.3 ensures that £5(Bad) < ¢.
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Now, let P be a Poisson random set of intensity £5 ® lebg+ on S x RT. Then, for any s,
¥ (Ps) is a Poisson random set of intensity s€g on § (since i is a measure-preserving bijec-
tion), and we want to show that for any s < ¢, the fragmentation of S along P;, Frag(S, Ps),
and that of §" along ¥ (P;), Frag(S’, v (Py)), are close in Lgpp-distance with large probabil-

1ty.

Notice first that Frag(S, Ps) and Frag(S’, v (Ps)) have the same number of components
on P, N Bad = @. If m is a component of Frag(S, Ps), it can be written as S, \ Uf:] Szis
for some points zs, 215, - - -, 2k.s 10 Ps U {p} (we identify S; \ {z} with S; since it is at zero
dgup-distance). If P; N Bad = @, then for any s <t, ¥ (m) =¥ (S;,) \ Uf-‘zl Sy (z:,) and this
is a component of Frag(S’, v (Ps)).

Thus, let us place ourselves on the event £ := {P; N Bad = &} and define ¢ (which de-
pends on s) to be the bijection from Frag(S, P;) to Frag(S’, v (Ps)) which maps a component
m to ¥ (m). Since R contains the pairs (x, ¥ (x)) for x € S, Rluxy@m) is a correspondence
between m and v (;m) with distortion at most &. Furthermore, 7|y (m) iS @ measure on
m X ¥ (m) which satisfies

7T|mxw(m)(R|fnx¢(m)) <m(R°) <e.

It remains to bound D (77 | xy (m); (PsE1) Im, (Ps'81") |y m)) from above. For any Borel sub-
set A of m,

|7 sy omy (A X Y (m)) — psin(A)]
<|7(AxS)— pstu(A)|+7(AxS)—7(Ax ¥(m))
<|7(AxS)— pstu(A)|+7({(x,x") e Sx " :x em,x" ¢ y(m)}).
A symmetric inequality holds for A" a Borel subset of v (m), and we get
D(7 sy omys ibms 1Ty omy) < D705 psie, psBi) + 7 (m x yr (m)€) + 7w (m* x ¥ (m)).
Now, notice that for any x € S,
xem and x' ¢ym) = [y, x]NYP)#£D
and
x¢m and X' ey(m) = [v&),x]NYP)#2,
where [/ (x), x'] is the geodesic between ¥ (x) and x’. Thus,
wt(m x Y (m)) + 7 (m x y(m)) <m{(x,x')eS xS :[yvx),x|NyP) #}.
Let us denote by &; the event
E i={r{(x,x")eSx S :[yx),x Ny (P) # 2} < Vel
On & N &, we get, for any s <t and any component m of Frag(S, Ps):
D (7 |y (mys PSEIlm, PsEI Tyomy) < € + V.
Furthermore,

| masses(Frag(S, Ps)) — masses(Frag(S’, ¥ (Py))) ||§
< Y (pstulm) — pyii (¥ ()

mecomp(Frag(S,Ps))

< sup |pstu(m) — pgtin' (v (m))|
mecomp(Frag(S,Ps))
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x > pstu(m) + pgtu (v (m))
mecomp(Frag(S,Ps))

< sup D (7 lmxymy PsEIIms PSE Ty my) ((T) + ' (T"))
mecomp(Frag(S,Ps))

< (e + /&) 2u(T) +e).

Thus, on £ N &, we obtain, for any s < ¢:

La.cup(Frag(S, Py), Frag(S', ¥ (Py)) < (¢ + v/&) V /(6 + V&) (2u(T) + ).

It remains to bound from above the probability of (£1 N&>)€. Since Bad has length measure
at most &,

P(EY) <te.
Notice that since R contains (x, ¥ (x)) for any x € S and has distortion less than 2¢,
a{(x,x)eSx S :d(Y(x),x)>2} <7 (R <e.
Then, using Fubini’s theorem,
E[x{(x,x") €S xS :[¢(x), x| NY(P) # 2}]
<e+E[n{(x,x)eSx S :[Yx),x|NYP)#2andd (¥ (x),x") <2¢}]

=&+ /SX P P([¢ (x), X' 1N W (P # D) ary () xy<2e A7 (x, x)

<2tem (S x §')
<2te(u(T) +¢).
Thus, by Markov’s inequality,

P(&5) < 2t/e(u(T) + ¢),

which ends the proof of point (if) of the theorem (through Lemma A.2 and inequality (A.1)).

Finally, let us prove (iii). Suppose that 1" converges to ¢ as n goes to infinity and let 7 :=
sup, t" + 1. Again, it is sufficient to suppose that X" and X have only one component, so let
us suppose that (T, p) and (T", p™), n > 0 are rooted trees such that di p (T, p), (T", p™))
goes to zero as n goes to infinity. Now recall inequality (6.6) above: for any & > 0, for n large
enough, we found finite subtrees S C T" such that, with probability at least 1 — 2T ¢!/7, for
any s € [0, 7],

Ly cup(Frag(T", s), Frag(S", s)) < 781/7(1 + u(T) + 8)4,

and furthermore, €72 (S") < £7(R,(T)) < oo, since § ) has the same length measure as a
subset of R;(T), n depending only on ¢ (cf. Lemma 6.3). Then

P(Frag(S”, tn) #* Frag(S", [)) <1-— e~ 11=1"1er (Ry(T))

For n large enough, this is less than &. Then we have that with probability at least 1 —27g!/7 —
&,

Lo Gup(Frag(T", 1), Frag(T", 1)) < 7¢"/7(1 4+ u(T) + &)*.

All in all, we proved that Ly gup(Frag(T", "), Frag(T", t)) converges in probability to zero
when n goes to infinity. But using point (i), we know that Frag(T", t) converges to Frag(T, t)
as n goes to infinity. This completes the proof of (iii). [J
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length %
e
Gn ’ W o @ b
Hn = %(511 + 6b)
e S i P
diam(Grn) = diam(G) =1
G a @ ®

n= %(5a +5b)

FI1G. 2. Gy is composed of n graphs in series each one made of 2 intervals of length 1/n in parallel. Gy
converges to G for dgyp when n goes to infinity, but Frag(G,, t) will not converge to Frag(G,t) fort > 0.

6.4. The Feller property for graphs, Theorem 3.2. 'We now want to prove Theorem 3.2,
which is the analog of Proposition 6.4 for graphs. However, this cannot be true without
strengthening the metric Lgyp. For instance, consider the situation depicted in Figure 2.
There G,, converges to G for dggp, but the probability that a is separated from b in G, when
fragmentation occurs (until a fixed time ¢ > 0) is exactly 1 — (1 — (1 — e~ /™2y which
is asymptotically 0, whereas the probability that this event occurs in G is strictly positive.
However, if we impose that the surplus of G, converges to the surplus of G, such a situation
cannot happen anymore, and one may recover the Feller property.

Let us notice that this problem was treated a bit differently in [4]: they recover continuity
(in probability) of fragmentation by imposing that G, and G live on some common subspace
A, for some r > 0, where A, contains the graphs which have surplus and total length of the
core bounded from above by 1/r and minimal edge length of the core bounded from below
by r (see Section 6.4 in [4] for a precise statement). When one wants to have Feller-type
properties, this seems to us less natural than imposing convergence of the surplus. In fact,
the work below shows that if G, converges to G in the Gromov—Hausdorff topology while
having the same surplus for n large enough, then there is some r > 0 such that for n large
enough, G, and G belong to A,. The converse statement is also true and is a consequence of
[4], Proposition 6.5.

To prove Theorem 3.2, we first notice that the proof of Section 6.3 extends to the case
where one replace trees by graphs having the same core.

LEMMA 6.5. Let G =(G,d, n) be a measured R-graph which is not a tree. Let (G") ;>0
be a sequence of measured R-graphs such that for each n, there is a correspondence R" €
C(G,G"), a measure 7" € M (G, G") and a homeomorphism " : core(G) — core(G")
such that:

e " preserves the length-measure,
e Vx € core(G")(x, ¥"(x)) e R",
o dis(R") va"(RMHY) v D", u, u") —— 0.

n—oo
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Then the sequence of processes Frag(G",-) converges in distribution to Frag(G,-) for

surplus
L 2,GHP"

PROOF. Itis a straightforward extension of the arguments of Section 6.3, replacing roots
by cores and using " to map fragmentation on core(G") to fragmentation on core(G). U

To prepare the proof of Theorem 3.2 we shall need a series of lemmas, but before let us
explain the idea of the proof of the theorem. If G" is close enough to G, Lemma 6.7 below
shows that their cores are homomorphic multigraphs with edges having almost the same
length. One may then shorten some edges of the core of G and other edges of the core of
G" in such a way that the two cores become homeomorphic as metric spaces with a length
measure. Lemma 6.11 shows that one does not lose too much doing this. Finally, Lemma 6.5
then shows that the fragmentations on the two graphs are close to each other.

LEMMA 6.6. Let (G,d) and (G',d’) be R-graphs and R € C(G, G'). Let (a,a’) € R,
(b,b") € R and (c, ¢') € R. Suppose that a belongs to a geodesic between b and c. Let v,/
(resp. yar o) be a geodesic from a’ to b’ (resp., from a’ to ). Then

Va" e 2N AN d/(a”, a/) <3dis(R).

PROOF. Leta” €y, N vy .. Then
d/(al, a//) — d/(a/’ b/) +d/(a/’ C/) _ d/(a//, b/) _ d/(a//’ C/)
Sd/(a/, b/)+d/(a/,c/) _d/(b/, C/)
<d(a,b) +d(a,c) —db,c)+3dis(R)
= 3dis(R),

where we used the triangle inequality in the second step and the fact that a belongs to a
geodesic between b and c in the last step. [

The following should be compared to [4], Proposition 5.6.

LEMMA 6.7. Let G be an R-graph and & > 0. There exists § depending on ¢ and G
such that if G’ is an R-graph with the same surplus as G and if Ro € C(G, G') is such that
dis(Ro) < 8, then there exists an g-overlay R € C(G, G’) containing Ry.

PROOF. If G has surplus 0, there is nothing to prove. In the sequel, we suppose that G
has surplus at least 2, the easier proof for unicyclic G is left to the reader. Furthermore, to
lighten notation and make the argument clearer, we shall suppose that the vertices of ker(G)
are of degree 3, leaving the adaptation to the general case to the reader.

Let 1 := min,e.(G) £(e). Notice that one may view core(G) (and core(G’)) as a multigraph
with edge-lengths, and we shall adopt this point of view in this proof. However, not all the
edges of this graph correspond to geodesics in G. Divide each edge of core(G) into five pieces
of equal length, introducing thus four new vertices of degree 2 for each edge (all degrees will
be relative to the core). The new graph obtained satisfies the following:

(i) all the edges remain of length larger than /5,
(i1) every edge e is the unique geodesic between its two endpoints, and for any path y
between these endpoints which does not contain e, £(y) — €(e) > n/5,
(iii) for every three vertices a, b, ¢ such that b ~ a and a ~ ¢, a belongs to a geodesic
between a and c.
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FIG. 3. One maps core(G) to core(G’) by first mapping the neighborhood of each vertex of core(G) to a subset
of G'. Here, x| is a vertex of ker(G").

Let us call core(G) this new graph (it is indeed a graph, not merely a multigraph), which has
the same surplus as G, and write x1, ..., x, for its vertices, which are of degree 2 or 3.

Let G” be an R-graph with the same surplus as G and Rg € C(G, G’). Let x{, ..., x;, be
elements of G’ such that (x;, x]) € Ro. Now, we shall build a subgraph of G’ by mapping
recursively edges adjacent to a given vertex in core(G) to a geodesic in G’. Suppose for
instance that x| has degree 3 (the argument is analogous for vertices with degree 2). Let x;,
x;j and x; be its neighbors in core(G), with i < j < k. Choose a geodesic V! x! between x|

and x;, then choose a geodesic y between xj and x’;, and let z} be the point of Vil O Y

which is the furthest from x| (see Figure 3). Let us call Vel ! the subpath of y from z%
7

to x}. Notice that the path using y,; ./ from x| to z{ and y from z] to x} is a geodesic.
Finally, choose a geodesic y between x| and x| and let z7 be the point of (Vat 2 YUY, x}) Ny
which is the furthest from x{. Let us call Y2 the subpath of y from z} to x;. Let S} :=

i

Vax UVt o U V2 - Define x{' to be the point between z% and z% which is the furthest from
i7" "1

x1. If x1 is of degree 2, there is only one point z{ defined and x| is this one.

Then we proceed similarly for » = 2, ..., n: we inspect the neighbors of x,. Notice that
we do not need to choose a new geodesic between x| and a neighbor x} for j <r, we just
keep the one already built. Doing this, we obtain S, the union of the geodesics chosen going
from x/ to the points associated to the neighbors of x,, we get two points z! and z2 if x, is
of degree 3 and only one point z! if x, is of degree 1. We define x” to be the one between z/!
and z? which is the furthest from x/.

Finally, let §" = U}, S/, with all the vertices zf’ and x/ for 1 <i <n. This is a graph
with edge-lengths (notice that the edges have pairwise disjoint interiors). Some edge-lengths
might be zero. Thanks to point (i) above and Lemma 6.6, we know that:

d'(z}, x}) < 3dis(Ry),
and when x] is of degree 3,
d' (22, x}) < 3dis(Ro).
Thus, for any b, b’ € {1,2} and any i # j,
d'(z2,2%) = d'(x].x}) — 6dis(Ro)
> g — 7dis(Ro).

Thus, if dis(Ro) < /35, two points zf’ and zlj’., are always distinct. This shows that S’ has
the same surplus as core(G). Since G’ has the same surplus as G, we deduce that S” contains
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core(G’). Let §” be the subgraph of " spanned by x{, ..., x;/, in the sense that we forget the

s X s
vertices zl-l when x; is of degree 3, and we remove the semiopen path going from x; to zi.
Notice that S” has positive edge-lengths and its edges have pairwise disjoint interiors. S” has
the same surplus as S’, so it contains again core(G’). But all the vertices in S” have degree 2
or 3, s0 S” = core(G’) as a set.

Now, consider S” as a graph with edge-lengths and with vertices x/',i =1, ..., 7. Let xo be
the map from core(G) to S” which maps x; to x;’. We shall see that it is a graph isomorphism
if dis(Rp) is small enough. Indeed, from the inequalities above, we get that for any i and j,

|d' (x{', x7) — d(xi, xj)| <7dis(Ro).
Now, for any edge e = (x;, x;) and any k distinct from i and j,

d'(x]',x))+d (x, N) >d(xi, xi) +d(xk,xj) — 14 dis(Ry)

>d(xi,xj)+ g — 14 dis(Ryp)
> d'(x]/, %) + g — 21dis(Ry),

where we used point (ii) above in the last inequality. Thus, if dis(Rg) < %, x/ and x;f
are neighbors in S” as soon as x; and x; are neighbors in core(G). Furthermore, from the
construction of §”, one sees that the number of edges in S” is at most the number of edges
of core(G). Thus, xo is a graph isomorphism and we deduce from the last inequality that for
any edge e, xo(e) is the unique geodesic between its endpoints. Furthermore, let x;" and x7

be neighbors in §”. If dis(Ry) < 210, we see from the last inequality that every path y from
" to x ! which does not contain [x;’ x’l-/ ] satisfies

(6.7) C(y) > ([x/, x}]) + E

Let us define R’ by adding to Rg the pairs (x;,x;) for i =1,...,r. Then dis(R’) <
7dis(Rp). Let R be the 3dis(Rg)-enlargement of R’. It has distortion at most 19dis(Rp).
Let x belong to an edge [x;, x;] of cdre(G) and let x” be such that (x, x") € Ro. Let y,/
(resp. vy, x//) be a geodesic between x” and x; (resp., between x” and x’f ). Then let y be the

path from x” to x ! obtained by concatenating y, . xy and yy . We have
U(y) =d'(x],x') +d'(x', x7)
<d(xi,x) +d(x,x;)+ 2dis(R)
=d(x;, xj) +2dis(R’)
< 0([x], <)) + 3dis(R).
Thus, if 21 dis(Ro) < 1’70, 3dis(R) < 0 and we deduce from (6.7) that ¥ contains [x{/, x;f].

Thus, defining x” to be the furthest point from x" on y, OV Var x7s We see that x” belongs

to the geodesic [x;’ x”] Lemma 6.6 ensures that d’(x’, x”) < 3dls(7?/) Thus, (x,x”) € R.
Similarly, one shows that for every x” in [x]', x” ] there is an x in [x;, x;] such that x € R.
We have shown that for each edge e of core(G) e and yo(e) are in correspondence via K.
Now, notice that the multigraph with edge-lengths S” obtained by keeping only vertices of
degree 3 is core(G’) seen as a multigraph with edge-lengths. The isomorphism x( induces
an isomorphism y between core(G) and core(G’) (by restricting xo to vertices of degree 3),
and we have (since every edge of core(G) was divided into five parts):

£(e) — £/ (x (e))| < 30dis(Ro).
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Furthermore, the same correspondence R as before is suitable to have that for each edge e of
core(G), e and x (e) are in correspondence via R.
This completes the proof by taking dis(Rg) < é for § small enough, namely less than

£ AN
AR

LEMMA 6.8. Let (G,d) and (G’',d") be R-graphs and R € C(G, G’). Suppose that
core(G) and core(G’) are in correspondence through R. Let (v,v') and (x,x") € R with
v € core(G) and v’ € core(G'). Then

d(ag(x),v) <d'(ag(x),v') + 5dis(R).
PROOF. Since core(G) and core(G’) are in correspondence through R, one may find
y € core(G) and y’ € core(G’) such that
(y,ag(x)) eR and (ag(x),y’)€eR.
Let us distinguish two cases.
e d(y,v) >d(ag(x),v). Then
d(ag(x),v) <d(y,v) <d'(ag(x'),v') +dis(R)

and the result follows.
e d(y,v) <d(xg(x),v). Then

d(x,v) =d(x,ac(x)) +d(ag(x),v)
>d(x,ac(x)) +d(y,v)
>d'(x',y) +d (ac (x'), V') — 2dis(R)
=d'(x',ac/(x) +d (ag (x), y) +d (ag (x), V) — 2dis(R)
=d'(x', V) +d (ac/(x'), y) — 2dis(R)
>d(x,v) +d'(ag (x), y') — 3dis(R).
Thus,
d' (g (x'), y") <3dis(R)
which implies
d(y, ag(x)) <4dis(R).
Finally,
d(ag(x),v) <d(ag(x),y)+d(y,v)
<4dis(R) +d(y,v)
<5dis(R) +d'(ag (x'), V). O

Let us introduce some notation for the following lemmas (see Figure 4).

DEFINITION 6.9. For any graph G, for each oriented edge e = (u, v) € ker(G) and each
n € [0, £(e)], we denote by v — ne the point at distance n from v on the edge (u, v), on
core(G). Fora < b in [0, £(e)], let Ju — be, v — ae[ be the open oriented arc between v — be
and v — ae in (u, v).

We define G %P the (a, b)-shortening along e as the measured R-graph (H,dy, uy)
obtained from G as follows:
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G

G(e;a,b)

glued

FIG. 4. G©%D) jsthe (a, b)-shortening of G along e = (u, v).

o H=G\ag' (Jv—be,v—ael),

e dy is obtained from (H, d|py x ) by gluing it along the equivalence relation generated by
{(v—>be,v—ae)} (thus dy (v — be, v — ae) =0),

e [y is the restriction of  on H.

Notice that G©%?) has the same surplus as G.

LEMMA 6.10. Let G be an R-graph, and define:

v () == sup diam(oz(_;l(]v — ne, v[)).
e=(u,v)eker(G)

Then

Y6 (n) —> 0.
n—0

PROOF. Suppose on the contrary that yg(n) —0> y > 0. Then one may find an edge e
n—
and a sequence of pairs (X, Yn)neN in a(_;l (Jv — e, v[) such that
d(aG(xn), v) Vd(aG(yn), v) —— 0,

Vn e N, d(x,, yn) >V,
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and
VneN, d(ag(xn),v) Ad(ag(yn),v) > 0.

Let z, € {x,, y,} be such that d(z,,v) = d(x,,v) V d(y,,v). Up to extracting a subse-
quence, one may also suppose that d(ag(z,), v) is strictly decreasing and that for any n,
d(ag(zn), v) < y /4. This implies that for n # m,

d(zn, 2m) = d(va aG(Zn))
=d(zp,v) —d(aG(zn), v)

Y d(ac (). v)

=

=

2
4
R
This contradicts the precompactness of G. [

LEMMA 6.11. Let G = (G, d, ) be a measured R-graph with surplus at least one, let
e be an edge of core(G) and a < b €10, £(e)]. Let
Joe):= Y pleg (v—ece ).
e=(u,v)eker(G)
Then, under the natural coupling between Frag(G,-) and Frag(G©%?
probability at least 1 —t (b — a), for any s € [0, t],

,+) we have, with

1 ~
Ly cup (Frag(G. s). Frag(G“ ). 5)) < C(G)/76(b) V vG (b).
where C(G) is a positive and finite constant depending only on diam(G) and u(G).

PROOF. Lete = (u, v), and P be a Poisson random set of intensity £ x lebg+ on (G, d).
Then P’ := [P \ag ! (Jv—be, v —ae[)] x RT is a Poisson random set of intensity £/ x lebp+
on G' x Rt with G’ :=G \(xél(]v — be,v —ae|). Let r > 0 be fixed and let £ denote the
event

E:={P:Nv — be,v — ae[= 2},
and let us suppose that £ holds. Let ¢ > 0 be such that
(6.8) e > p(ag' (lv — be, v — ael)).
Let us take s <t and let m be a component of Frag(G, Ps). Then:
e if m Cag'(Jv—be, v — ael), then u(m) <e,
e ifmnN aal(]v — be, v — ae[) = @, then m is a component of Frag(G’, P}),
o if mnN oz(_;l(]v —be,v—ael) AT butm ¢ ozgl(]v — be,v — ael), then m is the unique
component of Frag(G, P;) which intersects Jv — be, v —ae[, and m \0451 (Jv—be, v—ael)
is a component of Frag(G’, P,).

This shows that the function

comp(Frag(G, Ps)-¢) — comp(Frag(G’, P;)),
m > m\ ag' (v —be, v — ael)
is well-defined and injective. This shows also that the function ¢’ from comp(Frag(G’, P;)~¢)

to comp(Frag(G, Ps)~.) which maps m’ to the unique m which contains it is well-defined
and injective.
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Now, let m € comp(Frag(G, Ps)~.) and let
m' :=o(m)=m \aal(]v — be,v — ael).
Let
R ={(x,x):xem'}U{(x,v):xem ﬂa&l(]v —be,v —ael}
and 1, be the measure in M (m, m’) defined by
Tm(C)=pu({xem’: (x,x) € C}).
Let d’ be the distance on m’. Notice that for any x, y in m’,

ld(x,y) —d'(x,y)| <b

Thus,

(6.9) dis(Ry) < b+ 2diam(ag' (Jv — be, v — ael)) < 3y (b).
Also,

(6.10) Tm(RS,) =l ({x €em’: (x,x) € R, }) =0.

For A a Borel subset of m,
7(Axm')=p(ANm')
and for A’ a Borel subset of m’,
m(mx A")=p(A").
Thus,
(6.11) D@ s 1tlw) < (g (1o = be, v — ael) < 76 (b).
Inequalities (6.9), (6.10) and (6.11) show that for any m € comp(Frag(G, Ps)=¢),
dgup(m, o (m)) <o :=ps(b) v 3yc(b).
The same inequalities show also that for any m’ € comp(Frag(G’', P})~),
deup(m’, o’ (m)) < «.
Now, let us fix
e=+a+a

so that (6.8) is satisfied. Using the last inequality of Lemma 4.7 with p =1 and «, ¢, 0 and
o’ as above, we have shown that as soon as £ holds, for any s € [0, ¢],

Laup(Frag(G, Py), Frag(G©*?, P!))
1(G)
NG

=17(y6(b) Vv 3y (b)) + (16 + 1(G))y/ 76 (b) V 3yG (b).

|masses(Frag(G, Py)) — masses(Frag(G "), P!)) ||§ <276(b)>.

Also, for any m in comp(Frag(G, Ps)-.), m and o (m) have the same surplus (recall the
gluing in Definition 6.9). The same is true for m’ and o’(m’). Notice also that

Y6(b) = u(G) and  yG(b) < diam(G).

< 8« + 16¢

Furthermore,
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Thus,
Ly is (Frag(G, Py), Frag(G©+:)), P)))

< [17(76(b) v 3y6 (1)) + (16 + 1(G))y/ 76 (b) V 3y6 (b)) V 276 (b)*

< C(G)\/yG(b) V yc(b),

where C(G) is a positive constant depending only on diam(G) and (G). Finally, notice that
& has probability at least exp(—t(b —a)) > 1 —t(b—a). U

Now, we shall prove Theorem 3.2.

PROOF OF THEOREM 3.2. The proofs of (i) and (iii) are completely analogous to the
proofs of (i) and (7ii) in Proposition 6.4, so we leave them to the reader.

Let us prove (ii). First, we may suppose, thanks to Skorokhod representation theorem, that
G" and G are deterministic and that G" converges to G as n goes to infinity. Thanks to
Remarks 2.12(iv) and 2.22(iii), it is sufficient to prove Theorem 3.2 when the components of
G" and G are genuine metric spaces, that is, R-graphs.

The argument at the beginning of the proof of Proposition 6.4 shows that it is sufficient
to prove the result when G" and G have a single component. Let G = (G, d, ) be a mea-
sured R-graph and let ¢ > 0. We want to show that Frag(G", t) converges in distribution to
Frag(G", ) when G" is a sequence of R-graphs which converges to G while having the same
surplus.

Let § < 8(¢, G) be given by Lemma 6.7 and let G’ be such that dgup(G, G') < § (we will
take § small enough later). Thus, there is a correspondence Ry € C(G, G’) and a measure
79 € M(G, G") such that

dis(Ro) V o(R§) V D(mwo; . ') < 8.

Lemma 6.7 shows that there exists an e-overlay R € C(G, G’) containing Ry. Let us denote
by x the multigraph isomorphism from ker(G) to ker(G’) given by this overlay. For any edge,
e eker(G), |(e) — ' (x(e))] <.

We define two graphs G and G’ obtained from G and G’ as follows. For each oriented
edge e = (u, v) € ker(G), denoting (u’, v') = x (e) and n, := |€(e) — €'(x (e))|, which is less
than &:

e if £(e) is smaller than ¢'(¢’), we replace G’ by its (6 — 7., 6¢)-shortening along ¢’ (cf.
Definition 6.9),
e if £/(¢’) is smaller than £(e), we replace G by its (6 — 1., 6¢)-shortening along e.

Let us denote by (G, d) and (G’, d’) the resulting R-graphs, let i := plg, i == u'|g and
define G := (G, d, i), G := (G, d', i").
Recalling the notation in Lemma 6.10, let
k:=vyc(lle) +12¢
and define R the x-enlargement of R. We will show that
(6.12) G and G’ are in correspondence through R ;.

If x € G and (x, x’) € R with x' ¢ G’, then x’ € otg,l (v — 6ge’,v' — (66 — n,)e’[) for some
edge ¢/ = (u’, V') of ker(G’). Lemma 6.8 shows that

(6.13) 0 < 6e —n, —5dis(R) <d(ag(x), v) <6e+5dis(R) <lle
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and thus

d(x,v) <yg(lle) + 1le.
Thus,
(6.14) d'(x',v) <yc(1le) + 12¢ = «.

This shows that (x,v) € R. )
Now, suppose x’ € G’ and (x, x") € R withx ¢ G. Then, x € oe(_;l(]v —6ge,v— (66 —1.)')
for some edge ¢ = (u, v) of ker(G) and n < ¢. Notice that

d(x,v) < yG(6¢) + 6¢,
and
d'(x',v') <d(x,v) +dis(R) < yG(6¢) +Te < k.

Thus (v, x") € R;. This completes the proof of (6.12).
Notice that

dis(R1) < e +4«.
Let Ro :=Rilg, ¢ € C(G, G’). Let K be the number of edges in ker(G). Notice that

V(x,y) € G, |d(x,y) —J(x,y)| < Ke

and

V.)€ G, |d(W.y)—d (. y)] < Ke.
Thus,
(6.15) dis(R2) <2Ke+dis(R1) < 2K +49)e +4ys(11¢).

Clearly, there exists a homeomorphism i from core(G) to core(G) which preserves the
length-measure. For each oriented edge e = (u, v) € ker(G), denoting (u’,v') = x(e), ¥
satisfies ¥ (v) = v’. Furthermore, since e and ¢’ are in correspondence through the overlay
‘R, we have, for each x € [u, v], that there exists x’ € [u’, v'] such that (x, x") € R and

ld(x,u) —d'(x",u')| <e.
If furthermore x € core(G), we know that d(x, u) = d' (Y (x), u’), so
|d' (Y (x),u’) —d'(x',u')| <e.
Since x’ and v/ (x) belong to [u’, v'],
d (@), x)=|d'(¥x),u)—d ' u)| <e,
which shows that for every x € core(é),
(6.16) (x, ¥ (x)) belongs to R»,

the restriction to G x G’ of the k-enlargement of R.
Now, let 7 := 79|, & € M(G, G). First,

(6.17) 7 (R5) =7 (RY) < mo(RG) < e.
Then
(6.18) D(m; fi, fi') <2D(mo; . 1) + (G \ G) + 1/ (G'\ G).
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Now, recall that

voe):= Y. plag'(lv—ee vl)

e=(u,v)eker(G)
which goes to zero as € goes to zero. We have
WG\ G) < 76 (6¢).

Furthermore, recall inequality (6.13) which shows that if x’ € G’ \ G’, then for every x € G
such that (x,x) € R,

X € U ag' (v — llge, v]).
e=(u,v)eker(G)

Thus,
W (G'\ G') < (G x (G'\ G")) + D(mo; i, 1)
<7((G x (G'\ G")) NR) + mo(R°) + ¢
(6.19) < 7o U ag'(lv—1llee, v[) x G/> + 2¢

e=(u,v)eker(G)
§,u< U a&l(]v— llee,v[)) + D(mo; o 1) + 2¢
e=(u,v)eker(G)
<yc(lle) + 3.
Thus, using (6.18),
(6.20) D(m; i, ') <5e 4+ 2y (11e).

Gathering (6.16), (6.15), (6.17) and (6.20) shows that one may apply Lemma 6.5, in the

sense that there is a function fg(e) going to zero as & goes to zero such that the Lévy—

Prokhorov distance (for the Skorokhod topology associated to L;‘erpg;) between the distribu-

tions of (Frag(f}, 5))se[o,:] and (Frag(f}’, $))sefo,] 18 less than fg(¢).
On the other hand, let v’ € ker(G’) and x’ € aa,l (Jv — &, v]). Let v € ker(G) (resp. x € G)
be such that (v, v') € R (resp. (x, x’) € R). Then

d'(x',v) <d(x,v) +e.

But using Lemma 6.8,
d(ag(x),v) <d'(ag(x),v") + 5¢ < 6¢,
which implies
d(x,v) < yG(6¢).

Thus,

d'(x',v') < yg(6e) + ¢,
which shows that

ve'(€) < yG(6¢) +e.

Inequality (6.19) shows that

Yo (€) < yg(1le) + 3e.
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Then Lemma 6.11 shows that there is a function fs(g) going to zero as & goes to zero
such that the Lévy-Prokhorov distance between the distributions of (Frag(G, s))se[o.s]
and (Frag(G, s))sef0,7] 1s less than fg(¢) and the Lévy—Prokhorov distance (for the Sko-

rokhod topology associated to L;ugll{u}f) between the distributions of (Frag(G’, s))sefo.r] and

Frag(é’ ,$))sefo,¢] 18 less than fg(e). This completes the proof of (ii) (through Lemma A.2
and inequality (A.1)). O

6.5. Application to Erdds—Rényi random graphs: Proofs of Theorem 3.6 and Proposi-
tion 3.8. Let us first compare the discrete fragmentation process and the continuous one.
Let P~ be a Poisson process driving the discrete fragmentation on G" := G (n, p(A,n)). Re-
call that N~ (G", P;") is the state of this process at time 7, seen as an element of Nfraph. Let
Q™ be a Poisson process of intensity £, ® lebg+ on K, x R* where K}, is the complete graph
on n vertices seen as an R-graph where the edge lengths are 8, = n~'/3 and ¢,, is its length
measure. Then one may suppose that P~ is obtained as follows:

P~ ={(e,1):Ix e, (x,1) e Q™ }.
Then, for any ¢, N~ (G", P, )) is at Ly gyp-distance at most n_1/3_fr0rn Frag(G", Q; ) (cf.
for instance [4], Proposition 3.4). Recall that by Theorem 2.26, G, , (which is G" with
edge length 8, and vertex weights n~2/3) converges in distribution to G, for L;?gﬂ}f. Thus
Theorem 3.2 implies that (Frag(G", Q;));>0, and thus (NT(G",P;")));>0, converges to
(Frag(Gs., t)):>0 as n goes to infinity (in the Skorokhod topology associated to L;?gg;). This
shows Theorem 3.6.

We are now able to prove Proposition 3.8. Take P;' of intensity y = n~%/3. Notice that the
states of the edges are independent and identically distributed in (G (n, p), NT(G(n, p), 73,Jr ).
Let (X, Y) be the joint distribution of the state of one edge in (G(n, p), Nt (G(n, p), P;")).
Denoting by 0 the state “absent” and 1 the state “present” it is easy to compute this distribu-
tion:

P((X,Y)=(0,0)) =(1— p)e ", P((X.Y)=(0,1)) =1 —p)(1 —e7),
P((X.Y)=(1,0)) =0,  P((X.V)=(.1)=p.

Now, take P, of intensity s =n~!/3 and let (X', Y’) be the joint distribution of the state of
one edge in (N~ (G(n, p'), P;)), G(n, p')). Then

P(X.Y)=0.0)=(1-p), P(X,¥)=0.1)=p(1-e"),
P((X,Y)=(1,0)=0, P((X,Y)=(1,1)=pe "

Thus, if one chooses

1 1— 1 !
t:—ln—p/ and t’:—lng,
y l—-p nw o p
then (G(n, p), NT(G(n, p), P,J’)) and (N~ (G(n, p), P.),G(n, p’)) have the same distribu-
tion. Now, take p = p(A,n), p’ = p(A +s,n). We have

t =n*3 1n<1 +

s
n4/3(1 —p/)> o S.
We consider that G(n, p) is equipped with edge lengths n~!/3 and vertex weight n=%/3,
Thus Theorem 3.5 shows that (G(n, p), NT(G(n, p),73,Jr )) converges in distribution to
(G, Coalp(Ga, 5)). Also,

L+ 55
t/:n1/3ln—”)f—>s
A n—>o0
PV
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thus Theorem 3.2 shows that (N~ (G(n, p'), P,), G(n, p’)) converges in distribution to
(Frag(Gy+s, 5), Gats))- Thus (G, Coaly(G,, s)) and (Frag(Gys,s), Gats)) have the same
distribution. This completes the proof of Proposition 3.8.

Notice a curious fact: in [6], Theorem 3, it is shown that the sizes of the components of
a fragmentation on the CRT are the time-reversal (after an exponential time-change) of the
standard additive coalescent. It would be interesting to make a direct link between additive
and multiplicative coalescent in the context of fragmentation on G;,.

7. Combining fragmentation and coalescence: Dynamical percolation.

7.1. Almost Feller property: Proof of Theorem 3.3. In this section, we prove Theo-
rem 3.3. The following lemma is a simple variation on the proof of (5.4).

LEMMA 7.1. Let X" = (X",d", u"), n > 0 be a sequence of random m.s-m.s in Nzgraph

and (8"),>0 be a sequence of nonnegative real numbers. Suppose that:
(i) (X™) converges in distribution (for Ly gup) to X*° = (X*°,d*°, u*°) as n goes to

infinity,

(i) 6" —— 0,

n—oo
@ii1) forany o > 0 and any T > 0,
lim sup P(suplength(Coals: (X, T)) > ) —> 0.

neN e—0
Then, for any o« > 0 and any T > 0,
P(suplength(Coalo(XZ}, T)) > o) — 0.

e—0

PROOF. The situation is simpler than in the proof of (5.4), since suplength is non-
decreasing under coalesence. Using the notation of the proof of (5.4),

P(suplength(Coalo(XZ;, , T)) > «)
— |1 oo
= pll)ngo P(suplength(Coaly (X, ,, T)) > «).

m,p’

n

Now, Proposition 5.3 implies that (Coals: (X}, P
(Coalg(X2°,, T) for any m < p. Thus, for any m < p,

m,p’

T) converges in distribution to

P(suplength(Coaly (X, T)) > «)

m,p>

< limsup P(suplength(Coals (X7, ,, T)) > o)
n—0o0
< lim sup P(suplength(Coals: (X, ,T)) > «),
n— o0 -
which goes to zero when m goes to infinity. [

Now, we are able to prove Theorem 3.3.

Notice that the strong Markov property was already noticed (see the remark after Defini-
tion 2.25). The fact that trajectories lie in S'"#" is a consequence of Lemmas 5.9 and 5.11.
Thus, to prove (i), we only need to prove that the trajectories are cadlag (almost surely). This
will be done in the course of proving point (if).

We will reduce the problem to N, igraph using a variation on the proof of Theorem 3.1.

Let us study first Frag(Coals:(X",P;"), P,) with P* and P~ as in Definitions 2.13
and 2.23. Let us fix ¢ € ]0,1/2[ and 0 <t < T. Any component of size at least & in
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Frag(Coals» (X", 73t+ ), P;) has to belong to a component of size at least ¢ in Coals: (X",
73,+). Let x” := masses(X") for n € N.

As in the proof of Theorem 3.1, we obtain that there exists K (¢), &1 € ]0, e[ and &5 € ]0, [
such that for every n € N, with probability larger than 1 — ¢ the event A, holds, where A,, is
the event that points (a), (b) and (c) of Corollary 5.6 hold for any 7 € [0, T] and S(x", T) <
K (g).

Let us place ourselves on A,. Then, for a significant component at time ¢, notice that
fragmentation on the hanging trees of components does change neither the mass neither the
distance in the heart of a component. Thus, the same proof as that of Theorem 3.1 shows that
on A,, we have for every time # < T and every &} < ¢&):

Lcup(Frag(Coals: (X", P;7), P;”), Frag(Coals: (X" &) P, Pr))

8K
< 17(8" + supdiam(Frag(Coals: (X, , PF). P,)) + 81)(1 + (8))

2
+ 16¢.
A slight difference occurs here:
t > supdiam(Frag(Coals: (X", . Pf). P;"))

is not necessarily nonincreasing. However, the supremum of the lengths of injective paths
clearly decreases (non-strictly) under fragmentation. Thus, on A,,

Lgnp(Frag(Coals: (X", P;L), P,”), Frag(Coalsn (Xig/z, Pﬂ'), P7))

8K
< 17(8" + suplength(Coals (X", , Pr)) + 81)<1 + %) + 16¢.

Let V = comp(Frag(X", P, )) and W = comp(Frag(X’;g,z,P,_)) C V. Let E’ denote the

set of pairs (i, j) in V? such that i ~ j if and only if i and j are at finite distance in
Frag(Coals» (X", 73,Jr ), P; ). Let E denote the set of pairs (i, j) in V2 such that i ~ jif
and only if i and j are at finite distance in Coals: (X", 73t+ ). Define

x"(t) := masses(Frag(Coalg: (X", P,"), P;"))
and
x"_(t) := masses(Frag(Coals: (X", P;"), P,)).

Lemma 4.4 shows that
[x" ) = *2 . 3
< "0l = 2, 0l
then, we can use Lemma 4.5, since (b) of Corollary 5.6 holds on A,,:
@) =, 0]

<S@x",t)— S(xgez, r)

< 28% <e
since (c¢) of Corollary 5.6 holds on 4,. Now, let us take 8, = 0. Define

X"(t) := Frag(Coaly(X", P;Y), P;") = CoalFrag(X", t)
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and
X", (1) :=Frag(Coalo(X",,, P;"), P;") = CoalFrag(X",,, ).

Notice that we used the commutation relation guaranteed by Lemma 5.9. Using the hypothe-
sis (3.2) on suplength and Lemma 7.1, we conclude that for any & > 0,

(7.1) lim supP*[ sup Lo cup(X" (1), X2, (1)) > ¢] =0.
e1—0, N “rel0,T]

Now, let us prove that the trajectories of CoalFrag(X°, ) are cadlag. Let Y" := R1 (X °°1 ).

CoalFrag(Y", -) is cadlag (it has a finite number of jumps on any bounded 1nterval) Now
Lemma 6.1 applied to X Zol and equation (7.1) applied to X" := X* show that the hypothe-

ses of Lemma A.1 are satisfied for o = CoalFrag(Y", -) and @®> = CoalFrag(X®°, -). This
proves that the trajectories of CoalFrag(X°, -) are cadlag and completes the proof of (i).

Now, let us prove point (if). Equation (7.1) shows that it is sufficient to show the proposi-
tion for X" converging to X in Lj gyp with X" and X being m.s-m.s with a finite number
of components which are R-graphs. We shall only sketch the proof, since it is a variation on
the arguments of the proofs of Proposition 5.3 and Theorem 3.2. For any n large enough, the
proof of Theorem 3.2 shows that one may couple a Poisson random set P~>" on X" x R™
with intensity measure £x» ® lebp+ with a Poisson random set P~ on X x R™ with intensity
{x ®lebg+ and one may find 7" € M (X, X") and R" € C(X, X™) such that there is an event
&, in the o -algebra of (P; ", P;") and a sequence &, such that:

1) P&;) <en,
(i) &, m 0,
(iii) on &,, forany s <7, R"N(X\P; ) x (X"\P; ") e C(X\ Py, X"\ P;") and
DGl x\pry xmps s Mxyps s ogmpen) VT ((RT)) v disg (R”) < e,

where disg(R") is the distortion of R" as a correspondence between the semimetric spaces
Frag(X, P;") and Frag(X", P;""),
(iv) on &,, for any s <1, || masses(Frag(X, P, )) — masses(Frag(X", P;")l1 < &n.

Then one may use the proofs of Lemma 5.2 and Proposition 5.3 to couple a Poisson random
set Pt on (X")2 x RT with intensity measure %(,u”)® ® lebr+ with a Poisson ransom set

P+t on (X)? x Rt with intensity %(M)® ® lebr+ in such a way that there is an event &), a
sequence &), such that:

i) P& <e,,
(i) e, —= 0
(iii) on &, for any s <t,
D(7T|(X\7>;)x(xn\7>;’")? Ix\p;s Mﬂ|xn\7>;’") va"((R")) v disy(R") < e,

where dis (R") is the distortion of R" as a correspondence between the semimetric spaces
Coalg(Frag(X, P;), P;F) and Coaly(Frag(X", P;"), Pi"),

(iv) on &), for any s < t, the multigraphs MG(Frag(X, P;), P;") and MG(Frag(X",
P, P are the same.

Thanks to the properties of the multigraphs above, on &, N €, we get that for any s <1,
|masses(Coal(Frag(X, P;"), P;")) — masses(Coal (Frag(X", P;"), ;")) ||,
< |masses(Frag(X, P;)) — masses(Frag(X", P;"))|

= é&n.
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Using Lemma 4.8, this ends the proof of the convergence in the sense of L1 gup, and thus the
proof of point (i).

Finally, (@ii) is a direct consequence of Theorem 3.1(iii) and Theorem 3.2(iii). This com-
pletes the proof of Theorem 3.3.

7.2. Application to Erdds—Rényi random graphs. Now, we want to prove Theorem 3.7
and Theorem 3.4. Intuitively, the dynamical percolation process on the complete graph K,
should be very close to the process CoalFrag(K,, -), but such a statement needs some care,
essentially because N* and N~ do not commute: some pairs of vertices might be affected
by the two Poisson processes PT and P~ in a time interval [0, T']. Furthermore, the typical
number of such edges is of order n!/3. It turns out that these edges will not be important for
the Lgyp-metric, but this issue requires us to adapt the proof of Theorem 3.3.

PROOF OF THEOREM 3.7. Let G®° =G,. Let p = p(A, n), let G" be the graph G(n, p)
seen as a measured R-graph, with edge-lengths 8, := (1 — p)n~!/3> ~ n=1/3 and measure
the counting measure times ./ pn=!/3 ~ n=2/3. Let PT (of intensity pn~'/3) and P~ (of
intensity (1 — p)n—'/3) be the two Poisson processes driving the dynamical percolation on
G". Let us write

G"(t):=N(G", (PT,P7),)
and

G, ) :=N(G", . (P*.P7),)

for the state of this process at time ¢, seen as a member of j\/'zgraph. Letusfixe>0and 0 <
t < T. Any component of size at least £ in N(G", (P*, P7),) has to belong to a component
of size at least ¢ in N(G", (P*, @),), which is nothing else but Coals, (G", 73,+). Now, we
claim that

(7.2) lim sup P(suplength(Coals: (G, T)) > a) — 0.

neN e—>0

Indeed, if G is a discrete graph with diameter D and surplus bounded from above by s,
suplength(G) <2D(1 + ).

Thus, (7.2) is a consequence of (5.6) and the fact that the maximal surplus in G" forms a
tight sequence (see, for instance, [24], Sections 13 and 14). Then (7.2) and Lemma 7.1 show
that for any ¢ > O and T > 0,

P(suplength(Coaly(GZ,, T)) > a) — 0.

e—0

The arguments leading to (7.1) show that

lim limsupIP[ sup Lo gup(G" (1), G2, (1)) > 8] =0

>€
e1=0 ueN  Lefo,71] !

and
lim IP’[ sup Ly gup(CoalFrag(G®,t), CoalFrag(GZ,,, 1)) > 8] =0.
e1=0 Lref0.71]

n o

Thus, it is sufficient to show that for any ¢ > 0, (G el (t))s>0 converges to (CoalFrag(GZ, I’
1)):>0 in the Skorokhod topology associated to Ly gup. Let Y, denote the number of dis-
crete coalescence events of P occurring on G”, .- Since the masses of G% . form a tight

sequence, (Y},) is a tight sequence. Since §, goes to zero, the probability that P touches an
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edge from PT in GY, goes to zero as n goes to infinity. Thus, with probability going to one,
for any r € [0, T'] G>€l(t) = (t) where

>€1

>81 (t) - (Coalan( >£1° P+) (Q’ Pi)t)‘

Furthermore, since Y, is a tight sequence and §, goes to zero,

— P
sup. La.gae (G, (). N (Conlo(GL, PY1). (2. P7)) 2 O
te

Let Q~ be a Poisson process of intensity £, ® lebp+ on K,, x R™ where K, is the complete
graph on n vertices seen as an R-graph where the edge lengths are §, and ¢, is its length
measure. Then one may suppose that P~ is obtained as follows:

P~ ={(e,r):Ix e, (x,1) € Q™ }.

Then, for any ¢, N(Coalo(G>€l, ,+), (2,P7)) is at Ly gup-distance at most &, from
Frag(Coalo(GZ,,, P;"), Q;) (cf. for instance [4], Proposition 3.4). Altogether, we get
P
sup Ly gup(G 2,0, Frag(Coaly(G” e Pr), Q) — 0,
1€[0,T] n—oo

and (Frag(Coalo(G>81,79,+ ), Q; ))i=0 is distributed as CoalFrag(G>81,
rem 3.3 shows that the sequence of processes CoalFrag(G”
CoalFrag(G<
proof. [

)t>0. Now Theo-
%) converges to
) for the Skorokhod topology associated to L3 Gup, which completes the

>&1°

Finally, let us prove Theorem 3.4. First, notice that G, € S&" (it is a consequence of The-
orem 3.1). For Frag(G,,, -), Theorem 3.4 is a consequence of Theorem 3.2 and Lemma 5.9.
The fact that Coal(G,, -) and CoalFrag(G,, -) are strong Markov processes with cadlag trajec-
tories in S"2™ js a consequence of the convergences already proven and of Theorems 3.1, 3.2
and 3.3. It remains to prove that almost surely, for any ¢ > 0, Coal(G,, t), and CoalFrag(G,, t)
belong to S&aph,

Proposition 3.8 shows that Coal (G, t) has the same distribution as G, 1. Thus, for a fixed
t >0, Coal(Gy, 1) is in SEPP almost surely. But if Coal(Gy, 1) is in SEP_ then Coal(Gy, s)
and CoalFrag(G;., s) are in S22P for any s < r; cf. Remark 5.10. This proves that Coal(Gy, 1)
and CoalFrag(Gy, -) have trajectories in S&2P and completes the proof of Theorem 3.4.

8. Perspectives. Today, there are a lot of results concerning convergence in distribution
of rescaled critical random graphs to G, (see [3, 7, 10]), or to other scaling limits (see [9, 11,
14]). For a lot of them, there is a notion of critical window parametrized by a real number
A, and the graph components merge approximately like a multiplicative coalescent when A
crosses the critical window. This is particularly obvious for critical percolation on the con-
figuration model and inhomogeneous random graphs, [7, 9], but also parametrized rank-1
inhomogeneous random graphs [10, 11]. It is natural to expect the results of the present paper
to apply to those random graphs. More precisely, I expect that analogues of Theorems 3.5, 3.6
and 3.7 hold. Let me describe quickly what I believe to be straightforward and what I believe
not to be.

Concerning fragmentation, in order to apply Theorem 3.2, one needs, informally, joint
convergence of the graphs, their size and their surplus. For instance, [19] and [9] should be
enough to prove directly through Theorem 3.2 that the discrete fragmentation process on
the critically percolated heavy-tailed configuration models of [9] converge to a fragmentation
process on the limit. Since discrete fragmentation is itself a coupled percolation process (with
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a decreasing percolation parameter), this in fact will show convergence of the critical perco-
lation process (with decreasing percolation parameter) to the fragmentation process on the
limit. For percolation on light-tailed configuration models at criticality, the analogous result
should hold by resorting to the results of [18] and [7]. For rank-one inhomogeneous random
graphs, whether light or heavy-tailed, [14], Theorem 2.14, should be enough to prove through
Theorem 3.2 that the discrete fragmentation process on critical rank-one inhomogeneous ran-
dom graphs converge to a fragmentation process on the limit.

Concerning coalescence, it seems to me that applying Theorem 3.1 is not as straightfor-
ward, since it could require substantial work to prove the additional hypothesis (3.1). For
some models where the convergence of a height process is available, as rank-one inhomo-
geneous random graphs [14], there is some hope to mimick the proof of Section 5.4, but
not without substantial additional work, essentially to prove condition (if) of Lemma 5.13. It
could also be feasible for the configuration model with i.i.d. degrees leading to stable graphs;
cf. [17].

Concerning dynamical percolation, once the difficulties explained above concerning frag-
mentation and coalescence will be resolved, it should be straightforward to obtain a result
analogous to Theorem 3.7. Also, I believe that a duality result analogous to Proposition 3.8
should hold also in the heavy-tailed setting.

Finally, let us mention that a version of Theorem 3.3 where the convergence of initial
data and of the process would be with the same topology should be true by using a stronger
topology. One should be able to do this with a distance compatible with the Feller property
of the augmented coalescent proved in [8].

APPENDIX A: TOPOLOGIES FOR PROCESSES

Let (M, d) denote a separable, complete metric space. Let F ([0, co), M) (resp., D([0, c0),
M)) denote the set of functions from [0, 0o0) to M (resp., cadlag functions from [0, co) to M).
For w; and w, in F ([0, 00), M), let us define

dex(wi, @) == sup d(wi(t), wa(1)))
t€[0,k]

and
de(w1, @) =Y 27%(1 Adex (w1, w2)).
k>1
It is easy to see that (F ([0, c0), M), d.) and (D([0, o0), M), d.) are complete metric spaces

(not separable in general), and that a sequence w" = (w"(t)),cg+ converges in this metric
space to ™ = (0™ (t)),cr+ if and only if for every T > 0,
sup | (1) — 0™ ()] —— 0,
1€[0,T] n—+00
whence the term “topology of compact convergence.” A reference when M = R, with appli-
cations, is [27], Section V.5, but we shall not use it here.

Now, let us define dg the Skorokhod metric as in [27], Section VI.1. For each k € N*, w;
and wy in F ([0, 00), M), let ds x (w1, wz) be the infimum of those values § for which there
exists grids 0 =7y <ty <--- <t witht, >kand 0 =s9 < 51 < --- < s, with s, > k such
that |[f; —s;| <é§fori=1,...,r and

d(a)l(t),a)z(s)) <§ ift;<t< tit and s; <s < S8i41-
Then let

ds(wr, @) =Y 27%(1 Ads (w1, 02)).
k>1
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Then (D([0, 00), M), ds) is a separable metric space; cf. [27], Theorem VI.6. Notice that for
any k,

(A.1) ds i (w1, w2) <d¢ (w1, w2).

Notably, ds < d., and thus the topology induced by d. on D([0, c0), M) is finer than Sko-
rokhod’s topology induced by dg. Notice also that

(A2) ds(w1, w) < ds (o1, w2) +27F.

Concerning measurability, (F ([0, 00), M), d.) (resp., (D([0, o0), M), d.)) will always be
equipped with its projection o-field Pr (resp., Pp), the smallest o-field making the pro-
jections 7, measurable, where 7; maps w to w(t) € M. Those o-fields are included in the
Borel o-fields for d.. But Pp coincides with the Borel o-field induced by the Skorokhod
topology on D([0, 0o0), M); cf. [27], Theorem VI1.6.

In this article, we prove convergence in distribution of a sequence of processes
(X (®))i=0)n>1 towards (X (¢));>0 by exhibiting couplings showing essentially that the
Lévy—Prokhorov distance for d. between the distributions of X, and X goes to zero as n
goes to infinity. This implies convergence in distribution for the Skorokhod metric. Every-
thing needed is gathered in the following lemmas. Recall that P* denotes the outer measure
associated to P.

LEMMA A.l. Let ", n € N be random variables with values in F([0, 00), M), de-
fined on the same complete probability space (2, F,P). Suppose that for every n € N,
" € D([0, 00), M) almost surely, and that

de (0", ™) P o
n—-+40o

Then ™ belongs to D([0, 00), M) almost surely.

PROOF. Since d. (0", w*°) converges in probability to zero, one may extract a subse-
quence w™, k > 0 such that d. (™, ®*>°) converges to zero P*-a.s., and hence (since P is
complete), P-a.s. But since almost surely, " is cadlag for any n, and any limit of a cadlag
sequence for d, is cadlag, we obtain that ®*° is cadlag P-a.s. [J

LEMMA A.2. Let ", n € N be random variables with values in D([0, 00), M) such
that for any € > 0, any k € N*, there exists N € N such that for every n > N, there exists a
coupling of " |[0,k] and w™|[o k] such that

Plds (0", ©™) > ¢] <e.

Then " converges in distribution to w™, for the Skorokhod topology.

PROOF. Let F be a closed set in (D ([0, co), M), ds). It is sufficient to prove that
limsupP(o" € F) <P(0™ € F).

n——+0o

Let ¢ > 0. Let us define

F®:={x e D([0,00), M) :3y € F,ds(x,y) <&},
which is a closed set. We have

P(w" € F) < P(0™ € F*) + P(ds(o", 0™) > ¢).
Now, choose k € N such that 2% < % Then, using (A.1),

2

By hypothesis, the last term above is less than ¢ if n is chosen large enough. Letting ¢ go to
zero and using the fact that (), F® = F, we get the result. []

P(o" € F) < Pw™ € F%) + ]p(ds,k(w", o) > f).
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APPENDIX B: THE SET OF ISOMETRY CLASSES OF FINITE MEASURED
SEMIMETRIC SPACES

Even though there is no ser of finite measured semimetric spaces in the sense of Zermelo—
Frankel set theory,® C/R can be considered as a set in the sense that there exists a true set of
representatives of elements of C. The idea is to consider the set of all finite measured semi-
metric spaces of a sufficiently large set U such that U contains a copy of any separable metric
space, in the following (quite weak) sense.

HYPOTHESIS B.1. For any separable metric space M, there exists a map ¢ from M to
U such that ¢ is a bijection from M to ¢ (M).

In Definition B.2, we make the (quite standard) choice U = (R;)N. Indeed, for any metric
space (M, d) with a dense sequence (x;);cN, the following function shows that Hypothe-
sis B.1 is satisfied:

M — U,
x> (d(x,x7));en-

DEFINITION B.2. LetU= (R+)N. Let P denote the set of measured semimetric spaces
X = (X, d, n) such that:

e X is a subset of U,
e ( is a finite semimetric on X.

We denote by M the quotient P/R of P by the equivalence relation R, where
XRX <& dGHp(X, X/) =0.

By abuse of language, we may call M the “set of equivalence classes of finite measured
semimetric spaces, equipped with the Gromov—Hausdorff—Prokhorov distance dgyp.”

M is a set of representatives of elements of C. Indeed, since every separable metric space
is isometric to a subspace of U equipped with a suitable metric through the function ¢ above,
every member of C will be at zero dgpp-distance from some element of P, and even at zero
dgup-distance from some compact element of P. Thus, for every member X of the class
C, there is an element [X'] of M such that for any X” € [X], dgup(X, X”) = 0. Abusing
notation, we shall denote by [ X] the member of M whose elements are at zero dgyp-distance
from X.

For our purpose, it is in fact not crucial to have Definition B.2, and one could reformulate
all the results in this article in terms of sequences of random variables, at the expense of much
more heavy statements.

Finally, one may define a set of equivalence classes of R-graphs as follows.

DEFINITION B.3. Let P22 denote the subset of P composed of measured semimetric
spaces which are semimetric R-graphs. We denote by M&@Ph the quotient P&2Ph /R of Peraph
by the equivalence relation R, where

XRX <& dGHp(X,X/):O.

8Sf:e, for instance, [16], Remark 7.2.5: the problem is that if this class C was a set, one can assign to it a finite
semimetric, dgyp and a measure u, so that (C, dggp, 1) is a member of C, leading to Russell’s paradox.



394 R. ROSSIGNOL

APPENDIX C: COMMUTATION RELATIONS FOR COALESCENCE AND
FRAGMENTATION

LEMMA C.1. Let (X, d) be a semimetric space. For any A, B C X2, Coalp(X, AUB) =
Coalg(Coaly(X, A), B).

PROOF. Let Eq(A) denote the equivalence relation generated by A. Since Eq(AU B) =
Eq(Eq(A) U Eq(B)), it is sufficient to prove the lemma when A and B are equivalence rela-
tions. So suppose that A and B are equivalence relations. Let x and y be in X. Then

k

daus.o(x,y) =inf)_d(pi.qi).
i=1

where the infimum is over all k € N*, p,q1,..., pk, gx such that po = x, g = y and
(qi, pi+1) € EqQq(A U B) for any i in {1, ...,k — 1}. Now, if (g;, pi+1) € Eq(A U B), there
exists r, 81, ..., 11, 81, ri+1 such that r; = ¢;, s = p;j4+1 and

VjG{l,...,l}, (I’j,Sj)GA and (Sj,rj_H)EB.

Then

/

dx (pi,qi) =d(pi,qi) + Z dao(rj,s;).
j=1

And we obtain, denoting by d the distance of Coalgy(Coaly(X, A), B),

daup.o(x,y) = d(x,y).
In the other direction, let k € N*, p1,q1, ..., pr, gr and & > 0 be such that

k
d(x,y) <Y dao(pi.qi) +e¢

i=l

with po=x, qx =y and (g;, pi+1) € B forany i in {1, ...,k — 1}. Then let Ay, ..., h; and
Dij-qij-i=1,....k, j=1,..., h; be such that forany i € {1, ...,k},

hi

&
dao(pi,qi) < Zd(l’i,ja qi,j) + =
j=1

with Pil = Di> qi.h; ={i and (Qi,j’ pi,j—f—l) € A. Then we get

k  hi

dx,y) <Y > d(pij.qij) +2¢

i=1j=1

with P11 =X, Gk,hy =Y and (q,~7j, pl"j+1) € A U B with the convention Pihi+1 = Pi+1,1-
Minimizing on p and g, we get, for any & > 0:

d(x,y) <daup.o(x,y) +2e¢

which gives the result. [

LEMMA C.2. Let (X,d) be a semimetric space. For any multisets A, B of elements of
X2 and any § > 0, Coals(X, A U B) = Coals(Coals(X, A), B).
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PROOF. For a multiset A of elements of X2, let us denote by 14 the multiset of intervals
added when § > O:

Iy = |_| [ax,x/v bx,x/],
(x,x")eA

and let A denote the set of points to be identified:
Ai={(x,a,): (x,x") € AJU{(x, byy) : (x,x") € A}.
Then
Coals(X, A) = Coalo(X Ui I4, A).

Notice also that [q g =Is U lgand ALUB = AU B. Now,
Coals (X, AU B) = Coalg(X U Iz, AU B)
=Coalg(X UI4UIg, AUB)
= Coaly(Coalp(X U I U g, A), B)
= Coalg(Coalo(X Ui 14, A) U I, B)
= Coals(Coalp(X U 14, A), B)
= Coals(Coals(X, A), B),

where we used Lemma C.1 at the third line. O

Recall the following notation: if (X, d) is a semimetric space and A C X, we let
AY:={xeXstIyeA,dx,y) =0}

LEMMA C.3. Let X be a length-space. Then, for any A and B C X, Frag(Frag(X, A),
B) =Frag(X, AU B).

PROOF. Notice first that if x € X \ A4 and y € B \ A4,
A (x,y)=0 & d(x,y)=0.
Thus,
(AUBY =AU B\ AYa™,
Now, let x and y belong to X and y a path from x to y, indexed by [0, 1], such that
y N Al =g,

then we claim that
(C.D Lrrag(x,4)(¥) = £x ().
Indeed, trivially,

Lrragx,4)(¥) = Lx ().

On the other hand, if 0 =#; < --- <1, = 1 is a subdivision of [0, 11, ¥|;.4,,] is a path from
y () to y(tix1) in X \ A, Thus,

n—1

n—1
A (@), v ) < D x Wl )
— i=1

=Llx(y)
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which shows (C.1). Finally, denoting by d the distance on Frag(Frag(X, A), B),

Frag . .
dyop(x.y)=inf = Lx(y)
yN(AUB) =@

= y:ixn—f>y EFrag(X,A)(V)
yN(AUB) =@

= inf ¢
y:x—y in Frag(X,A) Frag(va)()/)

Frag
yN(B\AYA =g
= c?(x, y). O

Hereafter, we say that a path y in Coalg(X, A) takes a shortcut (a,b) in A C X 2if (a,b) €
Aand y N{a, b} # 2.

LEMMA C.4. Let (X,d) be a semimetric length space and A C X* an equivalence rela-
tion. Suppose that for any (x, y) € X2, every simple rectifiable path in Coaly(X, A) from x to
y takes only a finite number of shortcuts in A. Let B¢ denote the set

{xeX:3yeB,d(x,y)=0}.
Then, for any B C X such that BN {x € X :dy € X, (x, y) or (y,x) € A} =&
Coaly(Frag(X, B), A) = Frag(Coaly(X, A), B).

PROOF. Let £x(y) denote the length of a path y in X. Let dfragc0al (regp., gcoalfrag,
resp., d'r2) denote the distance of Frag(Coalp(X, A), B) (resp., Coalg(Frag(X, B), A), resp.,
Frag(X, B)) on X \ BY. We want to show that gfragcoal — geoalfrag " Firct it is always true
that dmageoal < geoalirag Tndeed, let {p;} and {¢;}, i =0, ...,k be such that (¢, pi+1) € A
foralli =0,...,k — 1 and po = x, gx = y. Then the concatenation of (k 4+ 1) paths y; in
X,i=0,..., k such that y; goes from p; to ¢; and each path avoids B? gives a path in
Coalg(X, A) from x to y avoiding B¢. Thus, for any x and y in X \ BY,

dfragcoal(x’y) < 1nf (ZEX(VI )

VI Pz_ﬂlt
ylﬂBd—Q

= inf (defag(p q,))

k. Apit.iqi}

— dcoalfrag (x y)

Let us show now that decalfrag < gfrageoal T et y and y be in X \ B¢ and let y be a rectifiable
simple path from x to y in Coalg(X, A) such that y N B¢ = @. Then y takes only a finite
number of shortcuts in A. Thus, there exists {p;} and {g;}, i =0, ...,k with pp = x and
qr =y and paths y;,i =0, ..., k such that (g;, pi+1) € A and y; is a path from p; to g; in X
and y is the concatenation of yy, ..., yx. Thus, y; N BY = & for any i and

k

ECoaty(x. 1) (V) = Y_Lx (i)
i=1

k
>y " d™(p;, i)
i=1

>dcoalfrag(x y).
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Taking the infimum over rectifiable simple paths y from x to y in Coalp(X, A) such that
y N BY = & gives that geodlirag < gfrageoal

APPENDIX D: R-GRAPHS AS R-TREES WITH SHORTCUTS

Here, we sketch the proof of Lemma 2.19. Let us start with the “if” direction. By in-
duction, it is sufficient to show that if (X, d) is an R-graph and (x, y) € X 2 then the quo-
tient metric space obtained from Coaly(X, {(x, ¥)}) is isomorphic to an R-graph. Notice that
Coalp(X, {(x, y)}) is obviously a totally bounded and finite semimetric space. Let R > 0
be such that for any x € X, (Br(x),d|Bg(x)) is an R-tree, where Bg(x) is the ball of ra-
dius R and center x in X. Then let R’ := min{R/2,d(x, y)/5}, d’ denote the distance on
Coalo (X, {(x, y)}) and B, (z) be the ball of radius R" and center z in (X, d"). If R" =0, then
clearly Coaly(X, {(x, y)}) is equal to X, so let us suppose that R’ # 0. The reader can check
that for any z € X, (By/(2), d’| Bl, (z)) 1s a totally bounded acyclic geodesic finite semimetric

space, and the only pair of points at d’-distance zero is (x, y). Its quotient metric space is
thus an R-graph.

Now, let us look at the “only if”” direction. Let (X, d) be an R-graph which is not an R-
tree. The set of branchpoints in an R-tree is at most countable. Thus, one may find a point
x € core(X) such that x belongs to a cycle, and x is of degree 2 in X. Let Y| and Y, denote
the two components of Bg(x) \ {x} (with R > 0 small enough). Then let (X', d") denote the
completion of Frag(X, {x}). It is shown in [4], Section 7.1, that X" adds exactly two points
x(1) and x(2 to Frag(X, {x}) and d’ can be described as follows:

o If y,z ¢ {x(1), x(2)}, then d’(y, z) is the minimal length of a path from y to z in X not
visiting x.

o If y # x(2), then d’(x(1), y) is the minimal length of an injective path from x to y in X
which takes its values in the component Y7 on some small initial interval, and similarly for
d/(X(z), Z) with z ;ﬁ X(1)-

e d'(x(1), x(2))) is the minimal length of a cycle passing through x.

The reader can check that X’ is an R-graph, with a surplus strictly smaller than X, and that X
is isomorphic to the quotient metric space associated to Coal(X’, {x(1), x2)}). Thus, one may
conclude by induction on the surplus of X.

APPENDIX E: TOTAL VARIATION DISTANCE BETWEEN POISSON RANDOM
MEASURES

LEMMA E.1. Let P () denote the distribution of a Poisson random measure with a finite
intensity measure |4 on a measurable space (E, E). If v is another finite measure on E, then

PG =P <2l —vll.

PROOF. Suppose first that w(E) = 0. Then
[P(w) = PW)| =8 —PW)|=1—-e"" <v(E) <2]u—vl,

and the lemma is proved. So suppose now that w(E) and v(E) are nonzero. Without loss

of generality, suppose that u(E) < v(E). Let m denote an optimal coupling between ﬁ
and ﬁ Let N (resp., N') be a Poisson random variable with parameter (E) (resp., v(E))

coupled in an optimal way, that is,

P(N # N') = |P(u(E)) = P(v(E))|.
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It is easy to see, for instance, approximating the Poisson distribution by the binomial distri-
bution, that

| P(r(E)) = P(E))| < |w(E) —v(E)|.

Next, let (X;, ¥;)i>1 be a sequence of i.i.d random variables of distribution 7, independent
from (N, N’). Then (Zl_l Sx;, Z?’;l dy;) is a coupling of P(u) and P(v). Notice also that

Zi:l 1x,+y, has Poisson distribution with parameter

EYP(X|#Y)) = u(E )
w(E)P(X1 # Y1) = u( )‘,U«(E) V(E)H

Thus,

N N’
|P(w) — P < P(Zéxf £ SY,-)
i=1 j=1

<P(N#N')+P@Eie{l,...,NLX; #Y;)

— E .
<l — vl + u( >HM(E) V(E)H

Now, for any A € &, since u(E) < v(FE),
V(A)  u(A) _v(A) —u(A) _ vl

wWE) wE)~  wE) T wE)
Thus,
H moow H<IIM—VII
wE) vE) T wE)

which gives the result. [
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