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Nitrogen dioxide (NO2) is a primary constituent of traffic-related air pol-
lution and has well-established harmful environmental and human-health im-
pacts. Knowledge of the spatiotemporal distribution of NO2 is critical for
exposure and risk assessment. A common approach for assessing air pollu-
tion exposure is linear regression involving spatially referenced covariates,
known as land-use regression (LUR). We develop a scalable approach for
simultaneous variable selection and estimation of LUR models with spa-
tiotemporally correlated errors, by combining a general-Vecchia Gaussian-
process approximation with a penalty on the LUR coefficients. In compari-
son to existing methods using simulated data, our approach resulted in higher
model-selection specificity and sensitivity and in better prediction in terms of
calibration and sharpness, for a wide range of relevant settings. In our spa-
tiotemporal analysis of daily, US-wide, ground-level NO2 data, our approach
was more accurate, and produced a sparser and more interpretable model.
Our daily predictions elucidate spatiotemporal patterns of NO2 concentra-
tions across the United States, including significant variations between cities
and intra-urban variation. Thus, our predictions will be useful for epidemio-
logical and risk-assessment studies seeking daily, national-scale predictions,
and they can be used in acute-outcome health-risk assessments.

1. Introduction. Nitrogen dioxide (NO2) is a primary constituent of traffic-related air
pollution and has well-established harmful environmental and human-health impacts (US
Environmental Protection Agency (2016)). For example, exposure to NO2 is associated
with increased all-cause mortality (Hoek et al. (2013)), myocardial infarction (Rosenlund
et al. (2006, 2009)), coronary heart disease (Rosenlund et al. (2008)), cardiovascular events
(Alexeeff et al. (2018)), asthma (Gauderman et al. (2005)), autism spectrum disorders (Volk
et al. (2013)) and impaired neurological development and other neurological disorders (Xu,
Ha and Basnet (2016)). Additionally, atmospheric oxides of nitrogen, including NO2, are
precursors to hazardous acid rain (Schindler (1988)), tropospheric ozone (US Environmen-
tal Protection Agency (1999)), fine particulate matter (PM2.5) (US Environmental Protection
Agency (1999)) and can result in negative ecological (Schindler (1988)) and economic im-
pacts (Mauzerall et al. (2005)).

Knowledge of the spatiotemporal distribution of NO2 is critical for assessing exposure and
subsequent risks. A common approach for assessing exposure to outdoor air pollution is lin-
ear regression involving spatially referenced covariates, known as land-use regression (LUR).
There are many strengths in current implementations of LUR models. First, is the ability to
predict a variable of interest in space and time at unmonitored coordinates, including uncer-
tainty quantification. Second, is the use of readily-available, large geospatial datasets such as
satellite imagery and census information. Third, is the elucidation and interpretation of coef-
ficients that are possible with linear models, which allows for meaningful policy discussions
around factors affecting the distribution of exposure and risk.

Received June 2020; revised November 2020.
Key words and phrases. General Vecchia approximation, spatial statistics, Gaussian process, variable selec-

tion, air pollution, Kriging.

688

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://doi.org/10.1214/20-AOAS1422
http://www.imstat.org
mailto:kyle.messier@nih.gov
mailto:katzfuss@gmail.com


SCALABLE PENALIZED SPATIOTEMPORAL LAND-USE REGRESSION 689

Assuming independent and identically distributed (i.i.d.) errors, LUR has been imple-
mented for air-quality-exposure modeling of NO2 (Briggs et al. (1997), de Hoogh et al.
(2018), Hoek et al. (2008), Knibbs et al. (2014), Larkin et al. (2017), Novotny et al. (2011),
Ross et al. (2013), Su, Jerrett and Beckerman (2009)) and other air pollutants such as PM2.5
(Henderson et al. (2007), Moore et al. (2007), Ross et al. (2013)). Typically, LUR involves
model selection or dimension reduction on a large candidate-set of spatially referenced co-
variates. For example, LUR has been implemented with stepwise model selection for NO2
(Briggs et al. (1997), de Hoogh et al. (2018), Knibbs et al. (2014), Novotny et al. (2011), Ross
et al. (2013), Su, Jerrett and Beckerman (2009)) and partial-least-squares dimension reduc-
tion for NO2 (Young et al. (2016)) and PM2.5 (Sampson et al. (2013)). NO2 LUR models have
also employed penalization-based model-selection methods such as the LASSO (Knibbs et al.
(2014), Larkin et al. (2017)). Additionally, LUR prediction residuals are often integrated into
geostatistical models, such as Kriging (de Hoogh et al. (2018), Wu, Wang and Wu (2013))
and Bayesian maximum entropy (Beckerman et al. (2013), Coulliette et al. (2009), Messier,
Akita and Serre (2012), Messier et al. (2014), Reyes and Serre (2014), Messier et al. (2015)),
in a two-stage approach with the goal of improving prediction accuracy.

While LURs have undoubtedly been useful for many exposure and risk assessment studies,
the assumption of i.i.d. errors is usually violated, because the spatial dependence in the re-
sponse cannot be captured fully by the covariates, resulting in biased covariate estimates and
decreased sensitivity and specificity in the model-selection process. An exception to this case
is Holcomb et al. (2018), which implemented backwards model selection in a full Kriging
model, but this approach is not feasible for large data sets. Guan et al. (2020) implemented
a scalable approach with LUR with spatiotemporal errors, but used principal components
instead of model selection to reduce the number of covariates.

In spatial statistics and Gaussian-process modeling, many approaches have been proposed
to ensure scalability to large datasets (see, e.g., Heaton et al. (2019), Liu et al. (2020), for re-
cent reviews and comparison) but the focus is often more on prediction based on the (residual)
covariance structure, and less on penalized selection from among a large number of spatial
or spatiotemporal covariates. Perhaps the most promising approaches for scalable spatial pre-
diction are based on the ordered conditional approximation of Vecchia (1988); here, we use
and extend the general Vecchia approximation (Katzfuss and Guinness (2021), Katzfuss et al.
(2020a)), which is highly accurate, can guarantee linear complexity with respect to the sam-
ple size, and includes many existing Gaussian-process approximations as special cases (e.g.,
Datta et al. (2016a), Finley et al. (2009), Katzfuss (2017), Katzfuss and Gong (2020), Sang,
Jun and Huang (2011), Snelson and Ghahramani (2007), Vecchia (1988)).

We develop an approach for simultaneous variable selection and estimation of LUR mod-
els with spatiotemporally correlated errors, extending the general Vecchia approximation to
ensure scalability to large datasets. The resulting dependent-error regression problem can be
transformed into standard i.i.d.-error regression involving pseudo data, which can be com-
puted rapidly using Vecchia. This approach can be combined with any existing method for
fitting penalized regression models with independent errors, such as least-angle regression
(Efron et al. (2004)) for LASSO-type L1 penalties (Tibshirani (1996)), and coordinate de-
scent (Breheny and Huang (2011)) for nonconvex (e.g., smoothly clipped absolute deviation)
penalties (Fan and Li (2001)). The ordering and conditioning-set selection necessary for the
Vecchia approximation is carried out based on appropriately scaled spatiotemporal coordi-
nates. All computations necessary for inference scale linearly in the data size for fixed tuning
parameters.

The remainder of this article is organized as follows: Section 2 describes the daily,
ground-level NO2 data and the geographic covariates. Section 3 provides a description of
LUR with penalization. Section 4 presents our proposed methodology based on the gen-
eral Vecchia approximation to Kriging models with SCAD penalty. Section 5 compares
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approaches in simulation studies. In Section 6, we apply our method to the NO2 concen-
trations and discuss the results. Section 7 highlights the main conclusions and discusses
areas for future research. A review of the general-Vecchia approximation and an alterna-
tive expression of the objective function can found in Appendices A–B. A separate Sup-
plementary Material document contains Sections S1–S3 with additional plots, discussion
(Messier and Katzfuss (2021a)) and R code (Messier and Katzfuss (2021b)). The code is
based on the R package GPvecchia (Katzfuss et al. (2020b)) and is also available online at
https://github.com/NIEHS/LURK-Vecchia.

2. Ground-level NO2 data. We consider daily ground-level (i.e., tropospheric) NO2
concentrations across the conterminous United States, monitored and distributed by the
United States Environmental Protection Agency (USEPA) Air Quality System (AQS) (US
Environmental Protection Agency (2019)). The date range for our study was July 10, 2018
to May 1, 2019, based on the availability of geographic covariates, primarily the TROPOMI
real-time satellite imagery. The final NO2 dataset contained 76,748 unique spatiotemporal
observations distributed across 459 monitoring sites (Figure 1).

2.1. Geographic covariates. For our analysis, we calculated 139 spatial and spatiotem-
poral geographic covariates representing possible NO2 sources and attenuation factors. A key
characteristic of our and the majority of LUR studies is the presence of highly correlated co-
variates. In particular, many covariates only differ by their spatial resolution. After all of
the covariates are calculated, each covariate is standardized to mean 0 and variance 1. The
following subsections explain how each potential covariate was calculated.

2.1.1. TROPOMI. We utilized data from the TROPOspheric Monitoring Instrument
(TROPOMI) to calculate many satellite-based spatiotemporal covariates. TROPOMI is the
sensor on-board the Copernicus Sentinel-5 Precursor satellite. The TROPOMI-based covari-
ate calculations are performed in Google Earth Engine, a cloud platform for earth observation
data analysis that combines a public data catalog with a large-scale computational facility op-
timized for parallel processing of geospatial data.

TROPOMI provides output (i.e., Level-2 or L2 products) representing atmospheric air
pollution and physical properties with a spatial resolution of approximately 3.5 by 7 km.
We calculated daily mean values within 1, 10 and 100 km circular buffers for the following
TROPOMI L2 products. Note the 1 km buffer is equivalent to the coincident TROPOMI value

FIG. 1. Locations of the 459 monitoring sites for the USEPA AQS NO2 data over the study domain (contermi-
nous United States).

https://github.com/NIEHS/LURK-Vecchia
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at the location of the monitor: Total vertical column NO2 (mol-m−2), tropospheric vertical
column NO2 (mol-m−2), NO2 slant column density (mol-m−2), tropopause (i.e., boundary
between troposphere and stratosphere) pressure (Pa), absorbing aerosol index (AAI; dimen-
sionless), cloud fraction, and the solar azimuth angle (degrees). We used the near real-time
TROPOMI product, if available, for the estimation of models. This was the driving factor for
the sparsity of the data set within the study range. For prediction, if the real-time data were
unavailable, we used the offline data. The near real-time data are available sooner and have
small differences with the offline data (Boersma et al. (2007)). Lastly, we used a simple aver-
age from 10 nearest-neighbor spatiotemporal coordinates if neither near real-time nor offline
were observed at a spatiotemporal coordinate. Potential alternatives for interpolating missing
TROPOMI data include longer-time-scale moving-window averages (e.g., monthly) or de-
veloping a predictive model (de Hoogh et al. (2019)). The final covariate dataset included 21
TROPOMI-based variables.

2.1.2. Meteorology. Spatial and daily time-resolved meteorological covariates were cal-
culated in the Google Earth Engine using the University of Idaho Gridded Surface Meteoro-
logical dataset (GRIDMET) (Abatzoglou, Rupp and Mote (2014)). GRIDMET provides daily
surface fields at approximately 4 km resolution. We calculated average daily values inside 1,
10 and 100 km buffers for the following variables: precipitation (mm), maximum relative
humidity (percent), specific humidity (kg-kg−1), surface downward shortwave radiation (W-
m−2), maximum temperature (K) and wind velocity (m-s−1). The 1 km buffer is equivalent to
choosing the containing grid cell. The final covariate dataset included 18 meteorology-based
variables.

2.1.3. Vegetative indices. Spatial covariates of vegetative indices were calculated in the
Google Earth Engine using the MODIS/Terra Vegetative Indices 16-Day L3 Global 500 m
SIN Grid (NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team
(2019)). We calculated spatial averages of the normalized difference vegetative index (NDVI)
and the enhanced vegative index (EVI) in 1, 10 and 100 km circular buffers. The final covari-
ate dataset included 6 vegetative index based variables.

2.1.4. Population, traffic and roads. Population density (people-km−2) was calculated
in the Google Earth Engine from the Gridded Population of World Version 4 (Center for
International Earth Science Information Network—CIESIN—Columbia University (2018)).
Average population (2015-equivalent) density was calculated in 1, 10 and 100 km circular
buffers.

A surrogate for traffic was calculated using the University of Oxford Malaria Atlas Project
global travel friction dataset (Weiss et al. (2018)). Average travel friction (min-m−1), or travel
time, was calculated in 1, 10 and 100 km circular buffers.

Road length variables were calculated in ArcMap 10.6.1 and MATLAB R2018a using the
ESRI major roads shapefile (Esri, TomTom North America, Inc.). The road length in 1, 10
and 100 km circular buffers was calculated for the following road classifications (FRC code
in ESRI shapefile): all roads classes, highway (0), major roads (1, 2) and secondary roads
(3, 4, 5). The final covariate dataset included 18 population, traffic, or road variables.

2.1.5. Land cover. Spatial land-cover attributes were calculated in the Google Earth En-
gine from the National Land Cover Database (Homer et al. (2015)). The percent of each land
cover class (e.g., water, low developed, deciduous trees, etc.) were calculated in 1, 10 and
100 km circular buffers.

Average elevation was calculated in 1, 10 and 100 km circular buffers using the Japan
Aerospace Exploration Agency Advanced Land Observing Satellite global digital surface
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model with a horizontal resolution of approximately 30 meters (Tadono et al. (2014)). The
final covariate dataset included 48 land-cover or elevation variables.

2.1.6. National emissions inventory. Data on point source emissions was downloaded
from the USEPA National Emissions Inventory (US Environmental Protection Agency
(2017)) for the year 2017. Following Messier, Akita and Serre (2012), we calculated NO2
point source emissions as the sum of isotropic, exponentially decaying contributions from
the point sources. The initial value was the total 2017 NO2 emissions from the emissions
inventory and decay ranges were a series of ranges from short to long distance decay ranges:
1 to 10 km by 1 km increments; 20 to 100 km by 10 km increments; and 200 to 1000 km by
100 km increments, resulting in 28 NEI-based covariates.

3. Land-use regression with penalization. Let z = (z1, . . . , zn)
′ denote the response

vector, where zi = z(si , ti) is the log-transformed NO2 measured on day ti at spatial loca-
tion si . (We denote the response by z here for consistency with papers on general Vecchia.)
We have the values xi = x(si , ti) = (x1(si , ti), . . . , xp(si , ti))

′ of the p = 139 covariates (de-
scribed in Section 2.1) at the same (space, time)-coordinate pairs S = {(s1, t1), . . . , (sn, tn)}.
Spatial-only covariates are repeated in time as needed. We assume a linear relationship be-
tween the response and covariates,

(1) zi = x′
iβ + εi = x′

iβ + ηi + δi = yi + δi, i = 1, . . . , n,

where εi = ηi + δi is the regression error consisting of a spatiotemporally dependent com-

ponent ηi = η(si , ti) and an independent measurement-noise component δi
i.i.d.∼ N(0, τ 2), i =

1, . . . , n, and yi = zi − δi = x′
iβ + ηi is the (noise-free) true log-NO2. We assume that η(·) ∼

GP(0,Cθ ) follows a Gaussian process with covariance function Cθ . Throughout, we as-
sume a nonseparable spatiotemporal exponential covariance function, Cθ ((si , ti), (sj , tj )) =
σ 2 exp(−dθ ((si , ti), (sj , tj ))), where

(2) dθ

(
(si , ti), (sj , tj )

) =
√√√√‖si − sj‖2

2

γ 2
s

+ (ti − tj )2

γ 2
t

,

and θ = (σ, γs, γt , τ ) contains the unknown parameters in the model. We also considered and
dismissed a Matérn covariance with estimated smoothness parameter, as this resulted in a
smoothness parameter near that of the exponential model (i.e., 0.5), nearly identical negative
log-likelihood values and increased model run time due to evaluation of Bessel functions and
larger parameter space. Note that standard LUR models (e.g., Briggs et al. (1997), de Hoogh
et al. (2018), Hoek et al. (2008)) do not include the dependent component η(·) and assume
the error terms ε1, . . . , εn to be i.i.d.

Stacking the quantities in (1), we obtain the regression model

z = Xβ + ε, ε ∼ Nn(0,�θ ),

where �θ = Cθ + τ 2In, with Cθ = (Cθ ((si , ti), (sj , tj )))i,j=1,...,n. Equivalently, we can write
this in terms of a multivariate Gaussian density for the response,

(3) f (z;β, θ) = Nn(z|Xβ,�θ ).

The goal is to estimate the p-vector β and determine its nonzero elements, which also
requires estimation of the covariance parameters θ . Further, given parameter estimates β̂ and
θ̂ , we would like to predict the process y(·) at unobserved coordinates.

A standard approach for parameter estimation is to maximize the likelihood in (3) with
respect to the parameters β and θ . However, we have a large number p = 139 of (correlated)
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covariates, which makes the least-squares or maximum likelihood estimates of β unstable.
To alleviate this issue, and to be able to select certain variables and set the coefficients corre-
sponding to the other variables to zero, we instead consider optimizing an objective function
consisting of the negative loglikelihood plus a penalization term p(β) on β:

(4) Q(β, θ) = −2 logf (z;β, θ) + λp(β) = (z − Xβ)′�−1
θ (z − Xβ) + log |�θ | + λp(β),

where λ is a shrinkage or tuning parameter, and we have omitted an additive constant in the
last equation. In our numerical examples and application, we will use the popular nonconvex,
smoothly clipped absolute deviation (SCAD) penalty (Fan and Li (2001)):

(5) p(β) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ|β| if |β| ≤ λ,

2aλ|β| − β2 − λ2

2(a − 1)
if λ < |β| ≤ aλ,

λ2(a + 1)

2
otherwise,

where a = 3.7, a popular choice that performs comparably to values based on generalized
cross-validation (Fan and Li (2001)). We use the SCAD penalty for its oracle property, but
other penalties can be easily be swapped in our framework. Li and Sudjianto (2005) demon-
strate that a SCAD-penalized likelihood as in (4) and (5) reduces the variance in the estimates
of θ ; however, their discussion did not address model selection or large sample sizes.

4. Our methodology.

4.1. A general Vecchia approximation of the objective function. Evaluation or optimiza-
tion of the objective function Q in (4) requires decomposition of the n× n covariance matrix
�θ for many different values of θ , each of which takes O(n3) time. This is computationally
infeasible for the large n = 76,748 in our application.

Hence, we will extend the sparse general Vecchia (SGV) approximation (Katzfuss and
Guinness (2021)), which we briefly review here, with more details given in Appendix A.
SGV applies the approximation of Vecchia (1988) to the vector u = (y1, z1, . . . , yn, zn)

′,
which interweaves the latent true-process realizations y1, . . . , yn and the observed noisy data
z1, . . . , zn. This approximation essentially replaces the conditioning sets in the exact factor-
ization f (u) = ∏2n

j=1 f (uj |u1, . . . , uj−1) by small subsets, resulting in the approximation

(6) f̂ (u) =
2n∏
i=1

p(ui |ug(i)) = N2n

(
u|(X ⊗ 12)β,

(
UU′)−1)

,

where each g(i) ⊂ (1, . . . , i − 1) is a conditioning index set of size |g(i)| ≤ m, ⊗ is the Kro-
necker product, 12 is a vector consisting of two 1s, and U = Uθ is a sparse upper triangular
matrix whose nonzero entries can be computed easily based on Cθ and τ 2. Recent results
(Schäfer, Katzfuss and Owhadi (2020)) indicate that the approximation error can be bounded
with the conditioning-set size m increasing logarithmically in n in some settings; in practice,
m ≈ 30 is often sufficient for accurate approximations. We further define A and B as the sub-
matrices of U consisting of the odd- and even-numbered rows of U, corresponding to y and
z, respectively. Then W = AA′ is the implied posterior precision matrix of y given z, and we
define V as the Cholesky factor based on reverse row-column ordering of W.

Our approximation f̂ (u) is an extension of the SGV approach for spatial processes de-
scribed in Katzfuss and Guinness (2021); to approximate the spatiotemporal covariance func-
tion Cθ , we modify the ordering and conditioning scheme here to be carried out based on the
scaled spatiotemporal distance (2), which depends on unknown parameters and must be up-
dated along with the parameters. Again, more details are given in Appendix A.
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The SGV approximation of the density of u = (y1, z1, . . . , yn, zn)
′ in (6) implies an ap-

proximation of the distribution for the response:

f̂ (z) =
∫

f̂ (u) dy,

which is also multivariate normal. This concludes our review of Katzfuss and Guinness
(2021). Plugging the approximation f̂ (z) into (4) results in the Vecchia objective function

(7) Q̂(β, θ) = −2 log f̂β,θ (z) + λp(β),

where we have now made explicit the dependence of the distribution of z on the parameters
β and θ . We will use and optimize the Vecchia objective function Q̂(β, θ) in the remainder
of the manuscript.

4.2. Inference. The most straightforward way to optimize the objective function is to
optimize iteratively with respect to θ and β , while holding the respective other parameter
vector fixed. In practice, it is usually sufficient to do this just a small number of times, after
which there is little change in the parameter values.

As we prove in Appendix B, Q̂(β, θ) in (7) can be written as

(8) Q̂(β, θ) = ‖z̃θ − X̃θβ‖2
2 + λp(β) − 2

∑
i

log
(
(Uθ )ii

) + 2
∑
i

log
(
(Vθ )ii

)
,

where z̃θ = B′z + A′W−1AB′z, X̃θ = B′X + A′W−1AB′X, and Vθ depend on θ through the
matrices A, B and W computed from U = Uθ .

4.2.1. Estimation of the regression coefficients. Optimizing Q̂(β, θ) in (8) with respect
to β for fixed θ = θ̂ is equivalent to solving a standard penalized regression problem with
i.i.d. errors, except based on the pseudo-data z̃

θ̂
and X̃

θ̂
.

To develop some intuition, consider briefly the case m = n − 1, in which case the approx-
imation f̂ (u) in (6) becomes exact. Then the pseudo-data z̃

θ̂
are obtained by first creating

an augmented data vector of length 2n consisting of z and E(y|z), and then transforming
this vector to a vector of i.i.d. normal variables based on the joint distribution or covariance
matrix of z and y. Interestingly, the resulting inference on β is unchanged relative to simply
transforming the data z alone, as is often done for general linear models. In the case of small
m, our sparse general Vecchia approximation allows us to carry out this inference on β more
accurately based on the first approach.

For example, in the case of the SCAD (Fan and Li (2001)) or L1 penalties (Tibshirani
(1996)), solution paths of optimal β values for each value of λ can be computed rapidly us-
ing coordinate descent (Breheny and Huang (2011)) or least angle regression (Efron et al.
(2004)), respectively. We select the optimal λ and the corresponding β̂ based on the low-
est cross-validated mean square error, which can be performed in many software packages
such as ncvreg (Breheny and Huang (2011)) or glmnet (Friedman, Hastie and Tibshirani
(2010)). Breheny and Huang (2011) demonstrated for high-dimensional problems that the
SCAD penalty estimated with coordinate descent, in combination with cross-validation, leads
to the global minimum solution as it likely resides in the locally convex region of λ.

We considered a simple example to illustrate how quickly the Vecchia solution can con-
verge to the exact solution in the estimation of trend parameters, β . We simulated p = 5
correlated covariates with correlations ranging from 0.45 to 0.82, set the true β = 0, and
simulated data with spatially dependent error at n = 500 locations. We then computed the
exact generalized least-squares (GLS) estimates and the Vecchia GLS estimates implied by
the pseudo-data in (8). As shown in Figure 2, the Vecchia solution quickly approached the
exact solution going from m = 0 (i.e., assuming independent errors) to m = 10.
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FIG. 2. Demonstration of the quick convergence of general Vecchia estimates of β with increasing m toward the
exact (i.e., without approximation) generalized-least squares (GLS) estimate.

4.2.2. Estimation of the covariance parameters. Defining εβ = z − Xβ , (8) can be rear-
ranged to yield

(9) Q̂(β, θ) = ∥∥B′εβ

∥∥2
2 − ∥∥V−1AB′εβ

∥∥2
2 − 2

∑
i

log Uii + 2
∑
i

log Vii + λp(β),

where V, A and B implicitly depend on θ through U = Uθ . Note that this expression is an
extension of the Vecchia log-likelihood in Katzfuss and Guinness (2021); we replaced their
zero-mean data z with our residuals εβ , and we have added the penalization term λp(β). This
alternative expression of the objective function is important, as it avoids having to compute
the pseudo-data for every evaluation as in (8).

For a given β = β̂ , (9) can be evaluated cheaply for any given parameter value θ , and
hence we can optimize the objective function with respect to θ using standard numerical
optimization algorithms (e.g., Nelder–Mead). As in most Gaussian-process models, there is
no guarantee that this procedure will find the global optimum, but we have not observed any
negative consequences. Similarly, we have not observed any numerical issues due to noniden-
tifiability between the variance and range parameters, which theoretically holds under in-fill
asymptotics (Tang, Zhang and Banerjee (2019), Zhang (2004)) but not under the increasing-
domain asymptotics that may be more appropriate for our real-data application with small
effective ranges relative to the domain size.

We monitor convergence of the overall algorithm by considering the minimum value of
(9) achieved at each iteration.

4.2.3. Prediction. Often, interest is in prediction of the noise-free process yP at a set
of nP spatiotemporal coordinates SP , which is equivalent to obtaining the conditional dis-
tribution of yP given the data z. To do so, we extend the response-first full-conditioning
(RF-full) approach of Katzfuss et al. (2020a), which essentially consists of a general Vec-
chia approximation f̂ (ũ), similar to (6), but now applied to the vector ũ = (z′,y′

all)
′, where

yall = (y′,y′
P )′. We have

f̂ (yall|z) = f̂ (z,yall)∫
f̂ (z,yall) dyall

=: Nn

(
μall,W−1

all

)
.

Any quantities of interest can be extracted from this joint distribution, after computing Vall
as the Cholesky factor based on reverse row-column ordering of Wall. For example, the pre-
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diction mean, also referred to as the kriging predictor, is obtained by subsetting the vector
μall = Xallβ̂ − (V′

all)
−1V−1

all AallB′
all(z − Xβ̂) = (μ′,μ′

P )′, where Xall = (X′,X′
P )′, while the

prediction or kriging variances are given by a subset of the diagonal elements of W−1
all , which

can be obtained using selected inversion based on the Takahashi recursions for Vall. Note that
we ignore uncertainty in β̂ in the predictions, but we conducted experiments that showed this
uncertainty is often small relative to the uncertainty in η(·). If prediction of zP is desired, we
simply need to add τ 2 to the prediction variances. Our approximation is an extension of the
spatial RF-full prediction in Katzfuss et al. (2020a), in that the nonzero mean has to be added
and subtracted in the kriging predictor, and we carry out the ordering and conditioning in the
scaled spatiotemporal domain. Details are given in Appendix A.

4.2.4. Complexity. Our proposed inference procedure is summarized in Algorithm 1. If
each conditioning index vector in our Vecchia approximations is at most of size m, SGV and
RF-full ensure that U, V and Vall are all highly sparse with at most m nonzero off-diagonal
entries per column. As a consequence, for fixed m and p, our entire inference procedure
requires linear time in the number of observed and prediction coordinates.

More precisely, assuming that m,p,nP ≤ n, evaluation of the likelihood and prediction for
each parameter value requires O(nm3) time, coordinate descent for SCAD requires O(np)

time per iteration, one triangular solve involving V requires O(nm) time, and hence comput-
ing the pseudo-data z̃

θ̂
and X̃

θ̂
requires O(nmp) time. If we require L iterations going back

and forth between estimating β and θ , Lθ iterations to estimate θ given β̂ , and Lβ iterations
in the coordinate descent (including selecting tuning parameters using cross-validation) to
estimate β given θ̂ , the overall cost of our algorithm is O(nL(Lθm

3 + Lβp)). We utilize
a tolerance tol = 10−6 for the stopping criterion; a less stringent tolerance may be used,
which will likely result in a smaller number of iterations L and a less accurate approximation
of β and θ .

Algorithm 1: LURK-Vecchia: Land-use regression Kriging with Vecchia approx
Input: z, S , X, SP , XP , Cθ , tol
Result: Parameter estimates β̂ and θ̂ ; prediction f̂ (yall|z)

1: Initialize β̂ , θ̂ , prev.objective = ∞, and converged = FALSE
2: OC: Maxmin ordering and nearest-neighbor conditioning for S based on d

θ̂
in (2)

3: while converged = FALSE do
4: Compute θ̂ = arg maxθ Q̂(β̂, θ) based on (9) using OC
5: Update OC based on d

θ̂
in (2)

6: Compute pseudo-data z̃
θ̂

and X̃
θ̂

as in (8) using OC

7: Estimate β using standard (i.i.d.) SCAD based on z̃
θ̂

and X̃
θ̂

(see Section 4.2.1)

8: new.objective = Q̂(β̂, θ̂)

9: if new.objective > (prev.objective × (1-tol)) then
10: converged = TRUE
11: else
12: prev.objective = new.objective
13: end if
14: end while
15: OCP : Ordering and conditioning for S and SP based on d

θ̂
(see Appendix A)

16: Prediction: Compute relevant summaries of f̂ (yall|z) using OCP (see Section 4.2.3)
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5. Simulation study.

5.1. Simulation scenarios. We sampled 2000 spatiotemporal coordinates from the pos-
sible combinations of 276 unique days and 50 unique spatial locations randomly distributed
across the United States. The unique days correspond to the set of dates with complete geo-
graphic covariate datasets. The 2000 coordinates are randomly divided in half for a training
set of size n = 1000, and a test set of size nP = 1000 that was never used in any model
development.

For the spatiotemporal regression errors εi in (1), we specified a baseline (minimum; maxi-
mum) scenario of the model, with spatial range parameter γs = 1000 (200; 3000) km, tempo-
ral range θt = 30 (7; 365) days, total variance (i.e., sill) σ 2

total = σ 2 +τ 2 = s2
trend (0.5 ×s2

trend; 5
×s2

trend), and nugget-to-sill ratio τ 2/σ 2
total = 0.25 (0.01; 0.99), where s2

trend is the sample vari-
ance of the entries of the regression term Xβ , evaluated at the true value of β (see below).
The nugget-to-sill ratio is the ratio of the noise to total variance. We considered a large num-
ber of simulation scenarios in which we varied, in turn, each of these variables, while holding
the other variables fixed at their baseline levels. (Results for additional scenarios in which the
variables varied jointly, including a spatial range of 30 km, are shown in Section S1.)

For the simulated spatiotemporal coordinates, we created spatiotemporal covariate matri-
ces X and XP based on the methods described for the NO2 data in Section 2, in order to obtain
a realistic simulation setting. To provide a unique set of covariates from the NO2 analysis, we
included and removed variables as follows. Ozone TROPOMI satellite data (air mass factor
(AMF), total column and slant) were included with 1, 10, and 100 km buffers. Randomly gen-
erated point sources with isotropic exponentially decaying contribution with decay ranges of
1, 10 and 100 km (Messier, Akita and Serre (2012)) and randomly generated spatiotemporal
random fields were included in lieu of the NEI and road covariates from the NO2 dataset.
The final candidate set for the simulation included 123 potential covariates. The true trend
coefficients β were assumed to have 8 nonzero coefficients: NO2 Slant 1 km, cloud fraction
10 km, ozone AMF 100 km, precipitation 10 km, NDVI 100 km, developed high intensity
1 km, point sources with 100 km decay range and a smoothly varying spatiotemporal random
field; the corresponding true coefficient values were 5, 5, 3, −3, −5, 10, 3, 5, respectively.
The true covariates exhibited low to moderate correlation (|ρ| ≤ 0.41) with the other true
covariates, and low to extremely high correlation (|ρ| ≤ 0.99) with the extraneous covariates.

5.2. Approaches under comparison. We compared our proposed method to several pop-
ular land-use regression approaches:

LUR-i.i.d.: An i.i.d. land-use regression model, which can be viewed as a special case of (1)
with η(·) ≡ 0. Point predictions are then simply given by XP β̂ .

LURK-Local: Land-use regression Kriging with a local neighborhood, which is the current
state-of-the-art approach in land-use regression (de Hoogh et al. (2018)). LURK-local
consists of the following steps:

1. Estimate β̂ as in LUR-i.i.d., and compute residuals ε
β̂

.

2. Estimate θ as an average of estimates based on k = 10 samples of size l = (mn
k
)1/3

from ε
β̂

3. Carry out local kriging at each prediction coordinate using the m nearest (in terms
of (2)) space-time neighbors among ε

β̂
.

LURK-Vecchia: Our proposed methodology, summarized in Algorithm 1.
LURK-Full: The full Kriging and SCAD penalized method based on (3). This is equivalent

to the proposed LURK-Vecchia approach with m = n − 1.
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Local-Kriging: Does not use geographic covariates. Similar to LURK-local, we estimate θ
as an average of estimates based on k = 10 samples of size l = (mn

k
)1/3 from z, and then

make predictions using the m nearest spatiotemporal observations.

LURK-Full can be considered the most accurate approach, but it is computationally infeasible
for large n (in the tens of thousands or more). For the other spatiotemporal approaches, we
ensure similar computational complexity by using the same m = 25.

5.3. Prediction scores. For the prediction at unobserved coordinates, we considered
three proper scoring rules (e.g., Gneiting and Katzfuss (2014)) that all compare the true
simulated test data y�

P to the predictive distribution f̂ (yP |z) = N (yP |μP ,�P ) (see Sec-
tion 4.2.3) as approximated by each method. The mean squared error (MSE) is given by
(1/nP )

∑nP

i=1(y
�
P,i − μP,i)

2, the log-score is given by −(1/nP )
∑nP

i=1 N (y�
P,i |μP,i,�P,ii)

and the continuous ranked probability score is given by (1/nP )
∑nP

i=1

∫
(Fi(x) − 1{y�

P,i ≤
x})2 dx, where Fi is the cumulative distribution function of N (μP,i,�P,ii). Each score is
averaged over 20 simulations.

5.4. Simulation results.

5.4.1. Out-of-sample prediction. Figure 3 shows ridgeline density plots of the predic-
tion scores in Section 5.3 for the methods in Section 5.2 (except LUR-i.i.d., which was
not competitive) for the different simulation scenarios described in Section 5.1. The verti-
cally oriented densities are generated as trimmed (inner 98%) density functions using the
geom_density_ridges function in the ggplot2 and ggridges packages of R. The results for our

FIG. 3. Ridgeline density plots of prediction scores (the lower the better) for different simulation scenarios
(Section 5.1), in which the spatiotemporal parameters are singly varied with others held constant at a baseline
level. The LURK-Vecchia results were very close to, and hence largely cover the results for LURK-Full. Note that
each scenario has its own y-axis scale.
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FIG. 4. Ridgeline density plot comparison of model-selection statistics for simulation scenarios (Section 5.1),
in which the spatiotemporal parameters are singly varied with others held constant at a baseline level.

LURK-Vecchia approach were nearly identical to those for LURK-Full. Across all scenarios,
the average LURK-Vecchia scores were consistently between 5 and 60% better than those for
LURK-Local. Local-Kriging was much worse. (Plots showing percent differences are shown
in Section S1.)

5.4.2. Model selection. In terms of model selection, we considered the true negative
rate (TNR), true positive rate (TPR), and Cohen’s Kappa (Banerjee et al. (1999)), κ =
(po − pe)/(1 − pe), where po is the observed agreement of coefficient selections and pe

is the expected agreement based on random chance. Of the methods in Section 5.2, we omit-
ted LURK-Local (because its model selection is identical to LUR-i.i.d.) and Local-Kriging
(because it does not perform model selection). Figure 4 shows the model-selection statis-
tics for the scenarios in Section 5.1. Similar to the prediction scores, the distributions of
the LURK-Vecchia and LURK-Full were very similar, indicating that the LURK-Vecchia
approach approximated the full model well in terms of model selection. Compared to LUR-
i.i.d., LURK-Vecchia had 5 to 80% higher average TPR. The difference in terms of TNR
and Kappa was even greater, with LUR-i.i.d. selecting a large number of erroneous nonzero
coefficients (Figure S3). The results were only comparable for scenarios with negligible spa-
tiotemporal dependence (i.e., high nugget-to-sill ratio or small ranges). An additional plot
showing the percent differences in Kappa is shown in Section S1.

6. Ground-level NO2 analysis. We now return to the daily, US-wide, ground-level NO2
data described in Section 6. The minimum, maximum, mean (standard deviation), and median
(interquartile range) observed concentrations were 0.004, 62.9, 8.5 (7.4), and 6.4 (9.0) parts-
per-billion (ppb), respectively. Because NO2 is positive and right-skewed, NO2 was natural-
log-transformed prior to the analyses.

6.1. Comparison using cross-validation. We compared the predictive accuracy using 10-
fold cross-validation for the methods described in Section 5.2; LURK-Full was omitted be-
cause it is intractable for the large sample size. We used the same predictive scores as detailed
in Section 5.3, except that we considered f̂ (zP |z) = N (zP |μP ,�P + τ 2InP

), because the
error-free yP was unknown.
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TABLE 1
Predictive scores for NO2 10-fold cross-validation

Method MSE (ppb2) CRPS Log-score

Local-Kriging 0.30 0.30 0.83
LUR-i.i.d. 0.42 0.38 3.90
LURK-Local 0.22 0.25 0.68
LURK-Vecchia 0.20 0.24 0.61

The results are shown in Table 1. LURK-Vecchia outperformed all other methods in terms
of all three scores, resulting in a roughly ten percent decrease in MSE and log-score compared
to the next best approach, LURK-Local. Further, LURK-Vecchia resulted in a 20% or greater
decrease in all of the scores compared to Local-Kriging and LUR-i.i.d.

In terms of model selection, the mean (standard deviation) number of nonzero coefficients
was 71 (1.1) and 24 (1.7) for LUR-i.i.d. and LURK-Vecchia, respectively. The LUR-i.i.d.
models were severely affected by multicollinearity; the median (mean) variance inflation
factor (VIF) for all 10 cross-validation models was 2.3 (6.7) and 5.7 (18.6) for LURK-Vecchia
and LUR-i.i.d., respectively. LURK-Local uses the same model-selection procedure as LUR-
i.i.d. Other i.i.d. model-selection approaches are likely to result in similarly large numbers of
covariates (e.g., Kerckhoffs et al. (2019)).

Thus, by appropriately accounting for spatiotemporal dependence, LURK-Vecchia re-
sulted in more accurate, sparser, and more interpretable models than LUR-i.i.d. and LURK-
Local.

6.2. Prediction maps. Having shown using cross-validation that our proposed LURK-
Vecchia approach can outperform the competing methods, we fitted LURK-Vecchia to the
entire dataset. The covariance parameters θ = (σ 2, γs, γt , τ

2) were estimated as (2.2 ppb2,
1.4 km, 0.63 yr, 0.15 ppb2), and the trend coefficients are given in Table 1 and discussed in
Section 6.3. The entire estimation algorithm required L = 4 iterations and took approximately
86 minutes on a machine with 16GB RAM and an Intel(R) i7-8665U processor (4 cores,
1.90 GHz).

Figure 5 shows the prediction geometric mean, exp(μP ), for two distinct days, for the
entire US domain and for a more detailed 5-county area surrounding Houston, Texas. (Cor-
responding prediction uncertainties are shown in Figure S4.) For the US domain, predictions
were produced on a 200 by 100 grid (10–20 km resolution) across the conterminous United
States. For evaluating fine-scale prediction patterns, a 1–2 km grid was produced in the Hous-
ton, TX, five-county area. Distinct spatiotemporal patterns emerged. Cities and developed ar-
eas, such as roadways, showed elevated NO2 concentrations, as expected for a traffic-related
pollutant. However, there was temporal variability in the spatial patterns around the cities and
roads. Comparing the the upper, midwest cities, such as Chicago and Cleveland (blue box,
Figure 5), predicted NO2 was lower on July 11, 2018, than on February 11, 2019. In contrast,
in the Houston area subfigure, predicted NO2 was higher on July 11, 2018, than on February
11, 2019. Visually inspecting the predictors in the final model can reveal the primary drivers
of the spatiotemporal variability, which is easy in linear models with interpretable covari-
ates. Complex machine learning models and dimension-reduction techniques do not allow
for such intuitive visual comparisons. Figure S5 shows the predictions and select covariates
in the Houston area on July 11, 2018, and February 11, 2019. Visual inspection and corre-
lation of covariate-only predictions with the final predictions show that the TROPOMI NO2
data are driving the patterns observed on July 11, 2018. Contrarily, on February 11, 2019,
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FIG. 5. LURK-Vecchia prediction geometric mean (exponentiated log-scale predictions) across the contermi-
nous United States (top row) and a five-county subset around Houston, Texas, for July 11, 2018, and February 11,
2019. The horizontal transect in the Texas subfigure is used in Figure 6 to show spatiotemporal patterns in more
detail.

other factors such as the specific humidity display similar general spatial patterns and have
high correlation with the final predictions.

Figure 6 shows spatiotemporal predictions in more detail for a transect through the Hous-
ton panel of Figure 5. Moving along the transect, we see a general spatial pattern with mod-
ulations in time. For instance, the highway consistently had the highest observed concentra-
tions, but the magnitude of the maximum fluctuated daily, driven by time-varying covariates
such as the TROPOMI and meteorological variables (see Section 6.3). July 12, 2018, had
consistently higher concentrations than other days across most of the transect locations, in-
cluding the highway. We also showed prediction uncertainties in terms of geometric standard
deviations (SDs), exp(diag(�P )1/2). The SD varied over longer time periods than the mean,
as evidenced by minor differences within the 2018 and 2019 ranges, but considerable differ-
ences between them.

Our predictions will be useful for epidemiological and risk-assessment studies seeking
daily, national-scale predictions. For example, Mills et al. (2015) provide meta-analysis re-
sults for the impacts of 24-hour NO2 exposure on all-age-group, all-cause mortality, cardio-
vascular mortality, respiratory mortality, cardiovascular hospital admissions and respiratory
hospital admissions. Our daily NO2 exposure predictions, combined with population infor-
mation and with the Mills et al. (2015) relative-risk estimates, may be used to develop NO2
acute-health impact assessments, such as an attributable-fraction of mortality. Please contact
the authors to request predictions at the desired spatiotemporal coordinates.

6.3. Interpretation of selected covariates. Table 2 shows the 25 variables selected by our
LURK-Vecchia procedure, along with their estimated coefficients. We now discuss interpre-
tations and context for each selected variable, grouped by variable category (see Section 6.3):

• TROPOMI. Similar to many LUR studies (Larkin et al. (2017), Novotny et al. (2011),
Young et al. (2016), de Hoogh et al. (2018)), we found satellite observations of NO2 se-
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FIG. 6. For LURK-Vecchia predictions, geometric mean (A) and geometric standard deviation (B) for two sets
of dates (y-axis) and along a transect (x-axis) shown in the Houston panel of Figure 5.

lected to the LURK-Vecchia model. The two covariates for NO2 Slant combine for a net
positive effect on ground-level NO2 while providing moderation between local and re-
gional scale effects from the 1 and 100 km circular buffer hyperparameters, respectively.
Similarly, the tropospheric NO2 variables have two variables at different spatial scales that
contribute a net positive effect to ground-level NO2.

The TROPOMI variables for tropopause pressure at 1 and 100 km were selected with
small negative coefficients, indicating areas of reduced ground-level NO2. These variables,
which have a relatively small impact on the final prediction concentrations, may represent
a minor changes in the mixing volume for pollutant molecules.

The dynamic relationship between NO2 and aerosols is complex and not completely
understood. For instance, Grundström et al. (2015) observe weak to moderate correlations
between total NOx (NO + NO2) and particle number concentrations (PNC) depending on
meteorological conditions such as wind velocity. Apte et al. (2019) found PNC to have a
consistent diurnal pattern of midday new particle formation that is poorly approximated
with NOx . Without a priori expectations of the AAI coefficient, we observe a 2.6 percent
decrease in NO2 concentrations for every one SD increase in AAI. We find a positive
coefficient for cloud fraction, which is likely due to the protective effect of clouds on
incoming solar radiation.
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TABLE 2
Selected covariates for NO2 data: rhmax = maximum relative humidity, vs = wind velocity, sph = specific

humidity, tmax = maximum temperature. For every 1-standard-deviation increase in a covariate, we expect an

estimated (eβ̂ − 1) × 100% increase in NO2

Variable category Variable name Res. (km) β̂ (eβ̂ − 1) × 100

Intercept – – 0.002 –

TROPOMI (Section 2.1.1) NO2 Slant 1 0.086 8.9
NO2 Slant 100 −0.002 −0.21
NO2 Tropospheric 10 0.036 3.6
NO2 Tropospheric 100 0.044 4.5
Tropo Pressure 1 −0.003 −0.31
Tropo Pressure 100 −0.0004 −0.04
AAI 100 −0.025 −2.6
cloud fraction 1 0.057 5.9

Meteorology (Section 2.1.2) rhmax 1 0.12 13.1
rhmax 100 −0.090 −8.6
sph 100 −0.27 −23.6
tmax 100 0.44 55.5
vs 100 −0.21 −19.2

Vegetation (Section 2.1.3) NDVI 1 −0.052 −5.1

Population & Roads (Section 2.1.4) Travel Friction 10 −0.038 −3.7
Total Road 1 0.18 20.3

Land cover (Section 2.1.5) Water 1 0.0078 0.79
Mixed Forest 1 −0.21 −18.3
Mixed Forest 10 0.017 1.7
Shrub 1 −0.035 −3.5
Herbaceous 1 −0.081 −7.8
Dev Open 10 0.0031 0.31
Dev Low 10 0.056 5.7
Elevation 1 −0.28 −24.6

Emissions (Section 2.1.6) NEI 1 0.0092 0.92

• Meteorology. Two relative humidity and one specific humidity variable contribute a net
negative effect on NO2 concentrations. Similar to AAI, we expect that water vapor and
aerosols to impede solar radiation and breakdown of NO2 to NO.

We observe a 55.5% increase in NO2 concentrations for every 1 SD increase in the
maximum daily temperature. Hot days are associated with increased solar radiation and O3
formation. The significant increase in NO2 concentrations is likely capturing O3 mediated

conver3sion of NO (NO
O3−→ NO2) (Seinfeld and Pandis (2016)).

We observe a 19.2% decrease in NO2 concentration with a 1 SD increase in wind veloc-
ity, which is expected as this increases transport of NO2 and its precursors from the given
location.

• Vegetation. For every 1 SD increase in NDVI, we observe a 5.1% decrease in NO2 con-
centrations. NDVI represents vegetative greenness, thus this is consistent with the lack of
NO2 or NOx sources.

• Land cover. Open water has a small, positive impact on NO2, which is likely due to the
concentration of cities and sources near water sources and coastlines or as a proxy variable
for ports. Mixed forest (the net sum of short and medium ranges), shrub-land, and herba-
ceous wetlands have negative contributions to NO2 predictions, which is expected due to
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the lack of sources. Developed open and low have positive coefficients, while developed
low is larger as it represents an increased anthropogenic presence.

For every 1 SD increase in elevation in 1 km buffer, there is a 24.6% decrease in
NO2 concentrations, which is consistent with other LUR models of NO2 (de Hoogh et al.
(2018)) and can be due to a combination of atmospheric mixing, fewer sources, decreased
average temperature and increased wind velocity at higher elevations.

• Population and Roads. We find travel friction within a 10 km buffer and total road length
within a 1 km buffer to result in a 3.7 decrease and 20.3 increase of NO2 concentrations for
every 1 SD increase, respectively. Travel friction is the average travel time, and total road
length is a good approximation of vehicle sources, and so they are expected to decrease
and increase traffic-related pollutants, respectively.

• Emissions. The NEI variable with a 1 km decay range was selected with a small, positive
coefficient. Clearly, we expect a covariate representing source emissions of the dependent
variable to be contribute positively.

7. Conclusions. We analyzed daily ground-level NO2 concentrations across the United
States, using a novel penalized land-use regression approach with spatiotemporally correlated
errors that is also scalable to large datasets via a sparse general Vecchia approximation. Our
methodological advances can be used in future human health exposure and risk assessment
to improve model selection and prediction characteristics. Key results from the NO2 analysis
include: the development of daily NO2 concentration predictions that can be used for epi-
demiological analyses of acute health effects such as asthma and increased hospitalizations;
the potential to develop annual average concentrations that propagate uncertainty from daily
predictions as opposed to those based on direct annual averages; the elucidation of spatiotem-
poral patterns of NO2 concentrations across the United States, including significant variations
between cities and intra-urban variation; and the resolving of a parsimonious group of geo-
graphic covariates describing the spatiotemporal distribution of daily NO2 concentrations,
including satellite imagery, meteorological data, land cover, population distributions, road
networks and point source emissions.

Our methods also offer a scalable way to analyze other large spatiotemporal datasets in en-
vironmental and human health risk assessment. For example, in the air-quality research com-
munity, mobile monitoring of air pollutants is leading to high-resolution datasets with mil-
lions of observations, including campaigns in Zurich, Switzerland (Li et al. (2012)), Boston,
MA (Padró-Martínez et al. (2012)), Oakland, CA (Apte et al. (2017), Guan et al. (2020)),
Houston, TX (Miller et al. (2020)) and the Netherlands (Kerckhoffs et al. (2019)).

Our methods could also be extended to non-Gaussian data (Zilber and Katzfuss (2021)) or
online spatiotemporal filtering (Jurek and Katzfuss (2018)) using extensions or variations of
the general-Vecchia framework.

As mentioned in Section 3, the SCAD penalty used for model selection in Line 7 of Al-
gorithm 1 could be replaced by other penalties, such as LASSO (Tibshirani (1996)), elastic
net (Zou and Hastie (2005)), or relaxed LASSO (Hastie, Tibshirani and Tibshirani (2017)),
which may result in improvements in prediction accuracy or model selection. While accurate
uncertainty quantification and significance assessment is difficult in the context of penalized
regression, a potential extension of our approach would be to combine it with existing meth-
ods proposed for this purpose (e.g., Chatterjee and Lahiri (2011), Meinshausen, Meier and
Bühlmann (2009), Xie et al. (2019)). This would likely come at an increased computational
cost, but it would also allow for the inclusion of covariate uncertainty in predictions. Lastly,
another possible avenue is to adjust for spatial confounding as proposed in Hughes and Haran
(2013).
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APPENDIX A: REVIEW OF GENERAL VECCHIA

We now provide some further details of the general Vecchia approximation (Katzfuss and
Guinness (2021), Katzfuss et al. (2020a)) that we extended and briefly reviewed in Section 4.
Because model (1) implies conditional independence in (6) between zi and all other variables
in u given yi , we assume that zi always conditions on only yi . Hence, we can write the
approximation (6) as

f̂ (u) =
n∏

i=1

p(zi |yi)p(yi |yqy(i), zqz(i)),

where q(i) = qy(i) ∪ qz(i) with q(i) ⊂ (1, . . . , i − 1) is the conditioning index vector of size
|q(i)| ≤ m, and we assume qy(i)∩ qz(i) =∅. The ordering of the variables and the choice of
conditioning sets can have a strong effect on the approximation accuracy and computational
speed.

The ordering of the spatiotemporal coordinates (s1, t1), . . . , (sn, tn) implies an ordering of
the variables in u. We assume here that the coordinates are ordered and numbered according
to a maximum-minimum distance ordering (Guinness (2018)), which sequentially picks each
coordinate in the ordering to maximize the minimum distance to previous coordinate in the
ordering. The conditioning index vectors q(i) are chosen here as the indices of the nearest
m coordinates previous to i in this ordering. To determine the ordering and the conditioning
sets, we use the scaled spatiotemporal distance (2) as our measure of distance (cf. Datta
et al. (2016b)). However, this measure of distance depends on the unknown parameters θ

(specifically, on γs and γt ), and so we update the ordering and conditioning at each iteration
(in Line 5) of Algorithm 1 based on the current estimate of θ .

Different strategies for splitting q(i) into qy(i) and qz(i) can also result in vastly different
approximation accuracies. In general, conditioning on yj is often more accurate but also
potentially more computationally expensive than conditioning on zj . Katzfuss and Guinness
(2021) proposed a fast and accurate sparse general Vecchia (SGV) approach that chooses
qy(i) ⊂ q(i) such that j < k can only both be in qy(i) if j ∈ qy(k), with the remaining
conditioning indices in q(i) assigned to qt (i) = q(i) \ qy(i). Specifically, for i = 1, . . . , n,
SGV finds p(i) = arg maxj∈q(i) |qy(j) ∩ q(i)| and ki = arg min�∈p(i) ‖si − s�‖, and then sets
qy(i) = (ki) ∪ (qy(ki) ∩ q(i)). We use SGV in all our numerical examples.

The restriction of conditioning only on previous variables in the ordering, qy(i) ⊂
(1, . . . , i − 1), ensures that the implied joint distribution is multivariate normal as indicated
in (6). To compute the sparse upper-triangular matrix U, let g(i) denote the vector of indices
of the elements in u on which ui conditions (e.g., if ui = zk then g(i) = (i − 1)). Also define
K(yi, yj ) = K(zi, yj ) = C((si , ti), (sj , tj )) and K(zi, zj ) = C((si , ti), (sj , tj )) + 1i=j τ

2
i .

Then, the (j, i)th element of U is

Uji =

⎧⎪⎪⎨
⎪⎪⎩

r
−1/2
i i = j,

−b
(j)
i r

−1/2
i j ∈ g(i),

0 otherwise,

where b′
i = K(ui,ug(i))K(ug(i),ug(i))

−1, ri = K(ui, ui) − b′
iK(ug(i), ui), and b

(j)
i denotes

the �th element of bi if j is the �th element in g(i) (i.e., b
(j)
i is the element of bi correspond-

ing to uj ).
For prediction of yP , we employ a spatiotemporal extension of the response-first ordering

full-conditioning (RF-full) approach of Katzfuss et al. (2020a), which applies a general Vec-
chia approximation of the form (6) to ũ = (z′,y′

all)
′, where yall = (y′,y′

P )′ =: (y1, . . . , ynall)
′.
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This results in the approximation

f̂ (z,yall) =
n∏

i=1

f (zi) ×
nall∏
i=1

f (yi |yqy(i), zqz(i)),

where yqy(i) and zqz(i) are chosen as the m variables closest in scaled distance (2) to yi , among
those that are previously ordered in ũ, where we condition on yj instead of zj whenever
possible. Specifically, we set q(i) to consist of the indices corresponding to the m nearest
spatiotemporal coordinates, including i for i ≤ n, and not including i for i > n. Then, for
any j ∈ q(i), we let yi condition on yj if it is ordered previously in u, and condition on zj

otherwise. More precisely, we set qy(i) = {j ∈ q(i) : j < i} and qz(i) = {j ∈ q(i) : j ≥ i}.

APPENDIX B: ALTERNATIVE EXPRESSION OF THE OBJECTIVE FUNCTION

We now show that the objective function Q̂(β, θ) can be written as in (8) as

Q̂(β, θ) = ‖z̃θ − X̃θβ‖2
2 + λp(β) − 2

∑
i

log
(
(Uθ )ii

) + 2
∑
i

log
(
(Vθ )ii

)
.

As in Katzfuss and Guinness ((2021), proof of Proposition 2), note that, for any value of
y, f̂ (z) = f̂ (u)/f̂ (y|z), where f̂ (u) is given in (6), and f̂ (y|z) = Nn(μ,W−1) with μ =
Xβ − W−1AB′(z − Xβ). Thus, setting y = μ, and denoting by uμ = (μ1, z1, . . . ,μn, zn) the
resulting vector u, we obtain

−2 log f̂ (z) = −2 logN2n

(
uμ|(X ⊗ 12)β, �̂

) + 2 logNn

(
μ|μ,W−1)

= (
uμ − (X ⊗ 12)β

)′UU′(uμ − (X ⊗ 12)β
) − log

∣∣UU′∣∣ + log |W|
= ‖d‖2

2 − 2
∑
i

log Uii + 2
∑
i

log Vii ,

where

d = U′uμ − U′(X ⊗ 12)β = B′z + A′μ − (
B′X + A′X

)
β

= B′z − A′W−1AB′z − (
B′X + A′X − A′X + A′W−1AB′X

)
β

= z̃ − X̃β,

where z̃ = B′z + A′W−1AB′z and X̃ = B′X + A′W−1AB′X.
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SUPPLEMENTARY MATERIAL

Supplementary material to Scalable penalized spatiotemporal land-use regression for
ground-level nitrogen dioxide (DOI: 10.1214/20-AOAS1422SUPPA; .pdf). We provide the
results for (1) Simulations with jointly varying covariance parameters; (2) A comparison of
the number of nonzero coefficients for a simulation scenario; (3) Prediction uncertainty for
the NO2 application and (4) a comparison of the covariate-only predictions with the full
model for select covariates.

Supplementary material: R code (DOI: 10.1214/20-AOAS1422SUPPB; .zip). R code to
implement to proposed method and reproduce results.
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