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Smoking is one of the main risk factors that has affected human mortality
and life expectancy over the past century. Smoking accounts for a large part
of the nonlinearities in the growth of life expectancy and of the geographic
and gender differences in mortality. As Bongaarts (Popul. Dev. Rev. 32 (2006)
605-628) and Janssen (Genus 74 (2018) 21) suggested, accounting for smok-
ing could improve the quality of mortality forecasts due to the predictable
nature of the smoking epidemic. We propose a new Bayesian hierarchical
model to forecast life expectancy at birth for both genders and for 69 coun-
tries/regions with good data on smoking-related mortality. The main idea is
to convert the forecast of the nonsmoking life expectancy at birth (i.e., life
expectancy at birth removing the smoking effect) into life expectancy fore-
cast through the use of the age-specific smoking attributable fraction (AS-
SAF). We introduce a new age-cohort model for the ASSAF and a Bayesian
hierarchical model for nonsmoking life expectancy at birth. The forecast per-
formance of the proposed method is evaluated by out-of-sample validation
compared with four other commonly used methods for life expectancy fore-
casting. Improvements in forecast accuracy and model calibration based on
the new method are observed.

1. Introduction. Forecasting human mortality and life expectancy is of considerable
importance for public health policy, planning social security systems, life insurance and other
areas, particularly as the world’s population continues to age. It is also a major component
of population projections, as it impacts the number of people alive and their distribution by
age and gender. Population projection are themselves a major input to government planning
at all levels as well as private sector planning, monitoring international development and
environmental goals and research in the health and social sciences.

Many methods for forecasting mortality have been developed. The Lee—Carter method
(Lee and Carter (1992)) for forecasting age-specific mortality rates was a milestone and has
developed rapidly since it was proposed. Lee and Miller (2001) modified the Lee—Carter
method by matching estimated life expectancy with the observed value. Other variations of
the Lee—Carter method include adding a cohort effect (Renshaw and Haberman (2006)), ap-
plying a functional data approach (Hyndman and Shahid Ullah (2007), Shang (2016)) and
incorporating biomedical information (Janssen, van Wissen and Kunst (2013)). Bayesian
Lee—Carter methods have also been proposed (King and Soneji (2011), Pedroza (2006),
Wisniowski et al. (2015)); see Booth et al. (2006) for a review.

The main organization that produces regularly updated mortality and population forecasts
for all countries is the United Nations which publishes these forecasts every two years in the
World Population Prospects (United Nations (2017a)). Traditionally, since the 1940s pop-
ulation projections have been done using deterministic methods that do not primarily use
statistical estimation methods or assess uncertainty in a statistical way (Preston, Heuveline
and Guillot (2000), Whelpton (1936)). In 2015, in a major advance the U.N. changed the
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method for producing their official mortality and population forecasts from the traditional
deterministic method to a Bayesian approach that estimates and assesses uncertainty about
future trends in a principled statistical way using Bayesian hierarchical models for life ex-
pectancy and fertility (Raftery, Alkema and Gerland (2014), Raftery et al. (2012), Raftery
et al. (2013), United Nations (2015)).

The basic approach of these methods is to extrapolate past trends in observed mortality
rates which have been dominated by a monotone increasing trend in life expectancy for over
a century. However, it may also be helpful to include risk factors that can impact health and
hence mortality (Janssen (2018)). This has been done, for example, for the HIV/AIDS epi-
demic (Godwin and Raftery (2017)), alcohol consumption (Trias Llimés and Janssen (2019))
and the obesity epidemic (Vidra, Trias-Llimés and Jansse (2017)). Another major factor is
smoking, which is mainly responsible for lung cancer and is a risk factor for many other
fatal diseases, and causes about six million deaths per year (Britton (2017)). Smoking can
account for some nonlinear trends, cohort effects and between-country and between-gender
differentials observed in mortality, suggesting that it could be used to improve mortality and
life expectancy projections (Bongaarts (2014)).

Here, we propose a Bayesian method for doing this for both genders and multiple countries
jointly. It uses the smoking attributable fraction (SAF) of mortality, estimated by the Peto—
Lopez method (Bongaarts (2006), Janssen, van Wissen and Kunst (2013), Peto et al. (1992),
Stoeldraijer et al. (2015)). The proposed method consists of two main components, one to
forecast the age-specific SAF (ASSAF) and the other to forecast nonsmoking life expectancy.
Our method develops male and female forecasts jointly, since the female smoking epidemic
tends to resemble the male one, but with a lag and possibly a different maximum level, a
fact that can be used to improve forecasts. The female advantage in life expectancy is partly
due to smoking effects, and our method quantifies this and uses it to forecast the future life
expectancy gap between females and males. We apply our method to 69 countries/regions
with high-quality data on the historical impact of smoking on mortality.

The paper is organized as follows. The methodology is described in Section 2. Section 2.3
describes the method for estimating and forecasting the ASSAF. Section 2.4 presents the
estimation and forecasting method for nonsmoking life expectancy. Section 2.5 describes
our model for the gap between male and female life expectancy to complete the coherent
projection. An out-of-sample validation experiment is reported in Section 3 to evaluate and
compare the projection accuracy and calibration of our model with several benchmark meth-
ods. We then study the details of the forecast results for four selected countries in Section 4.
We conclude with a discussion in Section 5.

2. Method.

2.1. Notation. We use indices ¢ for country (always as a superscript unless otherwise
indicated), s for gender, ¢ for time (usually in terms of the year) and ¢ for cohort (usually
in terms of the year of birth). We use x to denote the left end of an age group, that is, x
represents the a-year age group [x, x 4+ a), and x4 represents the age group [x, +00).

A key general concept in our approach is the smoking attributable fraction (SAF) of mor-
tality for a population of interest. This is defined as the proportion by which mortality would
be reduced if the population were not exposed to smoking. We focus on the age-specific SAF
(ASSAF) of mortality for age group x in country £ and time period ¢, denoted by yf’ ;- The
all-age smoking attributable fraction (ASAF) of mortality is defined as a weighted average
of the ASSAF over all age groups, where the weights are the age-specific mortality rates. We
use the symbols m, ep and e(I;IS to denote the mortality rate, the life expectancy at birth and
the nonsmoking life expectancy at birth, respectively.
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We denote by Nj,.,1(, k) the truncated normal distribution with mean A and variance
k on the support [u, v] (the subscript [u, v] is omitted if supported on the whole real line),
by G(A,«) the Gamma distribution with mean A/x and shape parameter «, by ZG(X, k)
the inverse-Gamma distribution with mean « /(A — 1) and shape parameter « and by Ujy .
the continuous uniform distribution on the support [«, v]. We denote the cardinality of a set
A by | A] and the absolute value of a number b by |b|. A truncated function is written as
b, :=max{b, 0}.

2.2. Data. To calculate the ASAF and ASSAF, we need annual death counts by country,
age group, gender, and cause of death from the WHO Mortality Database (World Health
Organization (2017)), which covers data from 1950 to 2015 for more than 130 countries
and regions around the world. This dataset comprises death counts registered in national
vital registration systems and is coded under the rules of the International Classification of
Diseases (ICD).

Quinquennial population numbers, mortality rates and life expectancy at birth are obtained
from the 2017 Revision of the World Population Prospects (United Nations (2017a)) for each
country, gender and age group. The World Population Prospects is a comprehensive database
of world population and major demographic indicators published and updated every two years
by the United Nations Population Division.

Population and mortality data are collected from national vital registration systems for the
countries that have them. When vital registration data are deficient or lacking, mortality rates
are estimated by combining data from other sources, including censuses, demographic sample
surveys and partial vital registration systems. Life expectancy estimates are then based on the
mortality data using standard life table methods. Full details of the methodology of the United
Nations population estimates can be found in United Nations (2017b).

2.3. Age-specific smoking attributable fraction. We use estimates of the smoking at-
tributable fraction (SAF) obtained with the Peto—Lopez method, an indirect method based
on the observed lung cancer count data (Kong et al. (2016), Li and Raftery (2020), Peto
et al. (1992)). Two key components for estimating the SAF are the proportion of the popu-
lation exposed to smoking and the relative risk of dying between smokers and nonsmokers
for different causes of death. By assuming that all excess risk of dying due to lung cancer is
smoking-attributable, the proportion of the population exposed to smoking can be estimated.

The relative risks of dying due to different causes of death are estimated based on the
American Cancer Society’s Cancer Prevention Study II (CPS-II), a large prospective cohort
study conducted in the United States in the mid-1980s. The actual numbers are taken from
the Appendix in Peto et al. (1992).

Here, we use a modified version of the Peto-Lopez method proposed by Rostron and
Wilmoth (2011) to estimate the ASSAF. The modified method calculates the ASSAF for all
five-year age groups from 35 to 100 which is more fine-grained than the original Peto—Lopez
method. Also, the reference lung cancer mortality rates used in the original Peto—Lopez
method were underestimated because of selection bias, and the modified method addresses
this by introducing an inflation factor. Table 1 gives the estimated inflation factors for all age
groups and both genders. Because of data quality issues, we set the ASSAF for age groups
less than 40 to zero, and the ASSAF for age groups 85 and older to the same value as that
for the 80—84 age group. These rules follow the guidelines in Peto et al. (1992) and Rostron
and Wilmoth (2011) with minor modifications and result in nine age groups with nonzero
ASSAEF. The left panel of Figure 1 shows the estimated quinquennial ASSAF of U.S. males
for all nine age groups (shown in different symbols) from 1953 to 2013.
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TABLE 1
Estimated age-sex-specific mortality adjustment factors for the modified Peto—Lopez method

40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80+

Male 222 1.12 2.03 2.12 1.88 1.81 1.67 1.46 1.54
Female 1.52 1.70 1.93 1.82 2.09 2.00 2.00 1.85 1.92

2.3.1. Estimation and forecasting: Age-cohort modeling. 'We propose a probabilistic age-
cohort approach to estimate and forecast the ASSAF for the male population. The age-cohort
plot of the U.S. male ASSAF (right panel) in Figure 1 has two main features that lead to our
modeling. First, the ASSAF can be well approximated by the product of an age effect and a
cohort effect. The ASSAF of age group 80+ tends to shift horizontally from other age groups
for most of the countries (e.g., see the line with solid diamond symbol in the age-cohort plot
of Figure 1 for the case of U.S. males). Hence, we apply a cohort effect t for all age groups
less than 80 and a separate cohort effect T for the 80+ age group.

The probabilistic model of ASSAF in country £ is

ind .
(2.1 yf,; = N(Sfff_xlx;éso +£L8 1,280, 07),

where x takes values in {40, 45, 50, 55, 60, 65, 70, 75, 80}. To ensure identifiability, we set
Efo =1 for all countries (projection results are not sensitive to the choice of the age group
to set to 1). Equation (2.1) is also closely related to a low-rank matrix completion method.
The age-cohort matrix based on the observed values of period ASSAF inevitably contains
missing values since we do not observe the ASSAF of early cohorts at young ages or that of
late cohorts at old ages (see Figure 2).

The second main feature of the age-cohort plot is that the cohort pattern of the male AS-
SAF has a strong increasing—peaking—declining pattern. This trend can be well captured by a
five-parameter double logistic function (Meyer (1994)),

k k
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FIG. 1. Age-specific smoking attributable fractions (ASSAF) for the male population in the United States from
1950-2015. Left: Age-period plot. The horizontal axis is the year of observation and symbols differentiate age
groups. Right: Age-cohort plot. The horizontal axis is the year of birth for all cohorts, where the values for each
age group are shown by a different symbol.
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Period Cohort
1953 1958 1963 1968 1898 1903 1908 1913 1918 1923 1928

FIG. 2. Transformation from age-period matrix (left) to age-cohort matrix (right). Black and grey cells represent
observed and missing values, respectively.

where 6 := (A1, A2, A3, A4, k). The double logistic curve is a flexible parametric curve
which has been used in scientific fields such as hematology, phenology and agricultural sci-
ence as well as demography. Due to its scientific interpretability, it is used to describe so-
cial change, diffusion and substitution processes (Fokas (2007), Griibler, Naki¢enovi¢ and
Victor (1999), Kucharavy and De Guio (2011)). Examples of the use of a double logistic
curve to describe dynamics in human demography include mortality rates (Marchetti, Meyer
and Ausubel (1996)), life expectancy at birth (Raftery et al. (2013)) and total fertility rates
(Alkema et al. (2011)).

The normal distribution is chosen in equation (2.1) mainly due to its analytical and com-
putational convenience when we carry out the MCMC-based posterior inference. Though the
age-specific smoking attributable fraction (ASSAF) is a ratio that has a range between 0 and
1, the observed ASSAF for any particular age-cohort group has a relatively narrow range
which suggests that a normal distribution may be sufficient. Our out-of-sample validation
analysis in Section 3 provides further evidence that the current choice of normal distribution
results in a well-calibrated model.

Most developed countries have already entered the declining stage of the smoking epi-
demic. The epidemic started in the early 1900s with a steady increase until the 1950s—60s,
when the adverse impact of smoking became widely known and antismoking measures started
to be put in place. Since then, the smoking epidemic has continued to decline. Thus, the co-
hort effect of smoking exhibits a similar increasing-peaking-decreasing trend which can be
captured naturally by the double logistic curve.

The cohort effect 7 for ages 80+ is just a horizontal shift of the cohort effect t for younger
ages, so we use two related double logistic curves to bridge them,

@23)  H|el o N (g(cl0h), ATy, F|AL, o2 N (g (1Y), oA,

where ¢ :=1 — x, ¢ := (Ae, INNS IS k%) and 6t = (AE, INJUNS Aﬁ + 8¢, kY). Here, 8¢
is a shift parameter controlling the amount of horizontal translation T can make with respect
to 7, and 02" is a global-level parameter used to capture the between-country variance of
the country-specific cohort effect.

We use a three-level Bayesian hierarchical model (BHM) to estimate and forecast male
ASSAF for all countries of interest jointly. Level 1 models the observed male ASSAF in
terms of the tensor product of the age effect and the cohort effect (i.e., equation (2.1)).
Level 2 models the distributions (conditioning on the global parameters) of the country-
specific age effect £¢, the country-specific cohort effects 7‘ and ¢ in equation (2.3), the
country-specific parameters #¢ and ¢ of the double logistic function and the country-
specific measurement variance 0@2. Level 3 sets hyperpriors on the global parameters ¢ :=

2
(5 0. 02 a0, 02, 027 pun s gy 02 s sy O3 o By O s, ). More de-

tails of the specification of the full model are given in the Appendix. Bayesian inference for
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FI1G. 3. Posterior distributions of cohort and age effects of United States male ASSAF. Top Left: Posterior median
and 95% credible intervals of the cohort effects t for the 40-79 age groups. Bottom Left: Posterior median and
95% credible intervals of the cohort effect T for the 80+ age groups. Right: Boxplot of posterior distribution of
the age effect.

parameters from all levels is conducted using the standard Gibbs sampling framework us-
ing the Metropolis—Hastings sampler or slice sampling to sample from the full conditional
posterior distribution of each parameter.

The left and right panels of Figure 3 show the cohort effects and the age effect of U.S. male
ASSAF, respectively. The estimated cohort effect T for the age groups 45—79 shows a clear
increasing-peaking-decreasing trend, as observed in Figure 1. The estimated cohort effect T
for the 804 age group shows the same trend for the 13 cohorts reaching age 80 by 2015. We
can forecast future cohort effects based on the posterior distribution of the double logistic
function. The estimated age effect indicates that the smoking-attributed fraction of mortality
is higher among middle-aged males (aged 40—69) in the U.S. than among older males (70 and
over). Figure 4 plots the posterior distributions of the means of the U.S. male ASSAF for all
nine age groups and for all 21 cohorts.

To project the future ASSAF, we first generate future cohort effects by plugglng sam-
ples drawn from the posterior distributions of country-specific parameters 6 and 6° into
equations (2.2) and (2.3). Then we apply equation (2.1) using samples drawn from posterior
distributions of the future cohort effects, age effect and country-specific variance 062 to get
projections of ASSAF.

2.4. Nonsmoking life expectancy. Nonsmoking life expectancy at birth, eONS, is the life
expectancy at birth that a population would have if no one smoked, but all mortality risks were
otherwise the same (Bongaarts (2006)). To estimate eNS we need the age-specific mortality
rates dy and the ASSAF y,, described in Section 2. 3 As in the last section, all quantities
described in this section are specific to the male population, and the gender index s is omitted
unless otherwise specified.

The calculation of eNS consists of two steps. First, the age-specific nonsrnoking attributable

mortality rate for a given country £, age group x and period ¢ (denoted by m t) is calculated
as

(2.4) myi == )’x E ﬁ,t-

Second, we convert the set of m) e v o egIS using the standard period life table method

(Preston, Heuveline and Guillot (2000) Chapter 3), as 1mplemented in the life.table func-
tion in the R package MortCast under version 2.1-1 (Sevéikovd, Li and Gerland (2019)).
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FI1G. 4. Posterior distributions of the means of U.S. male ASSAF for all 9 age groups. The observed ASSAF is
shown by solid dots. The posterior median and 95% credible intervals of the means are shown by solid and dashed
lines, respectively.

Figure 5 shows the relationship between quinquennial ey and e(I;IS for U.S. males and Nether-
lands males from 1950 to 2015, respectively. The vertical gap between ep and egs at each
time point presents the years of life expectancy lost due to smoking. The changes in the gaps
also follow a similar increasing-peaking-decreasing trend over the period 1950 to 2015.

2.4.1. Estimation and forecasting: Nonlinear life expectancy gain model. We forecast
egs by investigating the nonlinear five-year gains of e(I;IS. As discussed by Raftery et al.
(2013), the improvement of gains on ep for most of the countries has experienced a slow-
rapid-slow increasing pattern and a six-parameter double logistic function is used to capture
the nonlinearity of five-year gains of e,

w
1+ exp{—%(eg — a1 — 0.5a2))

g(eol¢) :=
2.5) o
Tt el (e — ¥ a1 — 0.5an)]

where ¢ := (a1, a2, a3, as, w, z) and z is the asymptotic average rate of increase in eg. We as-
sume that z is nonnegative, implying that life expectancy will continue to increase on average
(Bongaarts (2006), Oeppen and Vaupel (2002)).

The five-year gains in eBIS exhibit this nonlinear pattern as well. The left panel of Figure 6

plots the observed five-year gains of e¢g and eONS for 69 countries/regions with data of high




444 Y. LI AND A. E. RAFTERY

United States of America Netherlands
L = e P —-— € ©
“Z P e
—o— e, Median /‘ o o | eo™*® Median / o
- e 95% Cl e . ® --- e 95%Cl &
© -+ Gap ’// /Lo~ 4 Gap VA
avas b AR
Y o |
5 < | /,' o - a IS o | o
2 = e / L2 2 S
© s - ©
O / - % o @ | o %
a N v e L@ o o~
x 7 ] - O X O
] / e w ©
L 2 S/ L e 2 x -
4 . - 4
=Y / @
8 7 | < -
Vi L] - (-
p ./__./ | <
8 = l/ [ ™~
T T T T T T - T T T T T T
1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010
Year Year

FIG. 5. Male life expectancy at birth, ey, and male nonsmoking life expectancy at birth, eONS, for the United
States (left) and the Netherlands (right). The solid line with square shows eqy. The solid with dot and the dashed
lines show the posterior median and the 95% credible interval of e(l;IS. The solid line with triangle represents the

NS
gap between e and ey .

enough quality from 1950 to 2015. The five-year gains in eON S have nearly the same shape as
the five-year gains in eg which supports using the same double logistic function to model the
gains. Also, egs has almost the same five-year gain at the highest age as eg, suggesting that
the asymptotic average rate of increase z for egs should be similar to that of eg. Further, the
variability of the five-year gains of egI S changes from a low level to a high level of eONS which
suggests including a nonconstant variance component in the model. Lastly, the distribution
of five-year gains in egfs resembles that of the five-year gains in eg which are modeled by a
normal distribution in Raftery et al. (2013). This assumption is also validated by our out-of-

sample validation results provided in Section 3.
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FI1G. 6. Left: Five-year gains of ey and egIS for 69 countries/regions from 1950 to 2015. The gains in ey and

eONS are represented using shallow and dark dots, respectively. Right: Plot of absolute residuals estimated from

the constant variance model against life expectancy shown by dots with fitted regression spline shown by the line.
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We use a three-level Bayesian hierarchical model for egs. Level 1 models eg{ %’t for country
£ and period ¢ by

NS ind NS 2
(2.6) eoe. ~ Nlegp,— 1"‘8(80@; 1129, (@° - ‘P(eozz 1))
with country-specific parameters ; = (al,ag,ag,af;, wt, zY). Here, ¢(-) is a regression

spline fitted to the absolute residuals resulting from the model with constant variance in equa-
tion (2.6) with the same estimation method described later. The regression spline is used to ac-
count for the changing variability of the observed data. The right panel of Figure 6 illustrates
the varying absolute residuals with the fitted spline. Level 2 speciﬁes the conditional distribu-
tion for all country-specific parameters, 1nclud1ng et and w* Level 3 sets the hyperpriors for
the global parameters ¥ := ({1, }14 1 {a }l 1 Mw, O'w, Wz, O} 02). The full specification of the
model is given in the Appendix. Bayes1an inference for the parameters from all levels is con-
ducted using the standard Gibbs sampling framework with the Metropolis—Hastings sampler
or slice sampling for each conditional distribution.

To produce a probabilistic forecast we sample from the joint posterror distributions of the
country-specific parameters ¢! to calculate the five-year gains g(e NSy together with the pos-
terior distributions of w. For the variance component, we evaluate d)(eoy Ii,t—l) if eO’ i1 is
within the range of the fitted data; otherwise, it is set equal to the spline value evaluated at
the largest observed e S. We then use equations (2.5) and (2. 6) to generate samples from the

posterior predictive drstrrbutron for future country-specific eO v.:- The set of samples approx-
imates the posterior predictive distribution.

2.5. Male—female joint forecast.

2.5.1. Male eq forecast. First, we use the coherent Lee—Carter method (Li and Lee
(2005), Seveikova et al. (2016)) to convert the projected eo Ut back to mY 13 , for all age
groups x at period ¢ of country £. Then we invert equation (2.4) to get the prOJected age-
specific all-cause mortality, that is, mfc’t = m?it /(1 — yf’t) for any age groups x, period ¢
and country £. Finally, applying the same life table method described in Section 2.4 to the

forecast m* x.r» we obtain the forecast life expectancy at birth for period 7 and country ¢. Fig-

ure 7 illustrates the projections of egs and ep for U.S. and the Netherlands males to 2060.
The projected ep converges to the projected egs as ASSAF decreases toward O for all age
groups of U.S. and the Netherlands males.

2.5.2. Female e forecast: Gap model. 'We propose a gap model similar to that of Raftery,
Lalic and Gerland (2014) to produce a coherent projection of male-female life expectancy at
birth. It has been argued that differences in smoking largely account for the life expectancy
gap between males and females (Preston and Wang (2006), Wang and Preston (2009)).
Here, we explore the relationship between the between-gender gap in life expectancy and
the between-gender gap in the all-age smoking attributable fraction (ASAF). The ASAF is
a single statistic summarizing the smoking effect on mortality and is defined as a weighted
average of the ASSAF values, as calculated in Section 2.3, where the weights are the age-
specific mortality rates. Li and Raftery (2020) describe the estimation of ASAF as well as a
method for forecasting it using a four-level Bayesian hierarchical model. For this work we
use the RStan R package under version 2.18.2 for posterior inference (Stan Development
Team (2018)).

We modify the gap model of Raftery, Lalic and Gerland (2014) by adding the country-
specific between-gender ASAF gap as a covariate. The proposed gap model is as follows:

G! :=min{max{G?, L}, U},
2.7) ~ ¢ ind ¢ ¢ ¢ ¢
G ™~ N(Bo+ Biel 1053 + B2Gi_| + B3€ s + BaleGm, — @), + Bshy, 05),
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The posterior medians and the 95% predictive intervals of projected ey are shown by solid and dashed lines,
respectively.

where U and L are the observed historical maximum and minimum of the between-gender
gap in eq, w is the level of male ep, at which the gap is expected to stop widening, and 4; is
the between-gender gap (male minus female) of the posterior median of ASAF in period ¢.

The estimated parameters of the model based on the data for 69 countries/regions for
1950-2015 are reported in Table 2. Our estimates indicate that the ¢y gender gap has a strong
positive association with the ASAF gap after adjusting for other factors (/§5 = 1.180 with p-
value < 0.01). Since the estimated lower bound of the life expectancy gap L is positive, our
model guarantees that no crossover of male and female life expectancy forecasts will happen
for all trajectories. The other coefficients have similar estimates and significance as in Raftery,
Lalic and Gerland (2014), which accounts for the remaining variability in the between-gender
life expectancy gap, possibly due to biological and other social factors (Janssen and van
Poppel (2015)).

When performing projection, we forecast all terms in equation (2.7) forward. Instead of
using a random walk, as in Raftery, Lalic and Gerland (2014), we make use of the ASAF

gap to guide our projection. However, we constrain the quantity (66 m. — @)+ to be 20 when

eg . 18 greater than 81 years, which is the largest male ey observed in countries of interest up

to 2015, since there is not enough information to determine whether the gap will continue to

TABLE 2
Estimated gap model coefficients with standard errors in parentheses, if available

Variable Parameter Estimate Variable Parameter Estimate
Intercept Bo —2.173 (0.627) hf Bs 1.180 (0.384)
eg,m,1953 Bi 0.012 (0.003) oG 0.496
Gt By 0.901 (0.010) @ 61
eémyt B3 0.043 (0.011) L 0.03
(eg’m’t —o)4+ Ba —0.107 (0.012) U 13.35

R? 0.933
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shrink for higher ey. After the gender gap has been forecast, we add the gap to each posterior
trajectory of the forecast male eg to get the full posterior predictive distribution of female e.

2.6. Estimation and projection of the full model. We use data from 69 countries/regions
for which the data on the male smoking-attributable mortality was of good enough quality.
The precise data quality criteria and thresholds used are described in Li and Raftery (2020).
Of these countries, two are in Africa, 16 are in the Americas, nine are in Asia, 40 are in
Europe and two in Oceania. Estimation of the full model makes use of male ASSAF, male
age-specific mortality rates, both genders eg and both genders ASAF of 69 clear-pattern coun-
tries/regions over 13 five-year periods from 1950-2015. Future e of the same set of countries
over nine five-year periods from 2015 to 2060 is projected based on the joint posterior pre-
dictive distribution of the full model. The full procedure is described in the Appendix.

We use Markov chain Monte Carlo (MCMC) to sample from the joint posterior distribu-
tions of the parameters of interest. For the BHM of the ASSAF, we ran three chains, each
of length 100,000 iterations thinned by 20 iterations with a burn-in of 2000. This yielded a
final, approximately independent sample of size 3000 for each chain. For the BHM of each
of the 30 samples of egs, we ran one chain with length 100,000 iterations thinned by 50 with
a burn-in of 1000. This yielded a final, approximately independent sample of size 1000 for
each chain. We monitored convergence by inspecting trace plots and using standard conver-
gence diagnostics, details of which are given in the Supplementary Material (Li and Raftery
(2021)). We include the plots of e projections for the 69 countries/regions and both genders
in the Supplementary Material.

3. Results. We assess the predictive performance of our model using out-of-sample pre-
dictive validation.

3.1. Study design. The data we used for out-of-sample validation cover the period 1950-
2015, dividing it into an earlier training period and a later test period. We fit the model using
only data from the training period and then generated probabilistic forecasts for the training
period. We finally compared the probabilistic forecasts with the observations for the training
period. We used two different choices of test period: 2000-2015, and 2010-2015. The former
allows us to assess longer-term forecasts, while the latter focuses on shorter-term forecasts.

To assess the accuracy of the probabilistic forecasts, we define the gender-specific mean
absolute error (MAE) as

3.1 MAE;

|£||T| ZZ‘ €0,s,t —

LelLteT

where L is the set of countries considered in the validation, 7 is the set of training periods
and E&w is the posterior median of the predictive distribution of life expectancy at birth
at year ¢ for country £ and gender s. To assess the calibration and sharpness of the model,
we calculated the average empirical coverage of the prediction interval over the validation
period, which we hope to be close to its nominal level with as short a halfwidth of the interval
as possible (Gneiting and Raftery (2007)).

3.2. Out-of-sample validation. We evaluated and compared the performance of the pro-
posed model with four commonly used methods for forecasting eqg: the Lee—Carter method
(Lee and Carter (1992)), the Lee—Miller method (Lee and Miller (2001)), the Hyndman—Ullah
functional data method (Hyndman and Shahid Ullah (2007)) and the Bayesian hierarchical
model as implemented in the bayesLife R package (Raftery et al. (2013)). We refer to
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TABLE 3
Out-of-sample validation results for forecasting life expectancy at birth of males and females one and three
five-year periods ahead. “Num” is the number of countries used in the validation. In the “Method” column,
“H-U FDA” is the Hyndman—Ullah functional data analysis method, “bayesLife” represents the method
described in Raftery et al. (2013) and “smokeLife” is our proposed method. “Halfwidth” represents the median
of the halfwidth of the prediction interval. For MAE, the lowest value is shown in bold. For coverage, the value
closest to the nominal coverage is shown in bold. No halfwidth values are bolded, because low values are
meaningless unless the intervals are calibrated

Coverage Halfwidth
80% 95% 80% 95%

Period Num Gender Method MAE

Lee—Carter 2.043 0.144 0.199 0.368 0.568
Lee-Miller 1.536 0.318 0.418 0.831 1.239
Train:1950-2000 M H-U FDA 2.206 0.189 0.274 0.808 1.259
bayesLife 1.273 0.741 0.950 1.722 2714
smokeLife 0.962 0.741 0.896 1.197 1.943

Lee—Carter 1.210 0.199 0.294 0.391 0.599
Lee—Miller 0.748 0.602 0.756 0.612 0.940
Test: 2000-2015 F H-U FDA 1.430 0.114 0.299 0.412 0.633
bayesLife 0.876 0.816 0.955 1.312 1.985
smokeLife 0.718 0.891 1.000 1.380 2.173

67

Lee—Carter 1.741 0.103 0.118 0.306 0.448
Lee-Miller 0.853 0.544 0.721 0.581 0.931
Train:1950-2010 M H-U FDA 1.364 0.191 0.324 0.548 0.791
bayesLife 0.688 0.824 0.897 1.098 1.748

63 smokeLife 0.523 0912 0.985 0.773 1.250

Lee—Carter 1.025 0.118 0.221 0.279 0.436
Lee-Miller 0.486 0.662 0.779 0.476 0.708
Test: 2010-2015 F H-U FDA 0.895 0.250 0.368 0.373 0.573
bayesLife 0.464 0.868 0.941 0.853 1.291
smokeLife 0.413 0.971 1.000 0.974 1.517

the last as the bayesLife method. The first three methods were implemented using the corre-
sponding functions with default settings in the R package demography under version 1.22
(Booth et al. (2006), Hyndman et al. (2019)). The bayesLife method was implemented under
default settings using the R package bayesLife under version 4.0-2 (Raftery, Lalic and
Gerland (2014), Raftery et al. (2013), Sev¢ikova, Raftery and Chunn (2019)).

Table 3 gives the out-of-sample validation results for the four methods described above as
well as our proposed method. Our method had the smallest MAE for both genders and both
choices of test period among the five methods. For predicting one five-year period ahead,
our method improved accuracy over the Lee—Carter method by 70% (60%) and over the
bayesLife method by 24% (11%) for males (females). For predicting three five-year periods
ahead, the new method improved accuracy over the Lee—Carter method by 53% (40%) and
over the bayesLife method by 24% (17%) for males (females).

For model calibration the Lee—Carter-type models produced predictive intervals that
are too narrow, thus underestimating the predictive uncertainty in the testing period. The
bayesLife method and the new method produced predictive intervals with coverage close to
the nominal level. We assessed the sharpness of the forecast method using the 80% predictive
interval halfwidth.

For male data under the three five-year periods prediction, the 80% predictive interval
of the new method was 30% shorter, on average, but yielded the same empirical coverage
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as the bayesLife method. Under the one five-year out-of-sample predictions, the 80% pre-
dictive interval of the new method was 30% shorter, on average, but yielded even higher
empirical coverage than the bayesLife method. For female data the predictive intervals of our
method overcovered the observations slightly for each choice of test period, but their median
halfwidths were not much wider than those of the bayesLife method (e.g., the largest incre-
ment was less than 18%). The major source of variability in the female projections of the new
method comes from the gap model.

4. Case studies. On average, smoking results in 1.4 years lost of male life expectancy
at birth for the 69 countries/regions over the period 1950-2015. The trend in years lost due
to smoking also follows the pattern of the smoking epidemic. The average years lost due to
smoking among males increased from 0.9 in 1953 to a maximum of 1.7 in 1993 and decreased
to 1.3 in 2013.

For the male populations of most countries, the ASSAF has already passed the peak for
most age groups. When this is the case, accounting for the smoking effect leads to higher
forecasts of life expectancy at birth. On average, our proposed method gives forecasts of
male life expectancy at birth that are 1.1 years higher than the bayesLife method used by the
U.N. for the 69 countries/regions over the period 2015-2060.

Most female populations are still at the increasing or peaking stage of the smoking epi-
demic. However, for 2055-2060 we expect to see an increment of 1.0 in female life ex-
pectancy compared to the forecast result from the bayesLife method, since the female smok-
ing epidemic will be following the same decreasing trend as that of males by then.

We now study four countries in detail, representing different patterns of the smoking epi-
demic.

4.1. United States. The United States of America has one of the best vital registration
systems in the world and also high-quality data on cause of death. It thus has high-quality data
on the SAF. The smoking epidemic started in the early 1900s among the male population and
rose to the historical maximum of around 60% in the 1950s. At that point, government pro-
grams and social movements against smoking began to develop, and the U.S. public became
increasingly aware of the adverse impacts of smoking. Since then, there has been a substan-
tial decrease in smoking prevalence, going down to about 20% in the 1990s, and 17.5% in
2016 (Burns et al. (1997), Islami, Torre and Jemal (2015)).

The female smoking epidemic started two decades later than the male one with a maximum
prevalence of around 30% in the 1960s. Female smoking prevalence declined to about 20%
in the 1990s and to 13.5% in 2016 (Burns et al. (1997), Islami, Torre and Jemal (2015)).
Figure 8a shows projections of the U.S. male and female ASAF to 2060. Figure 8b predicts a
continuously narrowing gap of the between-gender life expectancy due to the shrinking gap
between male and female ASAF up to 2060.

Figures 8c and 8d show projections of male and female life expectancy for the period
2015-2060. The bayesLife method projects male life expectancy in 2055-2060 to be 84.0
years with 95% predictive interval (79.2, 87.6). Taking account of smoking, our method
projects male life expectancy to be 2.1 years higher, or 86.1 years in 2060, with 95% pre-
dictive interval (83.0, 88.9). The bayesLife method projects U.S. female life expectancy for
2055-2060 to be 86.5 years, with 95% predictive interval (82.9, 90.0). Accounting for smok-
ing, our method projects female life expectancy also to be 2.1 years higher, or 88.6 years,
with interval (84.8, 92.4).

Thus, our method gives forecasts of life expectancy that are about two years higher than
those from the bayesLife method for both males and females, because of accounting for the
smoking effect. Our predictive interval for male life expectancy at birth is 29% shorter than
the bayesLife one, while our female interval is comparable with that of the bayesLife method.
Both of our 95% predictive intervals cover the posterior medians from the bayesLife method.
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FI1G. 8. United States of America. (a) All-age smoking attributable fraction (ASAF) for male and female with
median and 95% PI of posterior predictive distributions. (b) Between-gender gap of life expectancy at birth
with posterior predictive median and 95% PI. (c) Forecasts of male life expectancy at birth to 2060 using the
bayesLife method and our proposed method with posterior predictive medians and 95% PI. (d) Forecasts of female
life expectancy at birth to 2060 using the bayesLife method and our proposed method with posterior predictive
medians and 95% PI.

4.2. The Netherlands. The Netherlands is a western European country where the smok-
ing epidemic has a long history, going back to the 1880s when the cigarette industry began
there. Male smoking prevalence reached 90% in most age groups in the 1950s but dropped
rapidly to 30% in the 2010s. Smoking prevalence among females was high in the 1970s,
when about 40% of females smoked, and after 1975 there was a sustained drop to 24% in the
2010s (Stoeldraijer et al. (2015)).

Figure 9a shows that the female ASAF is forecast to surpass the male ASAF for the next
two decades and that, by 2060, both male and female ASAF will be at about the same level.
Figure 9b shows that the turning point in the between-gender gap of life expectancy happened
around the 1990s, when the male ASAF had passed its peak and the female ASAF started to
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climb. With the shrinking of the ASAF gap, the projected life expectancy gap is forecast to
continue to shrink and plateau around 2.8, due to biological and social factors (Janssen and
van Poppel (2015)).

Both Dutch males and females experienced a period of stagnation in life expectancy
gains—in the 1960s for males and the 1990s for females. Smoking is a major reason for
this stagnation. The right panel of Figure 5 indicates that the forecast Dutch male life ex-
pectancy gain is more linear and sustained after removing the smoking effect. Figures 9c and
9d show projections of male and female life expectancy for 2015-2060. Taking account of
smoking, we project male life expectancy for the period 2055-2060 to be 88.0 years, with a
95% prediction interval of (85.0, 91.1), while the bayesLife method projects 86.1, with inter-
val of (82.3, 89.7). Our method projects female life expectancy for the period 2055-2060 to
be 90.8, with a 95% prediction interval of (86.6, 95.0), while the bayesLife method projects
88.4 years, with interval of (85.1, 91.9).

Similarly to the U.S., our forecast of life expectancy in 2060 is about two years higher
than a forecast that does not take account of smoking. By considering the decreasing trend
of the smoking epidemic, our forecast is 1.9 years higher for males and 2.3 years higher for
females expectancy compared with the bayesLife method. Janssen, van Wissen and Kunst
(2013) forecast the Dutch male and female life expectancy in 2040 to be 84.6 years and 87.2
years, respectively, taking account of smoking. This agrees well with our forecasts for 2040:
85.0 for males and 87.3 for females.

4.3. Chile. Chile is a South American country where the smoking epidemic had a late
start, and it is currently one of the countries with the highest smoking prevalence in the
Americas. Smoking prevalence decreased from 50% in 2000 to 40% in 2016 among males
and from 44% to 36% among females. This decline is modest compared to that in the United
States (Islami, Torre and Jemal (2015)).

Figure 10a shows the projections of male and female ASAF. Chilean male ASAF has been
at the peaking stage for a long time, with high prevalence and no sign of a decline. Female
ASAF is predicted to grow to approach the male level. The narrowing of the ASAF gap is
forecast to lead to a sustained closing of the life expectancy between-gender gap (Figure 10b).

Figures 10c and 10d show projections of male and female life expectancy for 2015—2060.
We project male life expectancy for the period 2055-2060 to be 83.2, with 95% predictive
interval (80.9, 86.3). In contrast with the U.S.A. and the Netherlands, our median projection
is 1.8 years less than that from the U.N.’s bayesLife method. This is due to the fact that the
epidemic has not yet clearly peaked. Our method projects female life expectancy to be 84.5
in 2055-2060, with 95% predictive interval (81.7, 88.5). As for males, this is substantially
smaller than that from the bayesLife method with forecast median 87.6 years and 95% pre-
diction interval (84.1, 91.0). This is due to the increasing impact of smoking on the Chilean
female population.

4.4. Japan. Japan has been a leading country in life expectancy for a long period, while
it also has a long history of smoking and is one of the largest tobacco consumers. Male
smoking prevalence reached 83.7% in 1966. That number dropped to 36% in the 1990s and
halved again by 2018. Female smoking prevalence is far lower and has tended to change less
dramatically than that of males. Female smoking prevalence reached 16% in the 1970s and
decreased to 9.7% in 2015. The significant changes result mainly from government regula-
tions and antismoking movements starting in the 1980s. Figure 11a shows the forecast male
and female ASAF. Figure 11b shows the narrowing of the life expectancy gap as a result.

Figures 11c and 11d show projections of life expectancy for males and females. Our
method projects male life expectancy for the period 2055-2060 to be 88.8, with a 95% predic-
tive interval of (85.8, 91.5). The bayesLife method forecasts 85.6, with a projection interval
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F1G. 9. The Netherlands. (a) All-age smoking attributable fraction (ASAF) for male and female with median
and 95% PI of posterior predictive distributions. (b) Between-gender gap of life expectancy at birth with posterior
predictive median and 95% PI. (c) Forecasts of male life expectancy at birth to 2060 using bayesLife method and
our proposed method with posterior predictive medians and 95% PI. (d) Forecasts of female life expectancy at
birth to 2060 using bayesLife method and our proposed method with posterior predictive medians and 95% PI.

(81.6, 89.7). Notice that our median forecast is 3.2 years higher than that of bayesLife, while
its interval is 1.4 years narrower.

We project female life expectancy to be 92.2 with a 95% prediction interval of (88.3,
96.1). Our forecast shows a noticeable slowdown of the growth of female life expectancy due
to the smoking effect. The bayesLife method projects 92.0 years with interval (88.8, 95.3).
Though both methods produce comparable forecast results for 2055-2060, the bayesLife
method forecasts a more linear increase while ours reflects the nonlinear smoking effect on
the life expectancy forecast.

5. Discussion. We have proposed a method for probabilistic forecasting of mortality
and life expectancy that takes account of the smoking epidemic. The method is based on the
idea of the smoking attributable fraction of mortality, as estimated by the Peto—Lopez method
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F1G. 10. Chile. (a) All-age smoking attributable fraction (ASAF) for male and female with median and 95% PI
of posterior predictive distributions. (b) Between-gender gap of life expectancy at birth with posterior predictive
median and 95% PI. (c) Forecasts of male life expectancy at birth to 2060 using bayesLife method and our
proposed method with posterior predictive medians and 95% PI. (d) Forecasts of female life expectancy at birth
to 2060 using bayesLife method and our proposed method with posterior predictive medians and 95% PI.

using data on lung cancer mortality. The age-specific smoking attiributable fraction (ASSAF)
of mortality is estimated and used to infer the nonsmoking life expectancy at birth, egIS. Both
the ASSAF and eONS are then forecast using Bayesian hierarchical models for all countries
with sufficiently good data. This in turn yields posterior predictive distributions of mortality
rates and life expectancy at birth. The method performed well in an out-of-sample validation
study.

The strength of the method derives from the fact that the smoking attributable fraction of
mortality follows a very strong increasing-peaking-decreasing trend over time in all coun-
tries where the smoking epidemic has been going on for long enough. This pattern is strong,
broadly the same across countries, is to a large extent socially determined and is also not
highly correlated over time with the life expectancy at birth itself which follows a broadly
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F1G. 11. Japan. (a) All-age smoking attributable fraction (ASAF) for male and female with median and 95% PI

of posterior predictive distributions. (b) Between-gender gap of life expectancy at birth with posterior predictive
median and 95% PI. (¢) Forecasts of male life expectancy at birth to 2060 using bayesLife method and our
proposed method with posterior predictive medians and 95% Pl. (d) Forecasts of female life expectancy at birth
to 2060 using bayesLife method and our proposed method with posterior predictive medians and 95% PI.

increasing pattern over time. However, smoking does impact mortality. Thus, smoking mor-
tality can be predicted with considerable accuracy, and accurate predictions improve mortality
forecasts.

Another strength of the method is its use of a hierarchical model, which improves forecast-
ing, particularly for countries where the smoking epidemic is at an early stage. This allows
forecasts for such countries to be informed by information from other countries, especially
those where the epidemic is more advanced. It also makes it easier to incorporate all major
sources of uncertainty.

The results indicate that, for country-gender combinations where the smoking epidemic
is advanced enough that we can expect it to be declining by 2060, incorporating smoking
increases forecasts of life expectancy by about two years. When the epidemic is at an earlier
stage, though, incorporating smoking tends to reduce forecasts of life expectancy. The results
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also indicate that much of the change over time in the female-male gap in life expectancy is
due to relative changes in smoking related mortality.

The biggest limitation of our method is that it relies on the availability of high-quality
data on cause of death, particularly lung cancer, which are available for 69 of the 201 or so
countries/regions in the world with over 100,000 inhabitants. Thus, the biggest improvement
in the method would come from improvements in data quality. In particular, China and India
are missing from our study, because national data on cause of death of high enough quality are
not available. Producing such data should be a focus of future data collection and research.
This is very important because, not only are China and India the two most populous countries
in the world, they also have high smoking rates and are likely to experience high smoking
mortality in the coming decades.

Several other approaches to the problem have been proposed. Bongaarts (2006) introduced
the concept of nonsmoking life expectancy and proposed modeling it in a linear way. How-
ever, the time evolution of nonsmoking life expectancy appears, generally, to follow a non-
linear pattern with gains that broadly follow a nonmonotonic increasing-peaking-declining
patter. This is modeled in our method by a random walk with a double logistic drift.

Janssen, van Wissen and Kunst (2013) proposed directly modeling the ASSAF and the
age-specific nonsmoking attributable mortality rates. They observed that nonsmoking mor-
tality rates decline more linearly than overall mortality rates, making the data fit a Lee—Carter
model better. They conducted an age-period-cohort analysis, while we found an age-cohort
model to be sufficient. There are well-known identifiability issues with age-period-cohort
analysis that our approach avoids. They used a coherent Lee—Carter method. This assumes
linear progress in log mortality rates, while, in fact, progress tends to be nonlinear and also
tends to be more linear on the scale of life expectancy than that of log mortality rates. More-
over, traditional age-period-cohort models might suffer from systematic lack-of-fit issues if
dependence among cohorts is not considered. The hierarchical nature of our age-cohort mod-
eling implicitly captures the dependence of cohort effects through the double logistic func-
tion. Figure 8 and out-of-validation results show no sign of systematic lack of fit in our current
modeling.

The mortality component of the U.N.’s population projections for all countries is based
on the Bayesian hierarchical model of Raftery et al. (2013) which does not take account
of smoking. We have shown that this could be improved significantly by taking account of
smoking. However, the data to do this are available for only 69 countries/regions currently,
and the U.N. aims to use a unified approach for all the 230 countries and territories that they
analyze. Thus, extending the U.N.’s method to take account of smoking in this way might
not be feasible in the short term. To do this would likely require a major improvement in
data availability for many countries. However, it could be useful for national population and
mortality projections for individual countries, for example, for planning health services and
also for the private sector, for example, for actuarial and insurance analyses.

A referee raised the issue of how effective the method would be in the future in light of the
continued decline in smoking. Smoking prevalence among males in most developed countries
has indeed declined for one to two decades, and our analysis indicates that it is likely to
continue to do so. The influence of smoking on male life expectancy in the developed world
can still be seen until 2060 in most countries (cf. Figure 7), and the smoking attributable
fractions have not peaked yet for most female populations in the developed world (cf. Li and
Raftery (2020)). This suggests that the method may continue to be useful for another half
century or more. For most developing countries, including China and India, the trend of the
smoking attributable fraction is still increasing (Parascandola and Xiao (2019), Reitsma et al.
(2017)), and our method should be able to model the smoking impact for these populations
when more high-quality data are collected.
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Our proposed forecasting framework could be generalized to other lifestyle-related long-
term health crises, such as obesity, as well as other newly rising social epidemics, such as
drug overdosing and vaping. Such an extension, however, would require a substantial period
of cohort studies and data collection to calculate the corresponding attributable fractions to
make our method directly applicable.

APPENDIX. FULL BAYESIAN HIERARCHICAL MODEL
We first describe the estimating and projection of the full model:

1. Estimate and forecast the male ASSAF using the three-level Bayesian hierarchical
model described in Section 2.3, and generate 30 samples from the posterior distributions
of the mean of ASSAF of 69 clear-pattern countries/regions for all 13 five-year estimation
periods and all nine five-year periods forecast period;

2. For each country, generate 30 samples of male ¢ NS based on the ASSAF samples drawn
in Step 2 for all 13 five-year estimation periods, and, for each of the 30 samples, forecast
male egI S of 69 countries/regions for all nine five-year periods using the three-level Bayesian
hierarchical model described in Section 2.4;

3. For each country, forecast male ¢y based on the method described in Section 2.5.1 for
each of the 30 samples, and combine trajectories from all 30 samples to get the full posterior
predictive distribution of male egp;

4. For each country, apply the gap model described in Section 2.5.2 to the combined tra-
jectories of male eq to get the full posterior predictive distribution of female eg.

The Bayesian hierarchical model for modeling age-specific smoking attributable fraction
(ASSAF), described in Section 2.3, is specified as follows:

ind ~
Level 1t yg , ™ N(E7t/ Lezso + 55 Li=so, 07);

Level 2: £ ul8], o281 S N (81, 5280 for all x except for &y = 1,
gt AT ind \r N (g(cl6?), o217, #§¢, 2! ind \r N (g(cldh), o),
d iid
Aa, %' GQ. 2 ua), Agliay oZ, ™ N (may. 0F,),
d iid
}MA3 g, 2/1as), Afla,. o2, b Nty 0%,),
iid
K i of N (s o), 8¢ s, 0f NN (s, o),

052|0211dl'g(2 o?);

Level 3: ul1 Ar(1, 5), A1 1602, ),
02 ~1IG(2,0.01), o1~ 7G(2,0.01),
A ~G(2,0.0), a, ~N(20,1000),
tas ~G(2,0.1), fia, ~ N (20, 1000),
ik ~N(0.3,0.25), s ~ N(0, 100),
o, ~IG(2,1000), o, ~IG(2,1000),

of ~1G(2,0.25), of ~TG(2,100),
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where 0¢:= (A, A5, A%, ALY, 00 = (a8, AL, AL, AL+ 8%, k) and
k k
1 4+exp{—A1(c — 1873 — Aj)} 1 4+ exp{—A3(c — 1873 — Ay — A4)}.

g(clf) =

The Bayesian hierarchical model for modeling nonsmoking life expectancy (eos) de-
scribed in Section 2.4, is specified as follows:

ind 2
Level 1: ey , ~ N(ep's -1 +&(e02,—11¢), (@ - p(eb?,—1)));
Level 2: lel,U«ai,%zi i1d A/’[O,IOO](ILai,GLi), i=1,...,4,
w |, 02 '~ No 151 (1w, 02), ug, 02 '~ N[o 1151 (12, 02),
d
o X Upo. 1015
Level 3: ug, ~ N (15.77,15.6%), [tay ~ N(40.97,23.5%),
w ~N(0.21,14.5%), tay ~ N (19.82,14.7%),
~N(2.93,3.5%), 1z ~ N(0.40,0.6%),
3 ~1G(2,15.6%), og ~IG(2,14.5%),
o ~1G(2,14.7%), os, ~IG(2,3.5%),
2 ~T7G(2,0.6%), 02 ~1G(2,0.6%),
where ¢ := (a1, a», a3, a4, w, z) and
~( NS w i-w
gley”1C) = .
(¢0”1¢) 1+ exp{—22(eNS —a) — o.5a2)} 1+exp{—33(e)S — 37 4 — 0.5a4))
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SUPPLEMENTARY MATERIAL

Supplementary material for “Accounting for smoking in forecasting mortality and
life expectancy” (DOI: 10.1214/20-AOAS1381SUPP; .pdf). The Supplementary Material
includes two sections: 1. MCMC convergence diagnostics; 2. Life expectancy forecast for
both genders in 69 countries/regions.
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