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Some Statistical Issues in Climate Science
Michael L. Stein

Abstract. Climate science is a field that is arguably both data-rich and data-
poor. Data rich in that huge and quickly increasing amounts of data about
the state of the climate are collected every day. Data poor in that important
aspects of the climate are still undersampled, such as the deep oceans and
some characteristics of the upper atmosphere. Data rich in that modern cli-
mate models can produce climatological quantities over long time periods
with global coverage, including quantities that are difficult to measure and
under conditions for which there is no data presently. Data poor in that the
correspondence between climate model output to the actual climate, espe-
cially for future climate change due to human activities, is difficult to assess.
The scope for fruitful interactions between climate scientists and statisticians
is great, but requires serious commitments from researchers in both disci-
plines to understand the scientific and statistical nuances arising from the
complex relationships between the data and the real-world problems. This
paper describes a small fraction of some of the intellectual challenges that
occur at the interface between climate science and statistics, including infer-
ences for extremes for processes with seasonality and long-term trends, the
use of climate model ensembles for studying extremes, the scope for using
new data sources for studying space-time characteristics of environmental
processes and a discussion of non-Gaussian space-time process models for
climate variables. The paper concludes with a call to the statistical commu-
nity to become more engaged in one of the great scientific and policy issues
of our time, anthropogenic climate change and its impacts.

Key words and phrases: Statistical climatology, climate extremes, Argo
network, non-Gaussian processes.

1. INTRODUCTION

Climatology, like all areas of science, requires a combi-
nation of theory and observation to advance. And, without
weighing in on the controversy of whether computation
should be viewed as a “third leg” of science (Vardi, 2010),
there can be no doubt that modern computation has had a
huge impact on climate science. Of course, much was un-
derstood about the Earth’s climate before the advent of
modern computers. Indeed, the idea that gases in the at-
mosphere could warm surface temperature was first pro-
posed by Joseph Fourier in the 1820s. In 1896, Svante Ar-
rhenius estimated the impact of CO2 levels on mean sur-
face temperature based on a theoretical calculation using,
among many other factors, estimates of the absorption
characteristics of CO2 and water vapor (Arrhenius, 1896).
In particular, under the plausible approximation that rel-
ative humidities stay constant as temperatures change, he
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estimated the effect of a doubling of CO2 concentration
on the mean equilibrium surface temperature of the Earth
by 10◦ latitude bands between 60◦S and 70◦N, finding in-
creases between 4.95◦C and 6.05◦C depending on latitude
band. Based on better estimates of the absorptive prop-
erties of CO2 and water vapor, Arrhenius later updated
his estimate of the effect of doubling CO2 on equilib-
rium global mean surface temperature to 4◦C (Arrhenius,
1908), placing his estimate within the current range of
likely values according to the most recent Intergovern-
mental Panel on Climate Change report of 1.5◦–4.5◦C
(IPCC, 2013). Arrhenius (1896) is surprisingly readable
and I recommend it to anyone who might think that only
direct observations of surface temperature provide useful
information about climate change.

Of course, observations do play a critical role in our un-
derstanding of climatology. As in astrophysics, the data in
climatology is largely observational, although humanity is
presently undertaking an uncontrolled experiment on the
Earth’s climate (Ramanathan, 1988). Furthermore, while
climatologists study the climate of planets other than the
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Earth (Pierrehumbert, 2010), the amount of data on the
climate of other planets, especially planets with an atmo-
sphere similar to Earth’s, is severely limited. Thus, global
climate models, with which one can do controlled experi-
ments, necessarily play a large role in making qualitative
and quantitative inferences about the Earth’s climate and
how it will change due to anthropogenic effects (IPCC,
2013).

In thinking through the role of statistics in learning
about the Earth’s climate, it is worthwhile to provide some
background on the nature of both modern observations
and climate models. First, it is important to recognize that
even with the massive amount of data now collected about
the atmosphere and oceans, we still only observe a tiny
fraction of the information that would be needed to deter-
mine the present state of the Earth’s climate system. Thus,
it is quite common to use what are called data products,
which are some combination of observations and phys-
ical and/or statistical models, rather than direct in situ
measurements, in analyses of the climate system. Cur-
rent reanalysis data products (Balsamo et al., 2015, Saha
et al., 2010) make use of in situ and satellite observations
combined with a high-resolution climate model to ob-
tain estimates of the past states of the atmosphere-ocean-
land surface-sea ice system at a sub-daily time scale.
While reanalysis products are constantly improving, they
still have known problems, especially with precipitation
(Peña-Arancibia et al., 2013). Satellite measurements of
the climate system can also reasonably be called data
products, as the raw measurements, photon fluxes within
various frequency bands, have to be processed to produce
climatological variables of interest such as surface tem-
perature (Hollmann et al., 2013). Even simple rain gauges
can have substantial biases in their measurements of pre-
cipitation (Rodda and Dixon, 2012), especially in high
winds, which can have important implications for infer-
ences about extreme precipitation. Paleoclimate records,
which play an important role in understanding and con-
straining the impacts of various forcings on climate, have
myriad scientific and statistical challenges in converting
observations into estimates of past climatology and quan-
tifying the uncertainties in them (IPCC, 2013, Chapter 5).
It is incumbent on statisticians who work with climatolog-
ical data to make themselves aware of potential problems
with any observational data or data product they might
use.

Observational data and data products tell us about the
past and present, but we need models to tell us about the
future. Quantitative climate models can range from sim-
ple one-dimensional energy balance models, which is es-
sentially what Arrhenius used, to modern Earth system
models, which simulate physical, chemical and biological
aspects of the atmosphere-ocean-land surface-sea ice sys-
tem on a global scale (Edwards, 2011). These models are

generally deterministic, although there is substantial re-
search showing that including stochastic elements in cli-
mate models can reduce biases (Berner et al., 2017). My
personal view is that stochastic climate models will be es-
sential to obtain output with realistic space-time variabil-
ity and to accurately represent the uncertainties in these
models. I see great opportunities for statisticians and ap-
plied probabilists who could establish effective collabora-
tions with the groups working in this area.

Global climate models take account of much that is
known about the climate system, but memory and com-
putational limitations make it impossible for global mod-
els to take direct account of processes that occur at fine
spatial scales such as atmospheric turbulence and cloud
formation. Thus, global models are forced to either leave
out such processes or to “parameterize” them in some
form, which means replacing a description based on phys-
ical laws with an empirical representation that is meant to
mimic the essential properties of the process. These em-
pirical representations generally include tunable quanti-
ties (parameters) that determine the detailed mechanism
of the parameterization, such as the atmospheric condi-
tions under which a certain type of cloud forms. There is
considerable research on selecting these parameters and
their effect on climate projections (Neelin et al., 2010,
Sexton et al., 2012), but it is not necessarily clear when
parameterizations that work well for the present climate
will work well for assessing future changes in climate.

In addition to selecting a model, which includes set-
ting parameter values and the resolution of the model, it
is also necessary to set initial conditions and any forcings
that are not calculated as part of the model. These exter-
nal forcings include orbital variations, solar output, volca-
noes and, critically, human influences such as greenhouse
gas emissions and land use changes. Because of the sen-
sitivity of complex climate models to initial conditions,
output even from deterministic models may be treated as
effectively stochastic. Indeed, one of the most important
papers on chaotic dynamical systems, Lorenz (1963), ap-
peared in Journal of the Atmospheric Sciences and stud-
ied a model for hydrodynamic flow made up of a system
of three nonlinear ordinary differential equations that ex-
hibits the extreme sensitivity to initial conditions charac-
teristic of chaotic dynamical systems. Kay et al. (2015)
make use of this extreme sensitivity to initial conditions in
climate models to produce an ensemble of 40 runs of the
Earth system model CESM that differ only in the initial
temperature field perturbed at just above machine preci-
sion. After the first several weeks of the runs, at least the
atmospheric conditions in the different runs appear to be
largely independent. In addition to initial condition en-
sembles as in Kay et al. (2015), there are also ensembles
in which other components of a model run, such as pa-
rameters, forcings or the climate model itself, are varied
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(Tebaldi and Knutti, 2007, Jun, Knutti and Nychka, 2008,
Yokohata et al., 2010, Collins et al., 2011). Thus, there is
a large literature that focuses on statistical analysis of cli-
mate model output, as well as design of ensemble exper-
iments (Taylor, Stouffer and Meehl, 2012, Mearns et al.,
2013). Such analyses provide critical information about
the properties of climate models, how climate models dif-
fer (Jun, Knutti and Nychka, 2008) and how they compare
to observed climatology (Rahmstorf et al., 2007). Never-
theless, having more and more climate models and model
output is not the same as having more and more observa-
tional data, as there may be biases common to all climate
models in terms of how the climate will change in the fu-
ture.

Because of the important but different limitations of
model output and observational records, intelligent infer-
ences with reasonable uncertainties about future climate
demand a combination of information from climate mod-
els and observations. A Bayesian approach provides a
natural way to combine such information in a way that
accounts for multiple sources of uncertainty (Berliner,
Levine and Shea, 2000), but developing a full Bayesian
model for these disparate sources of information may
be problematic when trying to reach a broad consensus.
Ribes et al. (2017) review methods for estimating the im-
pacts of natural and anthropogenic changes in forcings on
climate and describe a new method that attempts to avoid
making strong assumptions about climate model uncer-
tainty, although it does assume that, for the climate char-
acteristic under study, the difference between the true cli-
mate and a climate model is statistically indistinguishable
from the difference between two climate models. This
study, like many others in the literature, concludes that
most of the observed warming in recent decades can be
attributed to anthropogenic forcings.

This paper is a highly personal view on what I view
as some of the interesting challenges at the intersection
of climate science and statistics. It is not a review paper
on statistical climatology and, despite the large number
of references, it does not provide a meaningful review of
the literature in the field. Section 2, the longest, considers
climate extremes, mainly because it is a current interest
of mine, but also because it is an area in which sophis-
ticated statistical methods play a central role. Section 3
discusses the role of new data sources in climate science
with a focus on a few examples that might particularly
interest statisticians. Section 4 discusses the role of and
need for non-Gaussian stochastic process models in cli-
mate science and Section 5 gives some general comments
on the existing and possible future roles for statisticians
in climate science.

2. EXTREMES

Many of the most dramatic impacts of climate on soci-
ety are through extreme events, such as heat waves, high

winds, flooding or droughts (Field et al., 2012). Since
observational records are often of limited duration, it is
important to use the best statistical methods when mak-
ing inferences about future extremes. The problem is only
made more difficult by the rapidly changing climate due
to human influences. In many applications, the process of
interest is a time series observed at regularly spaced in-
tervals, such as daily or hourly, so we will focus on this
setting for now.

There are two main approaches to statistical modeling
of extremes of a time series. The first is based on consid-
ering maxima of the series over blocks of observations of
some fixed length. The second is based on exceedances of
the process over some high threshold, often fixed, but per-
haps changing over time. When individual observations
are independent and identically distributed, under a regu-
larity condition on the upper tail of their common distri-
bution, properly normalized versions of the block maxima
or exceedances over a high threshold converge in distribu-
tion to a nontrivial limit. For example, under appropriate
regularity, the conditional distribution of an exceedance
over a high threshold μ approximately follows a general-
ized Pareto distribution with location parameter μ, scale
parameter σ and shape parameter ξ , with survival func-
tion given by

S(x) =
(

1 + ξ
x − μ

σ

)−1/ξ

for x > μ when ξ > 0 and for μ < x < μ − σ/ξ when
ξ < 0 (de Haan and Ferreira, 2006). The distribution is
defined by continuity when ξ = 0, in which case S(x) =
e−(x−μ)/σ for x > μ. There is a third approach to ex-
tremes based on point process approximations, but it is
less frequently used and is closely related to the ex-
ceedance approach.

All of these approaches are motivated by a common un-
derlying theory that relates the behavior of block max-
ima or exceedances to the behavior of the upper tails of
the distributions of the individual observations in the time
series (de Haan and Ferreira, 2006). If the time series is
stationary, then this distribution is unambiguous because
it is the same for all time points. However, most climate
variables observed at a sub-annual time scale have sub-
stantial seasonal patterns that make an assumption of sta-
tionarity untenable. Moreover, there is strong evidence
for trends in location and scale parameters of climate
extremes due to climate change (Westra, Alexander and
Zwiers, 2013, Zwiers et al., 2013, Roth, Jongbloed and
Buishand, 2018). There is a considerable literature show-
ing that extreme value results can be extended to cover
many, but not all, nonstationary processes (Cheng et al.,
2014, Einmahl, de Haan and Zhou, 2016, Stein, 2017).
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2.1 Extremes of Time Series

For daily climate measurements, such as daily maxi-
mum temperature or daily precipitation, it is convenient
to study annual maxima and assume these follow a gen-
eralized extreme value distribution. In one fell swoop,
this simplification largely eliminates the problems of sea-
sonality and temporal dependence; seasonality trivially
goes away when considering annual maxima and depen-
dence largely disappears because annual maxima gener-
ally show weak temporal dependence.

Despite these conveniences, there are good reasons
for preferring to model and understand the seasonality
and the temporal dependence of extremes. When extreme
events occur is often important; for example, late spring
or early fall frosts can have major impacts on agriculture.
Clustering of extreme temperature events is also of prac-
tical relevance; for example, multiple extremely hot days
in a short time span may have larger health (Anderson and
Bell, 2009, Gasparrini and Armstrong, 2011) or agricul-
tural impacts (Troy, Kipgen and Pal, 2015) than isolated
hot days. Thus, in order to develop a full understanding of
temperature extremes, it would be desirable to have a sin-
gle model that takes account of both seasonality and de-
pendence in extremes. Dealing with only the seasonality
can be addressed by, for example, allowing the parame-
ters of a generalized Pareto distribution to depend on time
of year. To take account of climate change, it is impor-
tant to include not just a long-term trend but also changes
in seasonal patterns. For example, output from a range of
climate models (Rummukainen, 2012, Huang et al., 2016,
Haugen et al., 2018) indicates that the lowest quantiles of
temperature will warm more in Winter than in Summer in
many locations.

How to deal with the clustering is less clear. One com-
mon approach to handling clusters of extremes is declus-
tering: remove all but the most extreme event in a period
with temporally nearby multiple extremes before fitting a
generalized Pareto distribution (Ferro and Segers, 2003).
Defining clusters is problematic and, in any case, when
one is specifically interested in the clusters themselves,
declustering can be at best only part of the solution. Fur-
thermore, Fawcett and Walshaw (2007) find that declus-
tering methods can lead to substantial biases when esti-
mating extremes. Another statistical approach to depen-
dence in extremes is to estimate some index of depen-
dence (Davison and Huser, 2015). However, such indices
do not fully characterize the dependence and thus may
not be adequate for some impacts. As with many prob-
lems relating to rare events, a marked point process ap-
proach should in principle be appropriate. For example,
following the usual point process approach to extremes,
the first day over some time period with an exceedance
over some high threshold T and the observed value of this
exceedance can be viewed as an event of the point process

in (−∞,∞)× (T ,∞) and then the mark can be the times
and values of further exceedances that are deemed to be
part of a cluster that begins with this first exceedance. The
great flexibility of what marks can represent in the marked
point process formulation is both an attraction and a lia-
bility; in the present setting, one would need to have a
model for marks that included a random number of ex-
ceedances over the threshold at random times and by ran-
dom amounts.

2.2 Extremes of Space-Time Processes

An open area of statistics with important implications
for climate science is the characterization and estimation
of climatological extremes that takes proper account of
extreme events as coherent meteorological phenomena in
space and time. It is typical to study both temperature
and precipitation extremes by considering daily values
at individual locations. This choice may make sense for
temperature because daily highs (or lows) of tempera-
ture are a reasonable summary of the potential impact of
temperature on human health or agriculture. In contrast,
the daily division is not as meaningful for precipitation,
since 20 cm of rain in 24 hours will have a similar im-
pact whether it falls between midnight and midnight or
between noon and noon. Perhaps more importantly, the
entire spatial or space-time pattern of extreme events may
matter for some impacts. For example, for temperature,
the spatial extent of a heat wave affects peak electric-
ity consumption, and for precipitation, the entire space-
time pattern of precipitation within a watershed is critical
for flooding. Touma et al. (2018) recognize this problem
and propose using spatial variograms of indicators of ex-
ceedances over a high threshold as a tool for describing
the spatial extent of extremes, although these variograms
do not fully characterize the relevant space-time relation-
ships.

Statistical extreme value methods are well accepted in
the environmental sciences and have a particularly long
history in the study of floods (Institute of Hydrology,
1975, Hosking, Wallis and Wood, 1985). For many obser-
vational records, it is difficult to accurately estimate the
parameters, especially the shape parameter, of an extreme
value model based on observations at a single site. Thus,
for example, it is common in hydrology to assume that
the shape parameter of extreme value distributions does
not vary within some region and there is considerable em-
pirical evidence supporting this practice (Katz, Parlange
and Naveau, 2002). More recent work uses Bayesian hi-
erarchical models to allow parameters of extreme value
distributions to vary smoothly in space (Cooley and Sain,
2010). These methods often assume that, conditional on
the spatially varying parameters of the extreme value dis-
tributions, the extreme observations are conditionally in-
dependent (Cooley et al., 2012, Jalbert et al., 2017), al-
though Opitz et al. (2018) allow spatial dependence in



STATISTICS IN CLIMATE SCIENCE 35

both the parameters of the model and the realized climate
variable given these parameters. In another important re-
search thread, Davison, Padoan and Ribatet (2012) review
recent methods for accounting for spatial dependence in
block maxima, where, for each time block, the maximum
is taken separately at each spatial location. While all of
these methods take account of spatial information, they do
not seek to model extreme events as phenomena in space
and time and, thus, do not address the need identified in
the previous paragraph.

2.3 Climate Model Output as a Tool for Studying
Extremes

It can be difficult to assess when complex methods,
such as those based on borrowing strength spatially to es-
timate extremes, work well just using observational data.
Even in cases with long observational records, evaluating
the performance of a method in a particular application
can be difficult due to possible nonstationarities caused
by local effects such as urban heat islands, inconsistency
in measurement instruments and climate change. Further-
more, however long the observational record, there is al-
ways a temptation to make inferences about extremes,
such as the 500-year flood, that go beyond the direct ob-
servational evidence available in even the longest records.
Thus, standard approaches for evaluating statistical meth-
ods in applications such as cross-validation are of limited
utility when studying extremes.

Output from global climate models provides a promis-
ing alternative for evaluating the sampling properties of
statistical approaches for estimating climate extremes. Al-
though extreme value methods have been regularly ap-
plied to climate model output (Katz and Brown, 1992,
Kharin and Zwiers, 2005, Kharin et al., 2013), these stud-
ies have focused more on studying the properties of the
model output than on evaluating statistical methods. An
important advantage of climate model output compared
to observational records are the long time series with no
missing values (Sterl et al., 2012). In recent years, a num-
ber of groups have produced climate model runs totaling
thousands of years. All of the output can be used to get ac-
curate estimates of the extremes, which can then be used
to evaluate estimates based on a subset of the output that
is comparable to a typical observational record. We do not
need to assume that the models accurately capture climate
extremes and how they might change in the future to be
useful as a testbed for statistical methods, only that they
share some of the space-time complexity of the actual cli-
mate system.

Extended model output comes in two forms: single runs
of a model over a long period (Paynter et al., 2018) and
initial condition ensembles (Kay et al., 2015). For ex-
ample, Huang et al. (2016) used the last 1000 years of
three multimillennial climate model runs with fixed forc-
ings that differ only in their concentrations of CO2 in

the atmosphere to compare distributions of annual ex-
tremes of daily temperature for the three concentrations.
The length of these runs made it possible to investigate
whether a year is sufficiently long block length for block
maxima and minima to be well approximated by general-
ized extreme value distributions. Specifically, Huang et al.
(2016) fit generalized extreme value distributions using
blocks of size 1, 2, 5 and 10 years and found that esti-
mated shape parameters did not systematically vary for
hot extremes but did show some distinct geographic pat-
terns in how they varied for cold extremes, suggesting
that blocks of one year may not be adequately long. The
long runs also made it possible to evaluate resampling ap-
proaches to uncertainty assessment. Specifically, uncer-
tainties of estimates of long return periods were obtained
using block bootstrapping for blocks of either one year
or a decade. Decadal blocks would generally be too long
to apply to observational records but are of a reasonable
length for 1000 years of model output. Huang et al. (2016)
found that block bootstrap standard errors for return peri-
ods showed no systematic changes when blocks were in-
creased from one year to ten. This result is in contrast to
what would happen for annual averages of temperature,
for which climate model output shows significant depen-
dence (Castruccio et al., 2014), but annual maxima and
minima are more singular events than long-term averages
and, at least for this model, show no substantial depen-
dence.

Model runs at fixed forcings avoid the problems of
transient climates, which simplifies the statistical issues,
but reduces their relevance to understanding the Earth’s
changing rapidly climate in the coming decades. For this
purpose, an initial condition ensemble under one or more
plausible forcing scenarios is more useful. The impor-
tance of large initial condition ensembles to the study of
climate variability is reflected in the recently held Large
Ensembles Workshop in Boulder, Colorado. The value of
such ensembles as a testbed for how well statistical meth-
ods actually work when applied to complex, nonstation-
ary space-time processes may not be as well appreciated.

Due to the sensitivity of these models to initial con-
ditions, it is commonly assumed that the different runs
within an ensemble can be treated as independent and
identically distributed realizations of the same multivari-
ate space-time process, although Corti et al. (2015) note
that initial conditions can have a substantial impact on
certain ocean characteristics for five years or more. The
LENS ensemble (Kay et al., 2015) is a well-known ex-
ample of such an ensemble and includes 40 runs of the
same climate model, CESM, with the same forcing sce-
nario (RCP 8.5, which includes historical forcings where
available and a “business as usual” projection for future
forcings) covering the period 1920–2010. Haugen et al.
(2018) used a 50-member ensemble due to Sriver, For-
est and Keller (2015) to fit changing seasonal patterns
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of daily temperature distributions using quantile regres-
sion. To obtain uncertainty estimates, Haugen et al. (2018)
resampled runs rather than using block bootstrapping of
years within runs, thus avoiding any assumptions of near
independence or stationarity within runs. The resulting
bootstrap uncertainties showed that the large ensemble
provided accurate estimates of a wide range of quantiles
using a fairly rich set of basis functions for the evolving
seasonal pattern of temperature. In particular, the size of
the dataset made it possible to estimate even fairly ex-
treme quantiles accurately without appealing to extreme
value theory.

3. DATA

As valuable as climate model output is, it is still no sub-
stitute for observational data. As in most fields, dataset
sizes are exploding in climate science. Here, we just men-
tion two data sources whose scopes are well-suited for
advancing both climate science and statistics.

3.1 The Argo Network

The Argo array is a collection of free-floating de-
vices for measuring the temperature and salinity of the
ocean (Argo, 2000, Riser et al., 2016). Every 10 days,
each float measures pressure, temperature and salin-
ity along the water column from 2000 m to the sur-
face. The Argo array reached its steady-state goal of
3000 floats in 2007 and provides over 100,000 vertical
transects of ocean characteristics each year. The verti-
cal resolution of most of the newer floats is 2 m. The
Argo array provides the first systematic set of mea-
surements on the state of the upper ocean and, unsur-
prisingly, has led to thousands of scientific publications
(www.argo.ucsd.edu/Bibliography.html). The horizontal
resolution of the array is not particularly high, with an ap-
proximate density of one float for every 3◦ × 3◦ patch of
ocean, although the actual sampling locations are highly
irregular. The site www.argo.ucsd.edu/Gridded_fields.html
lists a number of gridded data products based on Argo
data, many of which are at 1◦ or 0.5◦ resolution. Thus,
space-time interpolation of Argo data is of considerable
interest, including statistical approaches such as kriging,
which is often called objective analysis or optimal inter-
polation in the geoscience literature.

Kuusela and Stein (2018) develop models and meth-
ods for space-time interpolation of Argo temperature data
based on kriging, which requires estimation of a spatio-
temporal covariance function. For every space-time loca-
tion in the interpolation grid, parameters of this covari-
ance function were fit to observations within an appropri-
ate spatial and seasonal window using maximum likeli-
hood. Although this work included several advances over
other interpolation schemes used for ocean temperature
fields, it is worthwhile to point out some of the important

problems this work does not address. First, the form of
the local space-time covariance function is just a nugget
effect plus an exponential covariance function with sep-
arate range parameters for latitude, longitude and time,
thus ignoring possible space-time asymmetries in the co-
variance structure (Gneiting, 2002) and assuming that the
exponential form provides a reasonable description for
the local variations in both space and time. Second, salin-
ity and its covariation with temperature is ignored. Third,
the scheme operates at one pressure level at a time and,
thus, does not explicitly model the variation in the verti-
cal dimension. One difficulty with modeling in the ver-
tical dimension is how to account for the constraint that
the density of water, which is essentially a function of
temperature and salinity, must very nearly monotonically
increase with depth. Thus, a standard Gaussian process
model for the bivariate process of temperature and salinity
does not really make sense when considering the vertical
dimension, although there is work on adapting Gaussian
processes to include monotonicity constraints (Wang and
Berger, 2016, López-Lopera et al., 2018). Finally, and per-
haps most intriguingly, Kuusela and Stein (2018) assume
that it is appropriate to treat the space-time locations of
the observations as nonrandom. However, the floats move
with the currents and these currents are themselves largely
driven by variations in density, so that where we observe
is not independent of what we observe. Gray and Riser
(2014) use both the temperature and salinity data and the
movements of the floats to infer ocean currents, but still
treats the locations of observations as exogenous when
modeling temperature and salinity.

In principle, since a complete model for the ocean
would determine currents, temperature and salinity, the
reconstruction of the ocean state from the Argo data is
an inverse problem that is amenable to data assimila-
tion methods. There is a substantial literature on oceano-
graphic data assimilation (Forget et al., 2015, Stammer
et al., 2016); for example, Forget et al. (2015) use temper-
ature and salinity measurements from a number of sources
including the Argo network to estimate the ocean state,
but does not use the motion of the floats. The efficacy of
these assimilation methods is limited by the quality of the
dynamical models, models for error covariances needed
in the data assimilation scheme and computational limita-
tions. Thus, more empirical approaches to state estimation
are still commonly used in oceanography and will likely
continue to be used for the foreseeable future. Statisticians
could and should seek to contribute both to the empirical
approaches and to the statistical aspects of oceanographic
data assimilation schemes by joining oceanographic re-
search teams.

3.2 Remote Sensing Data

The development of space-time covariance functions
for environmental processes has been an active topic in
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the statistical literature for the last twenty years or so
(Cressie and Huang, 1999, Gneiting, 2002, Stein, 2005,
Cressie and Wikle, 2011, Sigrist, Künsch and Stahel,
2015). Even when these models have rough physical moti-
vation as in Sigrist, Künsch and Stahel (2015), theoretical
considerations do not generally lead to covariance models
that are specified up to scale and range parameters and,
thus, there is great value in using observational data to
learn about degrees of smoothness in space and time and
the nature of space-time interactions (Stein, 2005).

To fully explore space-time interactions requires data
that is high resolution in both space and time. Histori-
cally, environmental data has tended to be high resolution
in space or time but not both. Recent geostationary satel-
lites such as GOES-16 and GOES-17 provide images of
the Earth at hemispheric scales in 16 wavelength bands
that, for some purposes, may be viewed as dense in space
and high frequency time (Schmit et al., 2017). For exam-
ple, GOES-17 provides images every 15 minutes at the
hemispheric scale and every 5 minutes for the continen-
tal United States with a spatial resolution between 0.5 and
2 km depending on the wavelength band. This density of
observations may obviate the need for interpolation of the
data and instead lends itself to focusing on the space-time
properties of the wide range of environmental quantities
that can be inferred from these multivariate spectral im-
ages. For a simple example, Kuusela and Stein (2018)
showed how local estimates of spatial range parameters
along latitudes and longitudes for ocean temperature cor-
respond to known features of the underlying processes,
but one can imagine finding subtler properties of space-
time interactions from statistical analysis of recent GOES
data that would be of scientific interest.

4. NON-GAUSSIAN PROCESSES

It is common to describe space-time dependencies in
environmental processes using covariance functions. Co-
variance functions provide a complete description of the
dependencies for Gaussian processes, but may be in-
adequate for non-Gaussian processes. Precipitation over
shorter time scales, with its preponderance of zeroes, is
obviously non-Gaussian, but many other climate vari-
ables, such as temperature and relative humidity, have dis-
tinctly non-Gaussian properties. It would be of great sta-
tistical and scientific interest to develop statistical mod-
els that provide good descriptions of marginal and joints
distributions for such spatial and space-time processes.
Some recent efforts in this direction include Wikle (2015),
Wallin and Bolin (2015), Xu and Genton (2017). High
resolution data will be particularly helpful in making
progress in this direction.

A common tactic for developing non-Gaussian pro-
cess models is to use an unobserved Gaussian process
as a building block. This approach was made popular by

Diggle, Tawn and Moyeed (1998), which assumes the
link function of a generalized linear model is a Gaus-
sian process, and that, conditional on the Gaussian pro-
cess, the values of the observed process are indepen-
dent. This independence makes MCMC readily usable
for Bayesian inferences under the model, including pre-
dictions. However, the conditional independence makes
the model unsuitable for many applications. For exam-
ple, consider modeling the occurrence of precipitation on
a given day using logistic regression with the logit of the
probability of occurrence at a location being the sum of
a Gaussian process and a linear combination of observed
covariates. The conditional independence assumption im-
plies that realizations of the model produce speckled pat-
terns of precipitation rather than spatially coherent wet
and dry regions. To address this weakness, Olson and
Kleiber (2017) use a thresholded Gaussian process model
for daily precipitation occurrence. If the Gaussian process
is continuous, then the resulting wet regions have the de-
sired spatial coherence. However, likelihood calculations
are difficult under this model when there is a large ob-
servation network, requiring integrations over orthants of
multivariate normal distributions whose dimension equals
the number of observations. Olson and Kleiber (2017)
carry out inference using approximate Bayesian computa-
tions, which only require the ability to simulate from the
process, exploiting the fact that simulating a thresholded
Gaussian process is straightforward. Stochastic precipi-
tation generators have a long history in the hydrological
literature (Wilks and Wilby, 1999, Ailliot et al., 2015).
These models often have the properties that simulations
can be done efficiently but calculating likelihoods or con-
ditional distributions are challenging, so that approximate
Bayesian computations may prove broadly useful for fit-
ting such models to data and calculating predictive distri-
butions of the process at unobserved locations.

The demand for high-resolution gridded maps of daily
precipitation that interpolates the observational data is
great, so efforts to produce such maps proceed despite
the lack of a principled statistical solution to the problem.
Di Luzio et al. (2008) and Yatagai et al. (2012) describe
ad hoc interpolation schemes based on local weighted av-
erages where the weights make meteorologically moti-
vated use of orographic information, an approach that is
called climatologically aware interpolation. Hutchinson
et al. (2009) argue that more realistic interpolations are
obtained by first interpolating the dichotomous occur-
rence field and then, separately, interpolating the amount
of precipitation at those locations for which the first in-
terpolation indicates occurrence. Both interpolations use
kriging, which is a linear procedure, so may be substan-
tially suboptimal for interpolating the dichotomous occur-
rence field. Chen, Ou and Gong (2010) compare a number
of interpolation schemes for directly interpolating all pre-
cipitation amounts (including zeroes) and finds ordinary
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kriging works best among the methods studied, despite
its obvious problems for a process that is often 0. None
of these works propose a stochastic model for the pre-
cipitation process and generally use some kind of cross-
validation to assess the accuracy of the method. Cross-
validation does not give locally meaningful uncertainties
for either the occurrence field or the amount of precipita-
tion, nor does it provide a way of giving uncertainties for
total precipitation over a region.

To obtain locally meaningful interpolation uncertainties
when one has irregular observations, which is the case
for rain gauge networks, some degree of modeling is un-
avoidable. Left-truncation of a Gaussian process at 0 to-
gether with some monotonic transformation of the pos-
itive values to match the empirical distribution of pre-
cipitation amounts provides a unified model for both oc-
currence and amounts of precipitation and was initially
proposed by Bell (1987). However, Berrocal, Raftery and
Gneiting (2008) argued that using two separate Gaussian
processes, one to model occurrences and a separate, in-
dependent Gaussian process that, after a pointwise trans-
formation, models precipitation amounts, can provide a
better description of the spatial structure of daily precip-
itation fields, although the goal in this work was short-
term forecasting, not interpolation. In my view, Gaussian
processes as a building block for space-time precipita-
tion models may need to be abandoned to obtain realistic
representations of important spatio-temporal features of
precipitation events such as cyclonic patterns and squall
lines. The conceptual challenges of developing appropri-
ate models are immense and it will be critical to have di-
agnostic methods to assess how well the models capture
complex space-time dependencies (Sun and Stein, 2015).

5. STATISTICS AND STATISTICIANS IN CLIMATE
SCIENCE

An often-used quote in climatology is “The climate is
what you expect; the weather is what you get.” To be accu-
rate, “expect” should be interpreted broadly as the entire
multivariate space-time relationship of relevant climate
variables and not just their means. Descriptions of this
multivariate relationship are generally in terms of prob-
ability distributions, so there is intrinsically a large statis-
tical component to climatology. As a consequence, a sub-
stantial proportion of climate scientists are well-versed in
at least some aspects of statistics, whereas the proportion
of statisticians who have more than a passing knowledge
of climatology is quite limited. The fact that differen-
tial equations are not generally a part of a statistician’s
education does not help matters. Over the years, I have
co-organized a number of workshops, classes and other
events meant to bring together climatologists and statis-
ticians and have found it challenging to obtain good bal-
ances between the two groups in terms of both numbers

and levels of understanding of the other side’s discipline.
The situation is somewhat improved from a few decades
ago, but effective leadership within academic institutions
and funding agencies will be essential to make further
progress.

The intellectual opportunities in statistical climatology
are great and provide ample motivation for the engage-
ment of the best of the statistics profession. Considering
the potential impact of climate change on all life on Earth,
there may be no scientific area in greater need of statisti-
cal input. Forecasting future climate change and its im-
pacts in a way that takes appropriate account of the myr-
iad available sources of information to produce accurate
forecasts with realistic uncertainties (IPCC, 2013, Tebaldi
and Knutti, 2007, Knutti et al., 2010, Nordhaus, 2018) is a
challenge that the statistics community, working in close
concert with climate scientists, can and must address.
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